
uDiscover: User-Driven Service Discovery in
Pervasive Edge Computing using NDN

George Torres∗, Reza Tourani†, Abderrahmen Mtibaa‡, Diana Stelmakh†,
Satyajayant Misra†, Srikathyayani Srikanteswara§, Yi Zhang§, Sanzida Hoque‡

∗New Mexico State University {gtorresz, misra}@cs.nmsu.edu
†Saint Louis University {reza.tourani, diana.stelmakh}@slu.edu

‡University of Missouri–Saint Louis {amtibaa, sanzida.hoque}@umsl.edu
§Intel Labs {srikathyayani.srikanteswara, yi1.zhang}@intel.com

Abstract—New breed of applications, such as autonomous driv-
ing and their need for computation-aided quick decision making
has motivated the delegation of compute-intensive services (e.g.,
video analytic) to the more powerful surrogate machines at the
network edge–edge computing (EC). Recently, the notion of perva-
sive edge computing (PEC) has emerged, in which users’ devices
can join the pool of the computing resources that perform edge
computing. Inclusion of users’ devices increases the computing
capability at the edge (adding to the infrastructure servers), but
in comparison to the conventional edge ecosystems, it also intro-
duces new challenges, such as service orchestration (i.e., service
placement, discovery, and migration). We propose uDiscover, a
novel user-driven service discovery and utilization framework
for the PEC ecosystem. In designing uDiscover, we considered
the Named-Data Networking architecture for balancing users
workloads and reducing user-perceived latency. We propose
proactive and reactive service discovery approaches and assess
their performance in PEC and infrastructure-only ecosystems.
Our simulation results show that (i) the PEC ecosystem reduces
the user-perceived delays by up to 70%, and (ii) uDiscover selects
the most suitable server–“accurate” delay estimates with less than
10% error–to execute any given task.

Keywords: Edge computing, resource discovery, service or-
chestration, Named-data Networking.

I. INTRODUCTION

Over the last few years, there has been an increase in the

number of compute-intensive applications, such as Augmented

Reality (AR) and autonomous driving, which require ultra-

low latency data processing in the proximity of the users. The

execution of such applications, often, exceed the processing

capability of standalone devices such as smartphones, or

tends to exhibit significant battery draw. This has led to

the use of edge computing, where computing resources are

deployed physically close to end-users. However, the forecast

of increasing volume of services and data, will require an all-

hands-on-deck approach [1]. This has motivated the vision of

the Pervasive Edge Computing (PEC) ecosystem [1], which

can utilize the devices at the network periphery, such as mobile

and client devices, third party servers etc., to dynamically

participate in the compute pool to improve service availability

and delivery.

In this paper, we argue that the evolving Named Data

Networking (NDN) architecture is a much better choice for

meeting the unique needs of edge computing applications.

In contrast to the IP-based networking architectures, NDN

uses the application-defined names at the network layer for

communication, while it features in-network caching and built-

in security. We aim to leverage NDN to design the uDiscover
framework to perform resilient edge service discovery (result-

ing in service utilization) by enabling resources (storage, com-

putation) to be shared through names, offering opportunities

for “plug-n-play” service provisioning at the network edge.

What to Discover? Applications need to discover the fol-

lowing information: (i) the availability of services, and (ii) the

resources (e.g., capabilities and load) of each offering server.

The first piece of information is needed so that users can

discover the service(s) providing the functionality they need

along with service-related metadata (e.g., service description).

The second one helps estimate the required time to perform a

given user task if a particular server is chosen.

Prior research in the area of NDN edge computing has been

extensively focused on network-driven approaches [2], [3] or

proxy-driven approaches [4]. These approaches are limited

to discovering only upstream (infrastructure) servers and are

oblivious to any peer server, i.e., devices within one hop from

the users such as wireless user devices. In addition, these

approaches rely on servers’ utilization as the sole metric in

choosing the server without accounting for the communication

delay due to the transferring of input/output data, which

can be very large for applications such as video annotation.

uDiscover employs task profiling at the servers to estimate

task computation and communication delays estimation, which

users utilize for making informed server selection decisions.

Our novel contributions include: (i) make the case for the

benefits of leveraging user devices (uServers) to supplement

existing infrastructure computing resources (iServers); (ii) de-

sign and implement uDiscover, a user-driven framework (both

proactive and reactive) that makes informed server selection

decision based on users’ task profiles and available resources

at the network edge; and (iii) perform an extensive set of

simulations to quantify the gains of uDiscover when compared

to infrastructure-only edge computing (iServer-only).

II. BACKGROUND AND RELATED WORK

A. Name Data Networking

The Named-Data Networking (NDN) architecture [5], [6]

shift the existing host-centric IP architecture to a data-centric

77

2022 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/22/$31.00 ©2022 IEEE
DOI 10.1109/EDGE55608.2022.00022

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

dg
e

C
om

pu
tin

g
an

d
C

om
m

un
ic

at
io

ns
 (E

D
G

E)
 |

97
8-

1-
66

54
-8

14
0-

3/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
ED

G
E5

56
08

.2
02

2.
00

02
2

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

paradigm, in which any network entity with a cached copy of

the data can satisfy users’ requests. In NDN’s receiver-driven

(i.e., pull-based) communication model, a user’s application

sends a request, i.e., Interest packet, into the network including

the name of the requested data. On receiving the Interest, the

producer’s application sends back the requested data, i.e., Data
chunk, consisting the data and its unique name that are bound

together via producer’s signature–enabling data integrity and

authenticity verification.

NDN’s unique content naming and strategy layer allow

packet processing at the network layer and flexible packet

forwarding. Moreover, NDN reduces redundant content de-

livery using its stateful forwarding plane. To realize the

stateful forwarding plane, routers are equipped with three data

structures. The Forwarding Information Base (FIB) contains

name prefixes along with pertinent outgoing interfaces, which

is used for Interest forwarding. The Pending Interest Table

(PIT) keeps track of on-the-fly Interests and enables Interest

aggregation. The Content Store (CS) enables all the network

entities, i.e., routers, to perform in-network content caching.

B. Edge Computing in NDN

The advances in edge computing (EC) has primarily targeted

areas, such as optimizing resource management, energy con-

sumption, and task scheduling [7]–[10]. However, EC’s net-

working aspects, such as adaptive task forwarding or seamless

resource discovery in highly dynamic and heterogeneous edge

environments, have not received much attention.

A few initiatives have explored the suitability of the ICN

paradigm for EC and concluded that such ecosystems greatly

benefit from the distributed nature of NDN [1], [11], [12].

Named-Function Networking (NFN) [13] was the first detailed

attempt in this area with a detailed focus on function placement

and execution. NFN’s fundamental idea was to leverage the

unique function naming feature of NDN for locating the

computing resources. NFaaS [14] extended NFN’s vision to

a function-as-a-service platform, enabling the users to request

function executions without system provisioning. However,

these proposals fall short in executing resource-intensive func-

tions due to their simplistic design that needed the network to

maintain users’ and edge servers’ states during function execu-

tion. RICE [2] and ICedge [3] addressed this shortcoming by

decoupling service discovery and service invocation; users will

receive the instruction of how and when to request the result

of the service execution. Other initiatives have attempted to

optimize network-assisted resource discovery and deploying

edge-centric security measures [4], [15], [16].

Different from these efforts, we aim at assessing the ad-

vantages of a user-driven resource discovery scheme in the

dynamic PEC ecosystem [1], which requires more complex

and sophisticated service orchestration operations.

III. PERVASIVE EDGE ECOSYSTEM: SYSTEM MODEL

We consider a computing ecosystem that comprises the

Cloud and the pervasive edge computing (PEC) ecosystem [1].

The PEC ecosystem is envisioned as the edge-to-Cloud con-

tinuum, including all the computing resources from the con-

strained Internet of Things (IoT) devices and users’ personal

devices to multi-access edge computing (MEC) [17], and fog

computing [18]. PEC augments the existing pre-deployed com-

puting infrastructure with the users’ computation resources–

creating a larger and more heterogeneous resource pool for

execution of requested services in users’ proximity. Thus,

enabling markedly better performance and democratizing the

execution of services at the network edge.

We consider two types of PEC computing resources (PEC

servers), namely infrastructure servers (iServers) that are

dedicated infrastructure servers and user servers (uServers)
which are users’ standalone computing resources like personal

computers. The iServers are the static computing resources

while uServers are more dynamic in nature as they can join or

leave the network at will. We consider a heterogeneous PEC,

in which the iServers are computationally more capable than

the uServers. Fig. 1 depicts the high level system consisting of

a user, Cloud, iServers, and uServers. We assume that uServers

are connected to infrastructure, i.e., base stations, and are

accessible using additional Device-to-Device (D2D) wireless

technologies, such as WiFi Direct, Bluetooth, or Zigbee. In

this paper, we assume all entities communicate using NDN.

Each service provider owns a (set) of service(s), such as

image annotation and video super-resolution. While the service

providers have their computing infrastructure (i.e., owned or

leased from the Cloud), we consider that they also offload

the execution of the requested services to the iServers and

uServers. We assume the existence of appropriate security and

access control mechanisms, which allows the service providers

to onboard PEC servers–enabling computation offloading to

iServers and uServers. Considering the large number of ser-

vices, we assume that each service is offered by only a subset

of the servers; requiring service/resource discovery. A user is

typically a service requester. However, considering the highly

dynamic nature of the PEC ecosystem, a user may become

an uServer by joining the resource pool and dedicating their

resources for execution of other users’ services. Services can

be either static (e.g., static videos or web content) or dynamic

(e.g., annotation of videos or images). In this paper, we focus

on dynamic services that require input data from service

Pervasive Edge
Computing

dge
ng Co

m
pu

te
 P

ow
er

La
te

nc
y

Cloud Computing
Providers

Fig. 1. The pervasive edge computing ecosystem, including the pre-deployed
edge servers (iServers) and the users’ devices (uServers). PEC allows the users
to directly discover the nearby uServers without relying on the base station.

78

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

requesters (e.g., a user’s image/video for the annotation) or

other service providers (e.g., live video super-resolution).

IV. USER-DRIVEN SERVICE DISCOVERY

Contrary to the existing network-driven service discov-

ery [2], [3], in uDiscover, users make offloading decisions

using a utility function, based on task profile and per-server

estimated latency using a utility function, gathered from the

servers with the objective of selecting the best server.

A. Utility Function

Task scheduling can be formulated as an optimization prob-

lem, which users can solve to sort the PEC servers (uServers

and iServers) for any given task at a time t. In this way,

users can forward requests to the most suitable server. We

consider two main characteristics of services/tasks, namely,

computation complexity and the input data size. Using these

characteristics, one can model services spanning from heavy

compute and low data input such as video annotations to low

compute and heavy data such as motion detection.

Users will discover all available servers si, i = 1 · · ·N and

estimates at a given time t the compute delay, dcomp(St, i),
and the communication delay, dcomm(St, i), for any service

St to run on server si. These estimates are measured based on

information shared by servers and gathered during the discov-

ery process. Any server si will, periodically (i.e., proactive)

or on-demand (i.e., reactive), send its current utilization, ui

(e.g., CPU usage ratio, waiting queues), its capacity, ci (e.g.,
infrastructure servers have larger capacity than the smaller

PEC servers), as well as the average communication delay, i.e.,
di, measured using the last K tasks received by the server.

As a user sends a service discovery and gathers all servers’

information, it estimates the end-to-end delays to run its tasks

on all servers, and sorts them based on these delay estimates:

dcomp(St, i) = BaseC(St)× ui

ci
, (1)

where BaseC(St) is the optimal computation unit for task St

(i.e., with absence of queuing and concurrent computation).

dcomm(St, i) = di (2)

In this paper, we used ci = 1 for iServers and ci = 1/3
for uServer. Thus, estimating latency for the service St is

measured as:

min
i

(dcomp(St, i) + dcomm(St, i)) , (3)

where the best server to execute the task, si, is the one that

minimizes the function by Eq. 3. These estimates are based

on information gathered from each server. We have proposed

and tested a proactive and reactive user-driven approaches to

discover and gather resource updates from the edge servers.

B. Proactive Utilization Updates

In NDN, any data content must be requested using interest

packets. Thus, each infrastructure entry point (e.g., access

point or base station), which we refer to as BS, probes the

servers in its vicinity (i.e., limited to k-hops away from

the BS), periodically every period Δ. These interests are

multicasted periodically to all servers. To limit the overhead

caused by the periodic updates, BSs perform scoped flooding,

where each update is propagated for a limited number of hops

in the network, before it gets discarded.

Servers receiving these interests, reply with data packets

that contain the estimated communication delays, the current

utilization, and the capacity of the server. The estimates of

communication delays is calculated based on averaging the last

T tasks from each service profile; the communication delays

would be similar since most of the users are within the k NDN

hops radius. The BS gathers all responses and aggregate them

into one resource discovery manifest, which will be sent to

any users requesting a service from the BS.

Users, with tasks to execute, first send a discovery interest

as a one-hop broadcast message on all available interfaces.

All uServers receiving the discovery interest reply with their

utilization, communication delays, and capacity. BSs receiving

the discovery request, reply with their aggregated resource dis-

covery manifest. Upon receiving all data, users will compare

the delays to execute its task on all servers (i.e., based on

Eq. 3), and select the server that minimizes the end-to-end

latency. Note that, the utility function deployed in this paper

can be easily changed to a multi-objective function which takes

into consideration load balancing, overhead, cost, etc.

Fig. 2 depicts the sequence diagram of our user-driven

approach. Blue lines represent the proactive approach mes-

saging the BS periodically (every Δ seconds) with multicast

message to proactively gather and store the resource mani-

fest that aggregates all resource information from available

iServers within a 3-hop radius and direct uServers. When users

broadcast a discovery interest, they will instantly receive a

data content from BS (from the cached resource manifest) as

well as the uServers accessible via other wireless interfaces

such as Bluetooth, Zigbee, WiFi-Direct, etc.). In this example

the user selected server (si), and sent the task to the server.

Server reserves resources, updates its utilization, and requests

the input data from the user (if any) to run the task. Upon

receiving the data, the server executes the task; then waits for

the request to send the task execution results and frees the

resources (i.e., reduce its utilization ratio).

C. Reactive Utilization Updates

The reactive approach does not require periodic exchange

of updates. Similar to the proactive approach, users broadcast

(i.e., 1-hop broadcast) a discovery request on all its interfaces.

All uServers reply with their utilization, capacity, and commu-

nication delays. However, BSs receiving the discovery interest,

reacts by initiating an on-demand discovery of services within

a k-hop radius. The process is similar to the proactive ap-

proach, however it would be triggered on-demand (instead of

periodically) as the BS receives a request from the user.

The reactive approach messaging is depicted in Fig. 2 in

red. BSs receiving the discovery interest from the users will

not respond instantly, as per the proactive approach, however

BSs send service discovery interests to gather all resource

79

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

User

choose
 Si

BS

every

/disc/srv_name
/disc/srv_name/seqno

iServer

/disc/multicast

(si)

R
es

er
ve

R

es
ou

rc
es

Ex
ec

ut
e

 T
as

k

/disc/srv_name/seqno

uServer(sj)

/disc/srv_name

/Si/srv_name/
ACK/Thunk

/user/dataInput/seqN
/user/dataInput/seq1

/disc/multicast

/user/dataInput/seqN
/user/dataInput/seq1

/si/results
/si/results

/disc/multicast

/disc/multicast

/disc/srv_name/seqno

Fig. 2. uDiscover interactions across all parties; Blue and Red represent the
message exchanges of the proactive and reactive approaches, respectively.

information and relay them back to the requesting user. This

on-demand procedure does not require caching of manifest nor

sending periodic messages when there are no users requesting

task executions. However, in order to control the overhead

of this reactive approach, we have implemented a freshness

period (this period is set to 100ms) to cache the results and

avoid sending “unecessary” discovery messages for requests

received within this period.

V. EVALUATION

In this section, we evaluate, compare, and discuss the

performance of our uDiscover approaches to an iServer-only

approach, which proactively (Δ = 1) discovers and selects

only iServers–we will quantitatively measure the benefits of

leveraging user’ devices, uServers, in a PEC setting.

A. Experimental Setup

We used ndnSIM [19], a module of ns-3, to implement

and evaluate uDiscover. We ran our simulation on a Desktop

class machine with a Intel 16 core CPU and 64 GB memory.

We implemented three applications to enable the interactions

between the users, base stations, iServers, and uServers.

Implementation Scope: In the user discovery application,

each user initiates the resource/service discovery protocol and

collects the available resources either from the corresponding

base station or directly from the nearby uServers. Upon

choosing the best server, the user informs the selected server to

fetch the data from the user. The resource probing application

enables the base stations to elicit the available resources of

the proximal servers by sending hop-limited probing messages

to the nearby servers. In the reactive approach, each base

station probes the nearby resources only on receiving the

users’ discovery requests while in the proactive approach, the

probing takes place periodically. Finally, in the server appli-

cation, the server designated to execute the service initiates

the communication with the user to retrieve the data needed

for the requested service, executes the requested service, and

returns the result of the service execution to the user.

Network Topology: We created a pervasive edge network

topology of 191 nodes, including 126 users, 38 uServers, 9
iServers, and 8 base stations. Each base station serves roughly

20 users and uServers in total. The users and uServers are

TABLE I
EVALUATION SETUP; NUMBERS IN BOLD ARE NOMINAL (DEFAULT)

VALUES USED WHEN THE VALUE OF A PARAMETER IS FIXED.

Parameter Value Range
Discovery Scenarios
Proactive BS probing period (Δ) {1, 5, 10, 15} seconds
Reactive freshness period 100 ms
Reactive BS probing wait period 40 ms
User service request rate 1 request per {1, 3,10} seconds

Servers Specifications
uServers status change intervals {30 seconds, 100 seconds, off}
Probability of uServers status update 0.65/0.35 to keep/switch status
Initial utilization of iServers N (10, 10)
Utilization increment of iServers N (5, 5)
Initial utilization of uServers N (20, 20)
Utilization increment of uServers N (15, 10)

Topology Specifications
User-uServer link delay 10ms
User-BS link delay 10ms
User-uServer link bandwidth 500Mbps
User-BS link bandwidth 5Mbps
Hops between users and iServers (k) [3-4]
Average user node degree [2-4]
Number of iServers [10-15]

directly connected to their associated base stations over 1-

hop connections while the iServers are connected to the base

stations over 2-hops or 3-hops connections. Thus, resulting

in the total user-to-uServer distance of one to two hops and

the total user-to-iServer distance of roughly three to four hops

(i.e., k ∈ {3, 4}).

We modeled the connection between the users and base sta-

tions as well as the connections between the uServers and base

stations as Ethernet peer-to-peer links. Considering the focus

of this work on analyzing user-driven resource discovery, we

intentionally avoided wireless links to prevent the interference

of the wireless channels from impacting our evaluation. We

set the bandwidth and delay of the links between the users

and base stations and the links between the iServers and the

base stations as 500Mbps and 10ms, respectively. We set the

bandwidth and delay of the links between the user and uServer

as 5Mbps and 1ms, respectively.

We devised a probabilistic model for the uServers to mimic

a dynamic PEC ecosystem, in which the uServers can join

or leave the pool of computing resource at will. In our

model, uServers can have two states, online or offline. To

model network dynamicity, each uServer individually decides

to continue its current status–remains online or remain offline–

or switch its current status–comes online if it was offline or

vice versa (refer to Table I for detailed parameters).

Service Configuration: In the PEC, executing dynamic ser-

vices often require input data. The size of the input/output data

and amount of computational resources for performing a given

service, however, are service-specific parameters. Considering

our simulation environment, we modeled four representative

services with diverse communication and computation charac-

teristics. For each service, we defined the input and output data

sizes in terms of the number of packets (1 KB sized packet)

and the service execution according to Table II.

80

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 Inf

0.0

0.2

0.4

0.6

0.8

1.0

Latency (Seconds)

C
D

F Pro(1)
Pro(5)
Pro(10)
Pro(15)
Reactive
iServers

(a) User perceived latency

0

5

10

15

Pro(1) Pro(5) Pro(10) Pro(15) Reactive

Av
er

ag
e

O
ve

rh
ea

d

(b) Averaged overhead

0.00

0.25

0.50

0.75

1.00

Pro(1) Pro(5) Pro(10) Pro(15) Reactive

N
or

m
al

iz
ed

 E
rr

or

(c) Normalized error

Fig. 3. Comparing (a) user perceived latency (Inf denotes infinite delays resulting from data/task loss), (b) overhead, and (c) error of reactive and proactive
(with different update periods, Δ) approaches; user service request rate and join interval are respectively fixed to 1pkt every 3 seconds and 100 seconds.

B. Evaluation Metrics

All metrics shown in this subsection are measured as an

average of five simulation runs. Each simulation runs for 360

seconds. We consider the following evaluation metrics:

1) User perceived latency: the time elapsed from the user

sending the resource discovery request until the user

receiving the result of the offloaded service, including

service discovery, invocation, and execution.

2) Average overhead: the overhead is the additional number

of packets transmitted per service discovery transmitted

between the base stations and the proximal servers, av-

eraged over all users. The average overhead is measured

as the ratio between the overhead of any approach with

respect to the iServer only overhead.

3) Normalized Error: the difference between the estimated

end-to-end latency for task execution and the user per-

ceived latency normalized by the perceived latency.

C. Results and Analysis

1) Impact of Update Periods: We first compare iServer-

only and uDiscover’s reactive and proactive (with varying

update periods Δ) approaches in terms of latency, overhead,

and error (Fig. 3). As shown in Fig. 3(a), the cumulative

distribution function (CDF) of the user perceived latency in

TABLE II
SERVICE CONFIGURATION

Data Input
Exec Time

1s [N (1, 0.03)] 0.1s [N (0.1, 0.01)]

1000 pkts [N (1000, 0.01)] Service 1 Service 4
10 pkts [N (10, 0.1)] Service 2 Service 3

Service 1 Service 2 Service 3 Service 4

0

25

50

75

100

Pe
rc

en
ta

ge

Proactive−iServer
Proactive−uServer

Reactive−iServer
Reactive−uServer

Fig. 4. Distribution of services across uServers and iServers.

uDiscover’s reactive and proactive approaches (with the higher

update frequency) outperform the iServers only approach in

selecting the best servers, resulting on lower latencies. The

difference gap is further amplified in longer delays where the

reactive approach and the proactive approach with the highest

update frequency (i.e., Pro(1) where Δ = 1s) outperform

all other approaches. 60% of Pro(1) and reactive approaches’

tasks completed in less than 2 seconds compared to 3 to 20

seconds for the other approaches. For the proactive approach,

reducing the update frequency (i.e., increase Δ values) results

in considerable user perceived delay increase; up to 20%.

The reason is for the larger Δ values, users will use stale

information that can results is choosing overloaded servers.

Finally, we show that the iServers only approach performs

poorly when compared to reactive and proactive approaches

with larger Δ values. Servers become overloaded and fail to

schedule tasks for execution. Delay performance is correlated

with the efficacy of the delay estimation of each approach as

shown in Fig. 3(c). High frequency updates (e.g., reactive and

proactive with Δ = 1s) uses fresh(er) data, thus making the

least estimation errors resulting in better server selection and

overall performance.

The good latency performance of the reactive approach,

however, comes at the cost of a larger overhead (refer

to Fig. 3(b)). The reactive approach averages 14times the

overhead of iServer-only. However the proactive approaches

achieve better latency performance while keeping overhead

low (e.g., 30% of the iServer-only overhead for Pro(10)

approach). Thus, when comparing both uDiscover approaches,

the proactive approaches tend to achieve a better latency-

overhead trade-off; for instance proactive (Δ = 5s) has 3-100

× less overhead, but only 1 to 23% longer delays (measured

as % of tasks having delays within 10s).

We also measure the distribution of tasks across different

servers (i.e., uServer and iServer) as shown in Fig. 4. Services

1-4 have different input and computation loads. We show that

services with high computation load (e.g., service 2) tend to

be forwarded more towards iServer while services with high

communication load (e.g., service 4) tend to be transferred

more towards uServers. Both approaches are following this

trend, with the reactive approach selecting 10% to 20% more

uServer when needed, resulting in shorter delays and better

81

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

 5

10

15

20

25

30

Inf

1 req./1 sec. 1 req./3 sec. 1 req./10 sec.
Request Sending Rate

50
 P

er
ce

nt
ile

 F
ee

db
ac

k

iServer
Proactive
Reactive

(a) Latency vs. Request Rate

0

10

20

30

1 req./1 sec. 1 req./3 sec. 1 req./10 sec.
Request Sending Rate

Av
er

ag
e

O
ve

rh
ea

d

iServer
Proactive
Reactive

(b) Overhead vs. Request Rate

Fig. 5. The impacts of service request rate on user perceived latency and
communication overhead.

0

5

10

15

20

30 sec. 100 sec. Static
Status Change Interval

50
 P

er
ce

nt
ile

 F
ee

db
ac

k

iServer
Proactive
Reactive

(a) Latency vs. uServers update

0

5

10

15

20

30 sec. 100 sec. Static
Status Change Interval

Av
er

ag
e

O
ve

rh
ea

d

iServer
Proactive
Reactive

(b) Overhead vs. uServers update

Fig. 6. The impacts of uServer dynamicity on user perceived latency and
communication overhead.

load balancing.
2) Impact of User Service Request Rate: We studied the

impact of service traffic (user service request rate) on the

latency and overhead. We show, in Fig. 5(a), that as the user

request increases, the network become saturated and iServer-

only fails to execute more than 50% for 1 request/s scenario

and uDiscover’s approaches help execute tasks in less than

10× the delays achieved by iServer-only for the 1 request/3s

scenario. While the reactive approach performance comes at

the cost of 2-30× the overhead of iServer-only. Pro(5) achieves

better overhead and delay performances. Note that iServer-

only probes discover resources every 1 second, thus higher

overhead, but fails to achieve better user perceived delay as it

doesn’t leverage all resources in the PEC setting.
3) Impact of uServers Dynamicity: We further studied the

impact of PEC’s dynamic ecosystem, in which the uServers

join and leave the network, on user perceived latency and

communication overhead. Fig. 6(a) compares the average

delays when the uServers dynamicity decreases. We show that

our approaches, proactive and reactive, are resilient to uServers

dynamicity (Fig. 6). The approaches manage to overcome

disruption and select uServers or iServers that help reduce

the user perceived latency.

VI. CONCLUSION

We have proposed a new user-driven service and resource

discovery for pervasive edge computing networks. Our ap-

proach, uDiscover, uses information about the resource utiliza-

tion of infrastructure servers (iServers) and ad-hoc user devices

(uServers), in addition to an estimation of the communication

delay to make informed decisions on which server can help

execute a given task in the shortest delay.

ACKNOWLEDGMENTS

This work was partially supported by US NSF awards

#2148358, #2028797, #1914635, and #OIA-1757207 and

Intel Labs.

REFERENCES

[1] R. Tourani, S. Srikanteswara, S. Misra, R. Chow, L. Yang, X. Liu,
and Y. Zhang, “Democratizing the edge: A pervasive edge computing
framework,” arXiv preprint arXiv:2007.00641, 2020.

[2] M. Król, K. Habak, D. Oran, D. Kutscher, and I. Psaras, “Rice: Remote
method invocation in icn,” in Proceedings of the ACM Conference on
Information-Centric Networking, 2018, pp. 1–11.

[3] S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “Icedge: When edge
computing meets information-centric networking,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4203–4217, 2020.

[4] R. Pirmagomedov, S. Srikanteswara, D. Moltchanov, G. Arrobo,
Y. Zhang, N. Himayat, and Y. Koucheryavy, “Augmented computing
at the edge using named data networking,” in 2020 IEEE Globecom
Workshops (GC Wkshps. IEEE, 2020, pp. 1–6.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[6] L. Zhang, et al., “Named data networking,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3, pp. 66–73, 2014.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[8] K. Habak, E. W. Zegura, M. Ammar, and K. A. Harras, “Workload
management for dynamic mobile device clusters in edge femtoclouds,”
in Proceedings of ACM/IEEE symposium on edge computing, 2017, pp.
1–14.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems, 2011, pp. 301–314.

[10] A. Mtibaa, K. A. Harras, K. Habak, M. Ammar, and E. W. Zegura,
“Towards mobile opportunistic computing,” in IEEE 8th International
Conference on Cloud Computing. IEEE, 2015, pp. 1111–1114.

[11] D. Grewe, M. Wagner, M. Arumaithurai, I. Psaras, and D. Kutscher,
“Information-centric mobile edge computing for connected vehicle en-
vironments: Challenges and research directions,” in Proceedings of the
Workshop on Mobile Edge Communications, 2017, pp. 7–12.

[12] A. Mtibaa et al., “Towards edge computing over named data net-
working,” in 2018 IEEE International Conference on Edge Computing
(EDGE). IEEE, 2018, pp. 117–120.

[13] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An information
centric network for computing the distribution of computations,” in
Proceedings of the 1st international conference on Information-centric
networking. ACM, 2014, pp. 137–146.

[14] M. Król and I. Psaras, “Nfaas: named function as a service,” in Proceed-
ings of the 4th ACM Conference on Information-Centric Networking,
2017, pp. 134–144.

[15] A. Mtibaa, R. Tourani, S. Misra, J. Burke, and L. Zhang, “Towards edge
computing over named-data networking,” in 2018 IEEE International
Conference on Edge Computing. IEEE, 2018, pp. 117–120.

[16] R. Tourani, A. Bos, S. Misra, and F. Esposito, “Towards security-as-
a-service in multi-access edge,” in Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, 2019, pp. 358–363.

[17] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[18] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[19] S. Mastorakis et al., “On the evolution of ndnsim: An open-source
simulator for ndn experimentation,” ACM SIGCOMM Computer Com-
munication Review, vol. 47, no. 3, pp. 19–33, 2017.

82

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 07,2022 at 19:27:50 UTC from IEEE Xplore. Restrictions apply.

