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ABSTRACT

Location-based services (LBS) have been significantly developed
and widely deployed in mobile devices. It is also well-known that
LBS applications may result in severe privacy concerns by collect-
ing sensitive locations. A strong privacy model “local differential
privacy” (LDP) has been recently deployed in many different ap-
plications (e.g., Google RAPPOR, iOS, and Microsoft Telemetry)
but not effective for LBS applications due to the low utility of ex-
isting LDP mechanisms. To address such deficiency, we propose
the first LDP framework for a variety of location-based services
(namely “L—SRR”), which privately collects and analyzes user loca-
tions with high utility. Specifically, we design a novel randomization
mechanism “Staircase Randomized Response” (SRR) and extend
the empirical estimation to significantly boost the utility for SRR
in different LBS applications (e.g., traffic density estimation, and
k-nearest neighbors). We have conducted extensive experiments on
four real LBS datasets by benchmarking with other LDP schemes in
practical applications. The experimental results demonstrate that
L-SRR significantly outperforms them.
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1 INTRODUCTION

Location-based services (LBS) are widely deployed in mobile devices
to provide useful and timely location-based information to users.
For instance, WeatherBug provides weather information based on
users’ regions; Google Map not only navigates the routes with real-
time traffic conditions but also responds to queries such as nearby
restaurants or gas stations; Waze is similar to Google Map but ac-
tively collects extra information (e.g., accidents, road construction,
and police) from users and shares them to other users.

All of these LBS applications highly rely on the personal loca-
tions collected from millions of users. Such locations should be
protected, e.g., per the General Data Protection Regulation (GDPR)
since visited places can be sensitive (e.g., hospital) or used to re-
identify users from the data (e.g., a sequence of them can be unique).
To mitigate such risks, location anonymization models [8] were first
proposed to achieve k-anonymity via location generalization. How-
ever, k-anonymity can only provide a weak privacy guarantee (e.g.,
vulnerable to the background knowledge attacks [45]). As a rigor-
ous privacy model against arbitrary prior knowledge known to the
adversaries, differential privacy (DP) has been extensively studied
to address location privacy risks (e.g., [28]). It ensures that adding
or removing any user’s location or trajectory still generates indis-
tinguishable results. For instance, AdaTrace [28], a differentially
private location trace synthesizer was proposed to ensure provable
privacy, deterministic attack resilience, and strong utility. However,
in the DP scenario setting, it requires an authorized data center to
collect user’s location. Unfortunately, in the 2011 Microsoft survey,
87% of participants reported that they care about who accesses their
location information; over 78% workers of Amazon interviewed
in 2014 still do not trust these LBS applications on collecting their
locations and believed apps accessing to their locations can pose sig-
nificant privacy threats [12]. Thus, it is highly desirable to explore
private location collection by an untrusted server.

Recently, local differential privacy (LDP) techniques [6, 16, 25, 60]
have been successfully deployed in industry (e.g., Google [25], Ap-
ple [1], and Microsoft [18]) to privately aggregate locally perturbed
data. It provides stronger privacy against attackers with arbitrary
background knowledge (not only the downstream analysts but
also the data aggregator can be untrusted). To date, existing LDP
schemes such as RAPPOR and generalized randomized response
have been extended to privately aggregate different types of data,
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e.g., set-valued data [18], numerical data [42], and graphs [55].
However, existing LDP schemes are not very effective on private
location data collection and analysis due to either limited utility or
relaxed privacy protection. To our best knowledge, only [39, 69]
applied existing LDP schemes to locations but the utility is still
poor. Moreover, PLDP [13] relaxed LDP to personalized LDP (not
every user can be protected with e-LDP) in the location collection
for spatial density estimation.

Furthermore, some other privacy-enhancing techniques [4, 13]
privately collect locations for LBS that provides services to in-
dividual users (e.g., GPS navigation [70], and nearest point-of-
interest (POI) search [41]) without a trusted server. For instance,
geo-indistinguishability [4] adds Laplace noise to the user’s loca-
tion for ensuring privacy in LBS. However, it cannot strictly satisfy
LDP (the locations are indistinguishable only within a radius), and
the Laplace mechanism has been shown to be worse than random-
ized response for local perturbation [65].

To address such limitations, we propose the first strict LDP frame-
work (namely, “L—SRR”) to support a variety of LBS applications.
First, we design a novel LDP mechanism “staircase randomized
response (SRR)” and revise the empirical estimation to privately ag-
gregate locations with significantly improved utility and strictly sat-
isfied e-LDP. Second, different from all existing works [4, 13, 39, 69],
we design additional components (e.g., private matching [41], and
private information retrieval [26]) into L—SRR to ensure e-LDP for
a variety of LBS applications such as k nearest neighbors search
[68], origin-destination analysis [7], and traffic-aware GPS naviga-
tion [70], which may collect user trajectories or perform individual
services with the aggregated locations/trajectories.

The utility of L—SRR is significantly enhanced by the proposed
new SRR mechanism and estimation method. Specifically, SRR
perturbs input locations with staircase probabilities for different
possible output locations. The probability of perturbing any input
x in the domain D to each possible location y € D is optimally
pre-computed. Then, users can locally perturb their locations with
the optimal probabilities. Different from relaxed privacy notions
(e.g., PLDP and geo-indistinguishability), every user is still strictly
protected by e-LDP. At the server end (data aggregator), we extend
an empirical estimation [38] to further improve the utility for the
SRR mechanism without extra privacy leakage [23]. Thus, the major
contributions of this paper are summarized as below:

o To our best knowledge, we design the first LDP mechanism
(SRR) to make the strong privacy notion LDP practical (with
high utility) for many LBS applications.

e In SRR, we propose a novel hierarchical encoding scheme
and relevant algorithms to derive the optimal perturbation
probabilities independent of the input data. We also extend
the empirical estimation method to further improve utility.

e We design and integrate components in L—SRR to realize
SRR in a series of LBS applications with high accuracy, which
may collect locations (e.g., frequency estimation [53]) or
trajectories (e.g., origin-destination analysis [7], and traffic-
aware GPS navigation [70]).

o Besides theoretical studies on the privacy and utility, we
conduct extensive experiments on four real LBS datasets,
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and benchmark with other LDP schemes, e.g., Generalized
Randomized Response (GRR)[60], Local Hash (OLH-H)[60],
PLDP (based on Unary Encoding)[13], and Hadamard Re-
sponse (HR) [38]. L—SRR greatly outperforms them in almost
all the scenarios.

The remainder of this paper is organized as follows. Section 2
introduces some preliminaries. Section 3 illustrates the SRR mech-
anism, and Section 4 extends SRR to collect trajectories. Section 5
gives related discussions. Section 6 shows the experimental results.
Section 7 and 8 discuss the literature and conclude the paper.

2 PRELIMINARIES

2.1 LBS Applications
We first categorize two different types of LBS applications !:

Location-Input LBS: The locations from users are collected by
the LBS Apps, and the untrusted server privately analyzes the
aggregated data, e.g., identifying the top crowded areas [57], and
spatial density estimation [13]. In some LBS applications, the clients
may query the analysis results from the server (e.g., location-based
advertising [17], and k nearest point of interests (POIs) for each
user [68]).

Trajectory-Input LBS: LBS App collects multiple sequential lo-
cations (trajectory) from each user, and the untrusted server pri-
vately analyzes the aggregated data, e.g., aggregating users’ origin-
destination (OD) pairs to learn the traffic flow [7, 58]. Similarly,
users may query the analysis results computed by the server, e.g.,
users query the real-time traffic for the GPS navigation [58].

2.2 Privacy Model

Users in L—SRR will locally randomize their location(s) [9] with al-
gorithm A and send the noisy results to the untrusted server. After
local perturbation, all the input locations can be indistinguishable
[25]. The privacy notion is formally defined as below:

Definition 2.1 (e-LDP). A randomization algorithm A satisfies
e-Local Differential Privacy, if and only if for any pair of input loca-
tions x, x” € D, and for any perturbed output y € range(A) sent to
the untrusted server, we have: Pr[A(x) = y] < e -Pr[A(xX') = y].

After each user locally perturbs its data, LDP can be ensured
for all the input locations [16, 25, 60], where the privacy bound e
reflects the degree of indistinguishability. The untrusted server will
aggregate and analyze the noisy data with estimation methods.

2.3 L-SRR Framework

As shown in Figure 1, we design three major components in L-SRR:
perturbation (by client), analysis (by server), and private retrieval
(by both client and server only when the user needs to privately
query the analysis results, e.g., traffic-aware GPS navigation):

(1) Perturbation (client): Each user’s location data (location
or trajectory) is locally perturbed by the client with e-LDP.
SRR optimizes the utility after hierarchically encoding the

The discrete location domain is considered in these applications.
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Figure 1: The L-SRR framework

location domain 9. Encoding and optimal perturbation prob-
abilities are pre-computed by the server (only based on €
and D) to ensure e-LDP. See details in Section 3.2.

(2) Analysis (server): Before the perturbation, the server shares
the pre-computed perturbation probabilities with all the
clients. After receiving the perturbed user locations, the
server estimates the location distribution with a revised em-
pirical estimation method. Then, the server loads such results
into specific LBS (along with the required components) to
privately derive the analysis result. See details in Section 3.

(3) Private Retrieval (only for LBS with client queries): It
is an optional component of L—SRR. If requested in specific
LBS (with client queries), L—SRR first provides the server-
side LBS analysis (e.g., estimating the overall traffic density)
with LDP guarantees. At the client end, each user privately
queries his/her result (e.g., nearby traffic) from the analysis
results at the server side. This can be achieved with a private
information retrieval (PIR) protocol [5]. With the PIR for
client queries, server does not know which result is delivered
to which user, and each user does not know other users’
results either. 2

User Requirements. L-SRR can be deployed as a privacy preserv-
ing API in each LBS App. Users only need to periodically update
the privacy bound e with the server. In each LBS, users only need
to locally perturb their location(s) with the pre-computed pertur-
bation probabilities, and send the perturbed result to the server.
The integrated PIR [26] also requires very minor computation and
communication overheads without affecting the LDP guarantee
(see the discussion in Section 5).

LDP Protection. Similar to existing LDP models [25, 60], L-SRR
ensures strong privacy against inferences on users’ local data based
on arbitrary background knowledge, which is orthogonal to mitigat-
ing other types of risks (e.g., encryption [40] and defenses against
side-channel attacks [15]). Thus, L-SRR can be integrated with
them to further improve security and privacy if necessary.

2If we directly design a cryptographic protocol for each LBS, it involves location
data encryption by the client, and the server should extend each LBS algorithm over
encrypted data to a cryptographic protocol, which would result in extremely high
computation and communication overheads. Compared to that, PIR establishes a
secure channel for privately retrieving the results, which can be independent of the
LBS algorithms and extensible to all the analyses on noisy data by the server.

3 L-SRR FOR LOCATION-INPUT LBS

In this section, we design the SRR mechanism to privately collect a
location from each user for analysis (standard LDP setting [13, 60]).

3.1 Staircase Randomized Response

We first review a family of LDP mechanisms. Randomized Response
(RR) based schemes, such as generalized randomized response (GRR)
[62] and unary encoding (UE) [60], satisfy e-LDP. For instance, in
GRR, given the domain size d = |D)|, privacy bound €, and input
x € D, the true value has a higher probability to be sampled (output
y). The following perturbation probabilities q(y|x) ensure e-LDP.

ify=x (1)

_e
GRR: g(y|x) = { dte-1
7y L otherwise

drec—1°

Also, Hadamard Response (HR) [38] has a subset domain for
each value x and a higher probability for values in the subset to be
sampled. Then, the remaining values in the domain are sampled
with a smaller probability. However, only two different perturbation
probabilities are defined in the existing LDP mechanisms (e.g., GRR
[62], UE [60], and HR [38]), not sufficiently fine-grained to optimize
the utility (since the perturbation probabilities simply treat all the
other output locations in the domain equally).

Thus, we propose a novel Staircase Randomized Response (SRR)
mechanism for locations and LBS. Intuitively, if the probabilities
for locations that are closer to the input location x can be higher, it
is more possible for users that the query results of the LBS are the
same. To this end, SRR will first consider the location distances to
the input location x. Then, a set of fine-grained probabilities should
be pre-computed for all the possible output locations y € D.

When pre-computing these probabilities, there are several issues
in practice. For instance, for each input location x, if we compute
the probability g(y|x) for each possible output y € D, the number
of probabilities is the domain size d. Then, Vx € D, there are d
probabilities for each location x and d X d different probabilities
for all the locations in the domain. Thus, there are d? unknown
probabilities to be determined, which makes it time-consuming
to derive the optimal probabilities [31] and not extensible if the
domain is updated. Second, general objective function (e.g., the
variance) to optimize the perturbation probabilities is dependent
on the unknown true frequencies. To address this, output locations
can be partitioned into different groups in terms of their distances
to x (the probabilities of all the output locations in the same group
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could be identical), and we can derive the perturbation probability
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(b) SRR mechanism (for L-SRR)

Figure 2: Probability density function (PDF) for GRR and SRR

The probability density functions (PDFs) of GRR (w.l.o.g.) and
SRR are illustrated in Figure 2. It is worth noting that the Figure 2 is
the 1-D representation of the 2-D discrete locations in the domain.
In GRR, the probability that outputs the true value (the point in
Figure 2(a)) is higher than other values. On the contrary, since SRR
discretizes the perturbation probabilities for all the grouped possible
output locations, the PDF of SRR has a similar shape to the staircase
mechanism in differential privacy [30], which also has a staircase
PDF for different groups to satisfy e-DP. Motivated by that, we name
our new randomization mechanism as the “Staircase Randomized
Response” (SRR) in local differential privacy. We formally define the
perturbation probabilities from input x to all the output locations
as follows.

Given the domain D, for any input x € D, all the possible
output locations can be partitioned into m groups Gi (x), ..., G (x)
based on their distances to x.> Notice that, the partitioning G;(x) is
dependent on the input location x. For each input location x, all its
m location groups and the perturbation probabilities (for perturbing
x to any output location y) will be efficiently computed as:

a1(x), ify € G1(x)
SRR : Vx € D,q(ylx) = ()
am(x), if y € Gp(x)
where a1(x), ..., am (x) are the distance-based perturbation prob-
abilities for locations in m different groups perturbed from x € D,
and the gap between the perturbation probabilities in every adja-
cent groups is the same (“Staircase PDF”) in a3 (x), ..., @ (x).
Also, the sum of all the perturbation probabilities for each in-
put location x should satisfy: 3 jc[1,m] XyeG;(x) ¢(ylx) = 1. The
details for computing the probabilities will be given in Section
3.3. SRR generates more accurate locally perturbed locations than

the state-of-the-art LDP mechanisms with only two perturbation
probabilities (e.g., GRR [62] and HR [38]), as validated in Section 6.

3.2 Data Encoding and Domain Partitioning

Hierarchical Location Encoding. To encode the location data,
we use a hierarchical encoding scheme based on the Bing Map Tiles
System [2], which recursively partitions geo-coordinates into 4
blocks, and indexes all the locations to reach the desired resolution
[28]. Then, the locations are encoded into bit strings by hierarchi-
cally concatenating the indices of all the levels for every specific

3W.lo.g., the distances from x to locations in Gj(x) are farther if j is larger. The
closest group is Gy (x) whereas the farthest group is G, (x).
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location. Figure 3 illustrates an example for the encoding. Specifi-
cally, starting from the root node, at each level h, the 4 children of
each node (four sub-blocks) can be encoded by 00,01, 10, 11 (2-bit),
and thus form 4" blocks for indexing locations. Then, we can derive
the encoded bit string by concatenating the bits from the first level
to the leaf node level. For all the locations on the earth, 4 can be as
large as 23 (46 bits for a location) to index each 4.7mx4.7m region.

00“’4‘b| 01 root
10|11
00 01 h=1[ 00 [ oo [ 10 [ |
10 11
e RO RRIRERBIRARE
=2o]1|o[1|{o]1]o[1|[o]1|o|1|[of1]o]1
10 11
ofo1]1 ofo[1]1 ofo[1]1

Figure 3: Hierarchical encoding for locations

Example 3.1 (Encoding for “New York”). The coordinates of the
center of “New York” are (40.730610, —73.935242). Given h = 23,
the location is encoded as “e1147b6afff” (hex of the bit string).

Location Groups. With hierarchical encoding for the location
domain D, the distance between any two locations x, x” € D can
be directly measured by the longest common prefixes (LCP) of their
encoded bit strings. Then, given a location x and any of its output
groups Gj(x), j € [1,m], we define the LCP of the group.

Definition 3.2 (Group LCP). Given an input location x and any
of its groups G;(x), j € [1,m], the group LCP (aka. GLCP) is the
shortest LCP between the input location x and Vy € G;(x). The
length of GLCP for group Gj(x) is denoted as f;(x).

Thus, the distance between the input location x and each location
group Gj(x), j € [1,m] can be measured by the length of its GLCP
Bj(x): the larger, the closer. Then, we can partition all the output
locations into groups using the GLCP lengths. In each group G;(x),
all the locations share a prefix with at least 8; (x) bits with location
x (applying such rule for partitioning could reduce the complexity
of partitioning to O(d) though not optimal). For the group with a
longer GLCP shared with the input location x, higher probabilities
will be assigned to them (for perturbing x).*

Location Partitioning. We next partition the locations into m
groups for each input x € D, and assign the same perturbation
probability to all the locations in the same group. Specifically, for
m groups, we define a GLCP length vector {f1(x),. .., fm(x)}. All
the encoded locations in group Gj(x),1 < j < m share at least
B (x)-bit prefix with x. Then, ;1 (x) > B2(x) > -+ > fm(x) since
Gi(x) is the closest group to the input location x.

Figure 4 shows an example for partitioning the location do-
main. Given the input location x, all the locations are partitioned
into three groups with the GLCP lengths {f1(x) = 6, f2(x) =
4, f3(x) = 2} where m = 3. In G1(x), G2(x) and G3(x), all the
locations share at least 6-bit, 4-bit and 2-bit prefix with x, respec-
tively. Thus, given any GLCP length vector f1(x), ..., fm(x), the m

“In SRR, every input location x will be only perturbed to another location y in the
domain D (rather than an arbitrary location on the map).
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Figure 4: Example of location domain partitioning

groups G1(x), ..., Gm(x) for the input location x can be efficiently
generated with complexity O(d). Then, denoting the LCP between
input x and output y as LCP(x,y), the optimal {f1(x), ..., fm(x)}
and the m groups that maximizes 3.y ye p LCP(x, y) can be derived.

More specifically, if m is not large, we can traverse all the GLCP
lengths {f1(x), ..., fm(x)} where B1(x) > fa(x) > -+ > Bm(x)
to find the optimal result. Otherwise, the server can apply a meta-
heuristic algorithm (e.g., simulated annealing [44]) to derive a near-
optimal {f1(x), ..., Bm(x)} for partitioning. Next, the location
domain D can be efficiently partitioned by the optimal {f;(x),
..+, Bm(x)}. First, locations sharing a f;(x)-bit or longer prefix
with x will be assigned to G1(x); second, the locations sharing a
prefix (length between S, (x)-bit and (f1(x) — 1)-bit) with x will
be assigned to Gy (x); repeat the above until G, (x) is formed.

Offline Computation. Since the optimization and partitioning
are solely based on the domain D, they can be executed offline and
periodically updated with O by the server in L-SRR. In general, the
location domain is stored in the server of companies and released as
public knowledge for users (e.g., Google Maps) and these companies
will take about several days to update the domains since these
companies have to verify locations before making the changes
available to the public. Then, for each x € D, the perturbation
probabilities for all the m output location groups a1(x), ..., &m(x)
can also be derived offline (see Section 3.3). This is consistent with
other LDP schemes [18, 25, 60].

3.3 Optimal Staircase Perturbation Probabilities

Recall that the possible output locations can be partitioned into m
groups based on their distances to input and the PDF similar to
the staircase mechanism [30] in differential privacy. We define the
perturbation probabilities from input x to all the output locations
as follows. Given any two output locations y and y’ in any two
neighboring groups y € Gj(x) and y’ € Gj4+1(x), we have proba-
bility q(y|x) = q(y’|x) + A(x) where the step A(x) € [0, 1) is the
constant probability difference for any two neighboring groups of
input x. Compared to the staircase mechanism in differential pri-
vacy which aims to the unbounded domain (entire real line or the
set of all integers) and these probabilities are geometric sequence to
maintain e-DP, for the bounded location domain, the probabilities
in the L—SRR follow a linear sequence. Note that the perturbation
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probability from the given input location x to output location y
decreases as y moves to further groups (larger j).

Denoting amax (x) and amin(x) as the max and min probabili-
ties in a1 (x), ..., &m (x), we have dmayx (x) = a1(x) and amin(x) =
am(x). In SRR, for all the input locations x € D, we specify a

constant ¢ > 1 as the ratio a’"“—X(x). Thus, we have:
Qpmin (x)

Amax (x) = dmin(x) _ &min(x) - (c = 1)
= ®)
m-—1 m-—1

For each x € D, the sum of the perturbation probabilities of all
the output locations is 1. Given the differences of perturbation prob-
abilities for output locations in different groups in Equation 3 and
the number of output locations in each group, all the perturbation

probabilities can be derived, including amax (x) and amin(x):

m-—1

(m=1d-c—(c—1)X7,[(-1) 1G]

Omax(X) =min(x) - ¢ (4)

A(x) =

Umin(x) =

where d is the location domain size and |G;(x)| is the size of
group Gj(x). Notice that, different a1(x), ..., am(x) will be de-
rived for different input location x since the group sizes Vj €
[1,m],|Gj(x)| might be different for different x. Thus, the pri-
vacy upper bound e can be computed (for any two input locations
x,x" € D).

THEOREM 3.3. Staircase randomized response (SRR) satisfies e-
local differential privacy, where
(m-1d-c-(c-1)E'NG -1 1G;(x)]]
(m=-1)d-c—(c-1) 7' -1) - 1G;(x")|]

€ = max log(c-
x,x' €D &

ProoF. Please see the proof detail in Appendix B.1. O

For each input location x € D, the groups G1(x), ..., G (x)
are constants if m and D are specified (as discussed in Section 3.2).
Thus, given the value of ¢, we can derive a constant € as a strict
privacy upper bound for the LDP guarantee.

Selecting c for e-LDP. Since € is positively correlated to c, for any
desired e-LDP, the required ¢ can be uniquely calculated using €, D
and m (see the relationship between € and c in Figure 5(a)). Then,
all the perturbation probabilities @ (x), .. ., am (x) for all the input
locations x € D can be derived and made available to the users.

Optimal m with Mutual Information. In practice, both the server
and clients do not know the data distribution before collecting them.
Hence, it is critical to learn that the optimal m is also independent
of input data and ensure good utility for all possible location data
distributions in the SRR mechanism. To this end, we will optimize
m for location domain partitioning with the mutual information
[48, 63] between the input x and output y, which can measure the
mutual dependence between them. As mutual information varies for
different distributions, the maximum mutual information can cover
all the cases (since the mutual dependence of any case would not
violate such dependence [42]). Thus, the optimal m can be derived
by the upper bound of mutual information for all the distributions
[21, 42]. Specifically, the mutual information between x and y is
expressed by the difference between the differential entropy and
conditional differential entropy of x and y [42]:

I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) (5)
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where H(-) is the entropy function. X and Y are the input and
output random variables representing the input and output, respec-
tively. Since no prior knowledge on the input data, it considers
the distribution of y as uniform distribution U to maximize the
mutual information (the output y is the random sampling result)
[49]. H(U) is an upper bound for any possible input distribution
[48]. Thus, we have:
I(X,Y) <H(U) -H(Y|X) (6)
where H(U) = log d. The conditional differential entropy H(Y|X)
can be computed as below:

H(Y|X) = —[Z IGj(x)| - aj(x) - logaj(x)]
=
> —d - Amin(x)log dmax (x)

Thus, H(Y|X) is lower bounded by —d - atmin (x) log amax (x) for
a1(x), ..., am(x). Finally, the upper bound of mutual information
can be expressed with the number of groups m:

I(X,Y) <logd —H(Y|X) <logd+d - amin(x)log amax(x)

We then explore the optimal m based on the mutual information
metric. Since the smaller mutual information between two vari-
ables indicates more independence between them, and the mutual
information on m for LDP is convex (as proven in Appendix A), the
optimal m can be computed by making the derivation of the upper
bound to 0 which is equal to minimize the mutual information
bound.

LEMMA 3.4. The optimal m to minimize the mutual information
2. (C_d_el+logc)

bound ism = =1d

Proor. The mutual information bound is log d+d- (m_’{;ﬁ .

log% where R = (Z;.":Z{(j— 1) -|Gjl}) - (¢ — 1) is a part

of amin(x) (see Equation 4). We can see that R is also determined
by m. If |G1| # |G2| # - -+ # |Gm|, R non-differentiable (discrete).
To solve this, we consider the worst case: assuming group size d
and R is replaced with Ryqx = (Z;":z{(j —1)-d}) - (c—1) (relaxed).
The mutual information bound can be derived as below:

[ m-1 ) c(m-1) V
(m=1)-c-d~-Rmax og(m_l)'c'd_Rmax

- -1) R _Rmax
— (log m -1 +loge+1) - =V Rimax

(m_l)'c'd_RmaX [(rn_l)'c'd_Rmax]2
Due to Rygx = (ijz(j —1)-d) - (c—1), we have:
m? —m , 1
Rmax=(c—1)'d'T, Ripax =(c=1)-d- (m- 5) ™
Then, we replace the derivative of mutual information with Ry, 4x
and Ry, ;.- Since (m—1) - (R},4x) < Rmax, the second part of the de-
rivative cannot be 0. Thus, m is optimal when log (m_l)’_';__dl_ a——
2,(c,d_elogc+l)

(-1 =

logc+1=0,and we have m =

Specifying € for LDP. In our setting, there are three parameters
€, c and m. With the given privacy requirement e, the server can
calculate the m and the corresponding ¢ with Lemma 3.4 and Theo-
rem 3.3 to make the privacy meet the requirement €. Specifically,
we can set a value ¢ and get the corresponding m with Lemma 3.4.
Since the location domain can be partitioned into m groups and
Vj € [2,m - 1],|Gj(x)| are fixed for all x, we can then calculate
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the privacy bound by Theorem 3.3 to see if it meets the privacy
requirement €. Per Theorem 3.3, the € is positively correlated to
¢ with the fixed m and partition groups. Thus, there should be
many values ¢ that make the privacy requirement satisfy e. For
example, if the ¢ value equals to 5 to meet the privacy require-
ment € = 6, the value less than 5 would make € smaller which
also meets the privacy requirement. However, to fully utilize the
privacy that can make the utility maximize, it should only take the

maximum of ¢ with the fixed domain. Figure 5 shows the numeric
@max (%)

Amin(x)’
€ € [0.01,20] (given four different domains in our experimental

datasets). The plots confirm that € is positively correlated to ¢ (given
any domain D), and c is extremely close to e€ (slightly smaller).
In the experiment, with the given € value and the domain D, we
search the maximum value ¢ to satisfy the e-LDP by the binary
search method. In Figure 5(b), the optimal m is mainly determined
by €. The optimal m (rounded to its floor or ceiling) is a small integer,
e.g., 2-6 for all the four different domains.

results for ¢ = Vx € D and the optimal m versus a varying

20 20

—d=374
] _d=566
—d=1738
15 /) 15 \& —d=3202
g ~
©10 £10
s
- baseline ©
—d=374
5 _d=566 5
—d=1738
—d=3202

B.D 2.5 5.0 7.510.012.515.017.520.0 80 25 50 7.5 10.012515.017.520.0
€ 3

(a) log c vs € (baseline curve € = logc) (b) Optimal m vs €

Figure 5: log ¢ and optimal m vs ¢ with various domain size d;
domain size d is 374,566, 1738, and 3202 in datasets Portcabs
[50], Geolife [70], Gowalla [3], and Foursquare [67], respec-
tively

3.4 Perturbation Algorithm

For each location x € D, the server partitions m groups Gy (x), .. .,

Gm(x) and derives the perturbation probabilities for all the out-
put locations in m groups a(x), ..., am(x). After receiving such
information from the server, each client perturbs its location x by
sampling the output location y. See details in Algorithm 1.

3.5 Distribution Estimation

Similar to other LDP mechanisms, the expectation of the aggre-
gated random location counts would be biased [60]. Given samples
from unknown data distribution p, estimating the distribution p of
p has been extensively studied [38, 42]. In L-SRR, we extend the
empirical estimation method with two perturbation probabilities
[38] to estimate the location distribution from the perturbed loca-
tions using staircase perturbation probabilities. In our experiment,
we also compare the performance of [38] (named HR) with L—SRR.

In the GRR, the estimation counts of location x is only related
to the sampled counts of location x. Then, users try to send more
information by the perturbation mechanism to have more accurate
estimation results. Specifically, in the empirical estimation, for each
x € D, the server creates a candidate location set Cx for input x
to estimate the item distribution p from the observed noisy distri-
bution p. Each set Cyx which contains % locations is a subset of the
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Input :user location x, privacy budget €, and domain D
Output:perturbed location y
1 server pre-computes the optimal m and f;(x), j € [1,m]
2 foreach location x € D do
3 foreach group j € [1,m] do
4 foreach location z € D do
5 if length(LCP(z,x)) > fB;(x) then
6 ‘ Gj(x) —zD«—D\z
7 end
8 end
9 end
10 foreach j € [1,m] do
11 compute the perturbation probability e; (x) for
locations in G; (x)
12 end
13 end
14 client samples an output location y from all the locations in
Gi(x), -+ ,Gm(x) (per Equation 2) and submit it to the server

Algorithm 1: Staircase Randomized Response

domain °. The server will estimate the p(x) by the Cx. In L-SRR,
the server generates a candidate location set Cy for each x with a
Hadamard matrix (a square matrix with either +1 or —1 entries and
mutually orthogonal rows). Given H; = 1, for any Hg, we have:

(]_{K /2 7_{I< /2 ( 8)
Hr2  —Hiz

The server then applies a recursion algorithm [38] to gener-
ate such Hadamard matrix with size K x K (denoting it as Hg €
{~1, +1}X%K) where K = 2/19€:(d+1)1 and d is the domain size [38].
Then, each row of Hy except the 1st row (the 1st row includes only
“1” and H includes d + 1 rows) can be mapped into a unique loca-
tion in domain D. Specifically, given location x € D, its candidate
set will be derived using the (i+1)th row in Hg where i is the index
of x in D. Then, Vx € D, we can generate the candidate set Cy for
each user’s input x as the locations related to the column indices
with a “+1” in the mapping row of matrix Hy [38]. We denote the
candidate set of all the locations in D as Hg o D.

Let p(Cx) be the probability for sampling y € Cy. Then, we can
derive p(Cyx) with the output y in the corresponding candidate set
in case of inputs x and x’ (x differs from x” and Cyx also differs
from Cy). Thus, we have Vx € D, p(Cx) = p(x) Lyec, q(ylx) +
Zrzx P [Eyec\cp WX )+ yec,nc,, 9(ylx")], where p(x)
is the distribution of x (to be estimated).

All the perturbation probabilities q(y|x) are known in Equation
2. Thus, for each x € D, there exists one equation as above. Given
d independent linear equations (due to random coefficients), the d
variables Vx € D, p(x) can always be solvable. Specifically, Vx €
D, p(Cyx) are the observed distribution of all the locations from the
aggregated noisy data. Each user sends its perturbed location to
the server, which derives the total frequency of all the locations
in the pre-computed candidate set of location x. Then, the above
d equations can be constructed for estimating the distribution of
all the locations Vx € D, p(x). We apply the lower-upper (LU)
decomposition algorithm [10, 52] to solve these independent linear

Hy =

SWe follow the generation of Cy in [38].
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equations. Moreover, if the domain D is too large, we can make the
heuristic decision using the sampled counts of x’ in place of the
true count of x” [32]. Algorithm 2 presents the details.

Input :perturbed locations yi, ..., Yn
Output:estimated location distribution Vx € D, p(x)
server generates the candidate location set Hg o D for all the
locations in D
// I returns 1 if y € Cx; otherwise, 0
foreach x € D do
calculate the p(Cx) with yy, ..., yp:

I{ j Cx}
P(Cy) =3, U

4 construct a linear equation for x with p(Cx) and
perturbation probabilities
5 end

-

w N

=

solve linear equations with the LU decomposition to derive
Vx € D, p(x)
7 return the estimated location distribution Vx € D, p(x) = p(x)

Algorithm 2: Location Distribution Estimation

3.6 Private Retrieval for Client Queries

Recall that the client may need to query the estimated location
distribution with its true location, e.g., k nearest users [68] (see
Section 6.3), and traffic-aware GPS navigation [58] (see Section
4.2). In L-SRR, users can retrieve the results from the server using
the Private Information Retrieval (PIR) protocol [5, 26, 37] (when
needed), which enables any user to privately retrieve information
from a database server without letting the server know which
record has been retrieved. In the PIR, the database server has an
n-bit string V = {0y, ...., v}, and the client would like to know v;.
The client first sends an encrypted request E(i) for the i-th value
to the server, where E(-) denotes encryption function. The server
also responds with an encrypted value r(v;, E(i)) (e.g., by quadratic
residuosity). Finally, the client can retrieve the record v; privately
based on the server’s encrypted response.

Most of the off-the-shelf PIR algorithms can work as a post-
processing component (e.g., [26] takes only a few seconds in our
experiments). Moreover, the local perturbation and distribution
estimation require only ~ 0.014 second for the client and a few sec-
onds for the server (see Section 6.5). Thus, the system performance
of L-SRR would be very efficient for real-time LBS deployment.

3.7 Privacy and Utility Analysis

Privacy Analysis. e-LDP has been proven for the SRR mechanism
in Theorem 3.3. The server cannot distinguish users’ true locations
from the noisy data. Moreover, as post-processing procedures ap-
plied on the results of LDP scheme, the empirical estimation and
PIR (if needed) do not leak any extra information [23].

Error Bounds. Error bounds for the estimation methods in LDP
schemes can be derived to understand the expectation of the ran-
domized noise. Then, we derive the error bounds (based on the
expectation of the L; and Ly-distance) for the estimated distribu-
tion of all the locations p deviated from the true distribution p.

THEOREM 3.5. In SRR, E[L1(p,p)] < where y =

2d
. T An(Qy—dp)’
min{}yec, 9(ylx), x € D} and p = min{amin(x),x € D}.
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Figure 6: Extending SRR to collect and aggregate origin-destination pairs with e-LDP

THEOREM 3.6. in SRR, E[Ly(p,p)] < W‘/—Eduu)’ where y =
min{} yec, q(ylx), x € D} and p = min{amin(x),x € D}.

Both theorems are proven in Appendix B. Both error bounds
decline if increasing the privacy bound € or the number of users n
(thus the error bound would be minor in real-world LBS due to a
large number of users). Notice that, the expected L;-distance for

the GRR mechanism is upper bounded by g\[ % [49], which

can be Vd times of the SRR error bound in the worst case.

4 L-SRR FOR TRAJECTORY-INPUT LBS

In this section, we extend SRR to support trajectory-input LBS using
two example applications: (1) collecting the origin and destination
(OD) of users for OD analysis [7], and (2) collecting a sequence of
user locations for traffic-aware GPS navigation [70].

4.1 Origin-Destination Analysis

OD analysis aggregates a pair of origin-destination from each user
to estimate the traffic flow [7]. In this case, the LDP notion (Defini-
tion 2.1) should be extended to protect each user’s OD pair.

Definition 4.1 (e-Local Differential Privacy). A randomization al-
gorithm A satisfies e-LDP, if for any two different location pairs
(%0, xq), (x5, X)) € DXD, and for any output location pair (yo, y4) €
range(A) sent to the untrusted server, we have Pr[A(x,, x4) =
(Yo, ya)] < €€ - PrA(x;,x) = (Yo, Ya)l-

The LDP scheme for OD analysis should preserve the sequential
correlation from the origin to the destination (OD pair). Thus, the
domain has been greatly expanded to d*> OD pairs in D x D. To
avoid the bad utility resulted from a large domain, we extend the
Lasso regression [56] to a novel private matching method to preserve
the OD sequence.® Then, we integrate the private matching into
L-SRR to ensure accurate OD distribution with e-LDP.

Specifically, users perturb their two locations with privacy bud-
get § for each. The server receives a large number of noisy samples
of all users from specific distributions for origins and destinations,
respectively. The server may estimate the distribution from the
noisy sample space using the linear regression §j = M % w, where
matrix M includes the predictor variables, vector 3 includes the re-
sponse variables, and vector w includes the regression coefficients.
The predictor variables in M consist of all the combinations of trajec-
tories from each origin to each destination (d? pairs), which could
be known to the server and client beforehand. Moreover, the re-
sponse variables 3 can be estimated from the SRR perturbed values.

®Lasso regression was used to generate the synthetic high-dimensional dataset with
LDP and preserve the correlation across dimensions [56].

Notice that, the frequencies of most combinations (xo, x7) € D XD
are very small or even equal to zero in LBS. Thus, Lasso regression
[56] can effectively solve such sparse linear regression by encoding
the predictor variables M for all the OD pairs.

As shown in Figure 6, we have two steps in L-SRR: (1) perturb-
ing the origin and destination separately by each client, and (2)
estimating the joint distribution of OD pairs using Lasso regression
by the server. Each client first applies SRR to perturb the origin and
destination with privacy budget § each. Then, the server estimates
the distribution of origin and destination to generate the vector .
Meanwhile, the server encodes the overall candidate set of OD pairs
M based on the location domain 9. Finally, the server fits a Lasso
regression model to the vector § and the candidate matrix M to
learn w. Therefore, the non-zero coefficients in w will be considered
as the frequencies for the candidate OD pairs.

Privacy Bound. Although the origin and destination are correlated,
each user sends these two perturbed locations sequentially. The
sequential composition of releasing two locations would only result
in the total leakage (e-LDP) even if they are highly correlated [23].
The Lasso regression is performed on the two sets of perturbed
data (one set of origins and another set of destinations) as post-
processing to retain the correlation, which would not consume
privacy budget [23]. Thus, the OD analysis still satisfies e-LDP.

4.2 Traffic-Aware GPS Navigation

In this App, users may seek the route with shortest time by avoid-
ing congested roads. At that moment, users may update and send
multiple locations to the server in sequence. Meanwhile, each user
will privately retrieve the real-time nearby traffic from the server
to help update the route in case of traffic congestion.

Specifically, the route recommendation algorithm can be de-
ployed in the client to compute the best route with the shortest
traveling time on an offline map (integrated with the real-time
traffic information from the server) [70]. For any route, the total
traveling time ¢ can be predicted with the historical dataset.” Also,
each user can send the current location x; to the server again and
learn the current traffic density. Then, the client may recompute
the best route and update the estimated traveling time. Intuitively,
if the suggested route does not have any traffic, it is unnecessary to
update the user’s location to learn the real-time traffic density (this
would avoid consuming more privacy budget). Thus, we follow this
idea to extend our SRR. In L-SRR, the client will identify these
“location updates” (similar to [47]). Let T denote a trajectory and
Agg(xo,x;),x; € T represent the actual traveling time from the

"These historical datasets could be obtained from public traces and check-in datasets,
or datasets generated from LBS applications.
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origin x, to current location x;. In the meanwhile, the GPS can
predict the piece-wise traveling times between the origin x, and
any location x; € T before the arrival. It is worth noting that the
time is treated as the condition for the update (as above). It can
be extended to update the location with other criterion in specific
applications (e.g., distance, and checkpoints).

Denoting such predicted time as Agg? (xo, x;), x; € T, the client
will examine the difference between their actual traveling time
Agg" (xo,x;) and the predicted time AggP (x,,x;) at different lo-
cations x; € T. If the client finds that the actual traveling time
Agg' (xo, x;) is significantly more than predicted one AggP (xo, X;),
e.g., delayed time exceeds a threshold: Agg? (x,, x;) —AggP (%0, x;) >
0, there is likely a traffic congestion. Then, the client requests a
“location update” to privately upload the perturbed location to the
server, and privately retrieve the current traffic density. Moreover,
the server will periodically estimate the traffic density using all
the perturbed locations collected from the clients in the past time
window (e.g., 5 minutes for each time window). Once a location
update is requested by any client, the server privately delivers the
traffic density to the client via the PIR protocol.

Privacy Bound. Since every perturbed location is individually
aggregated (based on individual locations) rather than as a com-
bination, such data collection can be done for all the locations
separately and simply follows sequential composition [31]. Thus,
SRR for such trajectory-input LBS satisfies Ae-LDP where A is the
number of requested location updates from the origin to the desti-
nation. We have empirically evaluated that A is small in practice
(e.g., 2 or 3). Finally, PIR may result in side-channel leakage (e.g.,
who requested the location update may be in the congested areas).
If necessary, this can be simply mitigated by an anonymizer (e.g.,
shuffler [24]), which also further amplifies the LDP protection [24].

5 DISCUSSION

Relaxed LDP. Some recent works [4, 31, 32] relaxed the LDP by
considering the input variants. For instance, ID-LDP [31] relaxes
the LDP with different € for different inputs; geo-indistinguishability
(GI) makes every pair of locations indistinguishable, but the “level"
of indistinguishability depends on their distance (locations that
are far apart are more distinguishable than locations that are close
together); CLDP [32] provides distance discriminative privacy, and
relaxes the protection for different pairs of inputs. Different from
L-SRR, all of them cannot strictly satisfy e-LDP. To validate their
limitations on rigorous LDP guarantee, we present some numeric
analysis with the same setting (by converting them to e-LDP). PLDP
[13] is experimentally compared in Section 6 since it focuses on LBS.

First, we generate a synthetic dataset including items with uni-
formly distributed frequencies (the distance between inputs can also
be directly measured). For ID-LDP, we randomly assign the privacy
bound from {0.5¢, 0.8¢, €} to each distinct item. Since {0.5¢, 0.8¢, € }-
ID-LDP satisfies min{{e}, 2 X {0.5¢}}-LDP, it can guarantee e-LDP
for all the items (if any € where > 1 is assigned to any item, e-LDP
will be violated). For GI, we sample the output y with the Laplace-
based PDF centered at input x. For CLDP, we adopt the conversion
between € and « [32]. Table 1 shows the L;-distance of the outputs
on different €. The utility of L—SRR significantly outperforms all
the relaxed LDP with the same LDP guarantees.
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Table 1: Average L;-distance

Privacy Bound € | 0.5 1 2 3 4
ID-LDP 214 197 164 145 1.18
GI 221 184 175 143 1.21
CLDP 093 090 084 0.72 0.70
L-SRR 0.65 0.62 051 0.44 0.36

Generalization. L-SRR can be potentially extended to other data
types if the distances between values/items can be measured (e.g.,
numerical data). In such contexts, the data items can also be parti-
tioned and staircase perturbation probabilities can be derived and
allocated to values/items in different groups. We will evaluate its
performance in other domains and benchmark with the correspond-
ing LDP schemes (e.g., Piecewise [64]) in the future.

Encoding and Precision. The precision of the encoded locations
can be tuned by the level of the bit string hierarchy. Although larger
h more accurately encodes locations, the domain size will grow
and thus the perturbation probability (for the true location) may
decline for the same privacy. Thus, larger h does not necessarily
make the staircase perturbation scheme more accurate (thus we use
the standard h = 23 as Bing Map). In the experiment, every location
can only be possibly flipped to other locations in the domain not
every pixel on the map. There are two benefits for such encoding
and design: (1) locations will not be perturbed to an unrealistic
location (e.g., in the ocean), and (2) it is more efficient to compute
the perturbation probabilities offline (due to reduced domain size).

Larger and Worldwide Domain In this paper, we evaluated our
scheme within each city (four datasets) by following the same
settings as other LBS since each experimental dataset is collected
within a city. If all the locations on the planet are considered, the
domain size would be much larger and the utility might be degraded
since the error bound is related to the domain size d. To see the
utility for larger domain, we are working on a set of experiments
by comparing the LDP schemes on 1 city, 2 cities, and more merged
cities (merging the domain/data). See the details in Appendix C.4.

System Deployment. L-SRR can be deployed as an application
or integrated with the existing LBS applications in the server and
clients (e.g., mobile devices). Given the privacy bound € and a loca-
tion domain D, the server will pre-compute the required c, the opti-
mal m, the GLCP for group partitioning Vx € D, f1(x), ..., fm(x),
and the perturbation probabilities Vx € D, aj(x),..., am(x) for
SRR, and then share them to all the clients. In L—SRR, the loca-
tion domain is updated periodically by the server rather than per
users’ requests. It would not cause any privacy leakage, and it is
very efficient to update the domain. If a user is at a location not in
the domain before the update, the client will approximate it to the
nearest location in the domain. Each client only needs to perturb
their locations based on the stored md perturbation probabilities
q(y|x), and then directly send the output to the server. Even if the
client may privately retrieve the analysis result related to his/her
location from the server, the PIR protocol can be efficiently exe-
cuted without many overheads. Thus, the clients do not need to
be equipped with strong computing capabilities (mobile devices
suffice). Each client should download an offline map if required in
certain LBS applications, e.g., traffic-aware GPS navigation.
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Figure 7: Location frequencies in experimental datasets

Provable Privacy for PIR and LDP. The PIR protocol is applied
as the post-processing to the query results that guarantees e-LDP.
The index (w.r.t. the domain) can be public knowledge and shared to
users. The PIR protocol does not cause any additional information
leakage since the query results are retrieved based on the encrypted
location by employing the provably secure cryptographic technique.
From the viewpoint of the server, the PIR request might be origi-
nated from any user. Therefore, the probability to identify every
user as the querying user is exactly % (for all the users). Thus, it
does not cause additional leakage from such random guess either
(after the private data collection with e-LDP).

Complex Applications. The staircase randomized response can
generate more accurate location distribution than existing LDP
mechanisms. As a key building block of LBS applications, such
high accurate location frequency/distribution estimation by the
proposed SRR mechanism could universally support different LBS
applications, including complex LBS such as traffic-aware GPS nav-
igation. In our experiments, we simulate the route recommendation
by the GPS, which shows better performance of SRR (see the details
in Appendix C). In practice, as the LBS application becomes more
complicated (e.g., more data collection), SRR would outperform the
state-of-the-art LDP schemes more.

6 EXPERIMENTS
6.1 Experimental Setting

Experimental Datasets. We conduct our experiments on four
real-world location datasets.

e Gowalla Dataset [3] collects 6,442, 890 check-ins records of
196,591 users in Austin, USA via the social network app
Gowalla between 02/2009 and 10/2010.

o Geolife Dataset [70] collects 17,621 GPS trajectories of 182
users in Beijing between 04/2007 and 08/2012.

e Portocabs Dataset [50] collects the GPS trajectories of 441
taxis in Porto between 07/2013 and 06/2014.

e Foursquare Dataset [67] collects 90, 048, 627 check-in loca-
tions of 2, 733,324 users in New York City, USA.

Since each of the four datasets is collected from locations within
a city, we focus on a large geographical region covering a 40 x 30km?
area for each dataset. Only the reported locations in this area are
considered as the domain. Since the encoded bit strings for all the lo-
cations in each dataset share a 20-bit common prefix, the last 26 bits
(out of 46 bits for h = 23) could sufficiently index all the locations
with high accuracy for all the 4.7mx4.7m regions (removing the
common prefixes does not affect the accuracy due to fixed domain

size and groups). All the experiments were performed on the NSF
Chameleon Cluster with Intel(R) Xeon(R)Gold 6126 2.60GHz CPUs
and 192G RAM [51]. Docker is used to start containers to emulate
the server/clients with system and network setup.

Dataset Characteristics. Table 2 presents the number of locations
and users in four datasets. The total user number can vary from
30,000 to 1M. As we know, infrequent locations in the LDP can
cause more utility loss than frequent locations [60]. So, we use four
dataset that have different densities of users. Figure 7 presents the
original frequencies of all the locations in four datasets.

Table 2: Characteristics of datasets (after pre-processing)

Dataset Location # | User #
Gowalla 1,738 1,120,147
Geolife 566 104,488
Portcabs 374 34,438
Foursquare 3,202 701,528

6.2 Distribution Estimation (Location-Input)

We first evaluate the utility of L—SRR for the distribution estima-
tion while benchmarking with the state-of-the-art LDP schemes,
including Generalized Randomized Response [62] (GRR), Optimal
Local Hash with hierarchy structure [61] (OLH-H), the Location
Data Aggregation [13] (PLDP), and the Hadamard Response (HR)
[38]. We follow the original perturbation and estimation method in
each benchmark. Here, we choose the OLH mechanism since it has
better utility than unary encoding (UE), and choose the existing
location LDP framework PLDP instead of existing location frame-
work in [39, 69] since PLDP is an optimized framework that boosts
the utility. For fair comparisons, in OLH~-H, we randomly sample a
hierarchical level for each location. Then, we adapt the constrained
inference [34] to adjust the frequencies of parent and leaf nodes for
consistency. In PLDP, we assign the same protection region level
for all the users as other LDP schemes to satisfy the strict e-LDP.

The server derives the spatial density for many LBS applications,
e.g., urban traffic density [53], and crowd density for events [57].
In most existing LDP settings, the € is in the range between 0.5
to 10 for privacy protection. Too large € value can’t protect user’s
location well. Similar to that, we set € between 1 and 8 with a step
of 0.5 (covering both strong and weak privacy regime).

Figure 8 shows the average L;-distance and KL-divergence be-
tween the true and estimated distributions of all the locations. Both
L;-distance and KL-divergence decrease as € increases. Especially
for the GRR, the error dramatically decreases (e.g., Figure 8(e)) since
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Figure 8: Average L;-distance and KL-divergence for the distribution estimation on four datasets using different LDP schemes
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Figure 9: MSE of all the locations’ k-NN lists on four datasets using different LDP schemes (k = 25)

the probability grows exponentially. However, L—SRR still greatly
outperforms other LDP schemes on all the four datasets.

6.3 Case Study I: k-NN Query (Location-Input)

We first evaluate the performance of SRR in specific applications
on recommendations based on the location distribution. k-nearest
neighbors (k-NNs) is a typical application in which queries can be
made for the nearest point-of-interests or users. We next show the
results for querying the k-NN users [68], which can be extended
from the distribution estimation. The k-NN lists for any user (with
a location) are the other k closest users, measured by the MSE of
their coordinates. Then, given the estimated location distribution,
the server can directly derive each location’s list of k-NNs.

k-NN Lists Computed by Server. Figure 9 shows the normalized
MSE between the true and estimated coordinates of all the users’
k-NN lists. The normalized MSE also decreases while € increases. In
Figure 9(a), 9(b), 9(c), and 9(d), L-SRR outperforms GRR, OLH-H,
PLDP, and HR, which is consistent with the previous results.

We also present the precision and recall of all the users’ estimated
k-NN lists in Table 3. Again, L—-SRR can produce more accurate
k-NN lists than all the other LDP schemes. Note that € might be

relatively large for very high accuracy (e.g., € = 5 similar to the
privacy setting by Apple [1]). If involving more users in the practical
LBS App, € can be much smaller for such very high accuracy.

6.4 Case Study II: Trajectory-Input LBS

We next evaluate the performance of L-SRR on collecting trajec-
tories for two example LBS applications: (1) origin and destination
(OD) analysis which estimates the OD pairs frequencies with the
Lasso regression, and (2) traffic-aware GPS navigation.

OD Analysis. The true number of distinct OD pairs in four datasets

are 2,315, 876, 1,034, and 5, 634, respectively. We apply the same

Lasso regression algorithm to all the LDP schemes. Figure 10 presents
the average L;-distance between the true and estimated OD pair

distribution. As € increases, L;-distance decreases. L—SRR again

shows the smallest Li-distance of L-SRR in all the experiments.
Moreover, we also observe that the Li-distance is smaller than LBS

with single-location input (see Figure 8).

Traffic-Aware GPS Navigation. To test the performance of the
traffic-aware GPS navigation, we make the simulation the experi-
ment of recommendation for the fastest route. We can also draw
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Table 3: Precision and recall for the derived k-NNs of all the users (k=25)

D GRR OLH-H PLDP HR L-SRR
ataset € [Precision Recall | Precision Recall | Precision Recall | Precision Recall | Precision Recall
1 31.9% 47.6% 27.1% 35.6% 38.1% 46.4% 53.2% 63.1% 60.7% 69.4%
3 55.5% 54.1% 30.6% 38.9% 50.1% 56.9% 66.8% 74.7% 68.7% 77.4%
Gowalla 5 63.5% 66.2% 51.0% 57.2% 67.6% 74.3% 68.3% 75.8% 73.6% 78.1%
7 78.4% 81.2% 68.8% 73.3% 73.9% 79.5% 75.4% 80.9% 80.1% 81.9%
9 86.1% 87.2% 69.2% 74.4% 80.3% 85.3% 82.1% 84.1% 87.7% 89.3%
1 17.8% 26.4% 30.1% 34.2% 33.4% 34.2% 30.8% 35.3% 35.2% 39.9%
3 35.0% 43.6% 42.4% 49.1% 48.7% 54.5% 50.4% 53.1% 51.6% 58.7%
Geolife 5 53.4% 60.3% 60.5% 65.9% 69.9% 74.9% 67.1% 68.8% 78.3% 83.3%
7 78.6% 82.9% 73.1% 76.5% 77.0% 80.7% 76.4% 78.1% 85.9% 88.9%
9 91.4% 93.0% 89.8% 90.8% 90.2% 93.8% 90.8% 92.2% 92.7% 94.2%
1 41.9% 50.7% 30.4% 40.4% 48.8% 58.4% 51.2% 58.4% 56.2% 64.1%
3 63.8% 72.6% 43.6% 50.6% 55.6% 63.3% 57.7% 63.1% 68.3% 75.8%
Portocabs 5 70.5% 78.2% 61.9% 66.9% 70.6% 76.1% 59.7% 65.0% 77.4% 83.8%
7 87.8% 93.3% 66.0% 69.4% 76.2% 81.3% 84.9% 88.2% 92.7% 98.1%
9 93.4% 98.7% 86.5% 89.5% 86.7% 89.2% 91.6% 93.3% 95.9% 98.9%
1 32.2% 40.9% 42.2% 52.1% 46.6% 56.1% 52.2% 60.7% 55.7% 65.3%
3 58.8% 65.2% 50.1% 57.4% 50.1% 58.0% 59.1% 67.3% 67.1% 75.3%
Foursquare | 5 80.7% 84.6% 64.6% 68.6% 68.1% 75.7% 80.6% 86.9% 83.9% 87.2%
7 87.1% 89.7% 65.4% 69.1% 68.7% 76.3% 85.4% 88.9% 87.2% 91.3%
9 88.1% 92.3% 76.1% 77.4% 82.6% 86.9% 86.1% 89.1% 91.3% 94.6%
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Figure 10: Average Li-distance for the OD pair frequency on four datasets using different LDP schemes
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Figure 11: Average L;-distance for frequency estimation using different combinations of perturbation and estimation methods

the conclusion that L—SRR outperforms other LDP schemes (see
the detailed results and discussions in Appendix C).

6.5 Ablation Study and Runtime

Ablation Study. We compare the results with different combi-
nations of perturbation mechanisms (GRR, HR and SRR) and esti-
mation methods. Since the standard estimation method cannot be
applied to SRR (more than two perturbation probabilities), we apply

the maximum likelihood estimation (MLE) instead. Moreover, the
GRR with empirical estimation (EM) is a special case of Hadamard
response (HR): |Cx| = 1. Figure 11 shows that SRR and the revised
EM (L—-SRR) perform the best. Even with the MLE, SRR is better
than GRR in most cases. Also, the revised EM can further boost the
utility of SRR (compared to SRR and MLE).

Runtime. Since users only need to perturb their locations, the user-
side runtime is negligible. It takes only 0.014 second for each user
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Figure 12: Runtime for the server (vs. the number of users)

on average in the experiments, and thus we only report the server-
side runtime in Figure 12. We test 10% to 100% of each dataset with
a step of 10%. Similar to GRR, OLH-H, PLDP and HR, the runtime
of L-SRR only slightly increases as the number of users reaches
~1M (e.g., 9 seconds for Gowalla dataset), which is acceptable.

Notice that, group partitioning dominates the offline costs O(d?)
for L—-SRR. Thus, we also present such offline partitioning time
w.r.t. the number of users and the number of locations, as shown in
Figure 13. We uniformly extract 25%, 50%, 75%, and 100% of users
and locations from each dataset as the test datasets. As shown in
Figure 13(a), the offline time (including the the preprocessing time
to get the sub-dataset) increases as the number of users increases
due to the growth of distinct locations. Since the group partitioning
that is related to the domain size dominates the offline costs. In
Figure 13(b), we also see that the offline runtime (excluding the
preprocessing time) grows on the number of locations, and the
offline time is around 30 seconds at most. However, the offline
execution is needed when the location domain is updated. Recall
that the domain is only updated periodically (e.g., every day). Thus,
such offline costs are efficient for real-world deployments.

IN]
a

mm Gowalla
I Geolife
mmm Portscabs

Gowalla
Geolife
Portscabs

w
S

N

a
N
o

privacy works to solve optimization problems and find optimal
mechanisms under different scenarios [29, 33].

More recently, rigorous privacy notion differential privacy (DP)
has also been applied to LBS 35, 36, 43, 46]. For instance, a synthetic
data generation method [46] was proposed to publish statistics
about commuting patterns (including locations) with DP guarantee.
Moreover, a quadtree spatial decomposition technique [36] has
been used to ensure DP in a database with location pattern mining
capabilities. However, the DP model may not be suitable to real
LBS applications in case that the users do not trust the server.

The emerging LDP models enable private data collection by un-
trusted server, which provides stronger protection than the central-
ized DP models. It has been extended to privately collect different
types of data (e.g., histogram [9, 25], social graphs [55], itemsets
[60]). Meanwhile, LDP has been successfully deployed in industry
(e.g., Google [25], Apple [1], and Microsoft [18]). Recall that two
works directly apply randomized response and unary encoding to
collect workload-aware indoor positioning data [39] and generate
synthetic locations [69] but result in poor utility. Moreover, several
relaxed LDP notions have been proposed to protect location privacy
[4, 13]. Andrés et al. [4] relaxes the protection for locations within
a radius via geo-indistinguishability. Chen et al. [13] relaxes LDP
to PLDP which allows users to specify personalized privacy bud-
gets for private location collection. However, they cannot ensure
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rigorous LDP and are also less accurate than our SRR.

8 CONCLUSION

Severe privacy risks arise in LBS applications due to sensitive lo-

(a) Runtime vs.# of users (b) Runtime vs. # of location

Figure 13: Offline runtime

7 RELATED WORK

Many privacy preserving location-based services techniques have
been proposed (e.g., [8, 59]). K-anonymity was first defined to
protect privacy for LBS. Dummy locations [59] and cloaking region
[8] have been utilized for anonymity. However, these methods
are highly vulnerable to background knowledge attacks. Another
type of techniques design cryptographic protocols [54] to securely
perform LBS computations. However, both computational costs and
communication overheads might be very high. Differenital privacy
is a privacy notion that protects the privacy against arbitrary prior
knowledge known to the adversaries. There are many differential

cation collection. To address the deficiency on privately collecting
locations with LDP guarantees and high utility, we propose a novel
LDP mechanism “Staircase Randomized Response” (SRR) and ex-
tend the empirical estimation for SRR to significantly improve the
accuracy of the LDP model for LBS applications. In addition, we
have also extended SRR to privately collect trajectories with e-LDP.
We have conducted extensive experiments on real datasets to show
that L— SRR drastically outperforms other LDP schemes.
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APPENDIX
A PROOF OF CONVEX PROPERTY W.RT. m

Proor. With the mutual information bound function H, we can
take its second order derivative in m as follows:
o*H 1 log c ”
o3 _ o
2 m-(c—1)-d m-(c—1)-d
om c-d- 2 - 2

(c —1)%d? c

= - (2log ————————— +3)
4(c-d—w-m)2 C-d—@-m

When the first order derivative is equal to zero, we have m =
2_(C_d_el+logc) . .
~=na It is very straightforward to prove that the second
order derivative is greater than zero since (cd — @m) > 0 and
2log d(c—c_w +3 > 0. Therefore, it is a convex function, and we

C —#m

can derive its minimum value by the derivative. O

B PRIVACY AND UTILITY ANALYSIS
B.1 Proof of Theorem 3.3 (Privacy Analysis)

Proor. For any pair of input locations x, x” € D and output y,
the maximum perturbation probability g(y|x) for sampling loca-
tion y based on input x is @max(x) When y is in the same group
with x (the first group Gj(x)); the minimum perturbation probabil-
ity q(y|x") for sampling location y based on input x” is amin(x”)
when y in the furthest group for x” (the last group G, (x”)). Thus,
the SRR mechanism in L-SRR satisfies € = max, , ¢ p log(c -

(m=1)d-c—(c=1) 375" [(j-1)-IG; (x)1]
(m=1)d-c—(c-1) 75" [(j-1)-1G;(x)]]
is a strict constant privacy bound derived by ¢ and domain . O

)-LDP in all the cases, where ¢

B.2 Proof of Theorem 3.6 (L, Error Bound)

Proor. With the estimation formula, we have p(Cx) = p(x) -

Zyec, QY+ zx () [Eyeccp 4WIX)+Zyeconc, a(y1x)]-

With the property of Hadamard matrix [38], the size of the set dif-
ference between any two location candidate sets is %, and the size
of intersection between any two candidate sets of locations is also
‘ZI. We can integrate these into the equation. Then, we have:

d - mi ’
P(Co) = p(0 -1 Y qlyln)l+ Y plx) - LmldWI)}

yeCyx x'#Ex 2
d- min
=p() 1Y gyl + 1 p(x)) - L Emin)
yeCx

g(Cy) - )

Yyec, [q(ylx) - damin(x) |

= p(x) <

Then, we can have the Lg—distance as below:

BIL(5.p)] < (=) - BIL(5(C), p(C)]
Zyecx q(ylx) — =
where i = min{amin(x)}. Since E[5(Cx)] = B[ 455
= p(Cx), we have:
BIL3(B(C). p(CN] =BL 3 (H(Cx) = p(Ce)*] = 3 Var(5(Cx)
xeD xeD

Moreover, each y is independently sampled and p(Cx) = p(Cx)
is the mean of n independent multinomial distributions.
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3 Var(ye)) £ Y L max(p(Co) <

xeD xeD n

Thus, we have E[Ly($,p)] < (———1————) . /4. O
us,we have E[L2(5.p)] £ (——bgp) |

B.3 Proof of Theorem 3.5 (L; Error Bound)
ProoF. Since Vi,a; > 0,n- X7, (an)? = [ l’-’zl(a,,)]2 holds, we
have d - Lg (p,p) = [L1(p, p)]?. Then. we can derive:

2
(B G.pD < —
n-(y—=)>?

Thus, E[L1(p, p)] < completes the proof. o

2d
V- (2y=d-p)
C ADDITIONAL EXPERIMENTS

C.1 Traffic-Aware GPS Navigation
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Figure 14: The total privacy bound of L—-SRR for traffic-aware
GPS navigation by collecting trajectories

We simulate many trajectories and predict the time Agg? (x1,
x7) between any two locations on the trajectory using the Markov
Chain [66]. Specifically, we generate multiple routes for each OD
pair (at client). For each route, we compute the predicted time ¢
based on historical datasets for any two locations. In our experiment,
we use the data collected earlier as the historical data (e.g., Geolife
dataset collected in 2009 as the historical data, and collected in 2010
as the test data). Furthermore, for locations on each route, such LBS
calculates the frequencies of users near the location within a range
(e.g., 4.7m). If the frequency exceeds a threshold (e.g., 50 users), a
3-second delay time will be added [22]. Finally, given the traffic
density, it may update the route to avoid heavy traffic. With L-SRR,
the route recalculation occurs if Agg’ (xo, x;) — AggP (xo,xi) > 0
holds, where i € T and 6 is the delay threshold (e.g., 30 seconds).
If yes, the client will submit its perturbed location, and privately
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retrieve the traffic density at the current position to recalculate the
fastest route [22].

In the experiments, we first evaluate how the delay time thresh-
old @ affects the total privacy guarantee. The maximum numbers of
locations on the trajectories for four datasets are 140, 135, 127, and
150, respectively. In Figure 14, we set 0 between 10 seconds and 55
seconds with a step of 5 seconds. As 6 increases, the total privacy
bound € decreases with a decreasing number of location updates.
As 0 = 60 (updating the location once delay exceeds 1 minute), the
privacy bound is around 3¢, which is very small for trajectories.
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Figure 15: Relative levenshtein distance of trajectories in the
traffic-aware GPS navigation (0 = 40 seconds)

Second, to measure the route deviation, we apply Levenshtein
distance to measure the accuracy between true route and the route
recommended by L—SRR. It measures the difference by calculating
the minimum number of location edits (insertions, deletions, or
substitutions) required to change one route to the other. Figure 15
shows the relative Levenshtein distance over the total size of the
true routes (vs the total privacy bound €). L—SRR again outperforms
other LDP schemes. In addition, we also measure the deviation of
the total trip time. Figure 16 shows that the trip time deviation
decreases as the privacy bound € increases for all the LDP schemes,
and L—SRR results in the least trip time deviation.

C.2 SRR and Differential Privacy

We discuss the utility of centralized differential privacy. A generic
solution is to add the Laplace noise to the frequency of each loca-
tion (after aggregation). Thus, € should be equally allocated for d
locations. Table 4 presents the Li-distance for the distribution on
four datasets using Laplace mechanism. The results show that the
L;-distance gets smaller as € becomes larger. Compared to the LDP
mechanism, for Gowalla and Foursquare, the distance with SRR
has smaller distance. For Geolife and Portocabs, the distance with
SRR has similar distance in case of a smaller domain. Note that the
privacy guarantees of LDP and DP are indeed incomparable even
for the same € (since the trust model and indistinguishability are
defined in different ways).

Han Wang, Hanbin Hong, Li Xiong, Zhan Qin, and Yuan Hong
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Figure 16: Average trip time deviation in the traffic-aware
GPS navigation (6 = 40 seconds)

Table 4: Average L;-distance for the location distribution on
four datasets using Laplace mechanism for centralized DP

Dataset e=1|e=3|e=5]|€e=7
Gowalla 0.18 0.16 0.15 0.13
Geolife 0.29 0.11 0.08 0.04
Portocabs 0.43 0.26 0.15 0.07
Foursquare | 13.87 | 4.69 2.78 1.91

C.3 Utility vs. Smaller ¢

To evaluate the performance with smaller €, we vary the € from
0.5 to 1 with a step of 0.1. Table 5-8 show the average L;-distance
for the location distribution on the Gowalla, Geolife, Portocabs,
and Foursquare datasets, respectively. Table 9-12 show the average
KL-divergence. It follows the same trend as results when € > 1.

Table 5: Average L;-distance for the location distribution on
the Gowalla dataset (¢ < 1)

€=05|€=06|€=07|€=08]|€=09 |e=1
GRR 0.154 0.138 0.125 0.113 0.108 0.091
OLH-H 0.129 0.121 0.118 0.109 0.097 0.084
PLDP 0.125 0.119 0.115 0.107 0.094 0.086
HR 0.104 0.096 0.088 0.085 0.083 0.082

[T-SRR [ 0.097 [ 0086 | 0.079 [ 0078 [ 0.075 [ 0.072 |

Table 6: Average L-distance for the location distribution on
the Geolife dataset (¢ < 1)

€=05|€=06|€=07|€=08|€=09 |e=1
GRR 1.128 1.005 0.985 0.980 0.945 0.939
OLH-H 0.957 0.938 0.933 0.927 0.925 0.922
PLDP 0.941 0.930 0.916 0.897 0.874 0.852
HR 0.873 0.869 0.857 0.791 0.764 0.755

L-SRR | 0.832 | 0793 [ 0782 [ 0.687 | 0.641 [ 0.612 |
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Table 7: Average Li-distance for the location distribution on
the Portocabs dataset (¢ < 1)

€=05|€=06|€=07|€=08|€=09|€e=1
GRR 2.358 2.216 2.195 2.193 2.185 2.164
OLH-H 1.972 1.961 1.958 1.905 1.878 1.845
PLDP 2.043 2.026 2.015 2.003 1.974 1.941
HR 1.978 1.969 1.885 1.871 1.869 1.861

[1-sRR [ 1.887 [ 1.869 | 1.797 | 1751 [ 1705 | 1635 |

Table 8: Average Li-distance for the location distribution on
the Foursquare dataset (¢ < 1)

€e=05|€=06|€=07|€=08]|€=09]|€e=1
GRR 0.138 0.126 0.115 0.113 0.094 0.088
OLH-H 0.134 0.127 0.118 0.094 0.087 0.082
PLDP 0.123 0.119 0.105 0.097 0.085 0.079
HR 0.118 0.109 0.097 0.091 0.083 0.073

[L-SRR [ 0087 [ 0079 [ 0.072 | 0069 [ 0.061 [ 0.055 |

Table 9: Average KL-divergence for the location distribution
on the Gowalla dataset (¢ < 1)

€=05|€=06|€=07|€=08]|€=09|€e=1
GRR 2.990 2.924 2911 2.894 2.881 2.874
OLH-H 2.533 2.491 2.437 2.432 2.401 2.385
PLDP 2.713 2.680 2.649 2.614 2.582 2.413
HR 2.472 2.421 2.394 2.372 2.220 2.171

[1-SRR [ 1953 [ 1951 [ 1871 [ 1.867 [ 1.853 | 1753 |

Table 10: Average KL-divergence for the location distribution
on the Geolife dataset (¢ < 1)

€=05|€=06|€=07|€=08]|€=09|€e=1
GRR 1.330 1.292 1.285 1.201 1.137 1.069
OLH-H 1.292 1.113 1.082 1.044 0.940 0.939
PLDP 1.114 1.109 1.097 1.078 1.022 0.991
HR 0.973 0.897 0.892 0.815 0.787 0.643

[L-SRR | 0895 | 0887 [ 0775 [ 0.713 [ 0.693 [ 0.623 |

Table 11: Average KL-divergence for the location distribution
on the Portocabs dataset (¢ < 1)

€e=05|€=06|€=07|€=08]|€=09]|€e=1
GRR 1.384 1.257 1.154 1.033 0.957 0.905
OLH-H 1.292 1.121 1.087 0.848 0.833 0.749
PLDP 0.943 0.926 0.895 0.871 0.735 0.718
HR 1.070 1.039 0.978 0.841 0.748 0.662

[1-SRR [ 0899 [ 0841 [ 0838 [ 0775 [ 0.619 [ 0.606 |

Table 12: Average KL-divergence for the location distribution
on the Foursquare dataset (¢ < 1)

€=05|€=06|€=07|€=08]|€=09|€e=1
GRR 2.251 2.163 2.155 2.134 2.019 1.952
OLH-H 2.112 2.091 2.084 2.052 1.974 1.946
PLDP 2.154 2.126 2.075 2.034 1.994 1.957
HR 2.020 1.989 1.978 1.952 1.912 1.832

L-SRR | 1.917 | 1.898 [ 1.883 | 1871 | 1.807 [ 1.782 |
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C.4 Utility vs. Multiple Cities in The World

Four real-world LBS datasets in the experiments are collected from
four different cities worldwide: Gowalla (Austin, USA), Geolife (Bei-
jing, China), Portocabs (Porto, Portugal), and Foursquare (New York,
USA). Then, we present a new set of experiments by comparing the
LDP schemes on one dataset (1 city), two merged datasets (2 cities),
three merged datasets (3 cities), and four merged datasets (4 cities)
- merging both the location domain and data:

o 1 City: Foursquare (New York, USA)
o 2 Cities: Foursquare (New York, USA), Gowalla (Austin, USA)

e 3 Cities: Foursquare (New York, USA), Gowalla (Austin, USA),
Geolife (Beijing, China)

e 4 Cities: Foursquare (New York, USA), Gowalla (Austin, USA),
Geolife (Beijing, China), Portocabs (Porto, Portugal)

Note that merging the datasets enlarges the domain of the lo-
cations as well as diversify the distribution of the locations in the
domain (e.g., the encoded bit strings of the locations in different
cities would share less prefixes since the cities are far away on the
map). Table 13 and 14 show the L;-distance and KL-divergence for
this group of experiments. As more cities are merged, the errors
(L1-distance and KL-divergence) slightly increase and L—SRR still
works the best in all the cases. Thus, we have the following findings
(along with the experimental results):

(1) If locations are distributed on the worldwide map (e.g., loca-
tions in the US, China and Portugal) but the domain size is
reasonable (e.g., as above), L—SRR still works.

(2) If merging more worldwide cities with a large number of
locations inside each city (e.g., forming the domain with most
of the locations in thousands of cities all over the world), we
anticipate that L—SRR still outperforms other LDP schemes
but all the LDP schemes may have a limitation on retaining
good utility while ensuring strong privacy.

Table 13: Average L;-distance for the location distribution vs.
domain/datasets of multiple cities (¢ = 1)

City# | 1 2 3 4
GRR | 0.088 | 0.175 | 0.204 | 0.224

OLH-H | 0.082 | 0.107 | 0.138 | 0.158

PLDP | 0.079 | 0.095 | 0.092 | 0.114
HR | 0.073 | 0.094 | 0.099 | 0.108

[ L-SRR [ 0.055 [ 0.074 [ 0.083 [ 0.090 ]

Table 14: Average KL-divergence for the location distribution
vs. domain/datasets of multiple cities (¢ = 1)

City# | 1 2 3 4
GRR | 1.952 | 2.087 | 2.115 | 2.158

OLH-H | 1.946 | 2.065 | 2.109 | 2.128

PLDP | 1.957 | 2.043 | 2.098 | 2.123
HR | 1.832 | 1.957 | 2.034 | 2.115

L-SRR | 1.782 [ 1.893 [ 1.983 | 2.085 |
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