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Control of Movement
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Abstract

Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults,
causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are
mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory process-
ing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young
adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of
sensory information between the two streams. Here, we asked the question if older adults would exhibit deficits in interactions
between the two streams during demanding motor tasks. Older adults (n = 15) and young controls (n = 26) performed reaching
or interception movements toward virtual objects. In some blocks of trials, participants also had to select an appropriate move-
ment goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during
both reaching and interception movements. During the interception decision task, older adults made more decision- and execu-
tion-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest
that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect
impaired ventral-dorsal stream interactions.

NEW & NOTEWORTHY Older adults show declines in vision, decision-making, and motor control, which can lead to functional
limitations. We used a rapid visuomotor decision task to examine how these deficits may interact to affect task performance.
Compared with healthy young adults, older adults made more errors in both decision-making and motor execution, especially
when the task required intercepting moving targets. This suggests that age-related declines in integrating perceptual and motor
information may contribute to functional deficits.

dorsal-ventral interactions; interception; object recognition; older adults; reaching

INTRODUCTION

Older adults exhibit functional deficits in many activities
of daily living that require integration of sensory, cognitive,
and motor processes. For example, driving requires rapid
visuomotor integration to choose an appropriate motor
response (e.g., judging a change in traffic lights to accelerate
or brake). Age-related declines in vision, decision-making, or
motor control are associated with deficits in many activities
of daily living (1–3). These declines have been extensively

investigated in isolation, however, the underlying interac-
tions that contribute to these deficits remain an open
question.

Slower response times in older adults during perceptual
decision-making are related to declines in sensory processes
mediated in part by the ventral visual processing streams (4,
5). The ventral visual stream links the primary visual cortex
to the inferior regions of the occipito-temporal cortex and is
involved in perceptual aspects of visual sensory processing.
Older adults show differences in performance on tasks that
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rely on ventral stream function, such as contrast discrimi-
nation (6–8), shape and object recognition (9–11), and
color perception (12–14), which may be due to underlying
changes in inhibitory neurotransmitters in the ventral vis-
ual stream (15).

The dorsal stream links the primary visual cortex to the
superior regions of the occipito-parietal cortex. Cells in the
dorsal visual stream are involved in visuomotor processing
for eye and hand movements (16). This stream facilitates the
visual control of movement, largely without conscious visual
awareness (17). Compared with the ventral stream, it has
been proposed that the dorsal stream exhibits earlier age-
related decline in older adults (18, 19). In particular, process-
ing of moving stimuli are impaired in older adults (20, 21).
These changes accompany deficits in slow smooth pursuit
eye movements used for tracking object motion (22, 23), but
the relationship between these changes and visuomotor per-
formance are not clear.

The differential age-related rates of decline in ventral and
dorsal regions could affect many activities of daily living
that require continuous and time-sensitive interactions
between the two streams (24), but this has remained unexa-
mined. Here, we hypothesized that older adults would ex-
hibit impaired interactions between the dorsal and ventral
streams during rapid visuomotor decision-making. To
engage the ventral stream, we asked participants to select
one of two alternative movements based on their judgment
of an object’s shape (25–27). We predicted that compared
with young adults, older adults would make more decision
errors and be less likely to make appropriate movement
adjustments during decision-making.

Furthermore, we used manual reaching (toward static
objects) and interception tasks (toward dynamic objects) to
engage the dorsal visual stream in different ways. Dorsal
frontoparietal areas are primarily engaged for planning and
execution of reaching movements (28, 29). Interception
movements also engage more ventral motion-sensitive areas,
the middle temporal (MT) and medial superior temporal
(MST) areas, for visual motion-processing (30, 31). How the
engagement of additional neural areas affects performance is
not clear, but our recent study has shown that under the
same time constraints, interception movements tend to be
less accurate than reaching movements (24). Motion-sensi-
tive areas and eye movements associated with motion-proc-
essing also show early signs of decline in older adults (18, 21,
22, 32). Therefore, our second prediction was that older
adults would make more decision- and execution-related
errors in the interception task than the reaching task.

METHODS
Participants

Twenty-six younger participants (16 women; 23.7 ± 5.5
yr), and fifteen older participants (11 women; 69.2 ± 4.0 yr)
completed the study. All participants were right-handed,
had no known history of neurological disorders, had no
current injuries or pain of the upper limbs and back, and
had normal or corrected-to-normal vision. Participants
gave verbal confirmation at the beginning of the task
about being able to identify both objects (circle and

ellipse); one additional participant was excluded from the
study before completion due to the inability to differenti-
ate the shapes. All the participants provided written
informed consent before participating and were compensated
for their time. Experimental procedures were approved by the
Institutional Review Board at the University of Georgia.

Apparatus

Participants were seated on a chair while their right hand
grasped the handle of a robotic manipulandum that moved
in a horizontal plane (KINARM End-Point Lab, KINARM,
Kingston, Ontario, Canada). Visual stimuli (including the
handle location) were projected at 60 Hz from a monitor
above the workspace onto a semitransparent mirror, which
occluded direct vision of the hand (Fig. 1A). The monitor dis-
played targets and a cursor representing the location of the
right hand in a veridical horizontal plane. During the per-
formance of the trials, the robot applied a constant back-
ground force (!3 N in the Y direction) to the handle and
recorded movement position and velocity at 1,000 Hz (24,
33). Eye-tracking data were also recorded at 500 Hz using a
video-based remote system (Eyelink 1000, SR Research,
Ottawa, ON, Canada) and used to track fixations to begin
each trial (see Experimental Design and Procedure), but not
analyzed further for the current study.

Experimental Design and Procedure

Experimental procedures and the young adult dataset
were described in a recent study (24). In brief, participants
performed rapid reaching and interception movements with
their right hand (see Fig. 1A). At the beginning of each trial,
participants were instructed to move the hand cursor (1 cm
diameter) into a yellow circle (2 cm diameter) that appeared
at the starting position at the midline of the visual display.
After reaching the starting position, participants were
required to fixate at a fixation cross also positioned along the
midline 22 cm away from the start position of the hand.
After 500 ms of maintaining eye fixation (as determined
from the eye-tracker) and hand position, both the fixation
cross and start position disappeared. After the fixation cross
disappeared, participants could move their eyes freely. After
a 200 ms delay, a yellow object was presented inside a white
rectangular box either on the left or right side, ±16 cm along
x-axis (see Fig. 1B). The location of the object along the y-axis
could vary between 14.5 and 17 cm (uniform distribution).
For the Reaching trials, the object stayed in its initial loca-
tion. During Interception trials, the object traveled at a con-
stant Euclidean velocity of ±40 cm/s for Fast trials and ±34
cm/s for Slow trials. The object could either be a circle (2 cm
diameter) or an ellipse (minor axis = 2 cm, major axis = 1.15 "
minor axis) depending on the experimental block.

In the No Decision condition, the objects were always
circles for every trial in the block. In the Decision condition,
the object for each trial was randomly selected to be either a
circle (50% of trials) or an ellipse. For each block of trials, the
object could either stay in the same position (Reaching) or
move horizontally across the screen (Interception). Hence,
in the No Decision blocks, participants knew beforehand
that all the objects would be circles, and for the Decision
blocks they were told the object could either be a circle or an
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ellipse. Participants were instructed to perform a reaching or
interception movement as quickly and as accurately as pos-
sible when the object was a circle, and to avoid the object
when it was an ellipse by moving the cursor in the opposite
direction toward a bar drawn parallel to the frontal plane
(Fig. 1B). For both Reaching and Interception trials, the
object remained on the visual display until it was hit or
the trial timed out. For the Interception trials, the maxi-
mum time on screen was determined by the object’s con-
stant Euclidean velocity: 800 ms for Fast trials and 950 ms
for Slow trials. The maximum times for the Reaching trials
were also 800 ms and 950 ms, to match the Interception
condition.

After the hit or the trial timed out, participants received
feedback of their performance for 500 ms. The object would
change the color from yellow to green (successful) or red
(unsuccessful). A trial was successful when a circle was hit
(i.e., the cursor position overlapped with the circle) or when
an ellipse was avoided when the trial timed out (i.e., the cur-
sor position never overlapped with the ellipse). A trial was
unsuccessful when an ellipse was hit or a circle was avoided.
The intertrial delay was between 1,500 and 2,000ms.

Each participant performed eight experimental blocks of
90 trials each (720 trials total). Rest breaks between blocks
were provided to participants as needed. Blocks were
randomized and consisted of a unique combination of condi-
tions: decision type (No Decision or Decision), movement
type (Reaching or Interception), and maximum trial

duration (Fast or Slow). To focus our analysis on the interac-
tion of decision-making and movement type, trials from the
Fast and Slow blocks were pooled; however, we report when
results for Fast or Slow blocks significantly differed from the
pooled results. During Decision blocks, object shape and
location of the objects along the y-axis were randomized
across trials within each block. During No Decision blocks,
location of the circles along the y-axis was randomized.

Data Analysis

All handmovement data were analyzed using MATLAB (v.
9.5.0, The MathWorks, Natick, MA) and Python (v. 3.7).
Statistical analyses were performed in R (version 3.6.0).

Hand movement data were filtered with a fourth-order
Butterworth low-pass filter with a 5 Hz cutoff (34). Reaction
time (RT) was calculated as the time between object onset
and the time when hand speed exceeded 5% of the first local
peak. Trials were excluded if RT was less than 100 ms. Peak
speed (PS) was calculated as the hand’s tangential velocity at
the first local peak after movement onset. To allow for com-
parison of qualitatively similar movements across No
Decision and Decision blocks, we excluded trials in which
participants were not moving toward the object throughout
the trial (i.e., moving toward the bar) in the PS analysis.

Initial decision errors were determined from the initial
direction of movement, calculated as the angle between the
midline and the vector formed between the starting hand
position and hand position at peak acceleration. Trials in

B
Reaching Hit Circle Interception Hit Circle Reaching Avoid Ellipse Interception Avoid Ellipse

−200 0 200
X position (mm)

0

100

200

300

400

500

Y 
po

si
tio

n 
(m

m
)

−200 0 200
X position (mm)

−200 0 200
X position (mm)

−200 0 200
X position (mm)

Hand PathObject Path

A

Fixation cross appears Target appears Object intercepted Feedback provided

Figure 1. The experimental setup and an exemplar trial. A: sample trial for Interception task. The green crosshair represents the participant’s gaze loca-
tion, the white cursor represents the participant’s hand location. After 500 ms of fixation on the fixation cross, a yellow target would appear on the left or
right side of the screen and move toward the other end of the white box. Participants were provided with feedback when the target was intercepted or if
the trial timed out. The target would turn red if the trial was unsuccessful or green if it was successful. B: example of hand paths and different trial scenar-
ios from a representative participant.
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which the initial direction was in the positive Y direction
were classified as aimed toward the object, and trials in the
negative Y direction were classified as aimed toward the bar.
Initial decision errors occurred when there was a mismatch
between the classified initial direction and the correct deci-
sion (i.e., aimed toward the object on ellipse trials or toward
the bar on circle trials). Final decisions were based on the
position of the cursor when the object was hit or the trial
timed out. Trials in which the final cursor position was closer
to the object on ellipse trials or closer to the bar on circle tri-
als were classified as final decision errors. A corrected initial
decision error was defined for trials in which an initial deci-
sion error occurred, but the final decision was correct.

Execution errors were identified on circle trials in which
the final decision was correct, but the participant did not
successfully hit the circle in the given time. Restricting the
analysis to trials in which the circle was attempted to be hit
allows for a comparison of No Decision blocks (in which all
trials involved attempting to hit the circle), and Decision
blocks (in which some trials involved an ellipse and/or a de-
cision to avoid the object). The execution errors resulted
from the cursor passing the Y position of the object without
hitting it (i.e., poor trajectory), or from the hand failing to
reach the Y position of the object (i.e., too slow).

Statistical Analysis

To compare performance and hand kinematic variables
across conditions, we conducted two-way repeatedmeasures
ANOVAs using movement type (Reaching or Interception)
as within-subject factor and age group (Young or Older) as
between-subject factor. The a level for significance was set at
0.05 and effect sizes are reported using generalized g2. Post
hoc pairwise comparisons were conducted using the Holm
correction. Levene’s test was used to evaluate the assump-
tion of homogeneity of variance. If the Levene’s test was sig-
nificant, data were first normalized using a logarithmic
transformation before the analysis. Linear regression was
used for bivariate comparisons, with a level set to 0.05, and
the statistical comparison of correlations between conditions
was done using the Dunn and Clark’s z for dependent groups
with nonoverlapping variables (35). The statistical tests were
conducted in R v.3.6.1, using the following packages: “afex,”
“emmeans,” “car”, and “cocor” (36).

RESULTS
Older Adults Show Fewer Corrections of Initial Decision
Errors

We first investigated decision-making performance of
young and older adults based on their movement kinemat-
ics. Initial decision errors were identified on trials in which
the initial hand movement direction did not match the
expected movement direction (i.e., incorrectly trying to
avoid a circle or hit an ellipse). Both young (t = !11.10, P <
0.001) and older adults (t = !8.97, P < 0.001) made more ini-
tial decision errors for Interception relative to Reaching
[main effect of movement type: F (1,39) = 191.91, P < 0.001,
g2 =0.48] (Fig. 2A). This suggests that compared with reach-
ing movements, dorsal-ventral interactions are compro-
mised during interception tasks.

Overall, older adults did not make significantly more ini-
tial decision errors than young adults [main effect of age: F
(1,39) = 3.63, P = 0.06, g2 =0.07] (Fig. 2A). However, initial de-
cision error rate depended on whether the trial was Fast (800
ms time out) or Slow (950 ms time out). In Fast trials, older
adults made significantly more initial errors [main effect of
age: F (1,39) = 5.67, P = 0.02, g2 =0.09], but made a similar
number of errors as young adults in the Slow trials [main
effect of age: F (1,39) = 1.38, P = 0.25, g2 =0.03]. This suggest
that older adults make more initial decision errors under
greater time constraints.

Older adults had a higher percentage of final decision
errors (i.e., final position closer to bar on circle trials or to the
object on ellipse trials) than younger adults [main effect of
age: F (1,39) = 31.90, P < 0.001, g2 =0.41], indicating that
older adults were more likely to not correct an initially incor-
rect decision. Indeed, though the percentage of initial and
final decision errors were positively correlated for both
young (Reaching: r = 0.44, P = 0.02, Interception: r = 0.46,
P = 0.02) and older (Reaching: r = 0.88, P < 0.001,
Interception: r = 0.92, P < 0.001) adults, the association
between initial and final decisions was significantly higher
for older adults for both Reaching (z = !2.53, P = 0.01) and
Interception (z =!3.16, P = 0.002) (Fig. 2B).

Why were older adults less likely to correct their initial
decisions? One possibility is that older adults weremore con-
strained by the motoric demands of the task. Supporting this
idea, both young (t = 8.30, P < 0.001) and older adults (t =
4.64, P = 0.001) had more corrections during Reaching than
Interception [main effect of movement type: F (1,39) = 75.98,
P < 0.001, g2 =0.26], and young adults were much more
likely to correct initial decision errors than older adults for
both movement types [Reaching: t = !5.43, P < 0.001,
Interception: t = 4.77, P = 0.001; main effect of age: F (1,39) =
31.99, P < 0.001, g2 =0.40] (Fig. 2C). Furthermore, older
adults with more initial decision errors during Interce-
ption were also less likely to correct those errors (r = !0.72,
P = 0.002), indicating that the initial decision errors were
not simply a result of a strategy to “offload” the decision
postinitiation (Fig. 2D). When further analyzing the speed
of the trials, young adults showed a significant positive
correlation for Interception for Slow trials (r = 0.40, P =
0.04), suggesting that at slower speeds, young adults could
more easily correct initial errors. These results suggest
that the capacity for online decision-making and move-
ment correction is greater when the movement is easier to
perform.

Older Adults Launch Interception Movements Earlier
during Decision-Making

As expected, the added neural processing required for
judging shapes led to a significant increase in reaction time
(RT) during Decision blocks relative to No Decision blocks
(t = 22.92, P < 0.001). The increase in RT for older adults (t =
!6.77, P < 0.001) was larger for Reaching than for
Interception trials [main effect of movement type: F (1,38) =
42.64, P < 0.001, g2 =0.22]. The interaction between age and
movement type was also significant [F (1,38) = 18.09, P <
0.001, g2 =0.11] (Fig. 3A), implying that older adults chose to
reduce decision time to initiate an earlier movement to
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intercept the moving object. Descriptive statistics for reac-
tion time (RT) and peak speed (PS) are reported in Table 1.

We first compared movement kinematics between Decision
and No Decision to eliminate any confounds in the interpreta-
tion of our results. Overall, PS increased from No Decision to
Decision, but there were no significant differences in the
increase in PS between the two groups [main effect of age: F
(1,39) = 0.00, P = 0.95, g2 < 0.001] or between movement types
[main effect of movement type: F (1,39) = 3.40, P = 0.07,
g2=0.03] (Fig. 3B). This suggests that when perceptual deci-
sion-making was added to the task, participants compensated
for the longer reaction times with highermovement vigor (37).

We then looked at how the increase in RT during Decision
blocks influenced initial decision errors. There was a strong

negative correlation between the increase in RT to Decision
from No Decision with the initial decision errors for both
Reaching (r = !0.78, P < 0.001) and Interception (r = !0.81,
P < 0.001) for older adults (see Fig. 3C, top). Furthermore,
among older adults, the difference in RT between Decision
and No Decision predicted the final performance (see Fig.
3C, bottom) in the task for both Reaching (r =!0.65, P = 0.01)
and Interception (r = !0.81, P < 0.001). Thus, older adults
who adjusted their RTs to be longer during Decision blocks
relative to No Decision had fewer initial and final decision
errors whereas older adults who “rushed” their decisions
(smaller difference between Decision RT and No Decision
RT) exhibited a higher number of initial and final decision
errors. When further analyzed between the speed of the tri-
als, the correlation in Reaching was not significant for Slow
trials (r =!0.26, P = 0.37).

For young adults, the correlation between RT adjustments
and initial errors was only significant for Reaching (r =
!0.52, P = 0.01) but not for Interception. Furthermore, the
relationship between RT adjustments during decision-mak-
ing and final decision errors was not significant in younger
adults (Reaching: r = 0.09, P = 0.66; Interception: r = 0.00,
P = 0.99) and significantly different from the correlations
observed in older adults (Reaching: z = 2.45, P = 0.01;
Interception: z = 3.19, P = 0.001). This suggests that, unlike
older adults, the choice to initiate movement early was not
associated with reduced decision accuracy as young adults
could countermand their decision during themovement.
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Figure 2.Older adults show fewer corrections of initial decision errors. A: initial decision errors were higher during Interception for both young and older
adults. B: percentage of initial decision errors correlated more strongly with final decision errors for older adults in both Reaching and Interception. The
dashed black line indicates no corrections were made during movements. C: corrected initial decision errors (change from initial decision to final deci-
sion) occurred more frequently during Reaching than Interception. Older adults corrected fewer initial decision errors. D: older adults with more initial de-
cision errors were also less likely to correct initial errors in Interception. $P< 0.05, $$P< 0.001.

Table 1. Reaction time and peak speed

Decision No Decision

Reaching Interception Reaching Interception

Reaction time, ms
Young 464 ± 10 414 ± 11 273 ± 6 251 ± 8
Older 555 ± 14 404 ± 15 331 ± 8 290 ± 11

Peak speed, mm/s
Young 1,029 ± 33 944 ± 30 935 ± 36 850 ± 32
Older 960 ± 43 837 ± 40 835 ± 48 777 ± 42

The values are shown as means ± SE. For Decision blocks, the
reaction times and peak speeds were significantly longer and
higher, respectively.
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Overall, the results for Reaching were consistent with
expectations—older adults were slower to initiate move-
ments during Decision trials, and individuals who took lon-
ger also made fewer initial and final decision errors. In other
words, older adults favored decision accuracy during
Reaching trials. In contrast, during Interception, older adults
took 114± 15 ms longer in Decision blocks than the No
Decision blocks, but this additional time was on average %50
ms shorter than the additional time taken by the young
adults (163± 11 ms). One explanation for this is that older
adults were more likely to prematurely launch the move-
ment before they had completed the decision during
Interception, resulting inmore erroneous decisions.

Decision to Move Early Is Associated with Poorer
Movement Execution in Older Adults

In addition to decision errors, participants could also
make errors specific to motor execution-related components
of the task. Possible errors include either a poor estimate of
the object’s position or an inability to adjust to the imposed
time constraints. These errors were identified only on circle

trials in which the final decision was correct, but participants
did not successfully hit the circle in the given time.

In the No Decision condition, older adults made more exe-
cution errors in Interception (t = 3.37, P = 0.003) and
Reaching trials (t = 2.13, P = 0.04) than young adults [main
effect of age: F (1,39) = 10.20, P = 0.003, g2 =0.14; Fig. 4A,
left]. Both young (t = !10.39, P < 0.001) and older adults (t =
!8.01, P < 0.001) made more errors in Interception than
Reaching trials [main effect of movement type: F (1,39) =
160.47, P< 0.001, g2 =0.59].

We correlated No Decision RT with the execution errors
during No Decision and found no significant correlation for
either young (Reaching: r = 0.38, P = 0.06; Interception: r =
0.22, P = 0.28) or older adults (Reaching: r = 0.19, P = 0.51;
Interception: r = 0.20, P = 0.46). Thus, the reaction times
alone were not predictive of accurate motor performance in
the No Decision condition. However, the number of execu-
tion errors made during the No Decision conditions was pre-
dictive of the change in RT between Decision and No
Decision conditions for both Reaching (r = !0.52, P = 0.04)
and Interception (r = !0.58, P = 0.02) for older adults, but
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Figure 3. Older adults launch interception movements ear-
lier during decision-making. A: the increase in reaction time
(RT) from No Decision to Decision was larger for Reaching
trials. Older adults showed a larger increase in RT during
Reaching and a smaller increase in RT during Interception
than young adults. B: The peak speed (PS) of the limb
movement increased from the No Decision to Decision, but
the increase in PS was similar across age group and move-
ment type. C: The difference in reaction time from No
Decision to Decision was negatively correlated with initial
decision errors (top panel) and final decision errors (bottom
panel) for older adults in both Reaching and Interception tri-
als. $P< 0.05, $$P< 0.001.
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not for young adults (Reaching: r = 0.16, P = 0.43;
Interception: r = !0.09, P = 0.66). These correlations were
statistically different between young and older adults for
Reaching (z = 2.09, P = 0.04) but not for Interception (z =
1.62, P = 0.10; Fig. 4B, top). The negative correlation between
these variables suggests that older adults who made more
execution errors during the No Decision condition were also
more likely to initiate their movements early during
Decision blocks.

In the Decision blocks, older adults made more execution
errors than younger adults in both Interception (t = 5.03, P <
0.001) and Reaching (t = 5.31, P < 0.001) trials [main effect of
age: F (1,39) = 36.08, P < 0.001, g2 =0.41; Fig. 4A, right].
Furthermore, the increase in execution errors during
Decision (relative to No Decision) was larger for older adults
[main effect of age: F (1,39) = 32.05, P < 0.001, g2 =0.34] for
both Reaching (t = 5.64, P< 0.001) and Interception (t = 3.07,
P = 0.01). Young adults made more errors in Interception
than Reaching (t = !2.79, P = 0.02) [main effect of movement
type: F (1,39) = 4.31, P = 0.04, g2 =0.03] but there were no dif-
ferences for older adults.

The number of execution errors in the Decision blocks
were correlated with the difference in RT between Decision
and No Decision for older adults in Reaching trials (r =
!0.53, P = 0.04, Fig. 4B, bottom), but not for young adults
(r = 0.18, P = 0.37). These correlations were also significantly
different (z = 2.18, P = 0.03). Execution errors during reaching
in Decision blocks were predominantly due to not reaching
the object in time (hand movement was too slow)—since
there was no salient cue to indicate the time constraint dur-
ing Reaching, older adults may have taken more time to
make their decision and consequently did not have enough
time to hit the object. For Interception, the correlation
between the difference in RT and execution errors was not
significant for young or older adults and there was no differ-
ence between the correlations (z = 1.08, P = 0.28).

Finally, we also performed secondary analyses to investi-
gate possible sex-related differences. Among older adults, we
had a higher proportion of females (11 of 15) and that could
have skewed the results. To test for possible sex-related dif-
ferences, we performed t tests comparing male and female
performance, separately for young and older adults. We
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Figure 4. Decision to move early is associated with deficits
in movement execution in older adults. A: older adults
made more Interception and Reaching execution errors
than young adults in the No Decision and Decision blocks.
Older adults had a greater increase in execution errors dur-
ing Decision blocks relative to No Decision. B: the differ-
ence in reaction time (RT) from No Decision to Decision
was negatively correlated with execution errors for older
adults in the No Decision blocks, for both Reaching and
Interception. In Decision blocks, the difference in RT from
No Decision to Decision was negatively correlated for older
adults for Reaching. $P< 0.05, $$P< 0.001.
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found no significant differences between the two sexes for
all our variables of interest (all t values <1.94, all P values
>0.05).

DISCUSSION
This study examined how aging impacts decision-making

and motion-processing for visuomotor performance. To that
end, young and older adults judged the shape of objects and
made manual reaching and interception movements based
on those decisions. We found that compared with young
controls, older adults corrected a smaller percentage of their
initial decision errors, resulting in a lower final decision ac-
curacy. Final decision errors were more strongly correlated
with a smaller reaction time increase during decision-mak-
ing in older adults than young adults, and execution errors
increased more during decision-making relative to young
adults. Together, these results confirm our first prediction
and suggest that older adults had a greater difficulty with the
online adjustments necessary to successfully decide on and
execute the appropriate movement. Furthermore, consistent
with our second prediction, these differences were exacer-
bated when the task required intercepting a moving object
rather than reaching a stationary object, suggesting that the
capacity for online decision-making and movement correc-
tions depends on task demands.

Initial Decisions Made by Older Adults Reflect a
Stronger Commitment to an Action Plan

Final decision errors were typically lower than the initial
decisions errors for all the participants (Fig. 2). This suggests
that participants changed their mind on the initial decision
during the movement. Decision-making involves accumula-
tion of noisy evidence to produce a decision (38, 39).
Previous work has shown that in a two-alternative forced
choice task, participants sometimes initiate limbmovements
before decision-making is complete and then change their
mind during the ongoing movement (40, 41). Resulaj et al.
(40) proposed a model showing that the change in the initial
decision may reflect that the sensorimotor system exploits
information that is still in the “processing pipeline” when
the initial decision is made to subsequently either reverse or
reaffirm the initial decision.

We found similar results in our study. Older adults made
slightly more initial errors than young controls, but this dif-
ference did not reach significance (P = 0.06). Importantly,
older adults corrected a smaller percentage of those initial
errors (Fig. 2C). This pattern of results suggests that: 1) older
adults may be less able to exploit sensory information in the
“processing pipeline” once the limb movement is underway;
and 2) this capability is further diminished when they inter-
cept moving objects. A simple interpretation of these results
is that online processing of visuomotor information during
movements may leave limited “bandwidth” for perceptual
decision-making in older adults, minimizing the likelihood
of online corrections to initial decision errors. In other
words, the initial decision made by older adults is a stronger
commitment to a plan of action, whereas younger adults are
not fully committed to their initial decision. The additional
visual motion-processing and continuous movement control
required during interception movements, especially for

older adults, may further reduce the likelihood for adjusting
decisions postinitiation (42).

Early Age-Induced Declines in Dorsal Stream
Processing May Underlie Execution Errors

In our study, participants had to make limb movements
toward static (Reaching) and dynamic (Interception) objects.
The frontoparietal areas along the dorsal visual stream are
involved in the control of reaching movements (28, 30, 43)
through facilitation of visual attention, eye movements,
motion-processing, and eye-hand coordination (44–46). The
different eye-hand coordination strategies required for inter-
ceptionmovements engage additional neural areas along the
dorsal stream, such as area MTþ that is involved in smooth
pursuit eye movements (47–50). In the No Decision condi-
tion, older adults made more movement execution errors
than young adults while performing interception move-
ments (Fig. 4A). These deficits may be due to the early age-
induced declines in dorsal stream-mediated pursuit eye
movements (22) as well as motion-processing (18, 19).

Humans produce different movement trajectories for
interception movements compared with reaching move-
ments (51). This has been attributed to a more pronounced
reliance on online feedback control for interception where
limb movements are regulated through continuous process-
ing of sensory information (52–54). Online feedback control
is facilitated by dorsal stream areas in the posterior parietal
cortex (55, 56). Not surprisingly, reaching studies using the
target-jump paradigm have shown deficits in online feed-
back control in older adults (57, 58). We only measured one
aspect of kinematic performance, hand peak speed (PS), and
found no differences between the groups or between move-
ment type conditions. However, the fact that older adults
made more execution errors does support the notion that
online feedback control may be compromised in older
adults.

Visuomotor Decision Errors Suggest Impaired Ventral-
Dorsal Stream Processing in Older Adults

Shape recognition is primarily facilitated by the ventral
visual stream (25–27, 59). Accordingly, the Decision condi-
tion was assumed to engage additional areas along the ven-
tral visual stream to differentiate the circular targets from
the ellipses. We found only small, nonsignificant differences
in initial decision errors between older and young adults.
This suggests that neural processing in the ventral stream
may not deteriorate to the same extent as the dorsal stream,
resulting in somewhat intact cognitive processing relative to
deficits inmotor control in older adults (60, 61).

One interesting result in our study was that initial decision
errors were higher during the interception movements for
both groups (Fig. 2A). As the total trial time was fixed and
limited to 800–950 ms, participants in both groups may
have initiated interception movements prematurely, before
the decision-making process was complete to secure enough
time to complete the movement (24). The reaction time
adjustments during Decision blocks were indeed shorter for
interception movements than reaching movements for both
groups, but even more pronounced among older adults (Fig.
3A). This resulted in more initial and final decision errors
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during interception, supporting recent evidence that deci-
sion-making is impaired when the movement required is
more demanding to perform (62, 63). The dorsal and ventral
streams are driven predominantly bymagnocellular and par-
vocellular inputs, respectively, and axons of parvocellular
cells have slower conduction velocity than magnocellular
cells (64). Consequently, information-processing tends to be
slower in the ventral stream (65). The relative sluggishness
of this pathway and the additional burden of online sensory
feedback processing during interception movements may
have resulted in the limb motor system initiating move-
ments before the decisions signals in the ventral networks
reached the threshold for an overt decision.

There could be other factors that could have also contrib-
uted to decision and execution errors. A recent study has
shown that GABA levels decline along the ventral stream in
older adults and this decline likely also contributes to less
distinct neural activation patterns for recognizing faces and
houses (15). This would suggest that shape processing should
also be deficient in older adults. Indeed, many older adults
reacted more slowly than younger adults during Decision
blocks of reaching movements. Those older adults who
launched movements early made more decision errors. In
addition, age-induced proprioceptive deficits (66, 67) could
have also contributed to higher number of execution errors
made by older adults. However, quantifying the contribu-
tions of these deficits is beyond the scope of this work.

Subcortical Areas May Trigger Shorter Reaction Times
during Interception Movements in Older Adults

The frontoparietal areas for reaching movements are well
delineated and have been previously described (28, 29, 68).
These neural areas are involved in sensorimotor transforma-
tions associated withmotor planning and execution. In addi-
tion to these areas, interception movements also involve the
middle temporal (MT) and medial superior temporal (MST)
areas for motion-processing (for review, see Refs. 31 and 69).
These two areas are reciprocally connected with both premo-
tor (70) and parietal areas (69) and process motion for con-
tinuous visual control of interception. These areas are also
involved in generation of smooth pursuit eye movements
that play a significant role in the control of interception
movements (71). The engagement of additional neural
areas for motion-processing would suggest longer proc-
essing times and delayed reactions for interception move-
ments. However, our data do not support that. Reaction
times are comparable for reaching and interception move-
ments (Table 1). This suggests that motion-processing
areas may play an important role in the online control of
interception movements.

The reaction time (RT) adjustments made by older
adults during Decision blocks of interception movements
were shorter than during reaching movements. Thus,
older adults launched limb movements more rapidly dur-
ing Decision Interception trials. Though this seems sur-
prising, other studies have also shown similar results
where older adults made more ballistic interception move-
ments than young adults (32, 72). These results suggest
that older adults may have experienced an elevated sense
of perceived urgency during interception movements.

Though we did not observe any differences in limb kine-
matics (peak speed; PS) between the two groups, the
shorter reaction times support this interpretation.

Another possibility is that rapidly moving stimuli may
preferentially release in older adults the manual following
response (73), a short-latency and stereotyped motor
response generated by direct retinotectal and tecto-reticulo-
spinal pathways that target proximal arm muscles (74, 75).
The manual following response is a primitive protective
reflex that is elicited without sufficient preparation and does
not have the sophistication of voluntary motor responses.
Hyperactivation of the manual following response pathway
may cause an early release of these motor responses in older
adults. The unsophisticated spatiotemporal characteristics
of these movements may be responsible for more erroneous
motor performance (Fig. 4, A and C). Hyperactivation of this
pathway in older adults might be caused by two factors: 1)
maladaptive slowing of neural processing downstream of
MTþ in the parietal cortex (76); and 2) dopamine depletion
in the basal ganglia (77) and consequent disinhibition of the
superior colliculus. This would leave reflex pathways for the
manual following response hyperexcitable in older adults
(78) and cause faster and more ballistic movements, espe-
cially when the visual stimuli are moving.

Prefrontal processing is also known to exhibit age-induced
decline and could have affected response inhibition, i.e., pre-
vented an early release of movement without complete prep-
aration (79–81). But impaired response inhibition would
have affected both reaching and interception movements
similarly. However, older adults initiated early movements
only during interception trials of Decision blocks. This sup-
ports our view that alternative factors may explain shorter
reaction times for interceptionmovements.

Limitations

There are well-characterized age-related declines in cogni-
tive processing, especially in tasks that involve a high degree
of cognitive control (82). These declines correspond with
structural and functional differences in prefrontal cortex.
Prefrontal cortex has direct reciprocal connections with both
dorsal and ventral stream areas, and may facilitate interac-
tions between the two streams (83, 84). Therefore, given the
cognitive components of the present task, including
demands related to task switching, goal maintenance, and
response inhibition, it is possible that our observed visuomo-
tor impairments in older adults may arise from declines in
prefrontal function. We aim to test the specific contributions
of prefrontal areas and its role in ventral-dorsal stream proc-
essing in future work.

Second, we did not have a sex-balanced design—there were
a greater proportion of males in the young adult group (10 of
26) than the older adult group (4 of 15). Previous studies have
shown sex-based differences in brain activity in sensorimotor
areas, particularly the dorsal stream during movement prepa-
ration (85, 86). Thus, though we did not find any significant
differences in task performance between male and female
participants in either the young or older adult group, we can-
not exclude the possibility that our observed deficits in visuo-
motor performance in older adults may in part be related to
sex differences between the two groups.
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Conclusions

In summary, our results showed that compared with
young adults, older adults were less effective in correcting
initial decision errors made during both reaching and
interception movements. Older adults also made more de-
cision errors and movement execution errors during inter-
ception movements than reaching movements, reflecting
the role of differential task demands in online decision-
making and visuomotor control. Overall, these results
suggest that early age-induced declines in dorsal stream
processing and the ability to incorporate ventral stream
information during movement may have a strong effect
on visuomotor function in older adults.
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