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Active media are materials that consist of quantum sys-
tems, such as atoms, impurities, or quantum dots, and 
are characterized by strong resonant absorption and 
re-emission of radiation. In this article, we present a 

general framework for the numerical simulation and analysis of 
time-dependent radiation-induced phenomena in active media. 
The formulation used is based on the solution of semiclassi-
cal Maxwell–Bloch equations describing the evolution of each 
quantum element under the effect of external and re-emitted 
radiation. Within these Maxwell–Bloch equations, the coupling 
of quantum systems to classical Maxwellian fields poses compu-
tational challenges due to the strong nonlinearities involved. In 
contrast to traditional mesh-based solvers, we adopt an electric 
field integral-operator approach that can reliably account for 
near-field effects—including self-radiation—and is scalable to 
large systems. We then focus on media based on large numbers 
of quantum dots and demonstrate various physical effects aris-
ing from the near-field coupling, including polarization modu-
lations and superradiance.

INTRODUCTION
In contrast to conventional matter that scatters light directly, 
the term active media refers to matter that modifies propagat-
ing waves by absorbing and re-emitting radiation. Such media 
consist of nanoscale elements, typically atoms and semiconduc-
tor quantum dots, characterized by strong optical resonances. 
These materials see applications as diverse as gain media for 
lasers, optical amplifiers, and components for quantum tech-
nologies. In this respect, quantum dots have a salient advantage 
over their atomic counterparts. Their stronger dipolar transi-
tions result in more pronounced coupling via secondary radi-
ated (re-emitted) fields and permit the observation of nonlinear 
effects, such as Rabi oscillations [1]–[3], at lower laser intensities.

The consequences of secondary radiation in quantum dots 
have been studied extensively in both experimental [4] and 
theoretical/computational [5], [6] works. In the latter, Maxwell-
Bloch equations [7] are typically used to describe the interactions 
among an ensemble of dots, each modeled as a many-level quan-
tum system. Such a description may be semiclassical, wherein the 
dots absorb and re-emit classical Maxwellian fields, or the fields 
may be fully quantized. Regardless, the innate coupling of quan-
tum mechanics to electrodynamics results in a set of equations 
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that are highly nonlinear and formidable to solve. Theoretical 
calculations are thus limited to systems with very small numbers 
(< 10) of emitters and neglect the effects due to the quantization 
of the electromagnetic fields. Numerical solutions, on the other 
hand, have witnessed an evolution from continuum models [8], 
[9] to models employing spatial homogeneity [10] and mesh-
based partial differential equation solvers [11], [12].

Major shortcomings of the aforementioned methods are 
that they are unable to resolve short-ranged effects or scale 
to larger systems while remaining computationally feasible. 
In what follows, we present a computational approach to 
the Maxwell–Bloch equations employing a semiclassical 
evaluation of time-domain radiated electric fields. Tech-
niques to efficiently and rapidly evaluate these radiated 
fields are well known [13]–[17] and have been applied to 
simulations of large numbers of quantum dots. Our con-
tributions are slightly different. While simulation in itself 
is somewhat compelling, here we focus on the interesting 
physical effects induced by such couplings, such as oscilla-
tory patterns, polarization modulations, and superradiant 
emissions [10], [18]. As a result, our contribution in this 
article is to elucidate the modeling of some of these differ-
ent physical effects.

SEMICLASSICAL FORMULATION
In the following, we elucidate a self-consistent model of 
quantum dot ensembles as well as provide insight into the 
physics of the model. Each quantum dot can be modeled as 
a two-level quantum system. Coupling with incident light 
stimulates the dot from the ground to the excited state and 
generates a coherent polarization, which, in turn, induces the 
re-emission of secondary radiation. Such a model sufficiently 
captures the physics of interactions among dots and fields 
while being simple enough to admit a readily visualized geo-
metric interpretation.

The Bloch formulation provides this interpretation, wherein 
the quantum state of each dot is represented in three dimen-
sions, residing (in the absence of decoherence) on the sur-
face of a unit Bloch sphere (Figure 1). A 3D Bloch vector, 

( , , ) ,u v ws T=  describes the quantum state of each dot on this 
sphere. As the south and north “poles” represent the ground and 
excited states, respectively, the population inversion parameter 
w is a measure of the “excitedness” of the dot.

An equivalent formulation in terms of a 2 2#  density matrix 
tt  is given by the one-to-one correspondence
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Both here and in what follows, i denotes the imaginary unit.
In the t basis, the Liouville equation of motion for each dot 

(from which the Maxwell–Bloch equations may be derived) is 
given by
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Here, the dot Hamiltonian,
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governs the interaction of the density matrix elements with an 
electric field ( , ).tE r  It consists of diagonal terms representing 
the internal energies (energy eigenvalues) of each state— 0~  
is the transition frequency proportional to the energy of the 
excited state—and off-diagonal terms containing the interac-
tion with fields via /( ) · ( , ) .t td E r '| =  Here, d is the dipole 
moment associated with the transition between states that 
determines the strength and direction of the induced polariza-
tion. Additionally, one typically uses a decoherence matrix,
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to describe the effects of spontaneous emission on each dot.
The Liouville equation of motion (2) has a physical 

interpretation in terms of Bloch vectors. Using (1) and 
assuming real fields, rewriting (2) in terms of Bloch compo-
nents yields
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Disregarding the damping terms, this can be written as a pre-
cession equation

	 ,Ωs s
.

#= � (6)

where the effective torque ( , , )2 0Ω T
0| ~=  acts as the axis of 

rotation of the Bloch vector s. In the absence of electric fields 
,0|=^ h  Ω is parallel to the w-axis, and the system rotates in 

a plane of constant ;w  thus, there are no transitions between 
states. The presence of fields tilts Ω  away from the w-axis, 
stimulating transitions (Figure 2). These oscillate between the 
two states at a rate equal to the Rabi frequency ,|  hence the 
term Rabi oscillations.
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FIGURE 1. A Bloch sphere representation of a two-level 
quantum system. The evolution of }  on the surface of 
this unit sphere is described by (2). The “poles” 0  and 1  
represent the ground and excited levels, respectively [19].
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THE ROTATING FRAME AND ROTATING  
WAVE APPROXIMATION
Consider the simplest system, a single quantum dot excited 
by an incident laser field ( , )tE rL  oscillating at frequency ,L~  
assuming no self-radiation (see the “Self-Radiative Fields” sec-
tion). In all of the relevant scenarios, this laser is nearly resonant 
with the transition frequency ~ L0~ ~  which lies in the optical 
frequency band (~ , ).2 2 7 8  ps 1-  Resolving such fast oscil-
lations requires the choice of a very small time step; hence, 
integrating (2) directly on the timescale of typical Rabi dynam-
ics (~  )1 ps  becomes computationally laborious. We, therefore, 
introduce ,U Ut t= @u  where ( , )U e1diag i tL= ~  and U@  denotes 
the conjugate transpose of ,U  transforming to a frame rotating 
with the frequency of the incident laser. In this rotating frame, 
(2) becomes
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where the rotating frame Hamiltonian,
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contains only terms proportional to e ( )i tL0!~ ~  if ( ) ~tEL  
( ) ( ).cost tEL L~u  We neglect the high frequencies ,L0~ ~+  

assuming that terms containing them will integrate to zero 
in solving (7) over appreciable timescales—an approximation 
known as the rotating wave approximation (RWA). 

Thus, only terms containing the downshifted frequency 
L0~ ~-  remain, effecting a drastic reduction in the number of 

time steps required to solve (7). In terms of Bloch vectors, the 
rotating frame equivalent of (5) is
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which obeys the same precession as (6) but with the effective 
torque ( ( ), ( ), )cos cost t2 2L L L

T
0| ~ | ~ ~ ~X= - -u  As the 

Bloch vector is now rotating with the frequency of the excitation 
,L~  Xu  is effectively downshifted along the w-axis. Nonetheless, 

its components transverse to the w-axis are still oscillating at the 
fast frequency .L~

By writing ( ) ( · ( , ) / ) ( ),cos cost t td rEL L'| | ~ ~= =u u  one 
can readily show that (9) under the RWA simplifies to
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The effective RWA torque ( , , )2 0 L
T

0| ~ ~X= -u u  now contains 
only slowly varying terms, simplifying the analysis. Further 
assuming the resonance condition L 0~ ~=  and ignoring damp-
ing terms, (10) admits the solution [20]
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The Bloch vector now precesses in a plane of constant ,uu  
and y( ) ( )t t dt2ti |= 3- l lu  gives the angle by which it is rotated 
in this plane from its initial position ( , , ) .u v w T

0 0 0u u u  For instance, 
if the Bloch vector starts in the ground state ( , , ) ,0 0 1 T-  an 
angle ( )ti r=  will tip it to the excited state ( , , )0 0 1 T  in time 
,t  and hence we get the term r  pulse (or, in general, i  pulse). 

In the “Consequences of Interdot Coupling” section, a Gaussian 
waveform of appropriate amplitude will be used as a r  pulse to 
stimulate the transitions to the excited state.

RADIATION FIELDS AND INTERDOT COUPLING
When multiple dots are present, their secondary radiated fields 
are added to the laser field in calculating the total electric field 
experienced by each dot as

	 ( , ) ( , ) ( , )t t tE r E r P rFL= + " ,.� (12)

Here, we assume that the radiation field ( , )tP rF" , arises from 
a polarization density ( , ) ( , ) .Ret t2P r d r01t= " ,  The radiated 
field can be obtained by convolving the time derivative of the 
dyadic Green’s function with the polarization source as
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Here, /, ( )g t t Rr Rd=^ h  is the retarded Green’s function, 
,R r r= - l  / ,Rr R=r  ,  is a tensor product, and / .t t R cR = -

As the polarization density ( , )tP r  arises from the off-diagonal 
elements of ,tt  this formulation effectively couples the evolution 
of all of the quantum dots via their radiated fields ( , ) .tP rF" ,  
Furthermore, it depicts the propagation of electric signals 
through space with finite velocity such that each dot receives 
the field radiated by another dot at the retarded time .tR  

s

v̂

û

ŵ
Ω

FIGURE 2. The precession of a Bloch vector s about a torque 
X  lying in the uw-plane. The presence of field excitations 
tilts X  away from the w-axis, causing the w component of 
s to depart from its initial value and inducing a transition 
between states.
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In  the rotating frame, the source distribution transforms as 
( , ) ( , ) .Ret t eP r P r i tL= ~u" ,  Substitution into (13) gives the rotat-

ing frame equivalent of the radiated field.

SELF-RADIATIVE FIELDS
So far, we have disregarded the possibility of a dot experiencing 
its own radiated field. This is a reasonable assumption for mod-
eling simple interactions but will be inadequate for describing 
collective emission effects such as superradiance, where dots are 
strongly coupled within their near fields.

An expression for the self-radiation field (or radiation reac-
tion field) ERR  may be derived from (13) by Taylor expanding 
terms in the Fourier representation of the Green’s function [21]. 
In the rotating frame, the result is
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Assuming that the polarization varies appreciably slower than 
the laser oscillation, the last term in (14) will dominate. When 
this term is substituted into (7), the radiation reaction field 
yields an effective nonlinear damping term to the right-hand 
side of that equation, giving
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Here, / /d c1 4 2 3L
2 3 3'b re ~=^ ^h h  is a dimensionless 

parameter characterizing the strength of damping [18]. In con-
trast to the damping matrix (4), the radiation reaction damp-
ing is decidedly nonlinear. As shall be demonstrated in the 
“Consequences of Interdot Coupling” section, the inclusion 
of self-radiative fields gives rise to characteristic superradiant 
curves.

COMPUTATIONAL APPROACH
Next, we discuss the problem of solving the system of coupled 
Liouville equations for each of Ns  quantum dots using Nt  time 
steps of equal spacing .tT  These time steps are chosen to accu-
rately sample the dynamics of the physical quantities involved. 
As the rotating frame affords us a reduction by a factor /~ L~ |  
in the required ,Nt  we will hereafter assume the rotating frame 
unless otherwise stated.

SPATIAL AND TEMPORAL DISCRETIZATION
To solve (7), we begin by representing ( , )tP ru  in terms of space- 
and time-basis functions such that
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Assuming that the dots are point sources, we take 
( ) ( ).s r d r rl l ld= -  Here, ( )rd  is a 3D delta function, d l  and r l  

denote respectively the dipole moment and position of the th,  
dot, while ( ( ))Re m t2A( )

,
m

01 Tt=, ,
u u  represents its polarization 

at the mth time step. 

The time basis functions ( )T t  interpolate the function of 
interest at each time step and are required to have finite support 
and obey the causality clause ( )T t 0=  if .t t1 T-  Additionally, 
they must be at least twice differentiable to recover the time 
derivatives in (13). To this end, we elect to use shifted, back-
ward-looking Lagrange polynomials (Figure 3) of order p 3=  
or higher [17]. 

Substituting (16) into (12) via (13) and projecting the 
result onto the ( ) ( )t m t s rTd - ,  basis yields a set of discrete 
convolution equations,
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and F ( )ku  give a sparse matrix of dimension N Ns s#  such that

	 ( ), ( ) ( ) .T k ts r s rF F( )k T/ ,,, ,l l
u u " , � (18c)

Note that due to the finite support of the 3D retarded poten-
tial, F ( )ku  has a sparse, Toeplitz lower-triangular structure (see 
Figure 4). This facilitates a cost complexity of ( ),NO t  as only a 
fixed number of multiplications need to be performed at each 
time step m tT  [17].

INTEGRATION OF EQUATION OF MOTION
A marching-on-time (MoT) scheme is defined in (17) for 
evaluating the total electric field. The determination of the 
polarization A( )m 1+u  thus proceeds from integrating the 
equation of motion (7) from t m ti T=  to ( )t m t1f T= +  
for every quantum dot. To solve this system, we use a pre-
dictor corrector derived in [22]. Defining t m tm T/  and 
approximating ( )ttu  as a weighted sum of exponentials, the 
predictor–corrector scheme proceeds with an extrapolation 
predictor step
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FIGURE 3. A set of Lagrange polynomials, serving as time basis 
functions for the polarization source ( , ).tP ru
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and iterated corrector steps
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Such an integrator has significantly better convergence 
properties than Runge–Kutta integrators for equations of the 

type seen in (7) and naturally accommodates basis functions 
within c tT  of each other. The general iteration procedure for 
any time step ( )m 1+  is illustrated in Figure 5.

A self-consistent solution to (7) has the following prescription 
for any time step: 1) determine ( ( ))Re m t2A( )

,
m

01 Tt=, ,
u u  from 

the known history of the system, 2) compute ( )m
f,u  using (17), 3) 

find ( )m t,t 012 t D,u  using (7), and 4) correct ( )m t,01 Tt,u  and iter-
ate steps 2–4 until converged [17].

CONSEQUENCES OF INTERDOT COUPLING
Here we adopt the semiclassical formalism discussed previously 
to simulate several physical effects that arise from the coupling 
of dots via their radiated fields—at either long or short distanc-
es. In all simulations, we will employ an incident field with the 
shifted Gaussian waveform
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to excite an ensemble of dots lying initially in the ground state 
( , )| ( , ),1 0t00 01 0t t ==u u  with their density matrix elements evolv-
ing according to (7). 

Here, /, , . ,V1 500 2 278 9013 me  psL
1'.~ = -  /  ,1 psLv ~ =  

/ ,ck zL~= t  and the laser amplitude E0  is chosen to produce a 
r  pulse. The pulse is chosen to peak at ,t 5 ps0 =  thus exciting 
the dots at an early time and allowing for the subsequent re-
emission of radiation to occur.

To demonstrate the equivalence of the fixed and rotating 
frames described in the “Semiclassical Formulation” section, a 
simulation was first performed with two interacting dots. Fig-
ure 6 illustrates that the two frames agree up to minute oscilla-
tions in the fixed frame about the rotating frame.

LONG-RANGE EFFECTS
We now exhibit some effects of coupling in systems with interdot 
distances ranging from short to comparable to or greater than 
the excitation wavelength ( ).827 nm.m  As the goal is to study 
the long-range effects, no self-radiation fields are included here.

In the first simulation, 10,000 quantum dots are randomly 
distributed in a cylinder of radius 0.2 µm and length 4 µm. Each 
dot has an identical (fixed) dipole moment ,e a10d x0= t  where 
a0  is the Bohr radius. While this implies an average interdot 
distance much smaller than the wavelength, interactions among 
those dots that are well separated within the cylinder give rise to 
long-range effects. 

Figure 7 shows the polarization of each dot in the cylinder as 
a function of their z-coordinate (the axis of the cylinder) under 
the effect of a resonant r  pulse. Evident is the oscillation of 
the polarization due to the long-range collective effects. This 
reflects the role of boundary conditions in the confinement of 
the macroscopic electric field in the system. Additionally, note 
how the secondary radiation produces random shifts in the 
polarization due to the short-range effects in the local neighbor-
hood of each dot.

A second simulation was performed involving a larger system 
of 100,000 dots randomly distributed in a rectangular cuboid of 
width 529 nm.  and length . .49 59 m. n  In this simulation, 
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FIGURE 5. A flowchart of one iteration of the predictor–
corrector for the integration of (7) from t m tT=  to 
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reference frames for two interacting quantum dots. Both 
frames produce similar trajectories; however, the inset spy 
reveals that the fixed frame contains a minute oscillatory 
term that the rotating frame does not [19].
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the dipole moment of each dot has fixed 
magnitude e a10d 0=  but a random 
orientation. Figure 8 displays a color 
map of 01tu  as an indicator of the 
polarization | |Pu  of each dot at different 
time steps after the pulse peak. The 
figure shows only those dots located in 
a central segment of about 4 µm of the 
entire cuboid. The random orientation 
of the dipole moments creates a variation 
in the amplitude of the polarization with 
dots whose dipole moments (anti) align 
with the laser field having the great-
est amplitude—hence the multihued 
appearance of the plots.

SHORT-RANGE EFFECTS AND 
SUPERRADIANT EMISSIONS
In the following simulation, we include 
the self-radiation field at the location 
of each dot. As the overall magnitude 
of this field is small ( . ),1 79 10 4#.b -  
the simulation must be run at a timescale of ,  T 10 000 ps=  to 
faithfully observe the long-term effects of the resulting cou-
pling. As the time complexity scales as ( ),O Nt  this limits the 
number of dots N  that can be efficiently simulated. Here we 
restrict ourselves to a system of, at most, 120 dots randomly 
placed within a cube of side length . ,0 100 m  thus enabling 
denser configurations and more intense coupling with increas-
ing .N  To mitigate the variations due to the random distribu-
tion of a comparably small number of dots, multiple trials are 
taken and the results averaged. Finally, we neglect the linear 
damping matrix (4) under the assumption that the radiation 
reaction fields provide the necessary damping via (15).

Figure 9 illustrates the effects of radiation reaction damping 
on both the population inversion w (the proportion of excited 
states) and the magnitude of polarization (proportional to the 
amplitude of the radiated field). We observe with increasing N  
an increase in the rate of initial decay from excited states and 
a leftward shift in the peak of polarization. The time behavior 
of the population inversion was fit with a decaying hyperbolic 
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FIGURE 7. The -zt distribution of polarization 01; ;tu  for a 10,000 
dot cylindrical simulation [17].
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FIGURE 8. The coloration of 01; ;tu  as an indicator of Pu  at (a) t1 = 6 ps, (b) t2 = 7 ps,  
and (c) t3 = 8 ps, relative to the peak of a 1-ps-wide pulse for a system of 100,000 dots 
[17].
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FIGURE 9. The (a) population inversion w and (b) magnitude 
of polarization 01; ;tu  averaged over all dots, for N = 10/20/40/ 
80/120. In the population inversion, the curves of best fit 
(dashed) for a decaying hyperbolic tangent are shown; the 
initial rise is due to the incidence of the laser excitation.
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tangent that describes the average energy of a two-level system 
subjected to radiation reaction damping [10]. Both trends are 
characteristic of superradiance and consistent with previous 
studies [23], [24].

CONCLUSIONS
We have shown that a semiclassical model that combines 
quantum two-level systems and integral-operator-based elec-
tric fields can adequately model both long- and short-range 
radiative coupling effects in active media such as quantum 
dots. In regimes where the separation between dots is compa-
rable to or greater than the excitation wavelength, oscillatory 
patterns and polarization modulations are observed. When 
the dots are separated by smaller distances, the inclusion of 
self-radiative fields induces superradiant emissions. These are 
exemplified by changes in the time behavior of the population 
inversion and polarization, depending on the number of dots 
participating in the collective effect. 

In this article, these were illustrated using a small number 
of dots. Extending this to a larger number of dots implies inte-
grating the ideas presented here into a more computationally 
efficient scheme [17] to reduce the spatial complexity as well as 
using extrapolation methods [25], [26] to reduce the number of 
required time steps.
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