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Using a semiclassical model.

ctive media are materials that consist of quantum sys-

tems, such as atoms, impurities, or quantum dots, and

are characterized by strong resonant absorption and

re-emission of radiation. In this article, we present a
general framework for the numerical simulation and analysis of
time-dependent radiation-induced phenomena in active media.
The formulation used is based on the solution of semiclassi-
cal Maxwell-Bloch equations describing the evolution of each
quantum element under the effect of external and re-emitted
radiation. Within these Maxwell-Bloch equations, the coupling
of quantum systems to classical Maxwellian fields poses compu-
tational challenges due to the strong nonlinearities involved. In
contrast to traditional mesh-based solvers, we adopt an electric
field integral-operator approach that can reliably account for
near-field effects—including self-radiation—and is scalable to
large systems. We then focus on media based on large numbers
of quantum dots and demonstrate various physical effects aris-
ing from the near-field coupling, including polarization modu-
lations and superradiance.
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INTRODUCTION
In contrast to conventional matter that scatters light directly,
the term active media refers to matter that modifies propagat-
ing waves by absorbing and re-emitting radiation. Such media
consist of nanoscale elements, typically atoms and semiconduc-
tor quantum dots, characterized by strong optical resonances.
These materials see applications as diverse as gain media for
lasers, optical amplifiers, and components for quantum tech-
nologies. In this respect, quantum dots have a salient advantage
over their atomic counterparts. Their stronger dipolar transi-
tions result in more pronounced coupling via secondary radi-
ated (re-emitted) fields and permit the observation of nonlinear
effects, such as Rabi oscillations [1]-[3], at lower laser intensities.
The consequences of secondary radiation in quantum dots
have been studied extensively in both experimental [4] and
theoretical/computational [5], [6] works. In the latter, Maxwell-
Bloch equations [7] are typically used to describe the interactions
among an ensemble of dots, each modeled as a many-level quan-
tum system. Such a description may be semiclassical, wherein the
dots absorb and re-emit classical Maxwellian fields, or the fields
may be fully quantized. Regardless, the innate coupling of quan-
tum mechanics to electrodynamics results in a set of equations
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that are highly nonlinear and formidable to solve. Theoretical
calculations are thus limited to systems with very small numbers
(< 10) of emitters and neglect the effects due to the quantization
of the electromagnetic fields. Numerical solutions, on the other
hand, have witnessed an evolution from continuum models [8],
[9] to models employing spatial homogeneity [10] and mesh-
based partial differential equation solvers [11], [12].

Major shortcomings of the aforementioned methods are
that they are unable to resolve short-ranged effects or scale
to larger systems while remaining computationally feasible.
In what follows, we present a computational approach to
the Maxwell-Bloch equations employing a semiclassical
evaluation of time-domain radiated electric fields. Tech-
niques to efficiently and rapidly evaluate these radiated
fields are well known [13]-[17] and have been applied to
simulations of large numbers of quantum dots. Our con-
tributions are slightly different. While simulation in itself
is somewhat compelling, here we focus on the interesting
physical effects induced by such couplings, such as oscilla-
tory patterns, polarization modulations, and superradiant
emissions [10], [18]. As a result, our contribution in this
article is to elucidate the modeling of some of these differ-
ent physical effects.

SEMICLASSICAL FORMULATION

In the following, we elucidate a self-consistent model of
quantum dot ensembles as well as provide insight into the
physics of the model. Each quantum dot can be modeled as
a two-level quantum system. Coupling with incident light
stimulates the dot from the ground to the excited state and
generates a coherent polarization, which, in turn, induces the
re-emission of secondary radiation. Such a model sufficiently
captures the physics of interactions among dots and fields
while being simple enough to admit a readily visualized geo-
metric interpretation.

The Bloch formulation provides this interpretation, wherein
the quantum state of each dot is represented in three dimen-
sions, residing (in the absence of decoherence) on the sur-
face of a unit Bloch sphere (Figure 1). A 3D Bloch vector,
s =(u, v, w)T, describes the quantum state of each dot on this
sphere. As the south and north “poles” represent the ground and
excited states, respectively, the population inversion parameter
w is ameasure of the “excitedness” of the dot.

An equivalent formulation in terms of a 2 X 2 density matrix
p is given by the one-to-one correspondence

(1)

_<poo pm) 1<1—w u+iu>
= 5 )

P10 P11 “2\u—iv 1+w

Both here and in what follows, i denotes the imaginary unit.

In the p basis, the Liouville equation of motion for each dot
(from which the Maxwell-Bloch equations may be derived) is
given by

P~ ZiH ), p) - Dlp) @

IEEE ANTENNAS & PROPAGATION MAGAZINE MONTH 2021

Here, the dot Hamiltonian,

0 hx(t))

Hit)= (hx*(t) hao

3)
governs the interaction of the density matrix elements with an
electric field E(r, ¢). It consists of diagonal terms representing
the internal energies (energy eigenvalues) of each state—ao
is the transition frequency proportional to the energy of the
excited state—and off-diagonal terms containing the interac-
tion with fields via y(t) =d-E(r, ) /h. Here, d is the dipole
moment associated with the transition between states that
determines the strength and direction of the induced polariza-
tion. Additionally, one typically uses a decoherence matrix,

Dlpl=

((poo -1)/T: pm/Tz)’ @

p10/T> pu/Ti

to describe the effects of spontaneous emission on each dot.

The Liouville equation of motion (2) has a physical
interpretation in terms of Bloch vectors. Using (1) and
assuming real fields, rewriting (2) in terms of Bloch compo-
nents yields

i =—wov —u/Ts
o =wou —2yw —v/Ts. (5)
w =2 —(w+1)/T

Disregarding the damping terms, this can be written as a pre-
cession equation

s=QXs, (6)

where the effective torque @ =(2y, 0, @o)" acts as the axis of
rotation of the Bloch vector s. In the absence of electric fields
(x =0), Q is parallel to the w-axis, and the system rotates in
a plane of constant w; thus, there are no transitions between
states. The presence of fields tilts @ away from the w-axis,
stimulating transitions (Figure 2). These oscillate between the
two states at a rate equal to the Rabi frequency y, hence the
term Rabi oscillations.

—-w=10)

FIGURE 1. A Bloch sphere representation of a two-level
quantum system. The evolution of | ) on the surface of
this unit sphere is described by (2). The “poles”|0) and | 1)
represent the ground and excited levels, respectively [19].
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FIGURE 2. The precession of a Bloch vector s about a torque
Q lying in the uw-plane. The presence of field excitations
tilts © away from the w-axis, causing the w component of
s to depart from its initial value and inducing a transition
between states.

THE ROTATING FRAME AND ROTATING
WAVE APPROXIMATION
Consider the simplest system, a single quantum dot excited
by an incident laser field EL(r, t) oscillating at frequency wr,
assuming no self-radiation (see the “Self-Radiative Fields” sec-
tion). In all of the relevant scenarios, this laser is nearly resonant
with the transition frequency o ~ @ which lies in the optical
frequency band (~2,278 ps™'). Resolving such fast oscil-
lations requires the choice of a very small time step; hence,
integrating (2) directly on the timescale of typical Rabi dynam-
ics (~1 ps) becomes computationally laborious. We, therefore,
introduce p =UpU', where U =diag(1, ¢"") and U' denotes
the conjugate transpose of U, transforming to a frame rotating
with the frequency of the incident laser. In this rotating frame,
(2) becomes

dp _

L=, b1 -

Dlp]. )

where the rotating frame Hamiltonian,

" _ 0 h% (t)e*iwl,i
H(t) = <ﬁx*(t)ei“’” A(wo — a)L))’ ®)

contains only terms proportional to e’ Hwotont £ F (4) ~
EL(t)cos(wLt). We neglect the high frequencies wo + L,
assuming that terms containing them will integrate to zero
in solving (7) over appreciable timescales—an approximation
known as the rotating wave approximation (RWA).

Thus, only terms containing the downshifted frequency
o — r. remain, effecting a drastic reduction in the number of
time steps required to solve (7). In terms of Bloch vectors, the
rotating frame equivalent of (5) is

N_L (@1, — o) — 2y sin(wrt)w — 1t/ Ts
13 —(wr, —wo)t —2)(cos(a>1j ©—-0/T2 9)
w =2y (Dcos(wLt) + i sin(wrt)) — (@ +1)/T:

which obeys the same precession as (6) but with the effective

torque Q =(2ycos(wrt), — 2y cos(wrt),wo —wr)" As the

Bloch vector is now rotating with the frequency of the excitation
w1, Q is effectively downshifted along the w-axis. Nonetheless,
its components transverse to the w-axis are still oscillating at the
fast frequency wv.

=(d-E(r,t)/h) cos(wrt), one
can readily show that (9) under the RWA simplifies to

By writing y = j cos(@rt)

i (w1, —wo) —it/T>
o =—(wr, —a)o)u —2ji — o/ Ts.
=250 —(@w+1)/T)

(10)

The effective RWA torque Q
only slowly varying terms, simplifying the analysis. Further

=(27,0, wo — w1)" now contains

assuming the resonance condition @, = o and ignoring damp-
ing terms, (10) admits the solution [20]

uo

I3}
Il

U =—wosinO(t) + DocosO(t). (11)

W =0osinB(t) + wocos O(t)

The Bloch vector now precesses in a plane of constant i,
and 0(t) = [* 27 (¢
in this plane from its initial position (ito, Do, wo)T. For instance,
if the Bloch vector starts in the ground state (0, 0, DI an
=7 will tip it to the excited state (0,0,1)" in time
t, and hence we get the term 7 pulse (or, in general, 6 pulse).

t')dt" gives the angle by which it is rotated

angle o(t)

In the “Consequences of Interdot Coupling” section, a Gaussian
waveform of appropriate amplitude will be used as a 77 pulse to
stimulate the transitions to the excited state.

RADIATION FIELDS AND INTERDOT COUPLING
When multiple dots are present, their secondary radiated fields
are added to the laser field in calculating the total electric field
experienced by each dot as
E(r,t)=EL(r,t) +§{P(r,1)}. (12)
Here, we assume that the radiation field F{P(r, )} arises from
=2dRe{poi(r,t)}. The radiated
field can be obtained by convolving the time derivative of the

a polarization density P(r, ¢)
dyadic Green’s function with the polarization source as

F{P(r, )} = =0 (37T —c*VV)g(r,t) » P(r, t)

4ﬂ€f[(l FOT). BfPr tr)

atP(l',tR> P, tR)
cR? R?

+(1—3f®f)-< + )]13 L (13)

Here, g(r,t) =38(tr)/R is the retarded Green’s function,
R=r—r, r=R/R, ® isatensor product, and tr =t — R/c.
As the polarization density P(r,
elements of p, this formulation effectively couples the evolution
of all of the quantum dots via their radiated fields F{P(r, ¢)}.
Furthermore, it depicts the propagation of electric signals

t) arises from the off-diagonal

through space with finite velocity such that each dot receives

the field radiated by another dot at the retarded time ¢x.
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In the rotating frame, the source distribution transforms as
P(r,t) = Re{P(r,t)e'®"'}. Substitution into (13) gives the rotat-
ing frame equivalent of the radiated field.

SELF-RADIATIVE FIELDS

So far, we have disregarded the possibility of a dot experiencing
its own radiated field. This is a reasonable assumption for mod-
eling simple interactions but will be inadequate for describing
collective emission effects such as superradiance, where dots are
strongly coupled within their near fields.

An expression for the self-radiation field (or radiation reac-
tion field) Err may be derived from (13) by Taylor expanding
terms in the Fourier representation of the Green’s function [21].
In the rotating frame, the result is

=1 2 Re[8iP(r.t) +i3wLoiP(r.t)

Ame 3%
—3w}9,P(r,t) —iwi P(r, 1)]. (14)

Egr(r, t)=

Assuming that the polarization varies appreciably slower than
the laser oscillation, the last term in (14) will dominate. When
this term is substituted into (7), the radiation reaction field
yields an effective nonlinear damping term to the right-hand
side of that equation, giving

pRR_ —((1=2p00)* =1) 2p0i (1 - 21000)> (15)
2\2p10(1 —2p00) (1-2p0) -1/
Here, B=(1/4n€)(2d’w} /3hc®) is a dimensionless

parameter characterizing the strength of damping [18]. In con-
trast to the damping matrix (4), the radiation reaction damp-
ing is decidedly nonlinear. As shall be demonstrated in the
“Consequences of Interdot Coupling” section, the inclusion
of self-radiative fields gives rise to characteristic superradiant
curves.

COMPUTATIONAL APPROACH

Next, we discuss the problem of solving the system of coupled
Liouville equations for each of Ny quantum dots using N, time
steps of equal spacing At. These time steps are chosen to accu-
rately sample the dynamics of the physical quantities involved.
As the rotating frame affords us a reduction by a factor ~wr/x
in the required N+, we will hereafter assume the rotating frame
unless otherwise stated.

SPATIAL AND TEMPORAL DISCRETIZATION
To solve (7), we begin by representing P(r,t) in terms of space-

and time-basis functions such that

Ns—1 Ni—

Z :7[ 1ll>

=0 m=0

T(t —mAt). (16)

Assuming that the dots are point sources, we take
si(r) =d;8 (r — 7). Here, &(r) is a 3D delta function, d; and r;
denote respectively the dipole moment and position of the {th
dot, while ﬁl(@m) =2Re(proi(mAt)) represents its polarization
at the mth time step.
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The time basis functions T'(¢) interpolate the function of
interest at each time step and are required to have finite support
=0 if ¢+ <—At. Additionally,
they must be at least twice differentiable to recover the time
derivatives in (13). To this end, we elect to use shifted, back-
ward-looking Lagrange polynomials (Figure 3) of order p =3
or higher [17].

Substituting (16) into (12) via (13) and projecting the
result onto the & (¢t —mA#)so(r) basis yields a set of discrete

and obey the causality clause T'(t)

convolution equations,

m

Z Tm m’ m (17)

m'=0

81)1 —

where

& =(su(r), E(r,mA1)); 0<(<N,, (18a)

&M =(si(r), Ev(r, mAt)); 0<0<N, (18b)

and 5% give a sparse matrix of dimension N, x N, such that

j‘d(/;) ={sy(r) {su T(kAt)}). (18¢)

Note that due to the finite support of the 3D retarded poten-
tial, F* has a sparse, Toeplitz lower-triangular structure (see
Figure 4). This facilitates a cost complexity of O (N:), as only a
fixed number of multiplications need to be performed at each
time step mA¢ [17].

INTEGRATION OF EQUATION OF MOTION

A marching-on-time (MoT) scheme is defined in (17) for
evaluating the total electric field. The determination of the
polarization A™*Y thus proceeds from integrating the
=mAt to tf=(m+1)At
for every quantum dot. To solve this system, we use a pre-

equation of motion (7) from ¢

dictor corrector derived in [22]. Defining ¢, =mAt and
approximating p(t) as a weighted sum of exponentials, the
predictor—corrector scheme proceeds with an extrapolation
predictor step

tm+1 Z Pu, p@ tm— IL +7)Sg)a/ﬁﬂ(tm—w), (20)

w=0
T T T IR
1 N
05| |
of |
L T R R SR NI B
LCNJ o Lol Lot ew

FIGURE 3. A set of Lagrange polynomials, serving as time basis
functions for the polarization source P(r, t).
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FIGURE 4. The matrices of (17) written out explicitly, showing
the Toeplitz lower-triangular structure of the convolution
matrix.
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FIGURE 5. A flowchart of one iteration of the predictor—
corrector for the integration of (7) from t = mAt to
(m+1)At.
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FIGURE 6. A comparison of poo(t) using both fixed (requiring
59,959 time steps) and rotating (requiring 160 time steps)
reference frames for two interacting quantum dots. Both
frames produce similar trajectories; however, the inset spy
reveals that the fixed frame contains a minute oscillatory
term that the rotating frame does not [19].

and iterated corrector steps
Wol b
tm+1 Z Cu, Pa tin— 1.L> + CSL 31,0@<tm—w>. (21)

w=-1

Such an integrator has significantly better convergence
properties than Runge—Kutta integrators for equations of the

6

type seen in (7) and naturally accommodates basis functions
within ¢A¢ of each other. The general iteration procedure for
any time step (m +1) is illustrated in Figure 5.

A self-consistent solution to (7) has the following prescription
=2Re(peo1(mAt)) from
the known history of the system, 2) compute & using (17), 3)
find 9:po.o1 (mAt) using (7), and 4) correct proi(mAt) and iter-
ate steps 2—4 until converged [17].

for any time step: 1) determine A"

CONSEQUENCES OF INTERDOT COUPLING

Here we adopt the semiclassical formalism discussed previously
to simulate several physical effects that arise from the coupling
of dots via their radiated fields—at either long or short distanc-
es. In all simulations, we will employ an incident field with the
shifted Gaussian waveform

(k-r —or(t —t0))?

Ev(r,t)=Eoe” 207 cosort X (22)
to excite an ensemble of dots lying initially in the ground state
(Poo, por)|r=0 =(1, 0), with their density matrix elements evolv-
ing according to (7).

Here, wz. =1,500 meV/h = 2,278.9013 ps ™, o/wL =1 ps,
k =wL./c z, and the laser amplitude Eo is chosen to produce a
7 pulse. The pulse is chosen to peak at o =5 ps, thus exciting
the dots at an early time and allowing for the subsequent re-
emission of radiation to occur.

To demonstrate the equivalence of the fixed and rotating
frames described in the “Semiclassical Formulation” section, a
simulation was first performed with two interacting dots. Fig-
ure 6 illustrates that the two frames agree up to minute oscilla-
tions in the fixed frame about the rotating frame.

LONG-RANGE EFFECTS
We now exhibit some effects of coupling in systems with interdot
distances ranging from short to comparable to or greater than
the excitation wavelength (A = 827 nm). As the goal is to study
the long-range effects, no self-radiation fields are included here.

In the first simulation, 10,000 quantum dots are randomly
distributed in a cylinder of radius 0.2 pm and length 4 pm. Each
dot has an identical (fixed) dipole moment d =10¢aox, where
ao is the Bohr radius. While this implies an average interdot
distance much smaller than the wavelength, interactions among
those dots that are well separated within the cylinder give rise to
long-range effects.

Figure 7 shows the polarization of each dot in the cylinder as
a function of their z-coordinate (the axis of the cylinder) under
the effect of a resonant 7 pulse. Evident is the oscillation of
the polarization due to the long-range collective effects. This
reflects the role of boundary conditions in the confinement of
the macroscopic electric field in the system. Additionally, note
how the secondary radiation produces random shifts in the
polarization due to the short-range effects in the local neighbor-
hood of each dot.

A second simulation was performed involving a larger system
of 100,000 dots randomly distributed in a rectangular cuboid of
width =~ 529 nm and length =~ 49.59 ym. In this simulation,
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the dipole moment of each dot has fixed
magnitude |d|=10¢ao but a random
orientation. Figure 8 displays a color
map of |poi| as an indicator of the
polarization |P | of each dot at different
time steps after the pulse peak. The
figure shows only those dots located in
a central segment of about 4 jm of the
entire cuboid. The random orientation
of the dipole moments creates a variation
in the amplitude of the polarization with
dots whose dipole moments (anti) align
with the laser field having the great-
est amplitude—hence the multihued
appearance of the plots.

SHORT-RANGE EFFECTS AND
SUPERRADIANT EMISSIONS

In the following simulation, we include
the self-radiation field at the location
of each dot. As the overall magnitude (171

of this field is small (8=1.79x107),

the simulation must be run at a timescale of T'=10,000 ps to
faithfully observe the long-term effects of the resulting cou-
pling. As the time complexity scales as O(N;), this limits the
number of dots N that can be efficiently simulated. Here we
restrict ourselves to a system of, at most, 120 dots randomly
placed within a cube of side length 0.100 A, thus enabling
denser configurations and more intense coupling with increas-
ing N. To mitigate the variations due to the random distribu-
tion of a comparably small number of dots, multiple trials are
taken and the results averaged. Finally, we neglect the linear
damping matrix (4) under the assumption that the radiation
reaction fields provide the necessary damping via (15).

Figure 9 illustrates the effects of radiation reaction damping
on both the population inversion w (the proportion of excited
states) and the magnitude of polarization (proportional to the
amplitude of the radiated field). We observe with increasing N
an increase in the rate of initial decay from excited states and
a leftward shift in the peak of polarization. The time behavior
of the population inversion was fit with a decaying hyperbolic

3
2
=
<
;
0
-2 -1 0 1 2
Z (um)

FIGURE 7. The 2-distribution of polarization |po| for a 10,000
dot cylindrical simulation [17].
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0.4

0.5

FIGURE 8. The coloration of |po1| as an indicator of | P| at (a) t, =6 ps, (b) t,=7 ps,
and (c) t; =8 ps, relative to the peak of a 1-ps-wide pulse for a system of 100,000 dots

1
0.5
S 0
-0.5
1

0 0.5 1 1.5 2

Time (ps) x10*
(a)

|Por |

0 0.5 1 1.5 2
Time (ps) x10*
(b)
—N=10 —N=20 —N=40

—N=80 —N=120

FIGURE 9. The (a) population inversion w and (b) magnitude
of polarization |po| averaged over all dots, for N = 10/20/40/
80/120. In the population inversion, the curves of best fit
(dashed) for a decaying hyperbolic tangent are shown; the
initial rise is due to the incidence of the laser excitation.
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tangent that describes the average energy of a two-level system
subjected to radiation reaction damping [10]. Both trends are
characteristic of superradiance and consistent with previous
studies [23], [24].

CONCLUSIONS

We have shown that a semiclassical model that combines
quantum two-level systems and integral-operator-based elec-
tric fields can adequately model both long- and short-range
radiative coupling effects in active media such as quantum
dots. In regimes where the separation between dots is compa-
rable to or greater than the excitation wavelength, oscillatory
patterns and polarization modulations are observed. When
the dots are separated by smaller distances, the inclusion of
self-radiative fields induces superradiant emissions. These are
exemplified by changes in the time behavior of the population
inversion and polarization, depending on the number of dots
participating in the collective effect.

In this article, these were illustrated using a small number
of dots. Extending this to a larger number of dots implies inte-
grating the ideas presented here into a more computationally
efficient scheme [17] to reduce the spatial complexity as well as
using extrapolation methods [25], [26] to reduce the number of
required time steps.

ACKNOWLEDGMENTS

We gratefully acknowledge the High-Performance Computing
Center facility at Michigan State University for its support of this
work. We also acknowledge support from the National Science
Foundation under OAC-1835267.

AUTHOR INFORMATION

Elliot Lu (luelliot@msu.edu) is with the Department of Physics
and Astronomy, Michigan State University, East Lansing, Michi-
gan, 48823, USA.

Connor Glosser (glosserl@msu.edu) is with the Depart-
ment of Physics and Astronomy, Michigan State University, East
Lansing, Michigan, 48823, USA.

Carlo Piermarocchi (piermaro@msu.edu) is with the
Department of Physics and Astronomy, Michigan State Uni-
versity, East Lansing, Michigan, 48823, USA.

B. Shanker (bshanker@egrmsu.edu) is with the Depart-
ment of Physics and Astronomy, Michigan State University,
East Lansing, Michigan, 48823, USA. He is a Fellow of IEEE.

REFERENCES

[1] T. H. Stievater et al., “Rabi oscillations of excitons in single quantum dots,”
Phys. Rev. Lett., vol. 87, no. 13, p. 133,603, Sept. 2001. doi: 10.1103/PhysRev-
Lett.87.133603.

[2] H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exci-
ton rabi oscillation in a single quantum dot,” Phys. Rev. Lett., vol. 87, no. 24,
p- 246,401, Nov. 2001. doi: 10A1103/PhysReVLet‘t87.Z464OlA

[3] H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K.
Shih, “Interplay of rabi oscillations and quantum interference in semiconduc-
tor quantum dots,” Phys. Rev. Lett., vol. 88, no. 8, p. 087401, Feb. 2002. doi:
10.1103/ PhysBevLett.88.087401.

[4] K. Asakura et al., “Excitonic rabi oscillations in self-assembled quantum dots
in the presence of a local field effect,” Phys. Rev. B, vol. 87, no. 24, p. 241,301,
June 2013. doi: 10.1103/PhysRevB.87.241301.

[5] G. Y. Slepyan, S. A. Maksimenko, A. Hoffmann, and D. Bimberg, “Quan-
tum optics of a quantum dot: Local-field effects,” Phys. Rev. A, vol. 66, no. 6,
p- 063804, Dec. 2002. doi: 10.1103/PhysRevA.66.063804.
[6] G. Y. Slepyan, A. Magyarov, S. A. Maksimenko, A. Hoffmann, and D.
Bimberg, “Rabi oscillations in a semiconductor quantum dot: Influ-
ence of local fields,” Phys. Rev. B, vol. 70, no. 4, p. 045320, July 2004. doi:
10.1103/PhysRevB.70.045320.
[7] M. Gross and S. Haroche, “Superradiance: An essay on the theory of collec-
tive spontaneous emission,” Phys. Rep., vol. 93, no. 5, pp. 301-396, 1982. doi:
10.1016/0370-1573(82)90102-8.
[8] N. E. Rehler and J. H. Eberly, “Superradiance,” Phys. Rev. A, vol. 3, no. 5,
pp- 1735-1751, May 1971. doi: 10.1103/PhysRevA.3.1735.
[9] J. C. MacGillivray and M. S. Feld, “Theory of superradiance in an extended,
optically thick medium,” Phys. Rev. A, vol. 14, no. 3, pp. 1169-1189, Sept. 1976.
doi: 10.1103/PhysRevA.14.1169.
[10] C. R. Stroud, J. H. Eberly, W. L. Lama, and L. Mandel, “Superradiant
effects in systems of two-level atoms,” Phys. Rev. A, vol. 5, no. 3, pp. 1094-1104,
Mar. 1972. doi: ]0.1I()B/PhysRevA.S.]()94.
[11] C. Vanneste and P. Sebbah, “Selective excitation of localized modes in
active random media,” Phys. Rev. Lett., vol. 87, no. 18, p. 183,903, Oct. 2001.
doi: 10.1103/PhysRevLett.87.183903.
[12] A. Fratalocchi, C. Conti, and G. Ruocco, “Mode competitions and dynami-
cal frequency pulling in Mie nanolasers: 3d ab-initio Maxwell-Bloch com-
putations,” Opt. Express, vol. 16, no. 12, pp. 8342-8349, 2008. doi: 10.1364/
OFE.16.008342.
[13] B. Shanker, A. A. Ergin, K. Aygn”, and E. Michielssen, “Analysis of transient
electromagnetic scattering phenomena using a two-level lane wave time domain
algorithm,” IEEE Trans. Antennas Propag., vol. 48, no. 4, pp. 510-523, 2000.
doi: 10.1109/8.843664.
[14] B. Shanker, A. Ergin, M. Lu, and E. Michielssen, “Fast analysis of transient
electromagnetic scattering phenomena using the multilevel plane wave time
domain algorithm,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 628-641,
Mar. 2003. doi: 10.1109/TAP.2003.809054.
[15] A. E. Yilmaz, J.-M. Jin, and E. Michielssen, “Time domain adaptive integral
method for surface integral equations,” IEEE Trans. Antennas Propag., vol. 52,
no. 10, pp. 2692-2708, Oct. 2004. doi: 10.1109/TAP.2004.834:399.
[16] C. Glosser, B. Shanker, and C. Piermarocchi, “Collective rabi dynamics of
electromagnetically coupled quantum-dot ensembles,” Phys. Rev. A, vol. 96,
no. 3, p. 033816, Sept. 2017. doi: 10.1103/PhysRevA.96.033816.
[17] C. Glosser, E. Lu, T. Bertus, C. Piermarocchi, and B. Shanker, “Accelera-
tion techniques for semiclassical Maxwell-Bloch systems: An application to dis-
crete quantum dot ensembles,” Comput. Phys. Commun., vol. 258, p. 107500,
Jan. 2021. doi: 10.1016/j.cpc.2020.107500.
[18] C. Stroud and E. Jaynes, “Long-term solutions in semiclassical radi-
ation theory,” Phys. Rev. A, vol. 1, no. 1, pp. 106-121, Jan. 1970. doi:
1(),1I()B/PhysRevA.l.l()G.
[19] C. Glosser, “The quest for active media models: A self-consistent frame-
work for simulating wave propagation in nonlinear systems,” Ph.D. dissertation,
Michigan State Univ., East Lansing, 2018.
[20] L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms. New
York: Wiley, 1975.
[21] E. Lu, C. Piermarocchi, and B. Shanker, “Modeling radiation reac-
tion induced superradiance in quantum dot systems.” in Proc. IEEE Int.
Symp. Antennas Propag., July 2020, pp. 1653-1654. doi: 10.1109/
TEEECONF35879.2020.9330119.
[22] A. Glaser and V. Rokhlin, “A new class of highly accurate solvers for ordi-
nary differential equations,” J. Sci. Comput., vol. 38, no. 3, pp. 368-399, 2009.
doi: 10.1007/510915-008-9245-1.
[23] G. Raino, M. A. Becker, M. 1. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko,
and T. Stoferle, “Superfluorescence from lead halide perovskite quantum dot
superlattices,” Nature, vol. 563, no. 7733, pp. 671-675, 2018. doi: 10.1038/
$41586-018-0683-0.
[24] T. Laske, H. Winter, and A. Hemmerich, “Pulse delay time statistics in
a superradiant laser with calcium atoms,” Phys. Rev. Lett., vol. 123, no. 10,
pp. 14, Sept. 2019. doi: 10.1103/PhysRevLett.123.103601.
[25] Y. Hua, “Estimating two-dimensional frequencies by matrix enhancement
and matrix pencil,” IEEE Trans. Signal Process., vol. 40, no. 9, pp. 2267-2280,
Sept. 1992. doi: 10.1109/78.157226.
[26] V. Jandhyala, E. Michielssen, and R. Mittra, “On the performance of
different AR methods in the spectral estimation of FDTD waveforms,”
Microw. Opt. Technol. Lett., vol. 7, 15, pp. 690-692, Oct. 1994. doi: 10.1002/
mop.4650071504.

6®

MONTH 2021 IEEE ANTENNAS & PROPAGATION MAGAZINE

Authorized licensed use limited to: Michigan State University. Downloaded on September 07,2022 at 19:09:24 UTC from IEEE Xplore. Restrictions apply.



