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1 Abstract

2 Genome sequencing has revolutionized studies using experimental evolution of microbes because it readily provides 

3 comprehensive insight into the genetic bases of adaptation.  In this perspective we discuss applications of sequencing-based 

4 technologies used to study evolution in microbes, including genomic sequencing of isolated evolved clones and mixed 

5 evolved populations, and also on the use of sequencing methods to follow the fate of introduced variations, whether neutral 

6 barcodes or variants introduced by genome editing.  Collectively, these sequencing-based approaches have vastly advanced 

7 the examination of evolution in the lab, as well as begun to synthesize this work with examination of the genetic bases of 

8 adaptation and evolutionary dynamics within natural populations.

9

10 Highlights

11 - Genome sequencing of isolates remains the most straightforward way to determine evolved changes.

12 - Sequencing of mixed evolved population samples reveals existing variation and its dynamics.

13 - Active approaches using sequencing to track either neutral, lineage-tracking barcodes or methods to generate variation that 

14 can be selected upon have opened the door to novel questions at an unprecedented scale. 

15 - Sequencing approaches have closed the gap between analyses of laboratory-evolved populations and evolution occurring 

16 in natural microbial populations.

17

18 Experimental evolution before the application of genome sequencing

19 Studies delving into microbial evolution date back to early experiments involving pond microbes conducted by the 

20 reverend William Henry Dallinger in the late 1800s [1-2].  In the second half of the 20th century, pioneered by researchers 

21 such as Bruce Levin, Dan Dykhuizen, and colleagues, the use of evolution experiments in the laboratory became 

22 increasingly popular [3-8].  The attraction to this approach was the ability to precisely control the selective environment, 

23 transfer regime, and initial genotype, thereby seeding replicate populations that could be cryopreserved as a living fossil 

24 record. Upon resuscitation, comparisons could then be made through time, between lineages, and across experiments.  A 

25 tremendous amount was learned about changes in phenotype that occur during adaptation, best exemplified by incredibly 

26 fruitful series of discoveries from Rich Lenski’s long-term evolution experiment (LTEE) with Escherichia coli [9-10].  

27 Stepping back from particulars, some commonalities emerged from the LTEE and other similar experiments.  Perhaps most 
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28 prominently, the rate of adaptation is almost always fastest early in the experiment, and slows as increasing generations 

29 accumulate [10,11].  Conversely, other phenomena were found to behave quite differently depending upon the organism and 

30 experiment in question, such as whether replicate populations would exhibit parallelism or divergence in phenotypic 

31 changes, or in the extent of tradeoffs between fitness in the selective environment versus alternative environments [12].  

32 Unfortunately, there was generally an inability to link these changes in phenotype with mutations that occurred to the 

33 genotype [9,13].  

34 Although these numerous experimental evolution studies constituted what was then called ‘population genetics 

35 without the genetics’ [14], in the slightly more than a decade since the first application of whole genome sequencing to 

36 experimental evolved populations [15] it is hard to imagine anything further from the truth. Genome sequencing and other 

37 related sequencing-based technologies have led to unprecedented progress in the study of microbial evolution in the lab 

38 [16], and increasingly have been extended to studying natural environments.  Here we will first discuss the purely passive, 

39 observational role that sequencing has played in earlier investigations following changes in experimental populations 

40 (Figure 1A). We follow this with a discussion of how sequencing can provide the key output data for experimental designs 

41 where the researcher plays an active role in generating variation prior to the initiation of adaptation (Figure 1B). 

42

43 Sequencing individual isolates reveal evolved genotypes

44 The most straightforward use of genome sequencing to understand evolution is to determine the complete genome 

45 sequence of individual evolved isolates.  Researchers using viruses as model systems had been using standard Sanger 

46 sequencing for this purpose much earlier [17,18], but the use of 454 sequencing to determine the genetic basis of adaptation 

47 in an experiment with Myxococcus xanthus [15] was the first in a wave of papers using whole genome sequencing to 

48 uncover the genetic bases of adaptation in numerous bacterial systems.  This approach provides the number, type, and 

49 targets of mutations, and it unambiguously reveals that these mutations are linked together as a genotype (Box 1).  

50 Assuming genetic manipulation is possible for the organism of interest, it is then possible to parse apart which of these 

51 mutations contribute to these phenotypes.  These allelic exchange experiments reveal both specific answers about adaptation 

52 of a particular organism to a particular environment, and illuminate general trends about adaptation, such as that beneficial 

53 mutations are generally less and less beneficial when present upon backgrounds with higher fitness (i.e., diminishing returns 

54 epistasis [19,20]).

55 Whereas obtaining a single whole genome sequence for an evolved isolate was astonishing in 2006, this has 
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56 become absolutely trivial at this point, and the low hurdle for sequencing has tremendously altered the types of scientific 

57 questions that can be asked.  One great advantage has been the ability to sequence isolates from a tremendous number of 

58 independent evolution experiments, thereby obtaining a reasonably-sized sample of what is possible for that strain placed in 

59 the selective conditions used.  For example, by sequencing isolates from 120 separate populations of Escherichia coli 

60 evolved to grow at an elevated temperature, it became possible to use the occurrence (or nonoccurrence) of mutations 

61 together in the same genotype more (or less) frequently than random expectation to reveal positive (or negative) epistasis 

62 between them [21] (Figure 2A).  This readily revealed multiple distinct evolutionary trajectories that were possible.  If the 

63 power of sequencing many isolates is instead directed at multiple isolates from multiple timepoints in a single population, it 

64 becomes possible to loosely infer clonal dynamics of these populations [22].  Although it was once thought that beneficial 

65 alleles arise and escape drift rarely enough that they would rise in frequency and fix one at a time (i.e., periodic selection, 

66 [23]), genomic analyses of isolates (and populations, see below) have made it abundantly clear allele dynamics in 

67 populations are tremendously messy due to multiple lineages with beneficial mutations arising at the same time and 

68 competing with each other (i.e., clonal interference, [24]).  Whereas many of these isolate sequencing studies represented 

69 the capstone analysis of already well-studied experimental systems, isolate sequencing has become sufficiently trivial that it 

70 can even be used as the first ‘gateway’ step to decide whether an evolution experiment is worth further experimental 

71 inquiry.  Indeed, in our own group, multiple times we have only proceeded to pursue a story in greater depth after 

72 sequencing results revealed that there was an interesting, unexpected physiological basis to adaptation [25], or a surprising 

73 similarity between beneficial mutations arising in different environmental or genetic contexts [26].  Looking forward, 

74 assuming the relatively high error rates and large regions lacking coverage common to single-cell sequencing [27,28] can be 

75 improved, applying singe-cell approaches to evolved populations would constitute a more extreme version of isolate-based 

76 sequencing, in that it would still provide linkage information, but also simultaneously give information about the breadth of 

77 genetic diversity in the population.

78

79 Metagenomic sequencing of populations uncovers genetic diversity and its dynamics

80 Just as metagenomics has been applied to directly determine the genomic composition of mixed natural 

81 communities, it has become increasingly common to simply sequence the total genomic DNA of evolving populations to 

82 sample their diversity across time points and/or replicates.  What began with analysis of a single population to determine 

83 what fraction of evolved diversity fixed or was lost [29] has matured greatly with increased sequencing depth and new 

84 analysis pipelines applied across an evolution experiment [e.g. 30].  The tremendous advantage of metagenomics is that it 
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85 samples all alleles present with sensitivity that depends upon depth of coverage and allele abundance, such that alleles that 

86 emerge to multiple percent of the population can be confidently identified as not simply being sequence errors.  The great 

87 challenge, however, is that these data lack linkage information between the detected variants, and thus it is not directly clear 

88 which alleles are present on the same genetic background.  Instead, additional indirect information – such as the correlation 

89 between time points in an evolution experiment – are required for the trajectories of alleles and linkage information to be 

90 inferred.  

91 Metagenomic analyses of evolving populations have revealed many insights into the nature of evolutionary 

92 dynamics in microbes.  For example, work by Lang et al. [31] demonstrated that selective sweeps often involved whole 

93 cohorts of mutations that had accumulated in a lineage, rather than a series of individual beneficial mutations that arose 

94 victorious from clonal interference.  A recent paper on the Lenski LTEE populations highlighted lessons metagenomics can 

95 reveal over the tremendous timescale of 60,000 experimental generations [30] (Figure 2B).  Using extremely fine-scaled 

96 temporal coverage of the dozen E. coli populations evolved in glucose medium allowed for the direct calculation of 

97 quantities such as total mutations along lineages, survival probabilities and transit times of fixed alleles, etc.  Furthermore, 

98 in this experiment, as was examined over a shorter timescale in an earlier experiment with two growth substrates [32], there 

99 were abundant clues in the allele dynamics that it was possible to “sequence ecology” [33].  Despite the overlapping 

100 complexities of clonal interference there was evidence of adaptive diversification into two ecotypes [34] occupying separate 

101 niches due to the fact that selective sweeps were confined to separate subpopulations within the whole population, 

102 indicating non-transitivity and likely negative frequency-dependent fitness interactions.  

103

104 Lineage tracking reveals fate of many subpopulations simultaneously

105 In order to uncover the distribution of fitness effects (DFE) possible for a given strain in an environment, it 

106 requires accurately quantifying a very large number of (initially) rare lineages across many time points, most of which never 

107 rise to more than tiny fractions of a percent of the population, even if it means sacrificing the ability to simultaneously 

108 identify the causal mutations that arose to generate those dynamics.  In this case, rather than whole-genome sequencing, 

109 amplicon sequencing of neutral, barcoded loci focuses the available sequencing depth upon just those tagged sites.  

110 Sequencing only a 102-103 bp stretch containing a barcode signatures, implemented as shorthand for a 106-107 bp genome, 

111 increases the sensitivity of detection by 104-105 fold [35].  One recent influential paper by Levy et al. [36] utilized ~500,000 

112 barcoded lineages to capture the DFE of 25,000 beneficial mutations that occurred during the initial adaptation of yeast to 
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113 rich media (Figure 2C).  The standard expectation had been that the upper tail of the DFE of beneficial mutations would fall 

114 exponentially and monotonically, such that big benefit mutations are uniformly rarer than moderately beneficial ones [37].  

115 Instead, their data suggested that the DFE for beneficial mutation was neither monotonic nor exponential, with the 

116 mutations rising to high frequency coming from a small number of discrete peaks in the fitness distribution that occur at 

117 substantially higher rates than the exponential expectation.  The results of the study also suggested that early adaptive 

118 dynamics for the populations investigated were deterministic due to the huge crowd of modestly beneficial mutations that 

119 almost never gave rise to lineages that would ultimately be successful but regardless drive increases in mean population 

120 fitness, and only later on did stochastic effects become more important (drift, timing of large benefit mutations, occurrence 

121 of double mutant combinations). The barcode identifiers can also aid in pulling out the individual winning genotypes, from 

122 which standard genome sequencing can reveal the putative causative mutations [38].  Because of its utility for tracking 

123 many different variants in tandem, the use of lineage tracking with amplicon sequencing will certainly expand in the future, 

124 providing researchers unprecedented speed and depth for probing questions about population dynamics.

125

126 Sequencing the fate of variation introduced at sites under selection readily reveals genotype to phenotype mapping

127 Despite the many advantages to experimental evolution, there is generally no way to control several key features 

128 that may have inspired one to be interested in evolving the system that they study in the first place, such as which loci will 

129 contain the beneficial mutations that emerge, what types of variation will be exposed to selection, or the simultaneous 

130 ability to assess fitness consequences of beneficial, neutral, and deleterious alleles.  To explore selection upon a target set of 

131 genetic variants, there now exist methods to introduce desired alleles and track their fate simultaneously via amplicon 

132 sequencing in a manner analogous to the neutral barcodes described above.  At the level of individual genes, this 

133 combination of gene synthesis techniques and amplicon sequencing is known as “deep mutational scanning” [39].  This 

134 allows the fitness consequence of mutations or mutational combinations to be assessed in parallel via representation in 

135 sequencing reads before and after selection, and has been applied across all individual variants of entire proteins, or large 

136 subsets of possible mutational combinations [39,40].  Most such experiments run a limited number of generations to assay 

137 the fitness consequence of the initial variation that was introduced, but could be allowed to run longer to probe the 

138 differential ability to further adapt through additional mutations.

139 To expand analysis of selection to combinations of alleles at multiple genomic locations, in vivo gene editing 

140 techniques such as CRISPR/Cas, MAGE, MuGENT, and others can be used to change desired loci across bacterial or 
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141 archaeal chromosomes [41-46].  These techniques all allow the researcher to choose where in the genome changes are 

142 made, as well as what type of variation is introduced, which is a huge step forward from mutant generation techniques like 

143 error-prone PCR that produce random mutational changes.  These editing technologies have allowed researchers to alter 

144 multiple genes in a single process and assess their effects (Figure 2D), or even to make large scale changes across the 

145 genome to unrelated genes and analyze their combined effects [47].  If an efficient screen is available for a phenotype other 

146 than fitness, such as the enhancing the production of an industrially valuable compound, such as lycopene [41] or PHB [44], 

147 then these techniques can have tremendous biotechnological potential.  A current limitation in these techniques, however, is 

148 the lack of simple methods to obtain linkage information between the edited loci, although there are some promising 

149 approaches being developed [48].  If facile approaches to obtain linkage information from these studies emerge, there will 

150 be a tremendous potential to use this approach to map from genotypic to phenotypic landscapes [49], perhaps ultimately 

151 leading to greater predictability of evolutionary outcomes related to a given trait [50,51].

152

153 Sequencing has allowed evolution in natural populations to be tracked in the same way as laboratory experiments.  

154 Historically, studying microbial evolution outside a laboratory setting has been much less tractable than within, and 

155 many of the experimental questions posed could not be effectively executed in natural environments.  Sequencing 

156 technologies have helped to put studies of natural systems on essentially equal footing with those looking at experimental 

157 lab populations.  Conversely, this also allows researchers in the lab to construct experiments that are more complex, thus 

158 beginning to resemble natural environments or communities [52,53].  One clear way in which this can be seen is in 

159 examples from the literature in which time series samples from infections have been taken from patients, where strikingly 

160 similar patterns to laboratory experiments have been found for phenomena such as parallelism, rates of molecular evolution, 

161 within population dynamics such as clonal interference, etc. [e.g 54-59].  This has frequently been done by sequencing 

162 multiple isolates in parallel, but can also be extended to sequencing whole populations obtained from patient samples.  In 

163 terms of active approaches, barcoded and/or pooled variants can be generated and introduced into infection systems such as 

164 animal models to test which genotypes are favored in a host [60,61].  In this way, the inclusion of sequencing has the 

165 potential to improve our understanding of disease dynamics, as well as aid in diagnostic evaluations of infections in real 

166 time and possibly inform better therapeutic intervention strategies.  

167 It was apparent to those of us who worked upon microbial evolution in the ‘pre-next-generation sequencing’ era 

168 that cheaper sequencing was coming, and it would be quite useful, but it would have been hard to envision just how 
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169 transformative it has been.  Now the onus is upon us to design and interpret experiments that maximally utilize the wealth of 

170 genomic data are available.  Genotypes had been ‘losing the battle’ to phenotypes in terms of what could be learned, but 

171 now genotype-based studies have a seemingly insurmountable lead.  Let us hope for similarly revolutionary developments 

172 in the ability to assay relevant phenotypes quantitatively and in a high-throughput manner so that it can at last become a fair 

173 fight.

174

175 Figure 1. Different means for applying sequencing approaches to evolution experiments. A) Passive approaches include 

176 isolate as well as metagenomic sequencing to capture information on the diversity of mutations that evolve in experimental 

177 populations. Figure adapted from [22]. B) Active approaches arise from methods that allow the generation and/or 

178 construction of large numbers of initial variants – neutral barcodes or at loci under selection – and tracking them over time. 

179 A short experimental timeframe permits observation of the various rates at which deleterious mutations are lost and neutral 

180 mutations will remain at steady frequencies, whereas a longer timeframe will see the neutral mutations begin to be squeezed 

181 out by the rising mean fitness of the population, but the relative differences in the beneficial mutational effects become 

182 more prominent.

183

184 Figure 2. Examples of how sequencing has advanced microbial evolution studies.  Panel A: Sequencing of many isolates in 

185 tandem allowed tracking of the co-occurrence of mutations, which suggested where genes interact epistatically on fitness 

186 (reprinted from [21]). Panel B: Extensive metagenomic sequencing from the Lenski LTEE lineages through 60,000 

187 generations of experimental evolution allowed the identification of different sublineages and quantification of selective 

188 coefficients for evolved mutations (reprinted from [30]). The presence of co-occurring ecotypes (in bold) was evidenced by 

189 a deep divergence between two lineages and selective sweeps only occurring within each of these lineages. Panel C: High-

190 throughput lineage tracking with barcode sequences allowed the quantification of fitness effects for many mutations in 

191 parallel, giving a clearer picture of the general distribution of these effects (reprinted from [36]). Panel D: MAGE was 

192 implemented to introduce multiplexed genotypic changes into E. coli promoters (bottom row) that demonstrated differential 

193 effects upon both Indigo production (“phentoype” - middle row) and effects upon both growth (“fitness” - top row)  

194 (reprinted from [42]).

195

196 Box 1. What to expect when you sequence evolved isolates?  
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197 Investigators new to using sequencing as part of their experimental studies are often (justifiably) curious about what they 

198 should expect to see from their experimental results.  Years of isolate sequencing have provided ample information on a 

199 number of general trends that consistently crop up in evolution experiments (many of these were highlighted in [29]), 

200 including:

201 - Observed biases toward non-synonymous changes selected more commonly over synonymous changes within genes.

202 - More mutations in promoters than expected by chance.

203 - A high proportion of mutations caused by insertion sequence (IS) element transposition and/or homologous recombination 

204 between multiple copies of the same IS.

205 - Parallelism in the loci containing beneficial mutations between replicate lineages, but generally not to the same site/SNPs.  

206 This is especially true for loss-of-function alleles that are beneficial for fitness.

207 - Patterns of mutations and direct allelic exchange experiments indicate an overwhelming pattern of positive selection upon 

208 beneficial mutations, with the exception of strains that become mutators.  Mutators display a much wider spectrum of 

209 mutational effects observed.

210
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