2022 IEEE International Conference on Edge Computing and Communications (EDGE) | 978-1-6654-8140-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/EDGE55608.2022.00022

2022 IEEE International Conference on Edge Computing and Communications (EDGE)

uDiscover: User-Driven Service Discovery in
Pervasive Edge Computing using NDN

George Torres*, Reza TouraniT, Abderrahmen Mtibaai, Diana StelmakhT,
Satyajayant Misraf, Srikathyayani Srikanteswara’, Yi Zhang$, Sanzida Hoque?
*New Mexico State University {gtorresz, misra} @cs.nmsu.edu
tSaint Louis University {reza.tourani, diana.stelmakh} @slu.edu
University of Missouri-Saint Louis {amtibaa, sanzida.hoque}@umsl.edu
§Intel Labs {srikathyayani.srikanteswara, yil.zhang}@intel.com

Abstract—New breed of applications, such as autonomous driv-
ing and their need for computation-aided quick decision making
has motivated the delegation of compute-intensive services (e.g.,
video analytic) to the more powerful surrogate machines at the
network edge—edge computing (EC). Recently, the notion of perva-
sive edge computing (PEC) has emerged, in which users’ devices
can join the pool of the computing resources that perform edge
computing. Inclusion of users’ devices increases the computing
capability at the edge (adding to the infrastructure servers), but
in comparison to the conventional edge ecosystems, it also intro-
duces new challenges, such as service orchestration (i.e., service
placement, discovery, and migration). We propose uDiscover, a
novel user-driven service discovery and utilization framework
for the PEC ecosystem. In designing uDiscover, we considered
the Named-Data Networking architecture for balancing users
workloads and reducing user-perceived latency. We propose
proactive and reactive service discovery approaches and assess
their performance in PEC and infrastructure-only ecosystems.
QOur simulation results show that (i) the PEC ecosystem reduces
the user-perceived delays by up to 70%, and (ii) uDiscover selects
the most suitable server—*‘accurate” delay estimates with less than
10% error—to execute any given task.

Keywords: Edge computing, resource discovery, service or-
chestration, Named-data Networking.

I. INTRODUCTION

Over the last few years, there has been an increase in the
number of compute-intensive applications, such as Augmented
Reality (AR) and autonomous driving, which require ultra-
low latency data processing in the proximity of the users. The
execution of such applications, often, exceed the processing
capability of standalone devices such as smartphones, or
tends to exhibit significant battery draw. This has led to
the use of edge computing, where computing resources are
deployed physically close to end-users. However, the forecast
of increasing volume of services and data, will require an all-
hands-on-deck approach [[1]. This has motivated the vision of
the Pervasive Edge Computing (PEC) ecosystem [1], which
can utilize the devices at the network periphery, such as mobile
and client devices, third party servers etc., to dynamically
participate in the compute pool to improve service availability
and delivery.

In this paper, we argue that the evolving Named Data
Networking (NDN) architecture is a much better choice for
meeting the unique needs of edge computing applications.
In contrast to the IP-based networking architectures, NDN

uses the application-defined names at the network layer for
communication, while it features in-network caching and built-
in security. We aim to leverage NDN to design the uDiscover
framework to perform resilient edge service discovery (result-
ing in service utilization) by enabling resources (storage, com-
putation) to be shared through names, offering opportunities
for “plug-n-play” service provisioning at the network edge.

What to Discover? Applications need to discover the fol-
lowing information: (i) the availability of services, and (ii) the
resources (e.g., capabilities and load) of each offering server.
The first piece of information is needed so that users can
discover the service(s) providing the functionality they need
along with service-related metadata (e.g., service description).
The second one helps estimate the required time to perform a
given user task if a particular server is chosen.

Prior research in the area of NDN edge computing has been
extensively focused on network-driven approaches [2], |3] or
proxy-driven approaches [4|. These approaches are limited
to discovering only upstream (infrastructure) servers and are
oblivious to any peer server, i.e., devices within one hop from
the users such as wireless user devices. In addition, these
approaches rely on servers’ utilization as the sole metric in
choosing the server without accounting for the communication
delay due to the transferring of input/output data, which
can be very large for applications such as video annotation.
uDiscover employs task profiling at the servers to estimate
task computation and communication delays estimation, which
users utilize for making informed server selection decisions.

Our novel contributions include: (i) make the case for the
benefits of leveraging user devices (uServers) to supplement
existing infrastructure computing resources (iServers); (ii) de-
sign and implement uDiscover, a user-driven framework (both
proactive and reactive) that makes informed server selection
decision based on users’ task profiles and available resources
at the network edge; and (iii) perform an extensive set of
simulations to quantify the gains of uDiscover when compared
to infrastructure-only edge computing (iServer-only).

II. BACKGROUND AND RELATED WORK

A. Name Data Networking

The Named-Data Networking (NDN) architecture [S], [6]
shift the existing host-centric IP architecture to a data-centric

2767-9918/22/$31.00 ©2022 IEEE 71
DOI 10.1109/EDGE55608.2022.00022

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

paradigm, in which any network entity with a cached copy of
the data can satisfy users’ requests. In NDN’s receiver-driven
(i.e., pull-based) communication model, a user’s application
sends a request, i.e., Interest packet, into the network including
the name of the requested data. On receiving the Interest, the
producer’s application sends back the requested data, i.e., Data
chunk, consisting the data and its unique name that are bound
together via producer’s signature—enabling data integrity and
authenticity verification.

NDN’s unique content naming and strategy layer allow
packet processing at the network layer and flexible packet
forwarding. Moreover, NDN reduces redundant content de-
livery using its stateful forwarding plane. To realize the
stateful forwarding plane, routers are equipped with three data
structures. The Forwarding Information Base (FIB) contains
name prefixes along with pertinent outgoing interfaces, which
is used for Interest forwarding. The Pending Interest Table
(PIT) keeps track of on-the-fly Interests and enables Interest
aggregation. The Content Store (CS) enables all the network
entities, i.e., routers, to perform in-network content caching.

B. Edge Computing in NDN

The advances in edge computing (EC) has primarily targeted
areas, such as optimizing resource management, energy con-
sumption, and task scheduling [7]-|10]. However, EC’s net-
working aspects, such as adaptive task forwarding or seamless
resource discovery in highly dynamic and heterogeneous edge
environments, have not received much attention.

A few initiatives have explored the suitability of the ICN
paradigm for EC and concluded that such ecosystems greatly
benefit from the distributed nature of NDN [1], [11], [12].
Named-Function Networking (NFN) [13] was the first detailed
attempt in this area with a detailed focus on function placement
and execution. NFN’s fundamental idea was to leverage the
unique function naming feature of NDN for locating the
computing resources. NFaaS [14]] extended NFN’s vision to
a function-as-a-service platform, enabling the users to request
function executions without system provisioning. However,
these proposals fall short in executing resource-intensive func-
tions due to their simplistic design that needed the network to
maintain users’ and edge servers’ states during function execu-
tion. RICE |2] and ICedge |3] addressed this shortcoming by
decoupling service discovery and service invocation; users will
receive the instruction of how and when to request the result
of the service execution. Other initiatives have attempted to
optimize network-assisted resource discovery and deploying
edge-centric security measures [4], [15], [16].

Different from these efforts, we aim at assessing the ad-
vantages of a user-driven resource discovery scheme in the
dynamic PEC ecosystem [1]], which requires more complex
and sophisticated service orchestration operations.

III. PERVASIVE EDGE ECOSYSTEM: SYSTEM MODEL

We consider a computing ecosystem that comprises the
Cloud and the pervasive edge computing (PEC) ecosystem [1].

The PEC ecosystem is envisioned as the edge-to-Cloud con-
tinuum, including all the computing resources from the con-
strained Internet of Things (IoT) devices and users’ personal
devices to multi-access edge computing (MEC) [17], and fog
computing [18]. PEC augments the existing pre-deployed com-
puting infrastructure with the users’ computation resources—
creating a larger and more heterogeneous resource pool for
execution of requested services in users’ proximity. Thus,
enabling markedly better performance and democratizing the
execution of services at the network edge.

We consider two types of PEC computing resources (PEC
servers), namely infrastructure servers (iServers) that are
dedicated infrastructure servers and user servers (uServers)
which are users’ standalone computing resources like personal
computers. The iServers are the static computing resources
while uServers are more dynamic in nature as they can join or
leave the network at will. We consider a heterogeneous PEC,
in which the iServers are computationally more capable than
the uServers. Fig. depicts the high level system consisting of
a user, Cloud, iServers, and uServers. We assume that uServers
are connected to infrastructure, i.e., base stations, and are
accessible using additional Device-to-Device (D2D) wireless
technologies, such as WiFi Direct, Bluetooth, or Zigbee. In
this paper, we assume all entities communicate using NDN.

Each service provider owns a (set) of service(s), such as
image annotation and video super-resolution. While the service
providers have their computing infrastructure (i.e., owned or
leased from the Cloud), we consider that they also offload
the execution of the requested services to the iServers and
uServers. We assume the existence of appropriate security and
access control mechanisms, which allows the service providers
to onboard PEC servers—enabling computation offloading to
iServers and uServers. Considering the large number of ser-
vices, we assume that each service is offered by only a subset
of the servers; requiring service/resource discovery. A user is
typically a service requester. However, considering the highly
dynamic nature of the PEC ecosystem, a user may become
an uServer by joining the resource pool and dedicating their
resources for execution of other users’ services. Services can
be either static (e.g., static videos or web content) or dynamic
(e.g., annotation of videos or images). In this paper, we focus
on dynamic services that require input data from service

—
Cloud Computing G
Providers amazon

webservices™
(-

fta
=

Pervasive Edge
Computing

Compute Power
Latency

e oge 2Tob

Fig. 1. The pervasive edge computing ecosystem, including the pre-deployed
edge servers (iServers) and the users’ devices (uServers). PEC allows the users
to directly discover the nearby uServers without relying on the base station.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

requesters (e.g., a user’s image/video for the annotation) or
other service providers (e.g., live video super-resolution).

IV. USER-DRIVEN SERVICE DISCOVERY

Contrary to the existing network-driven service discov-
ery |21, [3], in uDiscover, users make offloading decisions
using a utility function, based on task profile and per-server
estimated latency using a utility function, gathered from the
servers with the objective of selecting the best server.

A. Utility Function

Task scheduling can be formulated as an optimization prob-
lem, which users can solve to sort the PEC servers (uServers
and iServers) for any given task at a time ¢. In this way,
users can forward requests to the most suitable server. We
consider two main characteristics of services/tasks, namely,
computation complexity and the input data size. Using these
characteristics, one can model services spanning from heavy
compute and low data input such as video annotations to low
compute and heavy data such as motion detection.

Users will discover all available servers s;, 2 = 1--- N and
estimates at a given time ¢ the compute delay, deomp(St, %),
and the communication delay, d.omm (St,), for any service
S; to run on server s;. These estimates are measured based on
information shared by servers and gathered during the discov-
ery process. Any server s; will, periodically (i.e., proactive)
or on-demand (i.e., reactive), send its current utilization, wu;
(e.g., CPU usage ratio, waiting queues), its capacity, ¢; (e.g.,
infrastructure servers have larger capacity than the smaller
PEC servers), as well as the average communication delay, i.e.,
d;, measured using the last K tasks received by the server.

As a user sends a service discovery and gathers all servers’
information, it estimates the end-to-end delays to run its tasks
on all servers, and sorts them based on these delay estimates:

deomp(St, 1) = BaseC(S) % %, 1)

where BaseC'(S;) is the optimal computation unit for task .S,
(i.e., with absence of queuing and concurrent computation).

dcomm (Sty Z) = dz (2)

In this paper, we used ¢; = 1 for iServers and ¢; = 1/3
for uServer. Thus, estimating latency for the service S; is
measured as:

Iniin (dcomp(sta Z) + dCOTYLTrL(Sty Z))) (3)

where the best server to execute the task, s;, is the one that
minimizes the function by Eq. |3| These estimates are based
on information gathered from each server. We have proposed
and tested a proactive and reactive user-driven approaches to
discover and gather resource updates from the edge servers.

B. Proactive Utilization Updates

In NDN, any data content must be requested using interest
packets. Thus, each infrastructure entry point (e.g., access
point or base station), which we refer to as BS, probes the
servers in its vicinity (i.e., limited to k-hops away from

the BS), periodically every period A. These interests are
multicasted periodically to all servers. To limit the overhead
caused by the periodic updates, BSs perform scoped flooding,
where each update is propagated for a limited number of hops
in the network, before it gets discarded.

Servers receiving these interests, reply with data packets
that contain the estimated communication delays, the current
utilization, and the capacity of the server. The estimates of
communication delays is calculated based on averaging the last
T tasks from each service profile; the communication delays
would be similar since most of the users are within the kK NDN
hops radius. The BS gathers all responses and aggregate them
into one resource discovery manifest, which will be sent to
any users requesting a service from the BS.

Users, with tasks to execute, first send a discovery interest
as a one-hop broadcast message on all available interfaces.
All uServers receiving the discovery interest reply with their
utilization, communication delays, and capacity. BSs receiving
the discovery request, reply with their aggregated resource dis-
covery manifest. Upon receiving all data, users will compare
the delays to execute its task on all servers (i.e., based on
Eq. , and select the server that minimizes the end-to-end
latency. Note that, the utility function deployed in this paper
can be easily changed to a multi-objective function which takes
into consideration load balancing, overhead, cost, etc.

Fig. 2| depicts the sequence diagram of our user-driven
approach. Blue lines represent the proactive approach mes-
saging the BS periodically (every A seconds) with multicast
message to proactively gather and store the resource mani-
fest that aggregates all resource information from available
iServers within a 3-hop radius and direct uServers. When users
broadcast a discovery interest, they will instantly receive a
data content from BS (from the cached resource manifest) as
well as the uServers accessible via other wireless interfaces
such as Bluetooth, Zigbee, WiFi-Direct, etc.). In this example
the user selected server (s;), and sent the task to the server.
Server reserves resources, updates its utilization, and requests
the input data from the user (if any) to run the task. Upon
receiving the data, the server executes the task; then waits for
the request to send the task execution results and frees the
resources (i.e., reduce its utilization ratio).

C. Reactive Utilization Updates

The reactive approach does not require periodic exchange
of updates. Similar to the proactive approach, users broadcast
(i.e., 1-hop broadcast) a discovery request on all its interfaces.
All uServers reply with their utilization, capacity, and commu-
nication delays. However, BSs receiving the discovery interest,
reacts by initiating an on-demand discovery of services within
a k-hop radius. The process is similar to the proactive ap-
proach, however it would be triggered on-demand (instead of
periodically) as the BS receives a request from the user.

The reactive approach messaging is depicted in Fig. |2 in
red. BSs receiving the discovery interest from the users will
not respond instantly, as per the proactive approach, however
BSs send service discovery interests to gather all resource

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

(=] (=] [

/disc/multicast—,;
/disc/multicast:
——/disc/multicast___|
SVeYN«/disc/multicast |

ACK/Thunk——|

l«—/disc/srv_name—] |—/disc/srv name—
«-/disc/srv name/seano_|
[*/disc/srv_name/seqno

r/disc/srv_name/seqno>|

choose_y

si ——/Si/srv_name/

ReEerve
Resources

{«—/user/datalnput/seq1
<« Juser/datalnput/seqN
—————/user/datalnput/seq——

-

Juser/datalnput/segN——__ 5

Isilresults-

/si/result; il

Exgcute
Task

Fig. 2. uDiscover interactions across all parties; Blue and Red represent the
message exchanges of the proactive and reactive approaches, respectively.
information and relay them back to the requesting user. This
on-demand procedure does not require caching of manifest nor
sending periodic messages when there are no users requesting
task executions. However, in order to control the overhead
of this reactive approach, we have implemented a freshness
period (this period is set to 100ms) to cache the results and
avoid sending “unecessary” discovery messages for requests
received within this period.

V. EVALUATION

In this section, we evaluate, compare, and discuss the
performance of our uDiscover approaches to an iServer-only
approach, which proactively (A = 1) discovers and selects
only iServers—we will quantitatively measure the benefits of
leveraging user’ devices, uServers, in a PEC setting.

A. Experimental Setup

We used ndnSIM [19], a module of ns-3, to implement
and evaluate uDiscover. We ran our simulation on a Desktop
class machine with a Intel 16 core CPU and 64 GB memory.
We implemented three applications to enable the interactions
between the users, base stations, iServers, and uServers.
Implementation Scope: In the user discovery application,
each user initiates the resource/service discovery protocol and
collects the available resources either from the corresponding
base station or directly from the nearby uServers. Upon
choosing the best server, the user informs the selected server to
fetch the data from the user. The resource probing application
enables the base stations to elicit the available resources of
the proximal servers by sending hop-limited probing messages
to the nearby servers. In the reactive approach, each base
station probes the nearby resources only on receiving the
users’ discovery requests while in the proactive approach, the
probing takes place periodically. Finally, in the server appli-
cation, the server designated to execute the service initiates
the communication with the user to retrieve the data needed
for the requested service, executes the requested service, and
returns the result of the service execution to the user.
Network Topology: We created a pervasive edge network
topology of 191 nodes, including 126 users, 38 uServers, 9
iServers, and 8 base stations. Each base station serves roughly
20 users and uServers in total. The users and uServers are

TABLE I
EVALUATION SETUP; NUMBERS IN BOLD ARE NOMINAL (DEFAULT)
VALUES USED WHEN THE VALUE OF A PARAMETER IS FIXED.

Parameter

Value Range

Discovery Scenarios

Proactive BS probing period (A)
Reactive freshness period
Reactive BS probing wait period
User service request rate

{1, 5, 10, 15} seconds

100 ms

40 ms

1 request per {1, 3,10} seconds

Servers Specifications
uServers status change intervals
Probability of uServers status update

{30 seconds, 100 seconds, off}
0.65/0.35 to keep/switch status

Initial utilization of iServers N(10,10)
Utilization increment of iServers N(5,5)
Initial utilization of uServers N (20, 20)
Utilization increment of uServers N(15,10)
Topology Specifications

User-uServer link delay 10ms
User-BS link delay 10ms
User-uServer link bandwidth 500Mbps
User-BS link bandwidth 5Mbps

Hops between users and iServers (k) [3-4]
Average user node degree [2-4]
Number of iServers [10-15]

directly connected to their associated base stations over 1-
hop connections while the iServers are connected to the base
stations over 2-hops or 3-hops connections. Thus, resulting
in the total user-to-uServer distance of one to two hops and
the total user-to-iServer distance of roughly three to four hops
(i.e, k € {3,4}).

We modeled the connection between the users and base sta-
tions as well as the connections between the uServers and base
stations as Ethernet peer-to-peer links. Considering the focus
of this work on analyzing user-driven resource discovery, we
intentionally avoided wireless links to prevent the interference
of the wireless channels from impacting our evaluation. We
set the bandwidth and delay of the links between the users
and base stations and the links between the iServers and the
base stations as 500Mbps and 10ms, respectively. We set the
bandwidth and delay of the links between the user and uServer
as 5Mbps and 1ms, respectively.

We devised a probabilistic model for the uServers to mimic
a dynamic PEC ecosystem, in which the uServers can join
or leave the pool of computing resource at will. In our
model, uServers can have two states, online or offline. To
model network dynamicity, each uServer individually decides
to continue its current status—remains online or remain offline—
or switch its current status—comes online if it was offline or
vice versa (refer to Table for detailed parameters).

Service Configuration: In the PEC, executing dynamic ser-
vices often require input data. The size of the input/output data
and amount of computational resources for performing a given
service, however, are service-specific parameters. Considering
our simulation environment, we modeled four representative
services with diverse communication and computation charac-
teristics. For each service, we defined the input and output data
sizes in terms of the number of packets (1 KB sized packet)
and the service execution according to Table

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

----------------------- 15- 1.00-
i
o .
........... - 8 9075,
£ 10- £
W Pro(1) g %
8 Pro(5) 3 8050
Pro(10) | g S
Pro(15) g 5 g
Reactive z = 0.25- . .
iServers
—————— — oo]]
0 5 10 15 20 25 30 Inf Pro() Pro(s) Pro(10) Pro(15) Reactive Pro(1) Pro(5) Pro(10) Pro(15) Reactive

Latency (Seconds)

(a) User perceived latency

(b) Averaged overhead

(c) Normalized error

Fig. 3. Comparing (a) user perceived latency (Inf denotes infinite delays resulting from data/task loss), (b) overhead, and (c) error of reactive and proactive
(with different update periods, A) approaches; user service request rate and join interval are respectively fixed to 1pkt every 3 seconds and 100 seconds.

B. Evaluation Metrics

All metrics shown in this subsection are measured as an
average of five simulation runs. Each simulation runs for 360
seconds. We consider the following evaluation metrics:

1) User perceived latency: the time elapsed from the user
sending the resource discovery request until the user
receiving the result of the offloaded service, including
service discovery, invocation, and execution.

2) Average overhead: the overhead is the additional number
of packets transmitted per service discovery transmitted
between the base stations and the proximal servers, av-
eraged over all users. The average overhead is measured
as the ratio between the overhead of any approach with
respect to the iServer only overhead.

3) Normalized Error: the difference between the estimated
end-to-end latency for task execution and the user per-
ceived latency normalized by the perceived latency.

C. Results and Analysis

1) Impact of Update Periods: We first compare iServer-
only and uDiscover’s reactive and proactive (with varying
update periods A) approaches in terms of latency, overhead,
and error (Fig. . As shown in Fig. the cumulative
distribution function (CDF) of the user perceived latency in

TABLE II
SERVICE CONFIGURATION
Exec Time
Data Input s [N(1,0.03)] | 0.1s [A(0.1,0.01)]
1000 pkts [NV'(1000, 0.01)] Service 1 Service 4
10 pkts [NV(10,0.1)] Service 2 Service 3

Proactive-iServer Reactive-iServer
Proactive-uServer Reactive-uServer

Service 1 Service 2 Service 3 Service 4

Percentage
[l
o

Fig. 4. Distribution of services across uServers and iServers.

uDiscover’s reactive and proactive approaches (with the higher
update frequency) outperform the iServers only approach in
selecting the best servers, resulting on lower latencies. The
difference gap is further amplified in longer delays where the
reactive approach and the proactive approach with the highest
update frequency (i.e., Pro(l1) where A = 1s) outperform
all other approaches. 60% of Pro(1) and reactive approaches’
tasks completed in less than 2 seconds compared to 3 to 20
seconds for the other approaches. For the proactive approach,
reducing the update frequency (i.e., increase A values) results
in considerable user perceived delay increase; up to 20%.
The reason is for the larger A values, users will use stale
information that can results is choosing overloaded servers.
Finally, we show that the iServers only approach performs
poorly when compared to reactive and proactive approaches
with larger A values. Servers become overloaded and fail to
schedule tasks for execution. Delay performance is correlated
with the efficacy of the delay estimation of each approach as
shown in Fig. High frequency updates (e.g., reactive and
proactive with A = 1s) uses fresh(er) data, thus making the
least estimation errors resulting in better server selection and
overall performance.

The good latency performance of the reactive approach,
however, comes at the cost of a larger overhead (refer
to Fig. . The reactive approach averages 14times the
overhead of iServer-only. However the proactive approaches
achieve better latency performance while keeping overhead
low (e.g., 30% of the iServer-only overhead for Pro(10)
approach). Thus, when comparing both uDiscover approaches,
the proactive approaches tend to achieve a better latency-
overhead trade-off; for instance proactive (A = 5s) has 3-100
% less overhead, but only 1 to 23% longer delays (measured
as % of tasks having delays within 10s).

We also measure the distribution of tasks across different
servers (i.e., uServer and iServer) as shown in Fig. Services
1-4 have different input and computation loads. We show that
services with high computation load (e.g., service 2) tend to
be forwarded more towards iServer while services with high
communication load (e.g., service 4) tend to be transferred
more towards uServers. Both approaches are following this
trend, with the reactive approach selecting 10% to 20% more
uServer when needed, resulting in shorter delays and better

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

Inf iServer E3 iServer
530 Proactive 30 E3 Proactive
[[Reactive . E3 Reactive
825 3
3 <
& 20 220
2 o
E 15 %

5 10 g0
L 2
= <
85 =
= oo —H - —
1req./1sec. 1req./3sec. 1req./10 sec. 1req./1sec. 1req./3sec. 1req./10 sec

Request Sending Rate Request Sending Rate

(a) Latency vs. Request Rate (b) Overhead vs. Request Rate

Fig. 5. The impacts of service request rate on user perceived latency and
communication overhead.

20
15
5
0

30 sec. 100 sec.

[T iserver
Proactive
Reactive

20" 3 iservery
B8 Proactive
E3 Reactive 5

<

o

Average Overhead
o 5

50 Percentile Feedback
=)

°
|
-

Static
Status Change Interval

30 sec. 100 sec. Static
Status Change Interval

(a) Latency vs. uServers update (b) Overhead vs. uServers update

Fig. 6. The impacts of uServer dynamicity on user perceived latency and
communication overhead.

load balancing.

2) Impact of User Service Request Rate: We studied the
impact of service traffic (user service request rate) on the
latency and overhead. We show, in Fig. that as the user
request increases, the network become saturated and iServer-
only fails to execute more than 50% for 1 request/s scenario
and uDiscover’s approaches help execute tasks in less than
10x the delays achieved by iServer-only for the 1 request/3s
scenario. While the reactive approach performance comes at
the cost of 2-30x the overhead of iServer-only. Pro(5) achieves
better overhead and delay performances. Note that iServer-
only probes discover resources every 1 second, thus higher
overhead, but fails to achieve better user perceived delay as it
doesn’t leverage all resources in the PEC setting.

3) Impact of uServers Dynamicity: We further studied the
impact of PEC’s dynamic ecosystem, in which the uServers
join and leave the network, on user perceived latency and
communication overhead. Fig. compares the average
delays when the uServers dynamicity decreases. We show that
our approaches, proactive and reactive, are resilient to uServers
dynamicity (Fig. @ The approaches manage to overcome
disruption and select uServers or iServers that help reduce
the user perceived latency.

VI. CONCLUSION

We have proposed a new user-driven service and resource
discovery for pervasive edge computing networks. Our ap-
proach, uDiscover, uses information about the resource utiliza-
tion of infrastructure servers (iServers) and ad-hoc user devices
(uServers), in addition to an estimation of the communication
delay to make informed decisions on which server can help
execute a given task in the shortest delay.

ACKNOWLEDGMENTS

This work was partially supported by US NSF awards
#2148358, #2028797, #1914635, and #OIA-1757207 and

82

Intel Labs.

REFERENCES

[1]1 R. Tourani, S. Srikanteswara, S. Misra, R. Chow, L. Yang, X. Liu,
and Y. Zhang, “Democratizing the edge: A pervasive edge computing
framework,” arXiv preprint arXiv:2007.00641, 2020.

M. Krdl, K. Habak, D. Oran, D. Kutscher, and I. Psaras, “Rice: Remote
method invocation in icn,” in Proceedings of the ACM Conference on
Information-Centric Networking, 2018, pp. 1-11.

S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “Icedge: When edge
computing meets information-centric networking,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4203-4217, 2020.

R. Pirmagomedov, S. Srikanteswara, D. Moltchanov, G. Arrobo,
Y. Zhang, N. Himayat, and Y. Koucheryavy, “Augmented computing
at the edge using named data networking,” in 2020 IEEE Globecom
Workshops (GC Wkshps. 1EEE, 2020, pp. 1-6.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
Sth international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1-12.

L. Zhang, et al., “Named data networking,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3, pp. 66-73, 2014.

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
2017.

K. Habak, E. W. Zegura, M. Ammar, and K. A. Harras, “Workload
management for dynamic mobile device clusters in edge femtoclouds,”
in Proceedings of ACM/IEEE symposium on edge computing, 2017, pp.
1-14.

B.-G. Chun, S. IThm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems, 2011, pp. 301-314.

A. Mtibaa, K. A. Harras, K. Habak, M. Ammar, and E. W. Zegura,
“Towards mobile opportunistic computing,” in IEEE 8th International
Conference on Cloud Computing. 1EEE, 2015, pp. 1111-1114.

D. Grewe, M. Wagner, M. Arumaithurai, I. Psaras, and D. Kutscher,
“Information-centric mobile edge computing for connected vehicle en-
vironments: Challenges and research directions,” in Proceedings of the
Workshop on Mobile Edge Communications, 2017, pp. 7-12.

A. Mtibaa et al., “Towards edge computing over named data net-
working,” in 2018 IEEE International Conference on Edge Computing
(EDGE). IEEE, 2018, pp. 117-120.

M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An information
centric network for computing the distribution of computations,” in
Proceedings of the Ist international conference on Information-centric
networking. ACM, 2014, pp. 137-146.

M. Krdl and I. Psaras, “Nfaas: named function as a service,” in Proceed-
ings of the 4th ACM Conference on Information-Centric Networking,
2017, pp. 134-144.

A. Mtibaa, R. Tourani, S. Misra, J. Burke, and L. Zhang, “Towards edge
computing over named-data networking,” in 2018 IEEE International
Conference on Edge Computing. 1EEE, 2018, pp. 117-120.

R. Tourani, A. Bos, S. Misra, and F. Esposito, “Towards security-as-
a-service in multi-access edge,” in Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, 2019, pp. 358-363.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13-16.

S. Mastorakis et al., “On the evolution of ndnsim: An open-source
simulator for ndn experimentation,” ACM SIGCOMM Computer Com-
munication Review, vol. 47, no. 3, pp. 19-33, 2017.

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

