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Low Level Feature Extraction for Cilia Segmentation

Meekail Zain*™*, Eric Miller¥*, Shannon P Quinn™, Cecilia Lol

Abstract—Cilia are organelles found on the surface of some cells in the human
body that sweep rhythmically to transport substances. Dysfunction of ciliary
motion is often indicative of diseases known as ciliopathies, which disrupt
the functionality of macroscopic structures within the lungs, kidneys and other
organs [LWL™18]. Phenotyping ciliary motion is an essential step towards un-
derstanding ciliopathies; however, this is generally an expert-intensive process
[QZD"15]. A means of automatically parsing recordings of cilia to determine
useful information would greatly reduce the amount of expert intervention re-
quired. This would not only improve overall throughput, but also mitigate human
error, and greatly improve the accessibility of cilia-based insights. Such automa-
tion is difficult to achieve due to the noisy, partially occluded and potentially out-
of-phase imagery used to represent cilia, as well as the fact that cilia occupy a
minority of any given image. Segmentation of cilia mitigates these issues, and is
thus a critical step in enabling a powerful pipeline. However, cilia are notoriously
difficult to properly segment in most imagery, imposing a bottleneck on the
pipeline. Experimentation on and evaluation of alternative methods for feature
extraction of cilia imagery hence provide the building blocks of a more potent
segmentation model. Current experiments show up to a 10% improvement over
base segmentation models using a novel combination of feature extractors.

Index Terms—cilia, segmentation, u-net, deep learning

Introduction

Cilia are organelles found on the surface of some cells in the hu-
man body that sweep rhythmically to transport substances [Ish17].
Dysfunction of ciliary motion often indicates diseases known as
ciliopathies, which on a larger scale disrupt the functionality of
structures within the lungs, kidneys and other organs. Pheno-
typing ciliary motion is an essential step towards understanding
ciliopathies. However, this is generally an expert-intensive pro-
cess [LWL 18], [QZD"15]. A means of automatically parsing
recordings of cilia to determine useful information would greatly
reduce the amount of expert intervention required, thus increasing
throughput while alleviating the potential for human error. Hence,
Zain et al. (2020) discuss the construction of a generative pipeline
to model and analyze ciliary motion, a prevalent field of investi-
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Fig. 1: A sample frame from the cilia dataset

gation in the Quinn Research Group at the University of Georgia
[ZRS20].

The current pipeline consists of three major stages: preprocess-
ing, where segmentation masks and optical flow representations
are created to supplement raw cilia video data; appearance, where
a model learns a condensed spacial representation of the cilia; and
dynamics, which learns a representation from the video, encoded
as a series of latent points from the appearance module. In the
primary module, the segmentation mask is essential in scoping
downstream analysis to the cilia themselves, so inaccuracies at
this stage directly affect the overall performance of the pipeline.
However, due to the high variance of ciliary structure, as well
as the noisy and out-of-phase imagery available, segmentation
attempts have been prone to error.

While segmentation masks for such a pipeline could be
manually generated, the process requires intensive expert labor
[DvBB*21]. Requiring manual segmentation before analysis thus
greatly increases the barrier to entry for this tool. Not only would
it increase the financial strain of adopting ciliary analysis as a
clinical tool, but it would also serve as an insurmountable barrier to
entry for communities that do not have reliable access to such clin-
icians in the first place, such as many developing nations and rural
populations. Not only can automated segmentation mitigate these
barriers to entry, but it can also simplify existing treatment and
analysis infrastructure. In particular, it has the potential to reduce
the magnitude of work required by an expert clinician, thereby
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Fig. 2: The classical U-Net architecture, which serves as both a
baseline and backbone model for this research

decreasing costs and increasing clinician throughput [QZD™15],
[ZRS"20]. Furthermore, manual segmentation imparts clinician-
specific bias which reduces the reproducability of results, making
it difficult to verify novel techniques and claims [DvBB™21].

A thorough review of previous segmentation models, specif-
ically those using the same dataset, shows that current results
are poor, impeding tasks further along the pipeline. For this
study, model architectures utilize various methods of feature
extraction that are hypothesized to improve the accuracy of a base
segmentation model, such as using zero-phased PCA maps and
Sparse Autoencoder reconstructions with various parameters as a
data augmentation tool. Various experiments with these methods
provide a summary of both qualitative and quantitative results
necessary in ascertaining the viability for such feature extractors
to aid in segmentation.

Related Works

Lu et. al. (2018) utilized a Dense Net segmentation model as an
upstream to a CNN-based Long Short-Term Memory (LSTM)
time-series model for classifying cilia based on spatiotemporal
patterns [LMZ " 18]. While the model reports good classification
accuracy and a high F-1 score, the underlying dataset only
contains 75 distinct samples and the results must therefore be
taken with great care. Furthermore, Lu et. al. did not report the
separate performance of the upstream segmentation network. Their
approach did, however, inspire the follow-up methodology of Zain
et. al. (2020) for segmentation. In particular, they employ a Dense
Net segmentation model as well, however they first augment the
underlying images with the calculated optical flow. In this way,
their segmentation strategy employs both spatial and temporal
information. To compare against [LMZ" 18], the authors evaluated
their segmentation model in the same way—as an upstream to
an CNN/LSTM classification network. Their model improved
the classification accuracy two points above that of Charles et.
al. (2018). Their reported intersection-over-union (IoU) score is
33.06% and marks the highest performance achieved on this
dataset.

One alternative segmentation model, often used in biomedical
image processing and analysis, where labelled data sets are rela-
tively small, is the U-Net architecture (2) [RFB15]. Developed by
Ronneberger et. al., U-Nets consist of two parts: contraction and
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expansion. The contraction path follows the standard strategy of
most convolutional neural networks (CNNs), where convolutions
are followed by Rectified Linear Unit (ReLU) activation func-
tions and max pooling layers. While max pooling downsamples
the images, the convolutions double the number of channels.
Upon expansion, up-convolutions are applied to up-sample the
image while reducing the number of channels. At each stage,
the network concatenates the up-sampled image with the image
of corresponding size (cropped to account for border pixels)
from a layer in the contracting path. A final layer uses pixel-
wise (1 x 1) convolutions to map each pixel to a corresponding
class, building a segmentation. Before training, data is generally
augmented to provide both invariance in rotation and scale as well
as a larger amount of training data. In general, U-Nets have shown
high performance on biomedical data sets with low quantities
of labelled images, as well as reasonably fast training times on
graphics processing units (GPUs) [REB15]. However, in a few
past experiments with cilia data, the U-Net architecture has had
low segmentation accuracy [LMZ " 18]. Difficulties modeling cilia
with CNN-based architectures include their fine high-variance
structure, spatial sparsity, color homogeneity (with respect to the
background and ambient cells), as well as inconsistent shape and
distribution across samples. Hence, various enhancements to the
pure U-Net model are necessary for reliable cilia segmentation.

Methodology

The U-Net architecture is the backbone of the model due to its
well-established performance in the biomedical image analysis
domain. This paper focuses on extracting and highlighting the
underlying features in the image through various means. There-
fore, optimization of the U-Net backbone itself is not a major
consideration of this project. Indeed, the relative performance of
the various modified U-Nets sufficiently communicates the effi-
cacy of the underlying methods. Each feature extraction method
will map the underlying raw image to a corresponding feature
map. To evaluate the usefulness of these feature maps, the model
concatenates these augmentations to the original image and use
the aggregate data as input to a U-Net that is slightly modified to
accept multiple input channels.

The feature extractors of interest are Zero-phase PCA sphering
(ZCA) and a Sparse Autoencoder (SAE), on both of which the
following subsections provide more detail. Roughly speaking,
these are both lossy, non-bijective transformations which map
a single image to a single feature map. In the case of ZCA,
empirically the feature maps tend to preserve edges and reduce
the rest of the image to arbitrary noise, thereby emphasizing local
structure (since cell structure tends not to be well-preserved). The
SAE instead acts as a harsh compression and filters out both linear
and non-linear features, preserving global structure. Each extractor
is evaluated by considering the performance of a U-Net model
trained on multi-channel inputs, where the first channel is the
original image, and the second and/or third channels are the feature
maps extracted by these methods. In particular, the objective is for
the doubly-augmented data, or the “composite” model, to achieve
state-of-the-art performance on this challenging dataset.

The ZCA implementation utilizes SciPy linear algebra solvers,
and both U-Net and SAE architectures use the PyTorch deep
learning library. Next, the evaluation stage employs canonical
segmentation quality metrics, such as the Jaccard score and Dice
coefficient, on various models. When applied to the composite
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model, these metrics determine any potential improvements to the
state-of-the-art for cilia segmentation.

Cilia Data

As in the Zain paper, the input data is a limited set of grayscale
cilia imagery, from both healthy patients and those diagnosed with
ciliopathies, with corresponding ground truth masks provided by
experts. The images are cropped to 128 x 128 patches. The images
are cropped at random coordinates in order to increase the size
and variance of the sample space, and each image is cropped a
number of times proportional its resolution. Additionally, crops
that contain less than fifteen percent cilia are excluded from the
training/test sets. This method increases the size of the training
set from 253 images to 1409 images. Finally, standard minmax
contrast normalization maps the luminosity to the interval [0, 1].

Zero-phase PCA sphering (ZCA)

The first augmentation of the underlying data concatenates the
input to the backbone U-Net model with the ZCA-transformed
data. ZCA maps the underlying data to a version of the data that is
“rotated” through the dataspace to ensure certain spectral proper-
ties. ZCA in effect can implicitly normalize the data using the most
significant (by empirical variance) spatial features present across
the dataset. Given a matrix X with rows representing samples and
columns for each feature, a sphering (or whitening) transformation
W is one which decorrelates X. That is, the covariance of WX
must be equal to the identity matrix. By the spectral theorem,
the symmetric matrix XX 7 —the covariance matrix corresponding
to the data, assuming the data is centered—can be decomposed
into PDPT, where P is an orthogonal matrix of eigenvectors
and D a diagonal matrix of corresponding eigenvalues of the
covariance matrix. ZCA uses the sphering matrix W = PD~1/2pT
and can be thought of as a transformation into the eigenspace of
its covariance matrix—projection onto the data’s principal axes,
as the minimal projection residual is onto the axes with maximal
variance—followed by normalization of variance along every axis
and rotation back into the original image space. In order to reduce
the amount of two-way correlation in images, Krizhevsky applies
ZCA whitening to preprocess CIFAR-10 data before classification
and shows that this process nicely preserves features, such as edges
[LiWD19].

This ZCA implementation uses the Python SciPy library
(SciPy), which builds on top of low-level hardware-optimized
routines such as BLAS and LAPACK to efficiently calculate many
linear algebra operations. In particular, these expirements imple-
ment ZCA as a generalized whitening technique. While normal the
normal ZCA calculation selects a whitening matrix W = PD™ 2 PT
a more applicable alternative is W = P/(D+¢el)~1PT where ¢
is a hyperparameter which attenuates eigenvalue sensitivity. This
new "whitening" is actually not a proper whitening since it does
not guarantee an identity covariance matrix. It does however serve
a similar purpose and actually lends some benefits.

Most importantly, it is indeed a generalization of canonical
ZCA. That is to say, € = 0 recovers canonical ZCA, and A — \/;
provides the spectrum of W on the eigenvalues. Otherwise, € > 0
results in the map A — /= + - In this case, while all eigenvalues
map to smaller values compared to the original map, the smallest
eigenvalues map to significantly smaller values compared to the
original map. This means that € serves to “dampen” the effects
of whitening for particularly small eigenvalues. This is a valuable
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feature since often times in image analysis low eigenvalues (and
the span of their corresponding eigenvectors) tend to capture high-
frequency data. Such data is essential for tasks such as texture
analysis, and thus tuning the value of € helps to preserve this data.
ZCA maps for various values of € on a sample image are shown
in figure 3.

Fig. 3: Comparison of ZCA maps on a cilia sample image with various
levels of €. The original image is followed by maps with € = le — 4,
e=1le—5 e=1e—6, and € = le—7, from left to right.

Sparse Autoencoder (SAE)

Similar in aim to ZCA, an SAE can augment the underlying
images to further filter and reduce noise while allowing the
construction and retention of potentially nonlinear spatial features.
Autoencoders are deep learning models that first compress data
into a low-level latent space and then attempt to reconstruct images
from the low-level representation. SAEs in particular add an
additional constraint, usually via the loss function, that encourages
sparsity (i.e., less activation) in hidden layers of the network. Xu
et. al. use the SAE architecture for breast cancer nuclear detection
and show that the architecture preserves essential, high-level,
and often nonlinear aspects of the initial imagery—even when
unlabelled—such as shape and color [XXL " 16]. An adaptation of
the first two terms of their loss function enforces sparsity:

N
2 x(k), dg e

The first term is a standard reconstruction loss (mean squared
error), whereas the latter is the mean Kullback-Leibler (KL)
divergence between p, the activation of a neuron in the encoder,
and p, the enforced activation. For the case of experiments
performed here, p = 0.05 remains constant but values of ¢ vary,
specifically le —2, le — 3, and le — 4, for each of which a static
dataset is created for feeding into the segmentation model. Larger
alpha prioritizes sparsity over reconstruction accuracy, which to
an extent, is hypothesized to retain significant low-level features
of the cilia. Reconstructions with various values of o are shown

in figure 4
= Ili!

Fig. 4: Comparison of SAE reconstructions from different training
instances with various levels of o (the activation loss weight). From
left to right: original image, o = le — 2 reconstruction, o« = le — 3
reconstruction, & = le — 4 reconstruction.

Zoae(6) = (x(K))) + @) Y KL(plIp).

J=1

A significant amount of freedom can be found in potential
architectural choices for SAE. A focus on low-medium complexity
models both provides efficiency and minimizes overfitting and ar-
tifacts as consequence of degenerate autoencoding. One important
danger to be aware of is that SAEs—and indeed, all AEs—are
at risk of a degenerate solution wherein a sufficiently complex
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Algorithm 1 Spatial Broadcast
Input: latents z € R¥*, width w, height h
Output: tiled latents z,, € R**w>(k+2)
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=

: : Xp,yp = MESHGRID(X,y)

5. Zg, = CONCAT([23, X3, ¥3), axis = —1)
6: return zg

Image Reconstruction

1: 2 = TILE(z, (h,w,1))

2: X = LINSPACE(—1,1,w)
3: y = LINSPACE(—1,1,w)
4

Fig. 5: lllustration and pseudocode for Spatial Broadcast Decoding
[WMBLI19]

decoder essentially learns to become a hashmap of arbitrary (and
potentially random) encodings.

The SAE will therefore utilize a CNN architecture, as op-
posed to more modern transformer-style architectures, since the
simplicity and induced spatial bias provide potent defenses against
overfitting and mode collapse. Furthermore the encoder will use
Spatial Broadcast Decoding (SBD) which provides a method for
decoding from a latent vector using size-preserving convolutions,
thereby preserving the spatial bias even in decoding, and eliminat-
ing the artifacts generated by alternate decoding strategies such as
“transposed” convolutions [WMBL19].

Spatial Broadcast Decoding (SBD)

Spatial Broadcast Decoding provides an alternative method from
“transposed” (or ’skip”’) convolutions to upsample images in the
decoder portion of CNN-based autoencoders. Rather than main-
taining the square shape, and hence associated spatial properties,
of the latent representation, the output of the encoder is reshaped
into a single one-dimensional tensor per input image, which is then
tiled to the shape of the desired image (in this case, 128 x 128).
In this way, the initial dimension of the latent vector becomes
the number of input channels when fed into the decoder, and two
additional channels are added to represent 2-dimensional spatial
coordinates. In its initial publication, SBD has been shown to pro-
vide effective results in disentangling latent space representations
in various autoencoder models.

U-Net

All models use a standard U-Net and undergo the same training
process to provide a solid basis for analysis. Besides the number
of input channels to the initial model (1 plus the number of
augmentation channels from SAE and ZCA, up to 3 total chan-
nels), the model architecture is identical for all runs. A single-
channel (original image) U-Net first trains as a basis point for
analysis. The model trains on two-channel inputs provided by
ZCA (original image concatenated with the ZCA-mapped one)
with various € values for the dataset, and similarly SAE with
various (& values, train the model. Finally, composite models train
with a few combinations of ZCA and SAE hyperparameters. Each
training process uses binary cross entropy loss with a learning rate
of 1e — 3 for 225 epochs.

Results

Figures 6, 7, 8, and 9 show masks produced on validation data
from instances of the four model types. While the former three
show results near the end of training (about 200-250 epochs),
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Fig. 6: Artifacts generated during the training of U-Net. From left to
right: original image, generated segmentation mask (pre-threshold),

ground-truth segmentation mask
’ 1

Fig. 7: Artifacts generated during the training of ZCA+U-Net. From
left to right: original image, ZCA-mapped image, generated segmen-
tation mask (pre-threshold), ground-truth segmentation mask

figure 9 was taken only 10 epochs into the training process.
Notably, this model, the composite pipeline, produced usable
artifacts in mere minutes of training, whereas other models did
not produce similar results until after about 10-40 epochs.

Figure 10 provides a summary of experiments performed with
SAE and ZCA augmented data, along with a few composite models
and a base U-Net for comparison. These models were produced
with data augmentation at various values of o (for the Sparse
Autoencoder loss function) and € (for ZCA) discussed above.
While the table provides five metrics, those of primary importance
are the Intersection over Union (IoU), or Jaccard Score, as well
as the Dice (or F1) score, which are the most commonly used
metrics for evaluating the performance of segmentation models.
Most feature extraction models at least marginally improve the
performance in of the U-Net in terms of IoU and Dice scores,
and the best-performing composite model (with € of le —4
for ZCA and a of le —3 for SAE) provide an improvement
of approximately 10% from the base U-Net in these metrics.
There does not seem to be an obvious correlation between which
feature extraction hyperparameters provided the best performance
for individual ZCA+U-Net and SAE+U-Net models versus those
for the composite pipeline, but further experiments may assist in
analyzing this possibility.

The base U-Net does outperform the others in precision,

Fig. 8: Artifacts generated during the training of SAE+U-Net. From
left to right: original image, SAE-reconstructed image, generated
segmentation mask (pre-threshold), ground-truth segmentation mask

I10%Y

Fig. 9: Artifacts generated 10 epochs into the training of the compos-
ite U-Net. From left to right: original image, ZCA-mapped image,
SAE-mapped image, generated segmentation mask (pre-threshold),
ground-truth segmentation mask
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Extractor Parameters Scores

Model € (ZCA) « (SAE) ToU Accuracy Recall Dice Precision
U-Net (base) — — 0.399 0.759 0.501  0.529 0.692
le—4 — 0.395 0.754 0.509 0513 0.625
le—5 — 0.401 0.732 0.563  0.539 0.607
ZCA+UNet o 6 — 0408 0756 0543 0546 0644
le—7 — 0.419 0.758 0.563  0.557 0.639
— le—2 0.380 0.719 0.568 0.520 0.558
SAE + U-Net — le—3 0.398 0.751 0.512  0.526 0.656
— le—4 0.416 0.735 0.607  0.555 0.603
le—4 le—2 0.401 0.761 0.506  0.521 0.649
le—4 le—3 0.441 0.767 0.580 0.585 0.661
le—4 le—4 0.305 0.722 0398 0.424 0.588
le—5 le—2 0.392 0.707 0.624 0.530 0.534
le—5 le—3 0.413 0.770 0514 0.546 0.678
Composite le—5 le—4 0.413 0.751 0.565 0.550 0.619
P le—6 le—2 0.392 0.719 0.602 0.527 0.571
le—6 le—3 0.395 0.759 0.480 0.521 0.711
le—6 le—4 0.405 0.729 0.587 0.545 0.591
le—7 le—2 0.383 0.753 0.487 0.503 0.655
le—7 le—3 0.380 0.736 0.526  0.519 0.605
le—7 le—4 0.293 0.674 0.445 0418 0.487

Fig. 10: A summary of segmentation scores on test data for a base
U-Net model, ZCA+U-Net, SAE+U-Net, and a composite model, with
various feature extraction hyperparameters. The best result for each
scoring metric is in bold.

Input Images Predicted Masks

Original 7CA

ZCA + U-Net

SAE Ground Truth Base U-Net SAE + U-Net  Composite
h
\ A

Fig. 11: Comparison of predicted masks and ground truth for three
test images. ZCA mapped images with € = 1e —4 and SAE reconstruc-
tions with o« = le — 3 are used where applicable.

A

however. Analysis of predicted masks from various models, some
of which are shown in figure 11, shows that the base U-Net
model tends to under-predict cilia, explaining the relatively high
precision. Previous endeavors in cilia segmentation also revealed
this pattern.

Conclusions

This paper highlights the current shortcomings of automated,
deep-learning based segmentation models for cilia, specifically
on the data provided to the Quinn Research Group, and provides
two additional methods, Zero-Phase PCA Sphering (ZCA) and
Sparse Autoencoders (SAE), for performing feature extracting
augmentations with the purpose of aiding a U-Net model in
segmentation. An analysis of U-Nets with various combinations
of these feature extraction and parameters help determine the
feasibility for low-level feature extraction in improving cilia seg-
mentation, and results from initial experiments show up to 10%
increases in relevant metrics.

While these improvements, in general, have been marginal,
these results show that pre-segmentation based feature extraction
methods, particularly the avenues explored, provide a worthwhile
path of exploration and research for improving cilia segmentation.
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Implications internal to other projects within the research group
sponsoring this research are clear. As discussed earlier, later
pipelines of ciliary representation and modeling are currently
being bottlenecked by the poor segmentation masks produced by
base U-Nets, and the under-segmented predictions provided by
the original model limits the scope of what these later stages
may achieve. Better predictions hence tend to transfer to better
downstream results.

These results also have significant implications outside of the
specific task of cilia segmentation and modeling. The inherent
problem that motivated an introduction of feature extraction into
the segmentation process was the poor quality of the given dataset.
From occlusion to poor lighting to blurred images, these are
problems that typically plague segmentation models in the real
world, where data sets are not of ideal quality. For many modern
computer vision tasks, segmentation is a necessary technique to
begin analysis of certain objects in an image, including any forms
of objects from people to vehicles to landscapes. Many images
for these tasks are likely to come from low-resolution imagery,
whether that be satellite data or security cameras, and are likely
to face similar problems as the given cilia dataset in terms of
image quality. Even if this is not the case, manual labelling, like
that of this dataset and convenient in many other instances, is
prone to error and is likely to bottleneck results. As experiments
have shown, feature extraction through SAE and ZCA maps are
a potential avenue for improvement of such models and would be
an interesting topic to explore on other problematic datsets.

Especially compelling, aside from the raw numeric results, is
how soon composite pipelines began to produce usable masks on
training data. As discussed earlier, most original U-Net models
would take at least 40-50 epochs before showing any accurate
predictions on training data. However, when feeding in composite
SAE and ZCA data along with the original image, unusually
accurate masks were produced within just a couple minutes, with
usable results at 10 epochs. This has potential implications in
scenarios such as one-shot and/or unsupervised learning, where
models cannot train over a large datset.

Future Research

While this work establishes a primary direction and a novel
perspective for segmenting cilia, there are many interesting and
valuable directions for future planned research. In particular, a
novel and still-developing alternative to the convolution layer
known as a Sharpened Cosine Similarity (SCS) layer has begun
to attract some attention. While regular CNNs are proficient at
filtering, developing invariance to certain forms of noise and
perturbation, they are notoriously poor at serving as a spatial
indicator for features. Convolution activations can be high due to
changes in luminosity and do not necessarily imply the distribu-
tion of the underlying luminosity, therefore losing precise spatial
information. By design, SCS avoids these faults by considering
the mathematical case of a “normalized” convolution, wherein
neither the magnitude of the input, nor of the kernel, affect the final
output. Instead, SCS activations are dictated purely by the relative
magnitudes of weights in the kernel, which is to say by the spatial
distribution of features in the input [Pis22]. Domain knowledge
suggests that cilia, while able to vary greatly, all share relatively
unique spatial distributions when compared to non-cilia such as
cells, out-of-phase structures, microscopy artifacts, etc. Therefore,
SCS may provide a strong augmentation to the backbone U-
Net model by acting as an additional layer in tandem with the
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already existing convolution layers. This way, the model is a true
generalization of the canonical U-Net and is less likely to suffer
poor performance due to the introduction of SCS.

Another avenue of exploration would be a more robust ablation
study on some of the hyperparameters of the feature extractors
used. While most of the hyperparameters were chosen based on
either canonical choices [XXL"16] or through empirical study
(e.g. € for ZCA whitening), a more comprehensive hyperparameter
search would be worth consideration. This would be especially
valuable for the composite model since the choice of most opti-
mal hyperparameters is dependent on the downstream tasks and
therefore may be different for the composite model than what was
found for the individual models.

More robust data augmentation could additionally improve
results. Image cropping and basic augmentation methods alone
provided minor improvements of just the base U-Net from the
state of the art. Regarding the cropping method, an upper threshold
for the percent of cilia per image may be worth implementing,
as cropped images containing over approximately 90% cilia pro-
duced poor results, likely due to a lack of surrounding context.
Additionally, rotations and lighting/contrast adjustments could
further augment the data set during the training process.

Re-segmenting the cilia images by hand, a planned endeavor,
will likely provide more accurate masks for the training process.
This is an especially difficult task for the cilia dataset, as the poor
lighting and focus even causes medical professionals to disagree
on the exact location of cilia in certain instances. However, the re-
search group associated with this paper is currently in the process
of setting up a web interface for such professionals to ’vote” on
segmentation masks. Additionally, it is likely worth experimenting
with various thresholds for converting U-Net outputs into masks,
and potentially some form of region growing to dynamically aid
the process.

Finally, it is possible to train the SAE and U-Net jointly as
an end-to-end system. Current experimentation has foregone this
path due to the additional computational and memory complexity
and has instead opted for separate training to at least justify this
direction of exploration. Training in an end-to-end fashion could
lead to a more optimal result and potentially even an interesting
latent representation of ciliary features in the image. It is worth
noting that larger end-to-end systems like this tend to be more
difficult to train and balance, and such architectures can fall into
degenerate solutions more readily.
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