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Abstract 

A Fuzzy Cognitive Map (FCM) is a powerful technique for modeling and analyzing 
complex systems. In this study, we propose a novel learning algorithm that, unlike existing 
FCM-based learning algorithms, ensures matching the desired system state by computing the 
otherwise “unexplained” biases in the model. Our learning algorithm considers both the whole 
system bias and the individual biases for each system factor (concept). We explore the impact of 
FCM structure and characteristics for the proposed algorithm and suggest interpretation of 
computed biases.  Finally, we propose an FCM visualization technique which enables 
comparison between and deeper understanding of modeled systems. As FCMs offer a broader, 
quantifiable view of the causal relationships between factors, the approach used in this study 
provides insights into FCM modeling and application to real-world complex systems.  
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1. Introduction 

Fuzzy Cognitive Maps (FCM), first introduced by Kosko (1986), are a powerful 
technique for modeling and analyzing complex systems. FCM has been used in a wide range of 
situations such as political developments (Taber, 1991),  dolphin, shark, and fish dynamics 
(Dickerson and Kosko, 1994), organizational behavior and job satisfaction (Craiger et al., 1996), 
economic/demographics of nations (Schneider et al., 1998), ecological models (Özesmi and 
Özesmi, 2004), relationship management in airline service (Kang et al., 2004), information 
system evaluation (Sharif and Irani, 2006), diagnosis of obesity (Giabbanelli et al., 2012),  
social-ecological systems (Gray et al., 2015), sustainable banking (Ferreira et al., 2016), and risk 
analysis in the food industry (Rezaee et al., 2018). Using FCM, one can visually demonstrate the 
cause and effect relationships among important factors in a system where it is difficult to 
describe them with a traditional mathematical representation. FCMs have a network structure 
where nodes represent the concepts/system factors, and directed arcs represent the causal 
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relationships among the concepts (Giabbanelli et al., 2012). FCMs have three main components 
that include concepts, relationships between the concepts, and relationship weights.  Once 
constructed, FCMs undergo an iterative (forward analysis) process where concept values are 
updated based on input relationships, their weights, and source concept values until convergence 
or some other termination criterion is reached.  

Consider an FCM that might be constructed to model the interdependent community 
health factors (concepts) of healthcare, education, employment, and public safety.  That FCM 
model might be applied to several communities with varying levels of “health” as determined by 
associated factor measures.  The value of a factor measure is a function of the overall community 
health, the impact of other factors as modeled by the FCM, and unique characteristics of that 
factor without that community not explained by the community health or FCM model. 

One would desire an expanded version of the FCM where concept values converge to 
values representative of the modeled community.  FCM convergence to a desired state is 
typically pursued through learning algorithms (Jamshidi et al., 2018). Learning algorithms 
minimize the prediction errors made by the forward analysis (Kim et al., 2008). Another reason 
for using learning algorithm for FCM is to update the knowledge obtained from decision-makers 
or historical data to get refined relationship weights (Papageorgiou, 2012) and increase the 
efficiency and robustness of FCMs (Papageorgiou et al., 2005). 

Having the objective of optimizing the weight matrix for reaching the desired state, many 
learning algorithms have been proposed in the literature for learning FCMs. One drawback of the 
existing learning algorithms is that their learning process is mainly concentrated on the impact of 
relationship weights on the concept values, ignoring the influences of other external forces or 
circumstances that may affect the whole system. Additionally, such learning algorithms might 
allow relationship weights to change to illogical values.  By considering “biases” which we 
define as system influencing factors outside of the relationship weights, our proposed learning 
algorithm matches concept values associated with the real-world complex system state.  

Our training approach can refine the interrelationships in the FCM model and discover 
biases unique to a specific complex system. As a result, the approach is inherently able to 
produce matches for real-world concept values while maintaining coherent connection weights, 
and producing additional system insight based on learned bias values.  In the context of FCM, 
our use of the term bias is based on the bias input in error backpropagation neural networks. Bias 
accounts for the circumstances that create a deviation from the expected concept outcome based 
on the interrelationship weights alone.  

Having designed and validated the proposed learning algorithm, we conduct an 
experiment to discover the impact of the FCM structure on its behavior.  In to the experiment, 
weights are analyzed in terms of size and bound, along with three more sets of features including 
initial concept values (system health), number of nodes, and level of connectedness.  Results are 
consistent with the expected function of the algorithm, providing further validation.  Finally, we 
consider a more content rich method of representing the resulting FCM that enables rapid visual 
comparison of similar systems.   

This paper is organized as follows. In the next section, we first provide a background on 
FCM and its structure. In Section 3, we propose our learning algorithm. Section 4 represents the 
detail of our algorithm using an example, community health example. In Section 5, we present 
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our empirical experimentation approach and the results. Finally Section 6 discusses our findings 
and the future directions.  

2. Research Background 
 

2.1 FCM Model and Structure 
In an FCM model, concepts are the main factors/variables that impact a system and get 

initial fuzzy normalized values that might be obtained from experts, historical data, or a 
combination of both. The fuzzy values for concepts take values ranging from 0 to 1, where 0 
indicates that the concept is not activated in the system while 1 says it is fully active. Equation 
(1) shows a vector of concepts which is defined as vector C where Ci ∈ [0, 1], i = 1, 2, …, N and 
N is the total number of concepts. 

𝐶𝐶 =  [𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑁𝑁 ]                                                                                                                      (1) 

Relationships between the concepts create the feedback containing potential balancing or 
reinforcing causal loops depending on the interdependencies between the concepts. The intensity 
of interdependencies between the concepts determines the complexity of the system. The fuzzy 
values for the cause and effect relationship can take values ranging from -1 to 1. Where a 
negative number indicates concept i negatively affects concept j and a positive number shows an 
increase in the value of concept i increases the value of concept j. Having considered fuzzy 
values for the concepts and the cause and effect relationship among them, FCMs strengthen 
cognitive maps (Ferreira et al., 2016). Equation (2) shows a matrix of weights which is defined 
as matrix W where wij ∈ [−1, 1], i, j = 1, 2, …, N represents the strength of the causal relationship 
between concept i and j. Because a concept rarely causes itself (Ferreira et al., 2016), in this 
study, we assume all the entries on the main diagonal of the weight matrix is equal to zero. 
Figure 1 shows an example of an FCM model. 

𝑊𝑊 = �
𝑤𝑤11 ⋯ 𝑤𝑤1𝑁𝑁
⋮ ⋱ ⋮

𝑤𝑤𝑁𝑁1 ⋯ 𝑤𝑤𝑁𝑁𝑁𝑁
�                                                                                                                 (2) 

After setting the initial states of concepts, using a function that is presented in Equation 
(3), the simulation starts where the activation level of each concept at each iteration is adjusted 
based on the value of its interconnected concepts at the previous iteration. The condition for 
terminating the simulation is value convergence of all the concepts.  

𝐶𝐶𝑗𝑗𝑡𝑡+1 = 𝑓𝑓(𝐶𝐶𝑗𝑗𝑡𝑡 + ∑ 𝐶𝐶𝑖𝑖𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 )                                                                                                         (3) 
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In Equation (3), Cjt is the activation level of concept j at iteration t, and f is the threshold 
or transformation function which can be sigmoid, hyperbolic tangent (usually tanh(x)), bivalent 
(x = 0 or 1), or trivalent function (x = -1, 0 or 1). The comparison conducted by Tsadiras (2008) 
has shown sigmoid function works better than the others in general. The sigmoid is attractive in 
its quasi-linear shape about 0 and its asymptotic conduct at the extremes modeling “diminishing 
returns” behavior.  Equation (4) shows the formulation of the sigmoid function where 𝑐𝑐 > 0 is a 
constant parameter determining the steepness of the function.  

𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−c𝑥𝑥

                                                                                                                                (4) 

The objective of an FCM model is to learn the weight matrix in a way that the difference 
between the initial (in our case, target/real-world actual) concept values and the response, which 
is the final steady-state of concepts, is minimized. This result indicates the weight structure 
provides an explanation of those target concept values.  To this end, many learning algorithms 
have been proposed in the literature.  In general, these existing algorithms may fail to match the 
target values and may produce connection weights that are illogical. 

3. FCM Learning Algorithm and Visualization 

In the same vein with Amit and Meir (2019) who suggest that bias in the learning process 
is two-tiered, within each task and between tasks, we argue that bias needs to be divided into the 
circumstances around the whole system (system bias) which affects all concepts; and 
circumstances that impact a specific concept (concept bias).  In the community health example, 
the state of healthcare might be biased by the overall community condition and by conditions 
unique to healthcare. Interpreting the real-world source of the bias requires analysis on the part 
of system experts. 

FCM learning Algorithm and Visualization (FLAV) contains three phases to learn the 
system bias, FCM weight matrix, and individual concept biases using an approach similar to the 
neural network error backpropagation mechanism.  The error backpropagation in neural 
networks minimizes the error function in relationship weights between the nodes in a network by 
using the methods of gradient descent (Rojas, 1996).  In backpropagation, the error function of 
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Figure 1. Example of FCM structure. 
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every neuron is calculated after processing initial data as the input (Rumelhart et al., 1986). 
Iteration in feed-forward backpropagation network is influenced mainly by training set variation, 
while in our approach it is influenced by the iterative process toward convergence that exists in 
the FCM. More detail about the backpropagation method can be found in (Rumelhart et al., 
1986; Hecht-Nielsen, 1992).   

Figure 2 shows the complete process of FLAV. As it is shown in the overview of the 
algorithm, in order to get the algorithm started, we need the target concept values, expert guesses 
at relationship weights along with any desired bounds, and other learning parameters. Weight 
bounds are set at rational limits by an expert on the modeled system.  In practice, weights are 
often set based on translation of linguistic fuzziness from experts into bounds.  Experts would 
indicate direction of correlation – positive or negative, magnitude along some measure of 
influence – very weak to very strong, and weight bound range based on some sense of certainty – 
from very loose to very tight. 

FLAV consists of three main phases: 1) learning the system bias: computing the bias 
within the system and learning it to reach a bias value which minimizes the error between the 
network's given output and desired output. At this phase, the desired output refers to the initial 
value of nodes which is 𝐶𝐶𝑗𝑗0, 2) learning the weights: updating weights using feed-forward 
backpropagation. Like phase 1, at this phase, the desired output refers to the initial value of 
nodes which is 𝐶𝐶𝑗𝑗0, and 3) Learning concept bias: learning individual concept bias using the 
learned weight matrix and learned system bias. 

Figure 3 shows the mechanism of FLAV based on the sigmoid function. In this figure, we 
assume there are three concepts. The black circles show the desired value of the concepts, while 
the purple circles show the values of the concepts after the FCM simulation without our learning 
process. As shown in the figure, using our proposed learning process we try to minimize the 
concept deviation from the desired values by learning the weighs in different phases of the 
algorithm. 
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Here we explain each step with more detail. We also presented the inputs needed to get 
the algorithm started in Table 1. 

Phase 1: learning the system bias 

Step 1.1. Iteratively compute the final values of concepts using Equation (5) until the 
model reaches a steady state which means 𝐶𝐶𝑗𝑗𝑡𝑡 =  𝐶𝐶𝑗𝑗𝑡𝑡+1 ∀𝑗𝑗 = 1, … ,𝑛𝑛. In Equation (5), 𝐶𝐶𝑗𝑗𝑡𝑡+1 is the 
value of concept j at iteration t+1, 𝐶𝐶𝑗𝑗𝑡𝑡 is the value of concept j at iteration t, 𝑤𝑤𝑖𝑖𝑖𝑖 represents the 
relationship weight between concept i and j, 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒  is the bias within the system at epoch e and n 
represents the number of concepts. 

𝐶𝐶𝑗𝑗𝑡𝑡+1 = 1

1+𝑒𝑒
−𝑐𝑐(𝐶𝐶𝑗𝑗

𝑡𝑡+𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒 +∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖

𝑡𝑡)𝑛𝑛
𝑖𝑖=1

                                                                                                    (5) 

Figure 2. Overview of FLAV 
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Figure 3. Mechanism of FLAV based on sigmoid function 

Step 1.2. Update the value of 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 using Equations (6) where 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒−1 is the value of bias at 
epoch e-1, 𝛾𝛾 is the learning rate in phase 1, and  𝐶𝐶𝑗𝑗0 is the initial (target) value of concept j. The 
description of all other terms is the same as stated above. Note that we need to initialize 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑒𝑒  for 
e=0. 
𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 = 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒−1 + 𝛾𝛾 ∑ (𝐶𝐶𝑗𝑗𝑡𝑡 − 𝐶𝐶𝑗𝑗0)𝐶𝐶𝑗𝑗𝑡𝑡𝑛𝑛

𝑗𝑗=1 (1 − 𝐶𝐶𝑗𝑗𝑡𝑡)                                                                                            (6) 

Step 1.3. If  �∑ (𝐶𝐶𝑗𝑗𝑡𝑡 − 𝐶𝐶𝑗𝑗0)𝐶𝐶𝑗𝑗𝑡𝑡𝑛𝑛
𝑗𝑗=1 �1 − 𝐶𝐶𝑗𝑗𝑡𝑡�� ≤ 𝜉𝜉 or 𝑚𝑚 ≥ 𝑀𝑀, save the 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒  and go to the 

next phase which is learning the weight matrix, otherwise, go to step 1.1. Note that 𝜉𝜉 is the 
accepted error in phase 1, 𝑚𝑚 is the number of epochs at this phase, and 𝑀𝑀 is the maximum 
number of epochs.  

Phase 2: learning the weight matrix  

Step 2.1. Using the final 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 value obtained from phase 1, iteratively compute the values 
of concepts using Equation (7) until the values reach a steady state which means 𝐶𝐶𝑗𝑗𝑡𝑡 =
 𝐶𝐶𝑗𝑗𝑡𝑡+1 ∀𝑗𝑗 = 1, … ,𝑛𝑛. Make 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒′ = 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒  for e=0 where 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒′  is the value of bias in phase 2 (note  

 
that system bias keeps updating in phase 2 until the algorithm meets the termination criteria of 
Phase 2). 

𝐶𝐶𝑗𝑗𝑡𝑡+1 = 1

1+𝑒𝑒
−𝑐𝑐(𝐶𝐶𝑗𝑗

𝑡𝑡++𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒′ +∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖

𝑡𝑡𝑛𝑛
𝑖𝑖=1 )

                                                                                                    (7) 
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Step 2.2. Update the values of 𝑤𝑤𝑗𝑗𝑗𝑗 for 𝑤𝑤𝑗𝑗𝑗𝑗 ≠ 0, using Equations (8) and (9) where 

𝑤𝑤𝑗𝑗𝑗𝑗
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒

′

 is the amount of change in  𝑤𝑤𝑗𝑗𝑗𝑗 at epoch 𝑒𝑒′,𝑤𝑤𝑗𝑗𝑗𝑗𝑒𝑒
′ is the new value of  𝑤𝑤𝑗𝑗𝑗𝑗 at epoch 𝑒𝑒′, 

𝑤𝑤𝑗𝑗𝑗𝑗𝑒𝑒
′−1 is the value of  𝑤𝑤𝑗𝑗𝑗𝑗 at epoch 𝑒𝑒′ − 1,  𝑤𝑤𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 is the (expert set) minimum value of  𝑤𝑤𝑗𝑗𝑗𝑗, 𝑤𝑤𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 

is the (expert set) maximum value of  𝑤𝑤𝑗𝑗𝑗𝑗, and 𝛾𝛾1′  is the learning rate for weight change. The 
description of all other terms is the same as stated earlier. The mount of weight change is 
calculated using backpropagation. Please refer to Rumelhart et al (1986) for more information. 

𝑤𝑤𝑖𝑖𝑖𝑖
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒

′

= (𝐶𝐶𝑗𝑗0 − 𝐶𝐶𝑗𝑗𝑡𝑡)(1 − 𝐶𝐶𝑗𝑗𝑡𝑡)𝐶𝐶𝑗𝑗𝑡𝑡𝐶𝐶𝑖𝑖𝑡𝑡                                                                                          (8) 

𝑤𝑤𝑖𝑖𝑖𝑖𝑒𝑒
′ = min (max �𝑤𝑤𝑖𝑖𝑖𝑖𝑒𝑒

′−1 + 𝛾𝛾1′𝑤𝑤𝑖𝑖𝑖𝑖
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒

′

,𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� ,𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚)                                                            (9) 

Step 2.3. Update the 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒′ using Equation (10). Where 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒′−1 is the value of bias at epoch 
𝑒𝑒′ − 1, 𝛾𝛾2′  is the learning rate for system bias in phase 2, and the description of the other terms is 
the same as stated earlier. 

𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒′ = 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒′−1 + 𝛾𝛾2′ ∑ (𝐶𝐶𝑗𝑗𝑡𝑡 − 𝐶𝐶𝑗𝑗0)𝐶𝐶𝑗𝑗𝑡𝑡𝑛𝑛
𝑗𝑗=1 (1 − 𝐶𝐶𝑗𝑗𝑡𝑡)                                                                          (10) 

Step 2.4. If ∑ (𝐶𝐶𝑗𝑗𝑡𝑡 − 𝐶𝐶𝑗𝑗0)2𝑛𝑛
𝑗𝑗=1 ≤ 𝜉𝜉′, or 𝑚𝑚′ ≥ 𝑀𝑀, go to the next phase which is learning the 

final status of the system considering the learned bias value and weight matrix, otherwise, go to 
step 2.1. 𝜉𝜉′ is the accepted error in phase 2 and 𝑚𝑚′ is the number of epochs in this phase.  If the 
terminating criteria is the error, then the network has essentially been learned and Phase 3 is not 
required.  In such a case, phase 3 produces very small concept biases to explain the small, 
acceptable amount of the error function remaining in the FCM. 

Table 1  

Algorithm inputs 

Input Description 
c Sigmoid factor (set to 1 in this research) 
𝐶𝐶𝑖𝑖0 Initial values of concepts 
 𝑤𝑤𝑗𝑗𝑗𝑗 Weight matrix 
𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒  Initial value of system bias 
𝛾𝛾 Learning rate in phase 1 
𝜉𝜉 Acceptable error in phase 1 
𝛾𝛾1′  Learning rate for weight change in phase 2 
𝛾𝛾2′  Learning rate for system bias in phase 2 
𝜉𝜉′ Acceptable error in phase 2 
𝑀𝑀 Maximum number of epochs 
𝛾𝛾′′ Learning rate in phase 3 
𝜉𝜉′ Acceptable error in phase 3 

 

Phase 3: Learning concept bias 
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Step 3.1. Iteratively compute the values of concepts using Equation (11) until all concepts 
converge to a steady-state. In Equation (11), 𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑒𝑒

′′ represents the bias in concept j at epoch 
𝑒𝑒′′, 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒′ is the final value of bias obtained from phase 2, and 𝑤𝑤𝑗𝑗𝑗𝑗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the final value of  𝑤𝑤𝑗𝑗𝑗𝑗 
obtained from phase 2. The description of all other terms is the same as mentioned earlier.  Note 
that for concepts with no associated error at the end of stage 1, there may be some very small 
concept bias determined based on the correction of those concepts which had more substantial 
error. 

𝐶𝐶𝑗𝑗𝑡𝑡+1 = 1

1+𝑒𝑒
−𝑐𝑐(𝐶𝐶𝑗𝑗

𝑡𝑡+𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒′ +𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗

𝑒𝑒′′+∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝑖𝑖

𝑡𝑡)𝑛𝑛
𝑖𝑖=1

                                                                                  (11) 

Equation (12) shows the detail of calculating the concept bias. Where 𝛾𝛾′′is the learning 
rate in phase 3, 𝐶𝐶𝑗𝑗0 is the initial value of concept j, and 𝐶𝐶𝑗𝑗𝑡𝑡is the final steady value of concept j at 
iteration t of epoch 𝑒𝑒′′. 

𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑒𝑒
′′ =  𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑒𝑒

′′−1 + 𝛾𝛾′′(𝐶𝐶𝑗𝑗𝑡𝑡 − 𝐶𝐶𝑗𝑗0)                                                                                  (12) 

Step 3.2. If ∑ (𝐶𝐶𝑗𝑗𝑡𝑡 − 𝐶𝐶𝑗𝑗0)2𝑛𝑛
𝑖𝑖=1 ≤ 𝜉𝜉′′, or 𝑚𝑚′′ ≥ 𝑀𝑀 stop, otherwise go to step 3.1. 𝜉𝜉′′ is the 

accepted error in phase 2 and 𝑚𝑚′′ is the number of epochs in this phase. 

4. Community Health Example 

To facilitate understanding of algorithm function, consider a simple FCM of community 
health with four concepts: education, healthcare, employment and public safety.  Suppose an 
initial matrix of connection weights between these factors was proposed by a panel of experts. 
Additionally, four different communities are considered with varying levels of “health” as 
determined by measures in the concept areas.  Table 2 shows the outcomes of the three phases of 
FLAV. In the table, the two sets of results show the impact of weight change being “loose” (+/- 
0.4 from expert value) or “tight” (+/- 0.2 from expert value).  Loose bounds are shown to the left 
in the table and tight bounds to the left.  For each data set, the target concept values are shown 
for each of the four communities.   

Phase 1 computes the system bias, a measure of overall community health.  This bias 
provides an indication of overall system health when compared across systems.  It increases 
across the community as the level of overall health increases.  The Phase 1 system bias result is 
the same for both tight and loose weights because those weights are not changed in the initial 
phase of FLAV. 

Phase 2 adjusts the weights and system bias in an attempt to match the target concept 
values.  Weights that have hit the bound are shown in red.  As expected, more weights hit the 
bound when the weights are tighter.  As a result, the changes in system bias during Phase 2 tend 
to be higher with tighter bounds.  When all the weights coming into a concept hit their bound 
during training, it means that concept may not be fully explained by the system bias and weights 
(as bounded).  This situation is what necessitates Phase 3 of the learning algorithm.  With loose 
bounds, the high health system is fully explained after Phase 2 so concept bias is 0.  With tight 
bounds, the high health system has three concepts (C1-C3) with all incoming weights at their 
bound, requiring explanation by concept bias.  Weights at a bound are shown in red. 
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In Phase 3, we learn the deviation from concept target values not explained by system 
bias or weights.  With the tight bounds - high health scenario, C1-C3 are fully constrained by 
weight bounds.  As a result, in Phase 3 the concept bias adjusts to enable the concept to match its 
target.  A positive concept bias denote a positive deviant (concept factor that is above what 
would be expected due to system bias and weight matrix). Note that an unconstrained concept 
like C4 may develop a small concept bias as other concept biases are learned, but this value will 
be negligibly small.   

At the end of the three phases of the algorithm, you have produced an FCM that matches 
the target concept values and does not violate any weight constraints.   

Table 2 

Community Health Algorithm Results 

Comparison with weight bounds of +/- 0.4 Comparison with weight bounds of +/- 0.2 
Low Health 

 Con Target 0.3 0.2 0.4 0.1 Con Target 0.3 0.2 0.4 0.1 
Phase 1 Sys Bias -1.330 

 
Sys Bias -1.330 

 Phase 2 Sys Bias -1.329 Sys Bias -1.317 

 

Weight matrix Weight matrix 
 C1 C2 C3 C4  C1 C2 C3 C4 

C1 0.000 0.000 0.700 -0.400 C1 0.000 0.200 0.500 -0.200 
C2 0.400 0.000 0.400 -0.600 C2 0.200 0.000 0.200 -0.400 
C3 0.400 -0.200 0.000 -0.800 C3 0.200 0.000 0.000 -0.600 
C4 -0.320 -0.400 0.400 0.000 C4 -0.400 -0.200 0.200 0.000 

Phase 3 Con Bias -0.026 -0.137 0.193 -0.408 Con Bias 0.089 -0.310 0.301 -0.601 
Comparison with weight bounds of +/- 0.4 Comparison with weight bounds of +/- 0.2 

Moderate Health 
 Con Target 0.45 0.35 0.55 0.25 Con Target 0.45 0.35 0.55 0.25 

Phase 1 Sys Bias -0.780 
 

Sys Bias -0.780 
 Phase 2 Sys Bias -0.796 Sys Bias -0.806 

 

Weight matrix Weight matrix 
 C1 C2 C3 C4  C1 C2 C3 C4 

C1 0.000 0.013 0.616 -0.176 C1 0.000 0.200 0.500 -0.174 
C2 0.254 0.000 0.325 -0.384 C2 0.200 0.000 0.200 -0.390 
C3 0.296 -0.200 0.000 -0.617 C3 0.200 0.000 0.000 -0.600 
C4 -0.426 -0.276 0.224 0.000 C4 -0.400 -0.200 0.200 0.000 

Phase 3 Con Bias 0.000 0.000 0.000 0.000 Con Bias 0.075 -0.203 0.112 0.002 
Comparison with weight bounds of +/- 0.4 Comparison with weight bounds of +/- 0.2 

High Health 
 Con Target 0.6 0.5 0.7 0.4 Con Target 0.6 0.5 0.7 0.4 

Phase 1 Sys Bias -0.283 
 

Sys Bias -0.283 
 Phase 2 Sys Bias -0.299 Sys Bias -0.387 

 

Weight matrix Weight matrix 
 C1 C2 C3 C4  C1 C2 C3 C4 

C1 0.000 0.068 0.486 -0.063 C1 0.000 0.200 0.500 -0.015 
C2 0.223 0.000 0.197 -0.270 C2 0.200 0.000 0.200 -0.225 
C3 0.243 -0.199 0.000 -0.476 C3 0.200 0.000 0.000 -0.419 
C4 -0.443 -0.256 0.141 0.000 C4 -0.400 -0.200 0.200 0.000 

Phase 3 Con Bias 0.000 0.000 0.000 0.000 Con Bias 0.113 -0.153 0.054 -0.003 



11 
 

Comparison with weight bounds of +/- 0.4 Comparison with weight bounds of +/- 0.2 
Very High Health 

 Con Target 0.8 0.7 0.9 0.6 Con Target 0.8 0.7 0.9 0.6 
Phase 1 Sys Bias 0.519 

 
Sys Bias 0.519 

 Phase 2 Sys Bias 0.511 Sys Bias 0.337 

 

Weight matrix Weight matrix 
 C1 C2 C3 C4  C1 C2 C3 C4 

C1 0.000 0.008 0.578 -0.079 C1 0.000 0.200 0.500 -0.010 
C2 0.207 0.000 0.274 -0.287 C2 0.200 0.000 0.200 -0.220 
C3 0.216 -0.200 0.000 -0.491 C3 0.200 0.000 0.000 -0.413 
C4 -0.441 -0.317 0.220 0.000 C4 -0.400 -0.200 0.200 0.000 

Phase 3 Con Bias 0.000 0.000 0.000 0.000 Con Bias 0.169 -0.230 0.300 0.003 
 

5. Experiment 

In this section, we aim to validate and understand the function of FLAV and facilitate the 
interpretation of its output. In developing these experiments, the following practices are 
followed: 

1. Concepts are defined to be normalized fuzzy numbers [0,1] such that 1 is the most 
preferred or attractive state and 0 is the least preferred state. 

2. An expert may be allowed to place tighter bounds on a relationship, but in all cases, 
relationship weights are in the range [-1, 1]. 

3. Where an expert asserts that no causal relationship exists from factor A to factor B, the 
associated relational weight is maintained at 0 and not modified by the algorithm. 
We use three sets of networks with a different number of nodes, connectedness level, 

weight size, weight bounds, and health levels (which are referred to different concept inputs) to 
examine the impact of various factors on the learning process. The level of health within a 
system is associated with the average concept value and system bias. We also develop more 
understanding in terms of different ways to compare one system to another.  
5.1 FCM Experimental Design Factors 

We define measures for understanding the behavior of an FCM model and use these 
measures for model comparison. Table 3 shows a list of factors we will use to compare different 
FCM model structures.  

As shown in the table, we examine the impact of the number of concepts, level of 
connectedness, weight, and systems health on FLAV behavior on an FCM model. Using a 
different number of concepts, we aim to understand if the size of a system with similar features 
will have a significant impact on FLAV behavior. Connectedness is the level of connection 
between nodes which could be full, meaning mostly all the nodes are dependent on each other, or 
partial, meaning nodes are only partially connected. Figure 4 shows an example of fully and 
partially connected models. 
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Table 3  

Measures for comparing different FCM model Structures 

Experimental 
measures Levels Description 

Number of concepts 4N  10N 20N Networks with 4, 10, and 20 nodes. 

Connectedness Partial                       Full 
If (No. of relations)/(n(n-1)) is equal or less than 0.5, 
the connectedness is considered to be Partial, 
otherwise Full. 

Weight value Small                         Large 
If the average weight is equal or less than 0.3, 
weight values are assumed to be Small, otherwise, 
Large. 

Weight bound Loose                      Tight 

Loose bound is where lower and upper bounds of 
weights are set to be -1 and 1, respectively 
Tight bound is where weights are allowed to move 
+/- 0.2 from original expert weight estimate. 

System health Low    Medium High 
System health is assumed to be Low, Medium, or 
High, if the average of initial values of concepts is 
in [0,0.3], (0.3, 0.7], or (0.7,1] interval, respectively. 

 

 

 

 

 

 

 

 

With the weight size and bound measures, we analyze to what extent the behavior of the 
algorithm is dependent on the interrelationship weights. By eliciting information on the strength 
of causality between each pair of cause-effect concepts, it is possible to provide richer 
recommendations and comparisons about different decision options or systems. We also will 
analyze the impact of system health on model performance.  

5.2 Dataset  

The design presented in Table 3 is tested at the levels shown in the table. Table 4 shows 
our assumptions regarding the initial setup of the models in the three phases of FLAV. The total 
set of initial values and weights we generated for all the experiments was 180 as there are 12 
levels in each experiment for the three network sizes, and the number of experiments is 5. We 
used a weight bound measure to see the difference between tightly bound models with loosely 
bound models, we repeated all the experiments twice, but one of them with loosely bound 
weights and the other one with tightly bound weights. Thus, overall, we have 360 models with 
different measures and levels. 

Figure 2. (a) Example of a partial system, (b) and example of a full system. 
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Table 4 

Initial setup assumptions 

 Sigmoid 
factor 

Initial 
system bias 

Initial concept 
bias 

Learning rate epsilon Max No. 
iterations 

Phase 1 c = 1 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒  = 0 - 𝛾𝛾 =1 𝜉𝜉 = 0.00001 M=10000 
Phase 2 c = 1 - - 𝛾𝛾1′=1, 𝛾𝛾2′ = 1 𝜉𝜉′ = 0.00001 M=10000 
Phase 3 c = 1 - 𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑒𝑒

′′
= 0 𝛾𝛾′′=1 𝜉𝜉" = 0.00001 M=10000 

5.3 Model Structure Comparison 
 
The measures we used to compare different models include system bias at phases 1 and 2, 

average of learned weights in phase 2, number of weights hitting the bounds in phase 2, values of 
concept biases in phase 3, and number of concepts with approximately zero bias at the end of 
phase 3 (we assumed the bias in a concept is zero if the absolute value of concept bias obtained 
at the end of phase 3 is equal or less than 0.001). We coded FLAV using Python and PyCharm 
Community Edition 2018.3.5. 

As expected, FLAV learned all concept values.  The result of this analysis is summarized 
visually in Figure 5. As shown in Figures 5.a and b, the values of system bias at phases 1 and 2 
are higher in fully connected models than the partially connected ones. Because the concepts are 
all nonnegative and typically with positive correlation, higher levels of connection push further 
to the right in the threshold function requiring more system bias correction. 

The number of weights hitting the bound (Figure 5.d) is also greater in fully connected 
models because we have a greater number of arcs in fully connected models so more weights hit 
the bound. However, the percentage of arcs hitting the bounds in partial models is 37% while this 
percentage is 17% for full models. We may conclude that fully connected models have more 
ability to learn the system and accordingly adjust the weights compared to partial models.  
Moreover, as the number of concepts with zero bias (Figure 5.f) is greater in fully connected 
models, we can observe that in fully connected models the bias embedded in individual concepts 
is less than that of partial models. In other words, a higher number of interrelationships between 
the concepts helps the individual concepts to reach the desired values.  As one would expect, the 
fully connected networks possess a greater ability to fully explain the individual concept value 
without requiring concept bias. 

Regarding the impact of weight size (Figure 5.a and b) on system characteristics, we see 
that the values of system bias at both phases 1 and 2 are higher in large weight size models 
compared to small ones in 4 and 10 nodes models. However, we see a reverse pattern in 20 nodes 
models. More specifically, in 20 nodes models, the values of system bias are higher in small 
weight size models. Also, as we expected the average weight, as depicted in Figure 5.c, is higher 
in large weight size models compared to small ones. Concerning concept bias, as shown in 
Figure 5.e, we see a radical increase in the values of concept bias in 20 nodes large weight size 
models compared to small weight size models. This result is supported in Figure 5.f, as we see a 
fewer number of concepts have reached zero bias in 20 nodes large weight size models compared 
to the small weight size ones, more specifically the percentage of concepts that have reached 
zero bias is 37% and 50% in 20 nodes large and small weight size models, respectively. 
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The results of system health comparison in different models are in line with our 
expectations. As we move from a low health system to a healthy system, we expect the values of 
system bias, concept bias, and the number of weights hitting the bounds to decrease. This 
outcome is connected to the behavior of the selected threshold function.  In the same vein, we 
expected the number of concepts with zero bias would be higher in healthier systems compared 
to medium and low health systems since we expect less amount of concept bias would be 
embedded in healthy models. The results depicted in all six plots of Figure 5 support our initial 
expectation. 

Although Figure 5, gives us a general idea about the performance of different FCM 
model structures, we pursued our analysis with statistical testing to find out whether the 
differences we observed are statistically significant.  Our statistical tests showed almost all 
differences shown in Figure 5 are statistically significant. More specifically: 

• System bias values at phase 1 and 2 are significantly higher in fully connected models 
compared to partially connected ones in most cases. 

• The number of concepts with zero bias is significantly higher in all fully connected models 
compared to partially connected ones. 

• System bias at phase 1 is significantly higher in 4 and 10 nodes large weight size models.  

Figure 3. Comparison of partially connected with fully connected, small weight size with large 
weight size, and three levels (low, medium, and high) of system health in terms of (a) system 
bias at phase 1, (b) system bias at phase 2, (c) weight average, (d) overall number of weights 
hitting the bounds, (e) concept bias, and (f) number of concepts with zero bias. 
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• Average weight is significantly higher in 4 and 20 nodes models with large weight size 
compared to small weight size models. 

• In 20 nodes models with small weight size the value of bias is significantly lower and the 
number of concepts with zero bias is significantly greater compared to large weight size 
models. 

• System bias at phases 1 and 2 is significantly higher is low health models. 
• There is a significant difference between systems with different health levels and the amount 

of deviation from their desired state. 
 
5.4 FLAV visualization  

Next, we propose a novel visualization for FLAV to facilitate interpretation. Figure 6 
shows our proposed visualization for a three-concept model where each node contains 
information regarding the concept name, initial value, and concept bias after running the 
algorithm. Different colors represent the direction of biases. A concept is black if the concept 
bias is zero and it is green or red if the bias reflects positive deviant or negative deviant behavior, 
respectively.  The term positive deviant stems from the sociology to describe individuals who 
experience uncommon success relative to others in the same environment.  This representation 
also enables us to visualize if a learned weight has hit its expert set bound. An arc is green if the 
learned weight hits the upper bound and it is red when it hits the lower bound.  
 Note that where there is concept bias yielding a green or red circle, all the arcs going into 
that circle will be of the same color.  This behavior is a function of the fact that concept values 
are non-negative.   

We can show the magnitude of system or concept bias with varying line thickness. We 
also show the final value of the system bias with a circle around the model along with indicating 
magnitude with the line thickness.  The system bias will be green, black, or red if it has positive, 
zero, or negative deviance, respectively.  
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 This visualization facilitates the rapid understanding of a single system and comparison 
between multiple systems.  Where relationships are at bounds, experts might consider whether 
that bound might be altered.  Positive and negative deviants are quickly identified focusing 
future study to determine the underlying real-world cause of the deviation.  In the case of 
positive deviance, what is learned from this study might be translated to other systems. 

Figure 7 shows FCM results representing the “health” of two communities and modeled 
factors of healthcare, education, employment, and public safety.  This new representation gives 
us a quick view of the FCM model and where bias exists. Although the interpretation of bias in 
real life is dependent on the threshold function, this representation helps us to compare the biases 
relatively. Figure 7.a, for example, shows the initial input of the model is mostly biased as most 
of the arcs and concepts are either in green or red while in Figure 7.b shows a system with small 
bias as most of the arcs and concepts are in black. Regarding the importance of the concepts, 
since all the arcs are presented in the same thickness, it is suggested that all the relationships are 
of equal importance.  In this situation, community developer would want to discover the reasons 
for positive healthcare and safety and negative education shown in the Figure 7.a. 

Figure 4. New FCM visualization. 
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6. Conclusion and Future Research 

In this study, we propose a new learning algorithm for FCM and implement a new 
approach for FCM analysis which provides important contributions to the theory and practice in 
the FCM literature. Our first contribution is related to the introduction of FLAV which can match 
target concept values while maintaining logical connection weights.  The algorithm accomplishes 
this by computing biases for the whole system and each of the individual concepts based on the 
neural networks’ error backpropagation mechanism. Considering bias in the learning process can 
make the algorithm more flexible to simulate the real-world and fit the actual state. This method 
enables detailed quantitative and visual modeling of complex systems that is generally 
applicable.  The method begins with a general model created by experts and is able to adaptively 
learn a specific system in a manner that facilitates improvement and comparison.  Unlike other 
FCM learning algorithms that only focus on the error which is based on the differences between 
the initial and final concept values, we argue that external circumstances beyond relational 
weights have an impact on the algorithm output and in order to make the learning process more 

Figure 5. New FCM representation: a) full tight 4 nodes large weights low health level model, b)  
full tight 4 nodes large weights high health level model (Experiment 5). 

a) 

b) 
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realistic we need to take them into account. Finally, the iterative nature of learning makes small 
changes to the weights as balancing corrections made for experts who may tend to consistently 
overstate or understate relationship weights.   

In addition to algorithm development, an experimental design assessing the behavior and 
logic of this method was conducted with results summarized.  Finally, we propose a novel format 
for FCM visualization. Using this new visualization, we can easily engage the audience with the 
amount of bias in the model as well as the nature and importance of the relationships.   

Future studies using real-world datasets would assist with demonstrating the explanatory 
power of this approach. Second, as indicated in the detail of the experimental section, in order to 
get the algorithm started we need to initialize various learning parameters including the biases. 
Future studies are needed to validate and investigate the impact of the learning parameters on the 
learning process of the algorithm. Such analysis would help us in understanding how the biases 
should be initialized. Third, in this study, we only considered 4, 10, and 20 nodes models, while 
in real-world situations we may have to deal with larger scale FCMs. The impact of the threshold 
function, either the sigmoid parameter or other function might be considered. Another direction 
for future research is analyzing the proposed algorithm for large-scale FCMs and studying the 
limitations it may have.   A final area of future research is use of a learned FCM using FLAV 
might be used to discover high leverage opportunities for systems improvement. 
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