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Abstract—It is often much easier and less expensive to collect data than to
label it. Active learning (AL) ([Set09]) responds to this issue by selecting which
unlabeled data are best to label next. Standard approaches utilize task-aware
AL, which identifies informative samples based on a trained supervised model.
Task-agnostic AL ignores the task model and instead makes selections based
on learned properties of the dataset. We seek to combine these approaches
and measure the contribution of incorporating task-agnostic information into
standard AL, with the suspicion that the extra information in the task-agnostic
features may improve the selection process. We test this on various AL methods
using a ResNet classifier with and without added unsupervised information from
a variational autoencoder (VAE). Although the results do not show a significant
improvement, we investigate the effects on the acquisition function and suggest
potential approaches for extending the work.

Index Terms—active learning, variational autoencoder, deep learning, pytorch,
semi-supervised learning, unsupervised learning

Introduction

In deep learning, the capacity for data gathering often signifi-
cantly outpaces the labeling. This is easily observed in the field
of bioimaging, where ground-truth labeling usually requires the
expertise of a clinician. For example, producing a large quantity
of CT scans is relatively simple, but having them labeled for
COVID-19 by cardiologists takes much more time and money.
These constraints ultimately limit the contribution of deep learning
to many crucial research problems.

This labeling issue has compelled advancements in the field of
active learning (AL) ([Set09]). In a typical AL setting, there is a
set of labeled data and a (usually larger) set of unlabeled data. A
model is trained on the labeled data, then the model is analyzed to
evaluate which unlabeled points should be labeled to best improve
the loss objective after further training. AL acknowledges labeling
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constraints by specifying a budget of points that can be labeled at
a time and evaluating against this budget.

In AL, the model for which we select new labels is referred to
as the task model. If this model is a classifier neural network, the
space in which it maps inputs before classifying them is known
as the latent space or representation space. A recent branch of
AL ([SS18], [SCN+18], [YK19]), prominent for its applications
to deep models, focuses on mapping unlabeled points into the task
model’s latent space before comparing them.

These methods are limited in their analysis by the labeled
data they must train on, failing to make use of potentially useful
information embedded in the unlabeled data. We therefore suggest
that this family of methods may be improved by extending their
representation spaces to include unsupervised features learned
over the entire dataset. For this purpose, we opt to use a variational
autoencoder (VAE) ([KW13]) , which is a prominent method for
unsupervised representation learning. Our main contributions are
(a) a new methodology for extending AL methods using VAE
features and (b) an experiment comparing AL performance across
two recent feature-based AL methods using the new method.

Related Literature

Active learning
Much of the early active learning (AL) literature is based on
shallower, less computationally demanding networks since deeper
architectures were not well-developed at the time. Settles ([Set09])
provides a review of these early methods. The modern approach
uses an acquisition function, which involves ranking all available
unlabeled points by some chosen heuristic H and choosing to
label the points of highest ranking.

The popularity of the acquisition approach has led to a widely-
used evaluation procedure, which we describe in Algorithm 1.
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This procedure trains a task model T on the initial labeled data,
records its test accuracy, then uses H to label a set of unlabeled
points. We then once again train T on the labeled data and record
its accuracy. This is repeated until a desired number of labels is
reached, and then the accuracies can be graphed against the num-
ber of available labels to demonstrate performance over the course
of labeling. We can use this evaluation algorithm to separately
evaluate multiple acquisition functions on their resulting accuracy
graphs. This is utilized in many AL papers to show the efficacy
of their suggested heuristics in comparison to others ([WZL+16],
[SS18], [SCN+18], [YK19]).

The prevailing approach to point selection has been to choose
unlabeled points for which the model is most uncertain, the as-
sumption being that uncertain points will be the most informative
([BRK21]). A popular early method was to label the unlabeled
points of highest Shannon entropy ([Sha48]) under the task model,
which is a measure of uncertainty between the classes of the
data. This method is now more commonly used in combination
with a representativeness measure ([WZL+16]) to avoid selecting
condensed clusters of very similar points.

Recent heuristics using deep features

For convolutional neural networks (CNNs) in image classification
settings, the task model T can be decomposed into a feature-
generating module

T f : Rn ! R f ,

which maps the input data vectors to the output of the final fully
connected layer before classification, and a classification module

Tc : R f ! {0,1, ...,c},

where c is the number of classes.
Recent deep learning-based AL methods have approached the

notion of model uncertainty in terms of the rich features generated
by the learned model. Core-set ([SS18]) and MedAL ([SCN+18])
select unlabeled points that are the furthest from the labeled set
in terms of L2 distance between the learned features. For core-set,
each point constructing the set S in step 6 of Algorithm 1 is chosen
by

u⇤ = argmax
u2U

min
`̀̀2L

||(T f (u)�T f (`̀̀))||2, (1)

where U is the unlabeled set and L is the labeled set. The
analogous operation for MedAL is

u⇤ = argmax
u2U

1
|L|

|L|

Â
i=1

||T f (u)�T f (Li)||2. (2)

Note that after a point u⇤ is chosen, the selection of the next point
assumes the previous u⇤ to be in the labeled set. This way we
discourage choosing sets that are closely packed together, leading
to sets that are more diverse in terms of their features. This effect
is more pronounced in the core-set method since it takes the
minimum distance whereas MedAL uses the average distance.

Another recent method ([YK19]) trains a regression network
to predict the loss of the task model, then takes the heuristic H

in Algorithm 1 to select the unlabeled points of highest predicted
loss. To implement this, the loss prediction network P is attached
to a ResNet task model T and is trained jointly with T . The
inputs to P are the features output by the ResNet’s four residual
blocks. These features are mapped into the same dimensionality
via a fully connected layer and then concatenated to form a

representation c. An additional fully connected layer then maps
c into a single value constituting the loss prediction.

When attempting to train a network to directly predict T ’s
loss during training, the ground truth losses naturally decrease as
T is optimized, resulting in a moving objective. The authors of
([YK19]) find that a more stable ground truth is the inequality
between the losses of given pairs of points. In this case, P is
trained on pairs of labeled points, so that P is penalized for
producing predicted loss pairs that exhibit a different inequality
than the corresponding true loss pair.

More specifically, for each batch of labeled data Lbatch ⇢ L
that is propagated through T during training, the batch of true
losses is computed and split randomly into a batch of pairs Pbatch.
The loss prediction network produces a corresponding batch of
predicted loss pairs, denoted ePbatch. The following pair loss is then
computed given each p 2 Pbatch and its corresponding p̃ 2 ePbatch:

Lpair(p, p̃) = max(0,�I (p) · (p̃(1)� p̃(2))+x ), (3)

where I is the following indicator function for pair inequality:

I (p) =

(
1, p(1) > p(2)

�1, p(1)  p(2)
. (4)

Variational Autoencoders

Variational autoencoders (VAEs) ([KW13]) are an unsupervised
method for modeling data using Bayesian posterior inference.
We begin with the Bayesian assumption that the data is well-
modeled by some distribution, often a multivariate Gaussian. We
also assume that this data distribution can be inferred reasonably
well by a lower dimensional random variable, also often modeled
by a multivariate Gaussian.

The inference process then consists of an encoding into the
lower dimensional latent variable, followed by a decoding back
into the data dimension. We parametrize both the encoder and the
decoder as neural networks, jointly optimizing their parameters
with the following loss function ([KW19]):

Lq ,f (x) = log pq (x|z)+ [log pq (z)� logqf (z|x)], (5)

where q and f are the parameters of the encoder and the decoder,
respectively. The first term is the reconstruction error, penalizing
the parameters for producing poor reconstructions of the input
data. The second term is the regularization error, encouraging the
encoding to resemble a pre-selected prior distribution, commonly
a unit Gaussian prior.

The encoder of a well-optimized VAE can be used to gen-
erate latent encodings with rich features which are sufficient to
approximately reconstruct the data. The features also have some
geometric consistency, in the sense that the encoder is encouraged
to generate encodings in the pattern of a Gaussian distribution.

Methods

We observe that the notions of uncertainty developed in the core-
set and MedAL methods rely on distances between feature vectors
modeled by the task model T . Additionally, loss prediction relies
on a fully connected layer mapping from a feature space to a single
value, producing different predictions depending on the values of
the relevant feature vector. Thus all of these methods utilize spatial
reasoning in a vector space.

Furthermore, in each of these methods, the heuristic H only
has access to information learned by the task model, which is
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trained only on the labeled points at a given timestep in the la-
beling procedure. Since variational autoencoder (VAE) encodings
are not limited by the contents of the labeled set, we suggest that
the aforementioned methods may benefit by expanding the vector
spaces they investigate to include VAE features learned across
the entire dataset, including the unlabeled data. These additional
features will constitute representative and previously inaccessible
information regarding the data, which may improve the active
learning process.

We implement this by first training a VAE model V on the
given dataset. V can then be used as a function returning the
VAE features for any given datapoint. We append these additional
features to the relevant vector spaces using vector concatenation,
an operation we denote with the symbol _. The modified point
selection operation in core-set then becomes

u⇤ = argmax
u2U

min
`̀̀2L

||([T f (u)_ aV (u)]� [T f (`̀̀)_ aV (`̀̀)]||2,
(6)

where a is a hyperparameter that scales the influence of the VAE
features in computing the vector distance. To similarly modify the
loss prediction method, we concatenate the VAE features to the
final ResNet feature concatenation c before the loss prediction,
so that the extra information is factored into the training of the
prediction network P .

Experiments

In order to measure the efficacy of the newly proposed methods,
we generate accuracy graphs using Algorithm 1, freezing all
settings except the selection heuristic H . We then compare the
performance of the core-set and loss prediction heuristics with
their VAE-augmented counterparts.

We use ResNet-18 pretrained on ImageNet as the task model,
using the SGD optimizer with learning rate 0.001 and momen-
tum 0.9. We train on the MNIST ([Den12]) and ChestMNIST
([YSN21]) datasets. ChestMNIST consists of 112,120 chest X-ray
images resized to 28x28 and is one of several benchmark medical
image datasets introduced in ([YSN21]).

For both datasets we experiment on randomly selected subsets,
using 25000 points for MNIST and 30000 points for ChestMNIST.
In both cases we begin with 3000 initial labels and label 3000
points per active learning step. We opt to retrain the task model
after each labeling step instead of fine-tuning.

We use a similar training strategy as in ([SCN+18]), training
the task model until >99% train accuracy before selecting new
points to label. This ensures that the ResNet is similarly well fit to
the labeled data at each labeling iteration. This is implemented by
training for 10 epochs on the initial training set and increasing the
training epochs by 5 after each labeling iteration.

The VAEs used for the experiments are trained for 20 epochs
using an Adam optimizer with learning rate 0.001 and weight
decay 0.005. The VAE encoder architecture consists of four con-
volutional downsampling filters and two linear layers to learn the
low dimensional mean and log variance. The decoder consists of
an upsampling convolution and four size-preserving convolutions
to learn the reconstruction.

Experiments were run five times, each with a separate set of
randomly chosen initial labels, with the displayed results showing
the average validation accuracies across all runs. Figures 1 and
3 show the core-set results, while Figures 2 and 4 show the loss
prediction results. In all cases, shared random seeds were used to

ensure that the task models being compared were supplied with
the same initial set of labels.

With four NVIDIA 2080 GPUs, the total runtime for the
MNIST experiments was 5113s for core-set and 4955s for loss
prediction; for ChestMNIST, the total runtime was 7085s for core-
set and 7209s for loss prediction.

Fig. 1: The average MNIST results using the core-set heuristic versus
the VAE-augmented core-set heuristic for Algorithm 1 over 5 runs.

Fig. 2: The average MNIST results using the loss prediction heuristic
versus the VAE-augmented loss prediction heuristic for Algorithm 1
over 5 runs.

Fig. 3: The average ChestMNIST results using the core-set heuristic
versus the VAE-augmented core-set heuristic for Algorithm 1 over 5
runs.

To investigate the qualitative difference between the VAE and
non-VAE approaches, we performed an additional experiment



INCORPORATING TASK-AGNOSTIC INFORMATION IN TASK-BASED ACTIVE LEARNING USING A VARIATIONAL AUTOENCODER 113

Fig. 4: The average ChestMNIST results using the loss prediction
heuristic versus the VAE-augmented loss prediction heuristic for
Algorithm 1 over 5 runs.

to visualize an example of core-set selection. We first train the
ResNet-18 with the same hyperparameter settings on 1000 initial
labels from the ChestMNIST dataset, then randomly choose 1556
(5%) of the unlabeled points from which to select 100 points to
label. These smaller sizes were chosen to promote visual clarity in
the output graphs.

We use t-SNE ([VdMH08]) dimensionality reduction to show
the ResNet features of the labeled set, the unlabeled set, and the
points chosen to be labeled by core-set.

Fig. 5: A t-SNE visualization of the ChestMNIST points chosen by
core-set.

Discussion

Overall, the VAE-augmented active learning heuristics did not
exhibit a significant performance difference when compared with
their counterparts. The only case of a significant p-value (<0.05)
occurred during loss prediction on the MNIST dataset at 21000
labels.

The t-SNE visualizations in Figures 5 and 6 show some of
the influence that the VAE features have on the core-set selection

Fig. 6: A t-SNE visualization of the ChestMNIST points chosen by
core-set when the ResNet features are augmented with VAE features.

process. In 5, the selected points tend to be more spread out,
while in 6 they cluster at one edge. This appears to mirror the
transformation of the rest of the data, which is more spread out
without the VAE features, but becomes condensed in the center
when they are introduced, approaching the shape of a Gaussian
distribution.

It seems that with the added VAE features, the selected points
are further out of distribution in the latent space. This makes sense
because points tend to be more sparse at the tails of a Guassian
distribution and core-set prioritizes points that are well-isolated
from other points.

One reason for the lack of performance improvement may be
the homogeneous nature of the VAE, where the optimization goal
is reconstruction rather than classification. This could be improved
by using a multimodal prior in the VAE, which may do a better
job of modeling relevant differences between points.

Conclusion

Our original intuition was that additional unsupervised informa-
tion may improve established active learning methods, especially
when using a modern unsupervised representation method such as
a VAE. The experimental results did not indicate this hypothesis,
but additional investigation of the VAE features showed a notable
change in the task model latent space. Though this did not result in
superior point selections in our case, it is of interest whether dif-
ferent approaches to latent space augmentation in active learning
may fare better.

Future work may explore the use of class-conditional VAEs
in a similar application, since a VAE that can utilize the available
class labels may produce more effective representations, and it
could be retrained along with the task model after each labeling
iteration.
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