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Abstract

A Fuzzy Cognitive Map (FCM) is a powerful technique for modeling and analyzing
complex systems. In this study, we propose a novel learning algorithm that, unlike existing
FCM-based learning algorithms, ensures matching the desired system state by computing the
otherwise “unexplained” biases in the model. Our learning algorithm considers both the whole
system bias and the individual biases for each system factor (concept). We explore the impact of
FCM structure and characteristics for the proposed algorithm and suggest interpretation of
computed biases. Finally, we propose an FCM visualization technique which enables
comparison between and deeper understanding of modeled systems. As FCMs offer a broader,
quantifiable view of the causal relationships between factors, the approach used in this study
provides insights into FCM modeling and application to real-world complex systems.
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1. Introduction

Fuzzy Cognitive Maps (FCM)), first introduced by Kosko (1986), are a powerful
technique for modeling and analyzing complex systems. FCM has been used in a wide range of
situations such as political developments (Taber, 1991), dolphin, shark, and fish dynamics
(Dickerson and Kosko, 1994), organizational behavior and job satisfaction (Craiger et al., 1996),
economic/demographics of nations (Schneider et al., 1998), ecological models (Ozesmi and
Ozesmi, 2004), relationship management in airline service (Kang et al., 2004), information
system evaluation (Sharif and Irani, 2006), diagnosis of obesity (Giabbanelli et al., 2012),
social-ecological systems (Gray et al., 2015), sustainable banking (Ferreira et al., 2016), and risk
analysis in the food industry (Rezaee et al., 2018). Using FCM, one can visually demonstrate the
cause and effect relationships among important factors in a system where it is difficult to
describe them with a traditional mathematical representation. FCMs have a network structure
where nodes represent the concepts/system factors, and directed arcs represent the causal
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relationships among the concepts (Giabbanelli et al., 2012). FCMs have three main components
that include concepts, relationships between the concepts, and relationship weights. Once
constructed, FCMs undergo an iterative (forward analysis) process where concept values are
updated based on input relationships, their weights, and source concept values until convergence
or some other termination criterion is reached.

Consider an FCM that might be constructed to model the interdependent community
health factors (concepts) of healthcare, education, employment, and public safety. That FCM
model might be applied to several communities with varying levels of “health” as determined by
associated factor measures. The value of a factor measure is a function of the overall community
health, the impact of other factors as modeled by the FCM, and unique characteristics of that
factor without that community not explained by the community health or FCM model.

One would desire an expanded version of the FCM where concept values converge to
values representative of the modeled community. FCM convergence to a desired state is
typically pursued through learning algorithms (Jamshidi et al., 2018). Learning algorithms
minimize the prediction errors made by the forward analysis (Kim et al., 2008). Another reason
for using learning algorithm for FCM is to update the knowledge obtained from decision-makers
or historical data to get refined relationship weights (Papageorgiou, 2012) and increase the
efficiency and robustness of FCMs (Papageorgiou et al., 2005).

Having the objective of optimizing the weight matrix for reaching the desired state, many
learning algorithms have been proposed in the literature for learning FCMs. One drawback of the
existing learning algorithms is that their learning process is mainly concentrated on the impact of
relationship weights on the concept values, ignoring the influences of other external forces or
circumstances that may affect the whole system. Additionally, such learning algorithms might
allow relationship weights to change to illogical values. By considering “biases” which we
define as system influencing factors outside of the relationship weights, our proposed learning
algorithm matches concept values associated with the real-world complex system state.

Our training approach can refine the interrelationships in the FCM model and discover
biases unique to a specific complex system. As a result, the approach is inherently able to
produce matches for real-world concept values while maintaining coherent connection weights,
and producing additional system insight based on learned bias values. In the context of FCM,
our use of the term bias is based on the bias input in error backpropagation neural networks. Bias
accounts for the circumstances that create a deviation from the expected concept outcome based
on the interrelationship weights alone.

Having designed and validated the proposed learning algorithm, we conduct an
experiment to discover the impact of the FCM structure on its behavior. In to the experiment,
weights are analyzed in terms of size and bound, along with three more sets of features including
initial concept values (system health), number of nodes, and level of connectedness. Results are
consistent with the expected function of the algorithm, providing further validation. Finally, we
consider a more content rich method of representing the resulting FCM that enables rapid visual
comparison of similar systems.

This paper is organized as follows. In the next section, we first provide a background on
FCM and its structure. In Section 3, we propose our learning algorithm. Section 4 represents the
detail of our algorithm using an example, community health example. In Section 5, we present



our empirical experimentation approach and the results. Finally Section 6 discusses our findings
and the future directions.

2. Research Background

2.1 FCM Model and Structure

In an FCM model, concepts are the main factors/variables that impact a system and get
initial fuzzy normalized values that might be obtained from experts, historical data, or a
combination of both. The fuzzy values for concepts take values ranging from 0 to 1, where 0
indicates that the concept is not activated in the system while 1 says it is fully active. Equation
(1) shows a vector of concepts which is defined as vector C where Ci €[0, 1], i=1,2, ..., Nand
N is the total number of concepts.

C=[C,Cp o Cyl (1)

Relationships between the concepts create the feedback containing potential balancing or
reinforcing causal loops depending on the interdependencies between the concepts. The intensity
of interdependencies between the concepts determines the complexity of the system. The fuzzy
values for the cause and effect relationship can take values ranging from -1 to 1. Where a
negative number indicates concept i negatively affects concept j and a positive number shows an
increase in the value of concept i increases the value of concept j. Having considered fuzzy
values for the concepts and the cause and effect relationship among them, FCMs strengthen
cognitive maps (Ferreira et al., 2016). Equation (2) shows a matrix of weights which is defined
as matrix W where wy €[—1, 1],4, j=1, 2, ..., N represents the strength of the causal relationship
between concept i and j. Because a concept rarely causes itself (Ferreira et al., 2016), in this
study, we assume all the entries on the main diagonal of the weight matrix is equal to zero.
Figure 1 shows an example of an FCM model.
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After setting the initial states of concepts, using a function that is presented in Equation
(3), the simulation starts where the activation level of each concept at each iteration is adjusted
based on the value of its interconnected concepts at the previous iteration. The condition for
terminating the simulation is value convergence of all the concepts.

Ci™t = f(Cf + Ty Ciwy)) (3)



Figure 1. Example of FCM structure.

In Equation (3), Cj'is the activation level of concept j at iteration ¢, and fis the threshold
or transformation function which can be sigmoid, hyperbolic tangent (usually tanh(x)), bivalent
(x=0or 1), or trivalent function (x = -1, 0 or 1). The comparison conducted by Tsadiras (2008)
has shown sigmoid function works better than the others in general. The sigmoid is attractive in
its quasi-linear shape about 0 and its asymptotic conduct at the extremes modeling “diminishing
returns” behavior. Equation (4) shows the formulation of the sigmoid function where ¢ > 0 is a
constant parameter determining the steepness of the function.
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The objective of an FCM model is to learn the weight matrix in a way that the difference
between the initial (in our case, target/real-world actual) concept values and the response, which
is the final steady-state of concepts, is minimized. This result indicates the weight structure
provides an explanation of those target concept values. To this end, many learning algorithms
have been proposed in the literature. In general, these existing algorithms may fail to match the
target values and may produce connection weights that are illogical.

3. FCM Learning Algorithm and Visualization

In the same vein with Amit and Meir (2019) who suggest that bias in the learning process
is two-tiered, within each task and between tasks, we argue that bias needs to be divided into the
circumstances around the whole system (system bias) which affects all concepts; and
circumstances that impact a specific concept (concept bias). In the community health example,
the state of healthcare might be biased by the overall community condition and by conditions
unique to healthcare. Interpreting the real-world source of the bias requires analysis on the part
of system experts.

FCM learning Algorithm and Visualization (FLAV) contains three phases to learn the
system bias, FCM weight matrix, and individual concept biases using an approach similar to the
neural network error backpropagation mechanism. The error backpropagation in neural
networks minimizes the error function in relationship weights between the nodes in a network by
using the methods of gradient descent (Rojas, 1996). In backpropagation, the error function of



every neuron is calculated after processing initial data as the input (Rumelhart et al., 1986).
Iteration in feed-forward backpropagation network is influenced mainly by training set variation,
while in our approach it is influenced by the iterative process toward convergence that exists in
the FCM. More detail about the backpropagation method can be found in (Rumelhart et al.,
1986; Hecht-Nielsen, 1992).

Figure 2 shows the complete process of FLAV. As it is shown in the overview of the
algorithm, in order to get the algorithm started, we need the target concept values, expert guesses
at relationship weights along with any desired bounds, and other learning parameters. Weight
bounds are set at rational limits by an expert on the modeled system. In practice, weights are
often set based on translation of linguistic fuzziness from experts into bounds. Experts would
indicate direction of correlation — positive or negative, magnitude along some measure of
influence — very weak to very strong, and weight bound range based on some sense of certainty —
from very loose to very tight.

FLAYV consists of three main phases: 1) learning the system bias: computing the bias
within the system and learning it to reach a bias value which minimizes the error between the
network's given output and desired output. At this phase, the desired output refers to the initial
value of nodes which is Cjo, 2) learning the weights: updating weights using feed-forward
backpropagation. Like phase 1, at this phase, the desired output refers to the initial value of
nodes which is C jo’ and 3) Learning concept bias: learning individual concept bias using the
learned weight matrix and learned system bias.

Figure 3 shows the mechanism of FLAV based on the sigmoid function. In this figure, we
assume there are three concepts. The black circles show the desired value of the concepts, while
the purple circles show the values of the concepts after the FCM simulation without our learning
process. As shown in the figure, using our proposed learning process we try to minimize the
concept deviation from the desired values by learning the weighs in different phases of the
algorithm.
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Figure 2. Overview of FLAV
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Here we explain each step with more detail. We also presented the inputs needed to get
the algorithm started in Table 1.

Phase 1: learning the system bias

Step 1.1. Iteratively compute the final values of concepts using Equation (5) until the
model reaches a steady state which means Cf = Cf*' Vj = 1,...,n. In Equation (5), C/*" is the
value of concept j at iteration ¢+/, Cjt is the value of concept j at iteration 7, w;; represents the
relationship weight between concept i and j, S, is the bias within the system at epoch e and n
represents the number of concepts.
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Figure 3. Mechanism of FLAV based on sigmoid function

Step 1.2. Update the value of S§;, using Equations (6) where S£7Lis the value of bias at
epoch e-1, y is the learning rate in phase 1, and Cjo is the initial (target) value of concept j. The

description of all other terms is the same as stated above. Note that we need to initialize Sf;,, for
e=0.

Spias = Stias T ¥ 2j=1(C; = G)CF (1 = () (6)
Step 1.3.If |X7-,(Cf — C7)Cf (1 —C})| < & orm = M, save the S, and go to the
next phase which is learning the weight matrix, otherwise, go to step 1.1. Note that ¢ is the

accepted error in phase 1, m is the number of epochs at this phase, and M is the maximum
number of epochs.

Phase 2: learning the weight matrix

Step 2.1. Using the final Sy, value obtained from phase 1, iteratively compute the values
of concepts using Equation (7) until the values reach a steady state which means Cjt =

Cf*'vj=1,..,n Make SEs = S for e=0 where S¢;, is the value of bias in phase 2 (note

that system bias keeps updating in phase 2 until the algorithm meets the termination criteria of
Phase 2).

t+1 _ 1
C]- =

7)
t, . ce n t (
1+e_c(cj++sbias+zi=1Wijci)



Step 2.2. Update the values of wj; for w;; # 0, using Equations (8) and (9) where
changee’ e
Ji ji
W]-‘"i’_l is the value of wj; atepoch e’ — 1, WJ-’L-”i" is the (expert set) minimum value of wy;, wji™
is the (expert set) maximum value of wj;, and y; is the learning rate for weight change. The
description of all other terms is the same as stated earlier. The mount of weight change is

calculated using backpropagation. Please refer to Rumelhart et al (1986) for more information.

. . ! .
is the amount of change in wj; at epoch e’,w}; is the new value of wj; at epoch e’,

!
change® __ 0 t t\ ot ot
wy; = (€} - cHA - cHCfc (8)
! . I_ e' .
wf; = min(max (ij Ty y{wicjhang ¢ ,W{}”") Wi )

Step 2.3. Update the S,fi'asusing Equation (10). Where S,fi’a_sl is the value of bias at epoch
e’ — 1, y, is the learning rate for system bias in phase 2, and the description of the other terms is
the same as stated earlier.

Slfias = Slfia_sl + yé 7:1(Cjt - CjO)Cjt (1 - C]t) (10)

Step 2.4. If ¥7_, (Cf — Cjo)2 < &', orm’ > M, go to the next phase which is learning the
final status of the system considering the learned bias value and weight matrix, otherwise, go to
step 2.1. &' is the accepted error in phase 2 and m’ is the number of epochs in this phase. If the
terminating criteria is the error, then the network has essentially been learned and Phase 3 is not
required. In such a case, phase 3 produces very small concept biases to explain the small,
acceptable amount of the error function remaining in the FCM.

Table 1
Algorithm inputs
Input Description
c Sigmoid factor (set to 1 in this research)
c? Initial values of concepts
Wi Weight matrix
Stias Initial value of system bias
y Learning rate in phase 1
& Acceptable error in phase 1
Y1 Learning rate for weight change in phase 2
Yy Learning rate for system bias in phase 2
& Acceptable error in phase 2
M Maximum number of epochs
y" Learning rate in phase 3
&' Acceptable error in phase 3

Phase 3: Learning concept bias



Step 3.1. Iteratively compute the values of concepts using Equation (11) until all concepts

converge to a steady-state. In Equation (11), C _biasje” represents the bias in concept j at epoch
e, S fi’asis the final value of bias obtained from phase 2, and Wj]; mal is the final value of Wi
obtained from phase 2. The description of all other terms is the same as mentioned earlier. Note
that for concepts with no associated error at the end of stage 1, there may be some very small
concept bias determined based on the correction of those concepts which had more substantial
error.

1
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Equation (12) shows the detail of calculating the concept bias. Where y"'is the learning
rate in phase 3, Cjo is the initial value of concept j, and Cjtis the final steady value of concept j at

iteration ¢ of epoch e”’.
C_biasf" = C_bias® L +y"(Cf - C?) (12)

Step 3.2. If ¥}, (Cf — Cjo)2 < &",orm" = M stop, otherwise go to step 3.1. §"' is the
accepted error in phase 2 and m"’ is the number of epochs in this phase.

4. Community Health Example

To facilitate understanding of algorithm function, consider a simple FCM of community
health with four concepts: education, healthcare, employment and public safety. Suppose an
initial matrix of connection weights between these factors was proposed by a panel of experts.
Additionally, four different communities are considered with varying levels of “health” as
determined by measures in the concept areas. Table 2 shows the outcomes of the three phases of
FLAV. In the table, the two sets of results show the impact of weight change being “loose” (+/-
0.4 from expert value) or “tight” (+/- 0.2 from expert value). Loose bounds are shown to the left
in the table and tight bounds to the left. For each data set, the target concept values are shown
for each of the four communities.

Phase 1 computes the system bias, a measure of overall community health. This bias
provides an indication of overall system health when compared across systems. It increases
across the community as the level of overall health increases. The Phase 1 system bias result is
the same for both tight and loose weights because those weights are not changed in the initial
phase of FLAV.

Phase 2 adjusts the weights and system bias in an attempt to match the target concept
values. Weights that have hit the bound are shown in red. As expected, more weights hit the
bound when the weights are tighter. As a result, the changes in system bias during Phase 2 tend
to be higher with tighter bounds. When all the weights coming into a concept hit their bound
during training, it means that concept may not be fully explained by the system bias and weights
(as bounded). This situation is what necessitates Phase 3 of the learning algorithm. With loose
bounds, the high health system is fully explained after Phase 2 so concept bias is 0. With tight
bounds, the high health system has three concepts (C1-C3) with all incoming weights at their
bound, requiring explanation by concept bias. Weights at a bound are shown in red.



In Phase 3, we learn the deviation from concept target values not explained by system
bias or weights. With the tight bounds - high health scenario, C1-C3 are fully constrained by
weight bounds. As a result, in Phase 3 the concept bias adjusts to enable the concept to match its
target. A positive concept bias denote a positive deviant (concept factor that is above what
would be expected due to system bias and weight matrix). Note that an unconstrained concept
like C4 may develop a small concept bias as other concept biases are learned, but this value will
be negligibly small.

At the end of the three phases of the algorithm, you have produced an FCM that matches
the target concept values and does not violate any weight constraints.

Table 2

Community Health Algorithm Results

Comparison with weight bounds of +/- 0.4

Comparison with wei

ght bounds of +/- 0.2

Low Health
Con Target | 0.3 02 | 04 | 01 [ ConTarget| 03 02 | 04 | 01
Phase 1 Sys Bias -1.330 Sys Bias -1.330
Phase 2 Sys Bias -1.329 Sys Bias -1.317
Weight matrix Weight matrix
Cl C2 C3 C4 Cl C2 C3 C4
Cl 0.000 | 0.000 | 0.700 | -0.400 Cl 0.000 | 0.200 | 0.500 | -0.200
C2 0.400 | 0.000 | 0.400 | -0.600 C2 0.200 | 0.000 | 0.200 | -0.400
C3 0.400 | -0.200 | 0.000 | -0.800 C3 0.200 | 0.000 | 0.000 | -0.600
C4 -0.320 | -0.400 | 0.400 | 0.000 C4 -0.400 | -0.200 | 0.200 | 0.000
Phase3 | Con Bias -0.026 | -0.137 | 0.193 | -0.408 | Con Bias 0.089 | -0.310 | 0.301 | -0.601
Comparison with weight bounds of +/- 0.4 | Comparison with weight bounds of +/- 0.2
Moderate Health
Con Target | 0.45 035 | 055 | 025 | ConTarget | 045 035 | 055 [ 0.25
Phase 1 Sys Bias -0.780 Sys Bias -0.780
Phase 2 Sys Bias -0.796 Sys Bias -0.806
Weight matrix Weight matrix
Cl C2 C3 C4 Cl C2 C3 C4
Cl 0.000 | 0.013 | 0.616 | -0.176 Cl 0.000 | 0.200 | 0.500 | -0.174
C2 0.254 | 0.000 | 0.325 | -0.384 C2 0.200 | 0.000 | 0.200 | -0.390
C3 0.296 | -0.200 | 0.000 | -0.617 C3 0.200 | 0.000 | 0.000 | -0.600
C4 -0.426 | -0.276 | 0.224 | 0.000 C4 -0.400 | -0.200 | 0.200 | 0.000
Phase3 | Con Bias 0.000 | 0.000 | 0.000 | 0.000 | Con Bias 0.075 | -0.203 | 0.112 | 0.002
Comparison with weight bounds of +/- 0.4 | Comparison with weight bounds of +/- 0.2
High Health
Con Target | 0.6 05 | 07 | 04 | ConTarget| 0.6 05 | 07 | o4
Phase 1 Sys Bias -0.283 Sys Bias -0.283
Phase 2 Sys Bias -0.299 Sys Bias -0.387
Weight matrix Weight matrix
Cl C2 C3 C4 Cl C2 C3 C4
Cl 0.000 | 0.068 | 0.486 | -0.063 Cl 0.000 | 0.200 | 0.500 | -0.015
C2 0.223 | 0.000 | 0.197 | -0.270 C2 0.200 | 0.000 | 0.200 | -0.225
C3 0.243 | -0.199 | 0.000 | -0.476 C3 0.200 | 0.000 | 0.000 | -0.419
C4 -0.443 | -0.256 | 0.141 | 0.000 C4 -0.400 | -0.200 | 0.200 | 0.000
Phase3 | Con Bias 0.000 | 0.000 | 0.000 | 0.000 | Con Bias 0.113 | -0.153 | 0.054 | -0.003
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Comparison with weight bounds of +/- 0.4 | Comparison with weight bounds of +/- 0.2
Very High Health
Con Target | 0.8 07 | 09 | 06 [ ConTarget| 0.8 07 | 09 | 06
Phase 1 Sys Bias 0.519 Sys Bias 0.519
Phase 2 Sys Bias 0.511 Sys Bias 0.337
Weight matrix Weight matrix
Cl C2 C3 C4 Cl C2 C3 C4
Cl 0.000 | 0.008 | 0.578 | -0.079 Cl 0.000 | 0.200 | 0.500 | -0.010
C2 0.207 | 0.000 | 0.274 | -0.287 C2 0.200 | 0.000 | 0.200 | -0.220
C3 0.216 | -0.200 | 0.000 | -0.491 C3 0.200 | 0.000 | 0.000 | -0.413
C4 -0.441 | -0.317 | 0.220 | 0.000 C4 -0.400 | -0.200 | 0.200 | 0.000
Phase3 | Con Bias 0.000 | 0.000 | 0.000 | 0.000 | Con Bias 0.169 | -0.230 | 0.300 | 0.003

5. Experiment

In this section, we aim to validate and understand the function of FLAV and facilitate the
interpretation of its output. In developing these experiments, the following practices are
followed:

1. Concepts are defined to be normalized fuzzy numbers [0,1] such that 1 is the most
preferred or attractive state and 0 is the least preferred state.

2. An expert may be allowed to place tighter bounds on a relationship, but in all cases,
relationship weights are in the range [-1, 1].

3. Where an expert asserts that no causal relationship exists from factor A to factor B, the
associated relational weight is maintained at 0 and not modified by the algorithm.

We use three sets of networks with a different number of nodes, connectedness level,
weight size, weight bounds, and health levels (which are referred to different concept inputs) to
examine the impact of various factors on the learning process. The level of health within a
system is associated with the average concept value and system bias. We also develop more
understanding in terms of different ways to compare one system to another.

5.1 FCM Experimental Design Factors

We define measures for understanding the behavior of an FCM model and use these
measures for model comparison. Table 3 shows a list of factors we will use to compare different
FCM model structures.

As shown in the table, we examine the impact of the number of concepts, level of
connectedness, weight, and systems health on FLAV behavior on an FCM model. Using a
different number of concepts, we aim to understand if the size of a system with similar features
will have a significant impact on FLAV behavior. Connectedness is the level of connection
between nodes which could be full, meaning mostly all the nodes are dependent on each other, or
partial, meaning nodes are only partially connected. Figure 4 shows an example of fully and
partially connected models.

11



Table 3

Measures for comparing different FCM model Structures

Experimental Levels Description
measures
Number of concepts 4N 10N 20N Networks with 4, 10, and 20 nodes.
If (No. of relations)/(n(n-1)) is equal or less than 0.5,
Connectedness Partial Full the connectedness is considered to be Partial,
otherwise Full.
If the average weight is equal or less than 0.3,
Weight value Small Large weight values are assumed to be Small, otherwise,
Large.
Loose bound is where lower and upper bounds of
) . weights are set to be -1 and 1, respectivel
Weight bound Loose Tight T igi%t bound is where weights arer;llowedyto move
+/- 0.2 from original expert weight estimate.
System health is assumed to be Low, Medium, or
System health Low Medium High  High, if the average of initial values of concepts is

in [0,0.3], (0.3, 0.7], or (0.7,1] interval, respectively.

Figure 2. (a) Example of a partial system, (b) and example of a full system.

With the weight size and bound measures, we analyze to what extent the behavior of the
algorithm is dependent on the interrelationship weights. By eliciting information on the strength
of causality between each pair of cause-effect concepts, it is possible to provide richer
recommendations and comparisons about different decision options or systems. We also will
analyze the impact of system health on model performance.

5.2 Dataset

The design presented in Table 3 is tested at the levels shown in the table. Table 4 shows
our assumptions regarding the initial setup of the models in the three phases of FLAV. The total
set of initial values and weights we generated for all the experiments was 180 as there are 12
levels in each experiment for the three network sizes, and the number of experiments is 5. We
used a weight bound measure to see the difference between tightly bound models with loosely
bound models, we repeated all the experiments twice, but one of them with loosely bound
weights and the other one with tightly bound weights. Thus, overall, we have 360 models with

different measures and levels.
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Table 4

Initial setup assumptions

Sigmoid | Initial Initial concept | Learning rate epsilon Max No.
factor system bias | bias iterations
Phase 1 | c=1 Stias =0 - y = £ =10.00001 M=10000

Phase2 | c=1 |- i V=Lys =1 |&=000001 | M=10000
Phase3 | c=1 - C_biasl-e”= o |y'=1 £"=0.00001 | M=10000

5.3 Model Structure Comparison

The measures we used to compare different models include system bias at phases 1 and 2,
average of learned weights in phase 2, number of weights hitting the bounds in phase 2, values of
concept biases in phase 3, and number of concepts with approximately zero bias at the end of
phase 3 (we assumed the bias in a concept is zero if the absolute value of concept bias obtained
at the end of phase 3 is equal or less than 0.001). We coded FLAV using Python and PyCharm
Community Edition 2018.3.5.

As expected, FLAV learned all concept values. The result of this analysis is summarized
visually in Figure 5. As shown in Figures 5.a and b, the values of system bias at phases 1 and 2
are higher in fully connected models than the partially connected ones. Because the concepts are
all nonnegative and typically with positive correlation, higher levels of connection push further
to the right in the threshold function requiring more system bias correction.

The number of weights hitting the bound (Figure 5.d) is also greater in fully connected
models because we have a greater number of arcs in fully connected models so more weights hit
the bound. However, the percentage of arcs hitting the bounds in partial models is 37% while this
percentage is 17% for full models. We may conclude that fully connected models have more
ability to learn the system and accordingly adjust the weights compared to partial models.
Moreover, as the number of concepts with zero bias (Figure 5.f) is greater in fully connected
models, we can observe that in fully connected models the bias embedded in individual concepts
is less than that of partial models. In other words, a higher number of interrelationships between
the concepts helps the individual concepts to reach the desired values. As one would expect, the
fully connected networks possess a greater ability to fully explain the individual concept value
without requiring concept bias.

Regarding the impact of weight size (Figure 5.a and b) on system characteristics, we see
that the values of system bias at both phases 1 and 2 are higher in large weight size models
compared to small ones in 4 and 10 nodes models. However, we see a reverse pattern in 20 nodes
models. More specifically, in 20 nodes models, the values of system bias are higher in small
weight size models. Also, as we expected the average weight, as depicted in Figure 5.c, is higher
in large weight size models compared to small ones. Concerning concept bias, as shown in
Figure 5.e, we see a radical increase in the values of concept bias in 20 nodes large weight size
models compared to small weight size models. This result is supported in Figure 5.f, as we see a
fewer number of concepts have reached zero bias in 20 nodes large weight size models compared
to the small weight size ones, more specifically the percentage of concepts that have reached
zero bias is 37% and 50% in 20 nodes large and small weight size models, respectively.
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Figure 3. Comparison of partially connected with fully connected, small weight size with large
weight size, and three levels (low, medium, and high) of system health in terms of (a) system
bias at phase 1, (b) system bias at phase 2, (c) weight average, (d) overall number of weights
hitting the bounds, (e) concept bias, and (f) number of concepts with zero bias.

The results of system health comparison in different models are in line with our
expectations. As we move from a low health system to a healthy system, we expect the values of
system bias, concept bias, and the number of weights hitting the bounds to decrease. This
outcome is connected to the behavior of the selected threshold function. In the same vein, we
expected the number of concepts with zero bias would be higher in healthier systems compared
to medium and low health systems since we expect less amount of concept bias would be
embedded in healthy models. The results depicted in all six plots of Figure 5 support our initial
expectation.

Although Figure 5, gives us a general idea about the performance of different FCM
model structures, we pursued our analysis with statistical testing to find out whether the
differences we observed are statistically significant. Our statistical tests showed almost all
differences shown in Figure 5 are statistically significant. More specifically:

e System bias values at phase 1 and 2 are significantly higher in fully connected models
compared to partially connected ones in most cases.

e The number of concepts with zero bias is significantly higher in all fully connected models
compared to partially connected ones.

e System bias at phase 1 is significantly higher in 4 and 10 nodes large weight size models.
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e Average weight is significantly higher in 4 and 20 nodes models with large weight size
compared to small weight size models.

e In 20 nodes models with small weight size the value of bias is significantly lower and the
number of concepts with zero bias is significantly greater compared to large weight size
models.

e System bias at phases 1 and 2 is significantly higher is low health models.

e There is a significant difference between systems with different health levels and the amount
of deviation from their desired state.

5.4 FLAV visualization

Next, we propose a novel visualization for FLAV to facilitate interpretation. Figure 6
shows our proposed visualization for a three-concept model where each node contains
information regarding the concept name, initial value, and concept bias after running the
algorithm. Different colors represent the direction of biases. A concept is black if the concept
bias is zero and it is green or red if the bias reflects positive deviant or negative deviant behavior,
respectively. The term positive deviant stems from the sociology to describe individuals who
experience uncommon success relative to others in the same environment. This representation
also enables us to visualize if a learned weight has hit its expert set bound. An arc is green if the
learned weight hits the upper bound and it is red when it hits the lower bound.

Note that where there is concept bias yielding a green or red circle, all the arcs going into
that circle will be of the same color. This behavior is a function of the fact that concept values
are non-negative.

We can show the magnitude of system or concept bias with varying line thickness. We
also show the final value of the system bias with a circle around the model along with indicating
magnitude with the line thickness. The system bias will be green, black, or red if it has positive,
zero, or negative deviance, respectively.
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Figure 4. New FCM visualization.

This visualization facilitates the rapid understanding of a single system and comparison
between multiple systems. Where relationships are at bounds, experts might consider whether
that bound might be altered. Positive and negative deviants are quickly identified focusing
future study to determine the underlying real-world cause of the deviation. In the case of
positive deviance, what is learned from this study might be translated to other systems.

Figure 7 shows FCM results representing the “health” of two communities and modeled
factors of healthcare, education, employment, and public safety. This new representation gives
us a quick view of the FCM model and where bias exists. Although the interpretation of bias in
real life is dependent on the threshold function, this representation helps us to compare the biases
relatively. Figure 7.a, for example, shows the initial input of the model is mostly biased as most
of the arcs and concepts are either in green or red while in Figure 7.b shows a system with small
bias as most of the arcs and concepts are in black. Regarding the importance of the concepts,
since all the arcs are presented in the same thickness, it is suggested that all the relationships are
of equal importance. In this situation, community developer would want to discover the reasons
for positive healthcare and safety and negative education shown in the Figure 7.a.

16



System Bias
Az -1.65 ~
e ~

Healthcare
0.22
0.054

O Zero Bias

O Negative Bias
Positive Bias

- Hitting Lower Bound
Hitting Upper Bound
e 0<|w|<0.1

— | 0.1<|w|<0.2
,,,,,,,,,,,, SB<0

0<SB

,,,,,,,,,,,, 0<|SB|<1

----- 1<|SB|<2

=== | 2<|SB]|

Healthcare

/ 0.22

Employment i
0.10 i

Education
0.15

b)

Figure 5. New FCM representation: a) full tight 4 nodes large weights low health level model, b)
full tight 4 nodes large weights high health level model (Experiment 5).

6. Conclusion and Future Research

In this study, we propose a new learning algorithm for FCM and implement a new
approach for FCM analysis which provides important contributions to the theory and practice in
the FCM literature. Our first contribution is related to the introduction of FLAV which can match
target concept values while maintaining logical connection weights. The algorithm accomplishes
this by computing biases for the whole system and each of the individual concepts based on the
neural networks’ error backpropagation mechanism. Considering bias in the learning process can
make the algorithm more flexible to simulate the real-world and fit the actual state. This method
enables detailed quantitative and visual modeling of complex systems that is generally
applicable. The method begins with a general model created by experts and is able to adaptively
learn a specific system in a manner that facilitates improvement and comparison. Unlike other
FCM learning algorithms that only focus on the error which is based on the differences between
the initial and final concept values, we argue that external circumstances beyond relational
weights have an impact on the algorithm output and in order to make the learning process more
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realistic we need to take them into account. Finally, the iterative nature of learning makes small
changes to the weights as balancing corrections made for experts who may tend to consistently
overstate or understate relationship weights.

In addition to algorithm development, an experimental design assessing the behavior and
logic of this method was conducted with results summarized. Finally, we propose a novel format
for FCM visualization. Using this new visualization, we can easily engage the audience with the
amount of bias in the model as well as the nature and importance of the relationships.

Future studies using real-world datasets would assist with demonstrating the explanatory
power of this approach. Second, as indicated in the detail of the experimental section, in order to
get the algorithm started we need to initialize various learning parameters including the biases.
Future studies are needed to validate and investigate the impact of the learning parameters on the
learning process of the algorithm. Such analysis would help us in understanding how the biases
should be initialized. Third, in this study, we only considered 4, 10, and 20 nodes models, while
in real-world situations we may have to deal with larger scale FCMs. The impact of the threshold
function, either the sigmoid parameter or other function might be considered. Another direction
for future research is analyzing the proposed algorithm for large-scale FCMs and studying the
limitations it may have. A final area of future research is use of a learned FCM using FLAV
might be used to discover high leverage opportunities for systems improvement.
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