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Abstract

The classical serendipity and mixed finite element spaces suffer from poor approx-
imation on nondegenerate, convex quadrilaterals. In this paper, we develop families
of direct serendipity and direct mixed finite element spaces, which achieve optimal
approximation properties and have minimal local dimension. The set of local shape
functions for either the serendipity or mixed elements contains the full set of scalar
or vector polynomials of degree r, respectively, defined directly on each element (i.e.,
not mapped from a reference element). Because there are not enough degrees of free-
dom for global H' or H(div) conformity, exactly two supplemental shape functions
must be added to each element when » > 2, and only one when r = 1. The specific
choice of supplemental functions gives rise to different families of direct elements.
These new spaces are related through a de Rham complex. For index r > 1, the new
families of serendipity spaces 2.7 4 are the precursors under the curl operator of
our direct mixed finite element spaces, which can be constructed to have reduced or
full H (div) approximation properties. One choice of direct serendipity supplements
gives the precursor of the recently introduced Arbogast—Correa spaces (STAM J Numer
Anal 54:3332-3356, 2016. https://doi.org/10.1137/15M1013705). Other fully direct
serendipity supplements can be defined without the use of mappings from reference
elements, and these give rise in turn to fully direct mixed spaces. Our development is
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constructive, so we are able to give global bases for our spaces. Numerical results are
presented to illustrate their properties.

Mathematics Subject Classification 65N30 - 65N12 - 65D05

1 Introduction

Serendipity finite elements ., (E ) can be defined on a rectangle E [19, 23, 46]. Over
a rectangular mesh, they merge together to form H! conforming spaces of scalar
functions. These finite elements have the distinction of having a minimal number of
degrees of freedom (DoFs) for the given order of approximation r + 1 in L. Similarly,
the Brezzi-Douglas-Marini mixed finite elements BDM,. (E ) [20] are defined so that
they merge together on a rectangular mesh into H (div) = {V e(L»?:V.ve L2}
conforming spaces of vector functions. These finite elements also have a minimal
number of DoFs for the same order of approximation.

Both of these elements appear in the periodic table of the finite elements as given
by Arnold and Logg [13] (where they are denoted ., A and .%, A!, respectively).
They should be studied together, since they are related by a de Rham complex [5, 11,
12]

R e 7 1(E) =2 BDM, (B) —2 P, (E) —> 0, (1)

which implies that BDM, (E) = curl .4 (E) ®xP,_; (E), where P, _; (E) are poly-
nomials of degree r — 1.

In this paper, we define new families of (we call them direct) serendipity and mixed
finite elements on a general nondegenerate, convex quadrilateral E. These new finite
elements generalize the complex (1), and they maintain H' or H(div) conformity,
provide optimal order approximation properties, and possess a minimal number of
DoFs.

1.1 Existing finite elements

The serendipity finite elements on rectangles . (E), especially the 8-node biquadratic
(r = 2) and the 12-node bicubic (r = 3) elements, have been well studied for many
years. They appear in almost any introductory reference on finite elements, e.g., [19,
23, 46], and they are provided by software packages both in academia [27] and indus-
try [35]. Compared with the full tensor product Lagrange finite elements IP’,,,(E )
serendipity finite elements use fewer degrees of freedom, and they are usually more
efficient in terms of the number of local computations performed. It was not until
recently, however, that a general definition of the serendipity finite element spaces of
arbitrary order on rectangles in any space dimension was given by Arnold and Awanou
[6, 7] (see also [32]).

The serendipity finite element spaces work very well on computational meshes
of rectangular elements, but it is well known that their performance is degraded on
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quadrilaterals when the space is mapped from a rectangle, when » > 2. This is not
the case for tensor product Lagrange finite elements [8, 36, 38]. To be more precise,
mapped serendipity elements of index » do not approximate to optimal order » 4 1 on
E, but the image of the full space of tensor product polynomials P, , (E) maintains
accuracy on E. We note that Rand, Gillette, and Bajaj [40] recently introduced a new
family of Serendipity finite elements based on generalized barycentric coordinates
of index r = 2 that is accurate to order three on any convex, planar polygon. A
generalization to any order of approximation was given by Floater and Lai [31], but
on quadrilaterals, they require dim P, 4 r shape functions, which is more than the
minimal required when r > 2.

There are many families of mixed finite elements on rectangles, beginning with
those of Raviart and Thomas [41] and generalized by Nédélec [39]. These and the
BDM,; finite elements are extended to quadrilaterals using the Piola transform [41, 48].
For most spaces, this creates a consistency error and consequent loss of approximation
of the divergence [1, 9, 16, 21, 48].

The construction of mixed finite elements on quadrilaterals that maintain optimal
order accuracy is considered in many papers. Most address only low order cases (see,
e.g., [15, 17,22, 26, 37, 43, 44]). The exceptions we are aware of are the families of
finite elements of Arnold, Boffi, and Falk (ABF,.(E)) [9], Siqueira, Devloo, and Gomes
[45], and Arbogast and Correa (AC, (E) and ACfd(E ), written in this paper as AC/.(E)
and AC.~!(E), respectively) [1]. The ABF elements are defined for rectangles and
extended to quadrilaterals in the usual way (i.e., by mapping via the Piola transforma-
tion). They rectify the problem of poor divergence approximation by including more
degrees of freedom in the space, so that approximation properties are maintained after
Piola mapping. The spaces of [45] also involve the Piola map, but in a unique way.
They also add shape functions to their space to obtain accuracy. The AC elements use
a different strategy. These elements are defined by using vector polynomials directly
on the element (i.e., without being mapped) and supplemented by two vector shape
functions defined on a reference square and mapped via Piola. The AC spaces have
minimal local dimension with respect to the requirement of global H (div) conformity
and optimal order of approximation.

1.2 New finite elements

In this paper, we introduce new families of direct serendipity and mixed finite elements
that have optimal approximation properties of all orders r = (0, )1, 2, ... and maintain
minimal local dimension. They are direct in the sense that the shape functions contain
a full set of polynomials of degree r defined directly on the element, as in the AC
spaces. Because there are not enough degrees of freedom to achieve H! or H (div)
conformity over meshes of quadrilaterals, supplemental functions need to be added to
each element. These supplemental functions can be defined in many ways as we will
see, and each choice gives rise to a different family of direct finite elements. These
families are novel, and each finite element of a given index r in the family is a novel
finite element, except possibly for the low order elements (r < 2) of some specific
families, since as we noted above, many low order finite elements are known to exist.
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932 T. Arbogast et al.

The families of direct serendipity elements have the same number of degrees of
freedom as the corresponding classical serendipity element, and they take the form

2.7,(E) =P.(E) ®S77(E), r>1. 2)

Each family is defined by the choice of the two supplemental functions (or one, if
r = 1) spanning S? Z(E). We give a very general, but explicit, construction for these
supplements. They can be defined directly on E, or they can be defined on E and
mapped to E. In fact, we will construct a nodal basis over E, and these nodal basis
functions can be merged together to give an H'! conforming global basis. When r = 1
we obtain new elements akin to barycentric coordinates (i.e., they are linear on edges
and sum to one, but they are not necessarily positive everywhere).

There are two classes of families of direct mixed elements, which correspond to
reduced and full H (div)-approximation. For index r, a vector function is approximated
to order r + 1 accuracy, but the divergence of the vector is approximated to order r — 1 or
r for reduced and full H (div)-approximation, respectively. Each class of direct mixed
elements has the same optimal number of degrees of freedom as the AC elements of
that class. They take a form similar to (2), which is

VI7U(E) =PHE)®SY(E)., VI(E)=V/ ' (E)®xP.(E). r=1, (3

for the reduced and full H (div)-approximation spaces, respectively, where P, are
homogeneous polynomials of degree r. Again, each family is defined by the choice
of the two supplemental functions spanning S}’(E ). When r = 0, we also construct
VO(E) = PJ(E) & xPo(E) & Sy (E) with a single supplement.

The serendipity and mixed families are related by de Rham theory:

curl S77 (E) = SY(E). ©)

We define one family of direct serendipity elements that is the precursor of the reduced
and full AC spaces. We also define many fully direct serendipity elements that use no
mappings to define S? < (E), which in turn generate new reduced and full direct
H (div) approximation mixed spaces that use no mappings whatsoever.

1.3 Outline of the paper

We set some basic notation in the next section. We construct new families of direct
serendipity elements in Sect. 3 for any index r > 2, and in Sect. 4 for index r = 1.
Our development is constructive, and results in a local nodal basis. These serendipity
spaces do not involve mappings from a reference element. In Sect. 5, we define direct
serendipity spaces based on supplements that are mapped from a reference element
(when r > 1). We discuss the stability and approximation properties of the new direct
serendipity elements in Sect. 6.

In Sect. 7, we turn our attention to the construction of direct mixed finite elements
through a de Rham complex. We recover the spaces ACﬁ_l (E) and AC/.(E) before
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defining new direct mixed finite element spaces, which do not require mappings from
a reference element. Implementation is discussed, either using the hybrid method,
or using an H (div)-conforming global basis, which is constructed. We discuss the
stability and approximation properties of the new mixed elements in Sect. 8. Some
numerical results illustrating the performance of our new direct serendipity and mixed
finite elements appear in Sect. 9. Finally, a summary of our results and conclusions are
given in the last section of the paper. Moreover, a second de Rham complex involving
the gradient and curl operators provides new H (curl) = {V € (L*»? : curlv € L2}
elements as well.

2 Some notation

Let P, (w) denote the space of polynomials of degree up to r on w C R?, where d = 0
(a point), 1, or 2. Recall that

. i _ (r+d\ _ (+ad)!
dim P, (RY) = ( ’ ) - )
Let P, (w) denote the space of homogeneous polynomials of degree r on w. Then
.= dy _ r+d-—1 _(F—i—d—l)'
dlmPr(R)—< d—1 )_—r!(d—l)!’ > 1 (6)

Let the element £ C R? be a closed, nondegenerate, convex quadrilateral. By non-
degenerate, we mean that £ does not degenerate to a triangle, line segment, or point.
We choose to identify the edges and vertices of E adjacently in the counterclockwise
direction, as depicted in Fig. 1. Let the edges of E be denoted ¢;, i = 1, 2, 3,4, and
the vertices be X, = e1Ne2, Xy 2 =exMNe3, X, 3 =e3Nes, and Xy 4 = €1 Ney. Let
v; denote the unit outer normal to edge ¢;, and let 7; denote the unit tangent vector
of e; oriented in the counterclockwise direction, for i = 1, 2, 3, 4. Let the reference
clement E be [—1, 1]2. Define the bilinear and bijective map Fg : E — E that maps
the vertices of E to those of E, oriented with (—1, —1) being mapped to X, 1.

We define the linear polynomial A;(x) giving the distance of x € R? to edge ¢;
opposite the normal direction. It is

)\.i(X):-(X—X;k)'Ul’, i=17273745 (7)
where X} € e; is any point on the edge. If X is in the interior of E, these functions are

strictly positive, and each vanishes on the edge which defines it.
We denote by Fg the pullback map associated with F- ! that is, Fg is the map

taking a function qS defined on E to a function ¢ defined on E by the rule

P(x) = F(d)(x) = p(%), 8)
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Fig.1 A reference element E=[-1,1]%and quadrilateral E, with edges ¢; and ¢;, outer unit normals V;
and v;, tangents 7; and 7;, and vertices (—1, —1) and x,, 1, etc., respectively

where x = Fg (x). We denote by F}E the Piola map taking a vector function 1/} defined
on E to a vector function Y defined on E by the rule

1 N
Y(x) = 7. DFe X) ¥ (x), &)

E

where D Fg (X) is the Jacobian matrix of Fg and Jg is its absolute determinant.
Recall Ciarlet’s definition [23] of a finite element.

Definition 1 (Ciarler 1978) Let

1. E c R?beabounded closed set with nonempty interior and a Lipschitz continuous
boundary,

2. & be a finite-dimensional space of functions on E, and

3. /" ={N|, N, ..., Ngim 2} be a basis for &'

Then (E, &2, A) is called a finite element.

Our task is to define the shape functions & and the degrees of freedom (DoFs)
A . The DoFs give a basis for &2’ provided that we have unisolvence of the shape
functions (i.e., for ¢ € &, Nj(¢) = 0 for all j implies that ¢ = 0). To achieve
optimal approximation properties, we will require that & > P, (E) for each index r.
That is, the polynomials will be directly included within the function space, and hence
we call our new finite elements direct serendipity and direct mixed finite elements.

Let £2 C R? be a connected, polygonal domain with a Lipschitz boundary (i.e.,
£2 has no slits), and let .7}, be a conforming finite element partition or mesh of 2
into nondegenerate, convex quadrilaterals of maximal diameter 4 > 0. The DoFs
must be defined so that the shape functions on adjoining elements merge together. For
serendipity spaces, we want the global space to reside in H'(£2), so the elements must
merge continuously across each edge e. For mixed spaces, the vector variable must lie
in H (div; £2), which means that the normal components (fluxes) of the vectors on an
edge e in adjacent elements must be continuous.
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Table 1 Geometric decomposition and number of degrees of freedom (DoFs) associated to each geometric
object of a quadrilateral for a serendipity element of index r > 2.

Dimension Object name Object count DoFs per object Total DoFs

0 Vertex 4 1 4

1 Edge 4 dim P, _»(R) 4(r—1)

2 Cell 1 dimP,_4(R?) Lo =20 -3

3 Direct serendipity elements whenr > 2

We present our definition of direct serendipity elements when » > 2 in this section.
The case r = 1 requires special treatment, and will be given below in Sect. 4.

Our dual objectives are that P, (E) C 2.7, (E) and that shape functions on adjoin-
ing elements merge continuously, i.e., so the space over §2 satisfies 2.7,(£2) C
H'(£2). These objectives require us to consider the lower dimensional geomet-
ric objects within E (as in [6]). The minimal number of DoFs associated to each
lower dimensional object must correspond to the dimension of the polynomials of
degree r that restrict to that object. These numbers are given in Table 1. A quadri-
lateral has 4 vertices, 4 edges, and one cell of dimension 0, 1, and 2, respectively.
Each vertex requires dimP,(R%) = 1 DoF, the interior of each edge requires
dimP,_»(R) = r — 1 DoFs (not counting the two vertices), and the interior of each

cell requires dim P,_4(R?) = <r ; 2) = %(r — 2)(r — 3) DoFs (not counting the

edge and vertex DoFs). There are cell DoFs only if » > 4, but the formula works for
r > 2. The total number of DoFs is then

1 1
D =444 -1+ -0 -2)r —-3) = E(r +2)r+1)+2=dimP.(E) + 2,
(10)
and so to define 2.7, (E), we will supplement P, (E) C 2.7, (E) with the span of
two linearly independent functions, ¢, 1(X) and ¢; 2(x). We have many choices for the
supplemental functions, the span of which is denoted Sr@ 4 (E) = span{¢s. 1, ¢s2}.

Each choice gives rise to a distinct family of direct serendipity elements of index
r > 2; that is, the shape functions (£ in Definition 1) are

DS E) = 2.9 (E; ¢s.1, ¢5.2) = P (E) @ S77 (E). (11)

We define the DoFs (.4 in Definition 1) as a set of nodal functionals N; defined at
a nodal point xode e

j
N = {N; : Ni(p) = p(x1°%) forall p(x), i =1,2,.... D,}. (12)

As depicted in Fig. 2, for vertex DoFs, the nodal points are exactly the vertices Xy 1,
Xy,2, Xy,3, and x,, 4 of E. We have choices for the location of the rest of the nodal points.
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Fig.2 The nodal points for the DoFs of a direct serendipity finite element, for small r

For edge DoFs, we simply choose nodal points so that they, plus the two vertices, are
equally distributed on each edge. There are » — 1 nodal points on the interior of each
edge, which can be denoted x, ;j, j = 1, ...,r — 1, for nodal points that lie on edge
e;,i = 1,2,3,4, ordered in the counterclockwise direction. The interior cell DoFs
can be set, for example, on points of a triangle T strictly inside E, where the set of
nodal points is the same as the nodes of the Lagrange element of order » — 4 on the
triangle 7. We denote the interior nodal points as Xg ;, i = 1,..., %(r —2)(r — 3).
The total number of nodal points is indeed D,..

We will define a basis for the shape functions &2 dual to 4", which will give
unisolvence and a properly defined finite element. Such shape functions are called

nodal basis functions. For a nodal point x‘}"de, they have the property that N;(¢;) =

i (x‘}"de) = §;;, the Kronecker delta. But first, we define the supplemental functions.

3.1 Supplemental functions

As stated above, we define distinct families of direct serendipity finite elements
depending on a choice of two supplemental functions. These will be defined by a
choice of four functions, two of which are linear polynomials, denoted X4(x) and
X13(x). The other two functions should be continuous on E (and so bounded), and
they are denoted R13(x) and Ry4(x). The supplemental functions are then

bs.1 = rararyPRi3 and ¢so = All3kq§2R24, (13)
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Fig. 3 TIllustration of the zero line %54 of Ayg(X) = —(x — x§4) - vp4 and the intersection point X13 =
A N L, if it exists

and the supplemental space is defined as

877 (E) =S/ (E; haa, Ri3, M3, Roa) = span{iadadly > Ris, MiAshi3” Roa).
(14)

When r = 2, A4 and A3 are not needed.

The linear function Ay4 is defined by its zero set line %54. As shown in Fig. 3,
let .Z1 and .Z5 be the infinite lines containing the edges e; and e3, respectively. We
require that %54 is chosen to intersect both .} and .#3. Moreover, when e and e3 are
not parallel, £} and %3 intersect in a point Xj3 = %] N %3, and we also require that
X13 & 254 (i.e., so that X24(x13) # 0). In a similar way, %3, the zero set line of A3,
is chosen to intersect the lines % and % extending e, and ey, respectively, and when
they are not parallel, .Z3 must avoid the intersection point xp4 = % N %,. Let vyq
and vy3 denote a unit normal to %24 and %13, and let X3, and x}; denote any point on
these lines, respectively. Then we define

Aa(X) = —(X —X34) - v24 and A13(X) = —(X —XJ3) - V3. (15)

This definition is very general, but it is sufficient to provide a well defined finite
element; however, accuracy considerations require a more restrictive definition, such
as that given in Lemma 1 (where %4 should intersect e and e4, and %3 should
intersect e; and e3). We remark that a simple choice is to take

i Ay — A i Al —A
)\;anle _ 2 4 and )\il;nple _ 1 3 ’ (16)
llva — vall lvr = vs]l

although the normalization is not strictly necessary. Later in (97) we will need the
tangent vectors 724 and 713, defined counterclockwise from the normals vy4 and vy3,
respectively.
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938 T. Arbogast et al.

The continuous functions Rj3 and Ry4 are defined to satisfy the properties

Riz(X)]e, = —1, Ri3(X)]ey =1,

a7)
Ry (X)[e, = —1, Ry (X)[e, = 1.

They are =1 on opposite edges, but arbitrary on the other two edges. A smoothness
requirement will be added later in Lemma 1. A simple choice is to take the rational
functions

and R;mele(x) _ Ao (X) — Ag(x) (18)

s1mple( ) = A (X) — A3(x)
A2(X) + Aq(X)

A1(X) + A3(X)

(note 'Ehat the denominators do not vanish on E). Qne could also use the bilinear map
Fg: E — E and Fg discussed in Sect. 2, where E = [—1, 1]2, to define

mapped(x) FE (%)) and Rmapped( ) = Fg()eZ) 19)

Theorem 1 Let E be a nondegenerate, convex quadrilateral. Suppose that A3 and Ay
are linear functions with zero lines that intersect, for 13, the lines containing e, and
e3, and for La4, the lines containing e> and es, but avoiding the intersection points if
they exist. Suppose also that the bounded functions R13 and Raa are continuous and
satisfy (17). Then forr > 2,

9.9+(E) =P.(E) ®S77 (E), S7”(E) = span{A2rary > Rz, MAsh3 > Roa)

with nodal DoFs defined by (12), is a well defined finite element. Moreover, 9. (E)
has the minimal possible dimension (10) needed for H' conformity, and so it is a
direct serendipity finite element.

It remains only to prove that the DoFs are unisolvent (i.e., that .4 is a basis for the
dual space). We will do this by constructing explicitly a nodal basis, which could be
used in practical implementations if one wished to do so.

Remark 1 If E is arectangle, the classic serendipity spaces arise from our construction
using a specific set of choices. For simplicity, assume E = E =[—1,1isthe square
oriented with e; C {(—1, y) : y € R} being on the left (every other rectangle is affine
equivalent to E). To recover the classic serendipity space .7, (E), take in 2.7, (E)
A3 = Y + c13 and Apg = X + cp4 for some constants ¢q3 and cp4, and take Rj3 = X
and Ry4 = ¥, which is the simple choice (18). All other choices give new serendipity
finite elements on the square, to the best of our knowledge. However, since these are
defined in a nonsymmetric way, they are probably of little interest.
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3.2 Proof of Theorem 1: construction of nodal basis functions
We define

Rix)=3(1 - Ri3®), R3x) = 3(1 + Ri3(x),

(20)
Ry®) = 3(1 = Ru(®),  Ra(x) = 3(1 + Ru(x),

so that R; is 1 on edge ¢;, 0 on the opposite edge, and arbitrary on the other two edges.
Note that

2.7 (E) = Pr(E)
+ span{Aoiarly “Ri, Aoharly 2R3, MAsA, 3 2R, MASA P Ra). (21)

3.2.1 Interior cell nodal basis functions

For the entire cell £, we have interior shape functions only when » > 4 (recall Table 1).
These shape functions are

AA2A3 4P, g, (22)

and they vanish on all four edges (i.e., at all edge and vertex nodes). Let {¢g ;} C
P,_4 be a nodal basis for the cell nodes {Xg ;}, where i =1, ..., dim P,_4. That is,
¢E,i(Xg, ;) = ;;. Our interior cell nodal basis functions are then

A (X)A2(X)A3(X) A4 (X)PE.i (X)

Ci=1,...,dmP,_s  (23)
AMEXE DM XE i DA3(XE, i) A4 (XE, ;)

¥E,i(X) =

3.2.2 Edge nodal basis functions
We construct ¢, 11(x), which is 1 at X, 11 and vanishes at all other nodal points. The
construction of the other edge nodal basis functions is similar.
For some p € P._3(FE) (take p = 0 if r = 2), we let
pe1 = hora(A3p + 13, °R1) € 2.7 (E). (24)
This function vanishes on all edges but e;. Let

g =h3p+ 5 Ry

We want ¢ to vanish at the nodes X, 1; fori = 2,...,r — 1; that is, we want p to
satisfy the conditions

-2
_ Moy~ (Xe,1i)

, Vi=2,...,r—1 (25)
A3 (Xe,17)

p(Xe 1) =
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(note that A3(X,,1;) # 0). These r — 2 conditions uniquely define p along the edge ej,
i.e., they define p € P,_3(e;) as a function of r = x - 71. The coefficients can be found
using Newton’s divided difference interpolation formulas for the points #; = X, 1; - 7
(i =2,...,r — 1) and values given on the right hand side of (25). For example, the
low order cases are

0, r=2,
_ A2u(Xe12) .3
PO, =1 2312’ ’ (26)

)\%4()(9,13) )%4()(& 12)

2
_)\24(Xe,12) _ Ma(Xe13) A3(Xe,12) (
A3(Xe,12) (3 — 1)

t—1n), r=4.

We define p(x) by extending p(¢) to E constantly along perpendicular lines, i.e.,
p(x) = p(x-11). 27)

Our construction will succeed provided g (X,,11) # 0. So suppose to the contrary that
q(Xe.11) = 0. We restrict x to . (the line extending e, as in Fig. 3) and lett = x - 7.
Conversely, given ¢, there is a unique x € .Z] such thatx-7; = t. Let A3(1) = A3(x) on
A, and similarly A4 (t) = A24(x). These functions are linear in 7. Since Rj(x) = 1
on eg, g (x) restricted to ej is the polynomial g € P,_5(e;) defined by

G(t) = a3(t) pt) + A5, 2 (0).

We have assumed that g (t1) = 0,s0 G (t;) = q(x.,1;) = Oforalli =1,...,r—1.That
is, g () is a polynomial of degree r — 2 vanishing at » — 1 points, and so it vanishes
identically. We have two cases to consider. First, suppose that the lines through e and
e3 intersect at x13 (see Fig. 3). Now

0=q(xi3- 1) = A3(x13) p(X13 - 1) + A5 2(X13) = Ay 2(x13) # 0

is a contradiction, since A3(x13) = 0 and A24(x13) # O by our choice of this linear
function. Second, suppose that the lines through e; and e3 are parallel. Then A3|,, =
o > 0 is a strictly positive constant, and so

0=3q(t) =ap(t) + 1320 = Ay %(1) = —ap(t) € Pr_s(er).

This is clearly a contradiction, since the zero line of 1,4 is transverse to e3 (again by
our choice) leading us to conclude that )»522 must have strict degree r — 2.
We have concluded that g(x.,11) # 0, and so also ¢, 11(X.,11) # 0. We complete

the construction by defining

dim P, _
be11(X) — X0 E) (X)) 0B ()
Pe1(X) = : (28)
(be,l](xe,l])
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The nodal basis functions {¢, ;; : i =1,2,3,4, j =1,...,r — 1} for the other edge
nodes are defined similarly.

3.2.3 Vertex nodal basis functions

For the vertices, r > 2, so we can define the shape functions

Dv,i (X) = Xi12(X) Aj43(X)
i+1r—1

=)D kit ®ekt) hig3Ke k) Gere (), i=1,2,3,4,  (29)
k=i (=1

wherein we interpret indices modulo 4. These four functions vanish at all of the edge
nodes, and ¢, ; (Xy,j) = 0ifi # j and is positive otherwise. The nodal basis functions
are then

dimP,_4(E
bui(x) — S0 g () 9B (X)

i=1,2,3,4. 30)
¢v,i(xv,i)

@v,i(x) =

This completes the construction of the D, = dim P, (E) + 2 (recall (10)) nodal basis
functions for 2.7, (E). This also completes the proof of Theorem 1.

3.3 Implementation as an H'-Conforming Space

On the mesh .9}, of £2, the global direct serendipity finite element space of index r is

DS = DS (2)={vp, € €°(R2) : vylp € 2.5, (E)VE € T} C H ().
31

Because our elements are polynomials of degree r on the edges, they merge together
continuously, provided that their edge and vertex DoFs match on element boundaries.

We constructed a local nodal basis for 2., (E), r > 2; that is, one for which
every basis function vanishes at all but one nodal point, and it equals to one at this
point. These local basis functions (after extension by zero outside the element), merge
together continuously to give a global nodal basis for 2.7, = 2.7,(2) C H ().
In this way we construct global nodal basis functions, each equal to one at a nodal
point and zero at all the other nodal points (so far for » > 2, but also for r = 1, after
the construction of the next section is complete).

4 Direct serendipity elements whenr = 1

It is shown in [8] that when d = 2, the convergence of the linear serendipity finite ele-
ment space (r = 1) does not degenerate on quadrilaterals. The parametric serendipity
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element .7 (E) is the tensor product space of bilinear functions Py ; (E ) on E mapped
to E by F, 0 and, in fact,

FUE) = span{F2(1), FR(F1), F(%2), FR(F1%2))

span{l, x1, x2, F(£1%2)} = P1(E) @ span{F (%1 %2)} (32)

has the form of a direct serendipity space with only one supplemental function.

Theorem 2 Let E be a nondegenerate, convex quadrilateral. The space 9.1 (E) is
a well defined direct serendipity finite element of index r = 1 if and only if

25 1(E) =P1(E) ® span {R}, (33)

for some supplemental function R that reduces to a linear function on each edge of E
and satisfies

R(xy,1) = R(xy3) =1 and R(xy2) = R(Xy4) = —1. (34
As just noted, the mapped function
RMPP(x) = F (%132) (35)

gives the usual parametric serendipity space, and it is linear on each edge of E and
satisfies (34).

Proof We first show that (33) with any such R will give a well defined serendipity finite
element 2.1 (E) by showing that it has a nodal basis. The nodal basis is constructed
by first defining the linear functions with zero lines corresponding to the diagonals of
the element E. Let v, 1 be either unit normal to the first diagonal joining x,, | with
Xy 3, and let vz 2 be either unit normal for the second diagonal joining X, » with X, 4.
Then let

Ag1(X) = —(X—Xy,1) - Vg1 and Ago(X) = —(X — Xy 2) - Vg 2. (36)

The nodal basis functions are

A 2(X) — 322X 3) (1 + R(X))

v = s 37

#01() Ad2(Xy,1) — Ag2(Xy3) G7
Aa1(X) — $ha,1(xp2) (1 — R(X))

v = , 38

#v2(%) Ad,1(Xp2) — Ag,1(Xp4) %)
ra2(X) — $ha2(xe,D(1 + R(X))

v = . 39

#03(%) Ad2(Xp3) — Ag2(Xp,1) 59

_1 _
G0 a(X) = Aa 1 (%) = 3ha1(xp2)(1 R(X)). 40)

Ad1(Xp,4) — A1 (Xy2)
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Note that there is no division by zero, so these functions are well defined, and that
they are in 2.1 (E) = P| @ span{R}, as required.

For the direct implication of the theorem, every well defined direct serendipity space
2.71(E) has a nodal basis of dimension four (recall Table 1) and contains P{(E).
Since R = ¢y,1(X) — ¢y,2(X) + ¢y.3(X) — ¢y.4(X) is in the space and cannot be in
Py (E), we conclude that 2.7 | (E) has the form (33). O

One way to define R is to use generalized barycentric coordinates (GBCs) [29, 30,
33, 40]. There are many types of GBCs, including Wachspress, mean value, Sibson,
and harmonic coordinates. The functions ¢;(x) : E — R, i =1, 2, 3, 4, are GBCs if
they satisfy the two properties:

1. (non-negativity) ¢; > 0 on E;
2. (linear completeness) for any linear function L : E — R,

4
Lx) =Y L(Xy.))9i (X).

i=1

These four functions are linearly independent, they are linear on each edge e of 0,
their span includes P (E), and they form a nodal basis with respect to the vertices,
ie., ¢i(Xy, ;) = 6;; for all i, j [30, 33]. So by their definition, their span is a direct
serendipity finite element, and moreover they constitute the nodal basis.

However, we do not require the non-negativity property. Functions satisfying lin-
ear completeness for L € Py (E) are called homogeneous coordinates, and they were
completely characterized in [30] in terms of areas of triangles. After normalization,
these give direct serendipity finite elements. In the technical sense of their charac-
terization (which requires the choice of four functions), no one can find new spaces.
However, our new characterization of the spaces (33) can be used to give an alternate
construction that is based on simple linear functions.

Our idea is to construct R inside .97 (E) so that R satisfies (34). There are many
ways to define DS, (E), so we get many R’s, a different one for each choice of the
space DS>(E). Let (p(z) (x) be the edge nodal basis function for the node x?

e.il el N

2.>(E),i = 1,2, 3, 4. It is quadratic on each edge. Let

(%) = ME)AX) M) AX)
A3(Xy, 1) Aa(Xp,1)  A1(Xy2) A4 (Xp,2)
M) A2x) (X)) A3(X) @1
A(Xp3) M2(Xp,3)  A2(Xy4) A3 (Xp4)’
which is quadratic as well, and then define
4

R =r(®— Y r(x7) el . 42)

i=1
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Then
R(Xv,]) = R(Xv,3) =1 and R(Xv,2) = R(Xv,4) = -

Restricted to the edges, R is nominally quadratic, but it reduces to a linear polynomial
on each edge, since R is 1 at one vertex, —1 at the other, and vanishes at the midpoint,
i.e., at x((fi)l forall i.

5 Serendipity supplements based on mapping from a reference
element

There are other ways to define serendipity finite elements. In this section, we define the
supplemental space on the reference element E and map it to E using the bilinear map.
When r = 1, we obtain . (E) defined in (32) using S (E) = span{R™2PP¢d} where
(35) defines R4 = F2(31%5). When r > 2, S,(E) = span{g"}?P, 5P,
where

o) = FA((1 - £DHe572%) and ¢S = F2((1 - D) 2%).
43)

This construction gives us direct serendipity elements with mapped supplements. For
r > 2, we must show unisolvence with this supplemental space. As before, we show
this property by constructing a nodal basis.

Since the supplements are not used in the construction of interior cell nodal basis
functions, the definition (23) continues to be valid. Moreover, once the edge nodal
basis functions are defined, the vertex nodal functions are defined by (30). Thus, we
need only construct the edge nodal basis functions. As in Sect. 3.2.2, we discuss only
the nodal basis function ¢, 11(X) at nodal point X, 11, since the other edge nodal basis
functions are constructed similarly.

Easily, with x = Fg(X),

d N N -2 N N _
PP (x) = FY(1 — 23) (FR(%2) " FR (&) = F2(1 — £3) (M) 2 Ri3(x),
wherein we defined Ri3(X) = Fg (x1) as in (19) and
A5y = Fp (%),

which is a nonlinear function. However, because Fg is a bilinear map, on the edges
e; and e3, 175 is linear and FE0 (11— )?%) is quadratic (but these may be different linear
and quadratic functions on the two edges).

The function 13, has the zero set being the line joining the center of e; to the center
of e3. Let X§4 be any point on this line and v>4 denote a unit normal to the line. Define
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the linear function
*24(X) = —(X — X3y) - V24, (44)

which mimics A3, in the sense that both are linear on e; and e3, and they have the
same zero set. Then there are constants a; # 0 of the same sign such that

W4l, = airal,. i=1.3. (45)

In fact, a1 = 1/A24(Xy,4) and a3 = 1/A24(Xy 3), since A3, is 1 at these two corners.
The function F£(1 — )E%) is quadratic and vanishes at the ends of e; and e3, so

A - ’2%)|e,- = bidahal,, =13 (46)

for constants b; > 0, defined by considering the center points of e and e3.
For some p € P._3(E), we define

Pe.11 = Mara[r3p + b3(azron) 2] — ¢51 € 2.7 (E). (47)

This function vanishes on e; and e4. It also vanishes on e3, since there Rj3 = 1,
and so

P11, = [p3222405) 7 = ¢51]|,, = 0.
Restricted to e, we have Ry3 = —1 and

e1],, = {Rora[Asp + b3(azraa) ] — ¢s.1} .,
= {b1rara[A3p/b1 + (b3/b1)(azras) 2] + bl)»z)»4(a1k24)r_2}|el

= {birara[A3p/b1 + (b3ay 2 /by +af " Hr55 ]| (48)

e’
Since (b3a3_2/b1 + a;_z) # 0, this is formally the same as (24) on e, up to some
constants. Thus the construction in Sect. 3.2.2 can be used here to complete the def-

initions of the edge nodal basis functions. We conclude that the direct serendipity
element with mapped supplements, i.e.,

2.7 7(E) = P(E) @ span{ F2((1 — £)818572), F2((1 — #D)%28]72)),
(49)

is a well defined finite element.

@ Springer



946 T. Arbogast et al.

6 Approximation properties of 2.7,

In this section, we develop the stability and convergence theory for our new direct
serendipity finite elements. For the most part, we work over the entire domain £2,
with the assumption that diam(§2) = 1 for simplicity. To obtain global approximation
properties, we need to assume that the mesh is uniformly shape regular [34,pp. 104—
105], which means the following.

Definition 2 For any E € .9, denote by T;, i = 1,2, 3, 4, the sub-triangle of E with
vertices being three of the four vertices of E. Define the parameters

hg = diameter of E, (50)

PE =2 1m_in4{diameter of largest circle inscribed in 7;}. D
Sis

A collection of meshes {9}, },~0 is uniformly shape regular if there exists o, > 0
such that the ratio pg/hg > o, > 0 for all E € .9, where oy, the shape regularity
parameter, is independent of .7, and h > 0.

A shape regular mesh has a bound on the number of quadrilaterals that can share a
single vertex.

In Sects. 3 and 4 , we constructed local and global nodal bases for 2.7, (E) and
29, = 2.7,(2) for r > 1; that is, one for which every basis function vanishes at
all but one nodal point, and it equals to one at this point. In this section, we denote the
set of global nodal basis functions as {¢1, ..., ¢y, }, corresponding to global nodal
points {ay, ..., an,}, respectively, where N, = dim Z.7,..

6.1 An interpolation operator mapping onto .7,

We first construct an interpolation operator mapping onto 2.7, following Scott and
Zhang [42]. For each node ¢; in the interior of some element E € .7}, we set K; to be
(the closed set) E, and we call such a node an interior node. For each node a; in the
interior of edge e of .7, (i.e., not at the vertices), we set K; = e (a closed set). These
nodes are called edge nodes. For each node a; being a vertex of .7}, we choose K; to
be any fixed edge e containing a;, with the restriction that if a; € 92, then e C 952.
Note that e is chosen from among multiple edges. These nodes are called vertex nodes.

We define a special L2-dual nodal basis {¥1, ..., ¥n,} as follows. For each node
a;, we denote the total number of nodes in K; as n;, and then denote these nodes in
Kias{a; j:j=1,...,n;}, where a; 1 = a;, which correspond to the global nodal
basis functions S; = {g; ; : j =1, ..., n;}. Restricted to K;, we have an L2(K;)-dual
nodal basis {y; ; : j = 1,...,n;} C span §; satisfying

/I//i,j(x)wi,k(x)dX=5jk, Jok=1,2,...,n;, (52)
K;

where we use a slight abuse of notation in that dx should be do for edge and vertex
nodes. Finally, for the node a;, we take ¥; = ¥; 1. (As described, this construction is
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highly redundant. Since it is used only for theoretical purposes, we do not explore its
efficient implementation.)
For any node a; giving rise to K; and ;,

/wi(x)wj(x)dxzﬁij, i,j=1,2,...,Nr. (53)
Ki

This is easily seen as follows. If ¢; is an interior node, then this expression is exactly
(52) (since the latter expression holds for all nodes on E). If a; is an edge or vertex
node, then when a; is also an edge or vertex node, (53) is (52), and when a; is an
interior node, ¢; vanishes on the edges of .7, (and thus on K;).

We can now define an interpolation operator .%; : W[l,(.Q) — 9.7, by

Iy v(x) = Zgo, (x) / Yy v(y)dy € 2.7, (54)

i=1

where | < p < oocand! > 1/p (but! > 1if p = 1). By the trace theorem, the
nodal values / Yi(y) v(y) dy are well defined for any v € Wl (£2), even when K; is

an edge. Note that #; depends on our choice of K;, but we suppress this fact in the
notation for s1mpllclty Because (53) holds, this operator is a projection on 2.7 ,.

6.2 Boundedness of the interpolation operator .7,

To obtain approximation properties, the interpolation .#; needs to be a bounded oper-
ator. Scott and Zhang’s proof of this fact in their situation [42] does not hold directly
for our construction, since we need to use non-affine mappings from the reference
element to the actual elements, and we use non polynomial shape functions. We give
a proof of boundedness based on a continuous dependence argument.

On an element E € 7}, it is clear that the linear functions A; defined in (7) depend
only on x and the vertices of E, and that this dependence is continuous. For simplicity
of discussion, we use the simple choices given in (16) and (18) and consider only the
direct serendipity finite elements based on this choice. We will remove this restriction
at the end of the section. However, for these simple choices, it is clear that these four
functions used to define the serendipity finite elements are continuously differentiable
functions of x and the vertices of E.

We need to fix the domain to the reference element £ = [—1,1]%. Forany E €
I, let H = Hpg be the maximal edge length of E. (By shape regularity, Hg is
comparable to & g, the diameter of E.) Since our finite element construction is invariant
under translation and rotation, for any E € .7, we can assume that x,, 1 = (0, 0)
and x, 2 = (H,0), as depicted in Fig. 4. Furthermore, we can scale £ by 1/H to
define a local reference element E = E /H with vertices (0, 0), (1, 0), (v, v2), and
(v3, v4). We can view E as the image of the bilinear map Fg = HFj; defined in
Sect. 2, which is a continuous function of & € E and the vertices of E (since E is
nondegenerate). Boundedness of this mapping is well-known for shape regular meshes.
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(-L1) (1,1) (vi,vm) Xy3

RE3
. e scaling
X1 Rep -
(-1-1) p (1,=1) ©0°0) . 1.0) (0,0) - (H,0)

E
Fig. 4 For the element E € .7}, we show it on the right in its translated and rotated local coordinates, and
its corresponding local reference element £ = E/H = Fj(E) in the center. The interior nodal points are

mapped from the reference element E, shown on the left

To be more precise, let Fg, = Fr|g, when K; = E or K; is an edge of some E. By
the uniform shape regularity of the mesh, for some constant C independent of K;
[23,Theorem 4.3.3],

|IDFk, || < C hg, and IDF | < Chys (55)

1k I < C R and g e < Chgt™ K (56)

These are the properties of the mapping needed in the argument of Scott and Zhang
[42]. Further, since the bilinear mappings Fg are defined on nondegenerate quadrilat-
erals, Fg and FEI are smooth, and similar bounds hold for higher order derivatives.
In particular, higher order derivatives of F z and F_!are uniformly bounded.

The edge nodal points have been placed uniformly on each edge. We need to fix a
place for the interior nodal points, so that their positions vary continuously with the
location of the vertices. Recall that the interior nodal points correspond to Lagrange
nodal points for P, _4. We can fix these on a triangle with vertices at, say, (—1/3, —1/3),
(1/3,—-1/3), and (—1/3, 1/3) inside E = [—1,1]% and map these to E and E, as
depicted in Fig. 4. This is done only for the proof. In the end, we have a global space
of functions 2.7, (£2) defined independently of the location of the nodal points, so
this change in their position is not important to the construction.

For any E € 9, let gof, j =1,...,dim 2.¥,.(E), be the local nodal basis
functions constructed on E. Each depends only on § = (X, vy, v2, v3, v4), Where
X =F:(% e E, and each (pf varies continuously with respect to these variables.

The set of admissible £ is bounded, since no side of E has length greater than 1.
Moreover, the shape regularity constraints are given by (albeit complicated) continuous
functions of (v, v2, v3, v4) involving maximal inscribed circles being required to lie
in the closed interval [0, 00). Therefore the set of admissible & is a closed, and hence
compact, set. We conclude that each ¢ f and its derivatives are bounded uniformly with
respect to the shape of E. That is, there exists a constant C = C (o, m, g) independent
of & such that

E
max j m(E S C Oy, N, ’ 57
I<j<dm 9.7, (E)||(p'/ ||Wq (E) (0« q) (57)
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where o is the shape regularity parameter. Since locally ¢ ]E x/H) = (p]E (x), we also
have a bound for the global nodal basis functions, namely,

max max ||gi [lwn gy < C(oy, m, q). s
LieaaX oy max llgillwy ) < €O m, ) (58)

We also need to show that the dual basis functions are bounded such that for any
node a;,

WillLek,) < Chgt™ K, (59)

which is a result analogous to [42,Lemma 3.1]. Here, hg, = hg,, where K; C E;
(for both possible E; when K; is an edge). Let 1//}5, j=1,...,dim2.%¥,(E), be

the dual nodal basis functions defined for nodes in E as defined in Sect. 6.1. These
are also continuous functions of £ (and possibly the corresponding values of & for its
neighboring elements, due to the treatment of vertex nodes). By a similar continuity

and compactness argument, we conclude that i JE is bounded uniformly with respect

to the shape of E and its neighbors. When q; is an interior node, K ;= E , SO
o= [ @uf@ai= [ wFousiof i -

Since gof(x/H) = <p,§(x), we conclude that 1/ij(x/H) H? = ¥ (x) and so (59)

holds. When a; is an edge or vertex node, K; and K; are edges which are affinely
related to the reference interval [—1, 1]. Moreover, the functions in question, when
restricted to the edge, are polynomials. Thus Scott and Zhang’s argument holds directly,
and so (59) holds in general. This and (57) lead to the conclusion that the interpolation
operator is bounded.

We can extend the proof to more general A4 and A13. These linear functions are
defined by their zero lines, which are defined by two points each. However, we have a
restriction that for Ao4, say, the zero set line %54 must intersect both %’ and %3, but
not at their intersection when they are not parallel. This choice of four points (two for
each of X4 and A13) could be added as parameters to the variable £. However, then
the restriction implies that £ does not vary over a compact set. So we must restrict
the choice of these four points. We make a simple (and practical) requirement that
the zero set line %54 intersects e] and e3, and .%}3 intersects ep and e4. We actually
choose four points (which are added into &), one on each fixed and closed edge of E s
and map them through Fg to define A4 and A13. In this way, A24 and A3 are defined
as continuous functions of &, and & varies over a compact set, and the argument above
continues to hold.

We can generalize the possible Rj3 and R»4 that can be used as well. Of course
they must satisfy the requirement (17), but they must also be uniformly differentiable
functions of £. Such is the case for the mapped choice R‘F;pped and R;fppw of (19).
Using standard scaling arguments, we have shown the following lemma, analogous to
[42,Theorem 3.1].
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Lemma1 Letv € W;,(SZ), withl < p <ooand? > 1/p (or€ > 1if p =1). Let
Ty, be uniformly shape regular (Definition 2) with shape regularity parameter oy. For
every E € 9, suppose that the basis functions of 9.7 »(E) are constructed using
Mg and M3 such that the zero set Sy intersects ey and e3, and £)3 intersects e
and eq. Moreover, assume that R13 and Ry4 are uniformly differentiable functions of
the vertices of E up to order m. Then forr > 1, E € 9, 1 < g < oo, and any
nonnegative integer m,

¢ k—m+2-2
175 vllwm ey < C(U*,m,q)ZhE T ol ey (60)
k=0

where E* = Jp, 7 FnE+s F and | - |y« is the seminorm of k-th order derivatives.
< P

We remark that the mapped supplements (43) vary continuously with the element
shape, and so satisfy the lemma above.

6.3 Approximation properties of the .7, spaces

We use the Bramble-Hilbert lemma [18] in the form developed by Dupont and Scott in
[28] (see also [19]). A domain w is star-shaped with respect to a ball B, of radius r if
forall x € w, the closed convex hull of {x}U B, is a subset of w. Let rpax = sup{r : wis
star-shaped with respect to B, } and &7 = diam(w), and define the chunkiness parameter
of w by h/rmax. Then the Bramble-Hilbert Lemma, i.e., that

i _ . k—j -

has a constant C that depends continuously on the chunkiness parameter. On the
local reference element w = E (actually its interior), the chunkiness parameter varies
continuously in a compact set due to the shape regularity assumption, so the constant
C has an upper bound independent of the vertices of E.

Combining Lemma 1 and the Bramble-Hilbert lemma (61), we derive our theorem
for local and global error estimation using E* defined just after (60).

Theorem 3 With the assumptions of Lemma 1, there exists a constant C = C(r, 0y) >
0 such that for all functions v € Wﬁ(E*), withl < p <ooand{ > 1/p(orl > 1if

p=1)

v = Z vllwpce) < Ch "ulwepsy, 0 <m <min(C.r+1).  (62)

Moreover, there exists a constant C = C(r,o0y) > 0, independent of h =
maxge g, hg, such that for all functions v € Wll; (£2),

1/p
_ gr p {—m .
(E§7||v T Vllmsy) S CH T gy 0= m < min(e,r+ 1), (63)
eI

@ Springer



Direct serendipity and mixed finite elements on convex... 951

7 Construction of direct mixed finite elements using a de Rham
complex

The de Rham complex of interest here is

Re— H' —“ mdiv) —2s 12 0, (64)
where the curl (or rot) of a scalar function ¢(x) = ¢(x1,x2) is curlgp =
0 0
<a—¢, —8—¢> From left to right, the image of one linear map is the kernel of the
X2 X1

next. On rectangular elements, it is known [6, 7] that the serendipity space .¥; 4 is
the precursor of the P:rezzi-Douglas-Marini space BDM, [20] for » > 1; that is, on
the reference square E, (1) holds.

7.1 Reduced and full AC spaces

We have the following extension of (1) to quadrilateral elements E. The direct serendip-
ity spaces 7. rrnapped (49) using the mapped supplements (43) is the precursor of the
reduced H (div)-approximating Arbogast—Correa space AC;’1 [1], 7 > 1, defined on

meshes of convex quadrilaterals:

curl

R 2.7™8 gy 2, A (B) —2 P (E) — 0. (65)

Moreover, the full H (div)-approximating space AC/, for r > 0, satisfies

curl

R 2.9™(p) L, ACT(E) —2s P,(E) —> 0. (66)

This observation is clear once one realizes three sets of facts. First, the direct serendip-
ity elements based on (43) have the structure

2. ,mapped

9.5 E) = Py (E) @S] (E), (67)
S.@y,mapped(E Span{FO((l - xA%)A" lA ) FO((I _ x’\2)Ar 1a )}’ r> 1,
r+1 span{F (X1%2)}, r=0.
(68)
Second, the AC elements have the structure
AC;NE) =PHE)®S}(E), r>1, (69)
ACL(E) =P} (E) @ xP,(E) @ S)°(E), r >0, (70)
span{F}5 Curl((l —)?2 AR )
SAC(E) = F} curl((1 — £7) A{ ')}, r>1, (71)
span{F}, curl()?p?z)}, r=0.
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where F]]; is the Piola mapping (9) from EtE. Finally, we have the fairly well-known
Helmholtz-like decomposition (see, e.g., [1])

PX(E) = curl P41 (E) @ XP,_((E), r=>1, (72)
the relation between the curl operator and the bilinear and Piola maps
curl F = F} curl, (73)

and the fact that the div operator takes xPP; one-to-one and onto Py for any s > 0.
Now we see from (73) that, when r > 1,

curl S@Y ,mapped

(E)
span{curl FE ((1 — 39X, 13 ) CurlFbQ((l _ l)f\r 1» )}
= spun{Ffcur(1 = )% ) B ant((1 = 3715}

= SA(E), (74)
and so

curl 2.7 ™Y E) = curl P,y (E) @ SAC(E) (75)

is in the kernel of the operator div. Finally, (72) says that
ACJ(E) =curl P, (E) & SﬁC(E) G xPy(E), s=r—1,r,r>1. (76)

These spaces satisty the exact sequence properties of the de Rham complex (65)—(66).
For r = 0, itis easy to check that .| (E) = 2.1 (E) (see (32)) precedes the element
AC8(E) in the de Rham sequence (66).

7.2 Direct mixed finite elements whenr > 1

According to [1], a reduced or full H (div)-approximating mixed finite element space
defined directly on a quadrilateral E of minimal local dimension takes the form (&
in Definition 1)

V"N (E) = P}(E) ® SY (E) = curl P41 (E) ® xPr_1 @ SY(E), (77)
VI(E)=P*E)®xP, @ SY(E) =curlP,,(E)®xP, ®SY(E), (78)
where, in that paper, the choice of S}’(E ) is given by taking (71). However, it is
noted that other supplemental functions could be used [1,near (3.15)]. Their normal

components must lie in P, (e;) on each edge ¢; and, if they are mapped by the Piola
transform, they must contain a nontrivial component of the DoFs of curlx’“xz and
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curl x 1)25“. For r > 1, the supplemental space S}’(E ) must be of dimension two and
linearly independent of ]P’%(E ), so that

dimVI"NE) = (r +2)(r +1) +2 =7 +3r +4,

5 (79)
dmV(E) = (r+2)(r+ D+ +1)+2 =r>+4r+5.

As given in [1], the DoFs (.4 in Definition 1) for ¢ € VI (E), s =r — 1, r, are given
(after fixing a basis for the test functions) by

/ ¥ -vipdo, VpelPr(e), i=1234, (80)
e
[ ¥-vadr. voere) 81)
E
/zp.vdx, vy € BY(E), (82)
E

where do is the one dimensional surface measure and the H!(E) and H (div; E)
bubble functions, for r > 3, are

Byy1(E) = MA223A4P-_3(E) and BY(E) =curl B, 4+ (E), (83)

Note that the number of DoFs agrees with the dimension of the space (79).

Unlike the construction given in [1], which only considered mixed finite elements,
we use here the de Rham theory to construct a mixed finite element space VI based
on a well defined direct serendipity space. For r > 1, we have de Rham complexes
for both reduced and full direct H (div)-approximating mixed elements:

curl div

Re— 2.7,41(E) VI(E) P(E) — 0, s=r—1,r, (84)

for any variant of our new direct serendipity spaces. We define spaces of vector func-
tions according to these de Rham complexes, using the fact that the div operator takes
xIP;. one-to-one and onto P;. These spaces are

VI(E) =curl 2.7, 11 (E) ® xPs(E)
= curl P41 (E) ® curl S77 (E) ® xPy(E), s=r—1,r,  (85)

and they have the form (77)—(78), provided we define
SY(E) = curl S77 (E). (86)

Theorem 4 Let E be a nondegenerate, convex quadrilateral and 9.%,4+1(E)

Pry1(E) & S?JX(E) be a well defined direct serendipity finite element for r > 1.

Then the mixed spaces
V'-Y(E) =P*(E) & SY(E) =PXE)® curl S77, (87)
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VI(E)=PXE)®xP, ®SY(E) =PXE)®xP, ® curl ST,  (88)

with DoFs defined by (80)—(82) are well defined finite elements. Moreover, for s =
r—1,r, VI(E) has the minimal possible dimension (79) needed for H (div) conformity
and the property that div Vi (E) = Pg(E).

Proof It remains only to show that in fact these spaces are unisolvent for the DoFs
(80)—(82); that is, that these spaces are well defined mixed finite elements. So suppose
that ¢ € VI(E), s =r — 1, r, and has vanishing DoFs. By construction,

¥ =curlg +¢q, (89)

where ¢ € 2.7, 11(E) and ¥y € xP;. The DoFs (81), with (80), imply that for
q € ]PS (E)3

0=/1/f~qux=—fV-1/fqu+/ 1/f~qua=—/V~1/qudx.
E E 9E E

Since V - ¥4 € Py(E), we conclude that V - ¢4 = 0, and further that yr; = 0.

We next observe the well known fact that tangential derivatives of functions along
the edges of E map by the curl operator to normal components; that is, if we define
the (counterclockwise) unit tangential vector

T, = (—Vv;2,vi,1) one;, (90)
then for ¢ € 2.7, 11 (E),

Vo 7|, =curlg - v (91)

¢ e’

Therefore, the DoFs (80) imply that for any edge ¢; and p € P, (e;),

/¢-vipda=/curl¢-vipd0=/Vcﬁ-ripdo,
ej ej i

€

and we conclude that V¢p - 7 = 0 on dF, and so ¢ = c is constant on d E. Now
¢ —c € 9.%,+1(E) vanishes on E, so we conclude that ¢ — ¢ € B, (E). The
DoF (82) with v = curl(¢ — ¢) = curl ¢ implies that curl ¢ = 0. Thus ¥ = 0, and the
proof of unisolvence is complete. O

We can use any of our direct serendipity spaces to define direct mixed finite elements

V;’l (E) or VI.(E). As we saw eatrlier, if we use 2.7 ;njlfped(E ), we recover the known
finite elements AC;’1 (E) and ACJ(E). However, the direct serendipity spaces of

Sect. 3 give new (direct) mixed finite elements.
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7.3 Direct mixed finite elements whenr = 0

When r = 0, there are no reduced H (div) approximation finite element spaces. The
full H (div) approximation direct elements have dimension 4, and they take the form

VO(E) = curl 2.71(E) @ xPy(E) = P3(E) ® xPo(E) @ span{curl R}, (92)

where R was defined in Sect. 4 above as Fg (X1%2) or in (42) using the special con-
struction in 2.%>(E). The former is the space AC8 [1], and the later appears to be a
new mixed finite element satisfying

2/le; i =1,3,
curlR-vi|, =VR 5|, = /leil, =1,

|, = 93
¢i il —2/leil, i=2,4. ©3)

7.4 Implementation using the hybrid mixed method

The mixed space of vector functions V3 over £2 is defined by merging continuously
the normal fluxes across each edge e of the mesh .7,. That is, forr > 0,s =r — 1, r,
s >0,

Vi ={veHdiv; Q) : v|, € VI(E) forall E € J}. (94)

This space is normally paired with a space approximating scalar functions. When, say,
solving a second order elliptic partial differential equation in mixed form, the vector
functions V; are paired with the scalar functions

Wy ={weL*() : w|, e Py(E) forall E € J,}. (95)

These scalar spaces are the divergences of the corresponding vector function spaces.

However, in practical implementation, the hybrid form of the mixed method is often
used [10]. In that case, the elements V7 (E) are simply concatenated, and no globally
merged basis is required. The Lagrange multiplier space, used to enforce the normal
flux continuity through an additional equation, is simply

Ay = {A € L2(UE€% BE) : A|e € P, (e) for each edge e of%}. (96)

To represent the vector functions in V; as we presented them, it would appear that we
need to apply the curl operator extensively. However, this is not the case, since the
vector polynomials in these spaces are clear, so we need only apply the curl operator
to the supplemental functions. Even then, taking a curl can be avoided in some cases.
As we saw earlier, curl Sr@ff’mpped(E ) gives the supplements for the known finite
elements ACJ(E), s = r — 1, r, which are computed in (71) using the Piola transform

rather than the curl operator.
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For example, suppose we use the direct serendipity elements from Sect. 3 (sor > 1),
with supplements defined by (14). We note that

curl A (x) = —curl((x — x;) - vj) = 1, o7

where j = 1,2,3,4 or j = (24), (13). The only difficult curls required are curl R;3
and curl R>4. However, if the simple choice (18) is taken, then

i A — A AMT3 — A3T

curl Rigmple = curl ! 3 -2 173 3 21 ,
AL+ A3 (M + A3)
i A — A AMTq4 — AT

curl R;mple = curl 2 4o _pl2h 4 22.
A2+ Mg (A + Ag)

The supplemental vector functions are then

lI’s,l = curl ¢s,1

_ Al — A3 1M T3 — A3T)
= M7 (s 4 Aam)Aos 4+ (r — DAgdyt — gt
ba [Oata + Aama)Aos + ( )2424])»1+ka TR T
VY52 = curlgs o
_ Ay — AT — AT
=013 4 A3TDA3 4 (r — DAgAsT YRV Ry L it St
37 [aT3 + A3T)hs A+ ( )1313])¥2+}\4 123003 O 302

7.5 Implementation as an H(div)-conforming mixed space

The H (div) spaces V. ~land V! defined in (94) can be given a global basis with the
normal components of the shape functions merged continuously on each edge of the
mesh .7;,. We present a method that uses the nodal basis functions of the serendipity
space of index r + 1 preceding V. ~! or V” in the de Rham complex.

Since the H (div) bubble functions By (83) have no normal flux, they can be handled
easily. For each E € .7, when r > 3 one can define the global basis functions

curlpf P, i=1,....}¢ - D@ -2, nE,

. (98)
0, otherwise ,

Yo Ei = {

using the interior cell nodal basis functions (23) with a superscript as a reminder that
the index of the direct serendipity space is r + 1. The shape functions arising from
the edge nodal basis functions, like (28), also present no particular difficulty. For each
edge e of the mesh shared by elements £y and E, (with e being locally edge i1 and
i, respectively), when » > 1 one can define

curl gaéﬁ}} (x), x € E;
Ve )= JeulglF) . (x). xek L j=1....r. (99
0, x¢ EyUE,
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These global basis functions are in H (div) because the serendipity elements are con-
tinuous, so the tangential derivatives (i.e., the flux—see (91)) agree across e. Moreover,
the average normal flux vanishes on each edge.

The most delicate global basis functions to construct are those for which the average
normal flux is a constant on each edge e of the mesh. For each r > 0, these are given
primarily, but not completely, by taking curls of the serendipity vertex nodal basis
functions (30). However, each of these functions has normal flux on two edges, and
there are only three linearly independent functions per element (since the kernel of curl
consists of the constant functions). For each element E having e as an edge, we need to
consider the vector functions IP% (E)®xPy(E) with these curls. The proper construction
requires some work on each element E of the mesh. We begin the construction by
defining qb* € 2.%,+1(E) such that ¢* (Xy.x) = ik and its restriction to each edge
of Eisa hnear function. To be precise,

r . .
(r+1) J (r+1) J (r+1)
01100 = 9000+ 30 [ el + (1= = el ).
j=1

+1
Then define ¥ ; = curl ¢ ;, for which
1/leil, j=i,
Y00 vl = Ver 0Tl =1 =1/leral, j=i+1,
0, j=i+2,i+3.

We also define wi*l (X) =X —Xy.j42 € XPo(E) @ IP%(E), for which

(Xvi_xvi+2)'v'» ]:l,l+1,
**4X SV = ’ ’ J
1/’v,z( ) ./|€j {()’ j=i—‘r2,i+3.

Finally, for each edge e of the mesh which is edge i of element E, we define

(Xy,i — Xp,i42) - Vi1 e[ ¥, + 90
'/fe,O|E = - : k] (100)
(Xv,i — Xu,i+2) - Vi+1 leir1l/leil + Ko,i — Xp,i42) - Vi

which has flux 1 on ¢; and O on all other edges. These can be merged across edges
to define global basis functions in H (div), which have constant divergence on each
element. (In fact, one could define ¥, o using the same expression with i replaced by
i — 1. By alternation of the choice for different edges of E, only two of the ¢ ; need
be constructed in practice.)

Finally, when s > 1 we define the global basis functions associated to the noncon-
stant divergences. These functions are local to each element E € .7;,. Working on E,
we begin with the functions P} (E), where P¥(E) = Y ;_, Py(E) C Py(E). Take
pi(X) in a basis for P} (E),soi =1,..., %(s +2)(s + 1) — 1. We must remove the
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normal flux on d E from xp; (x). We do this using (99) and (100) by defining

4 r
Xpi(X) — jkYe; k(X), onkE,
Vari=1"" /X_;,;) e (101)
0, otherwise,

and setting the coefficients o x on each edge e; so that

0=cjpi(x) —Za/,kl/fe,-,k(x)~v/~|ej, (102)
k=0

where ¢cj =X vjl; is a constant. The coefficients can be found in a number of ways,
including a straightforward application of linear algebra requiring the solution of four
small (r + 1) x (r 4+ 1) linear systems. An alternative can be given once one realizes
that on edge ¢, for k > 1,

£,
(r+1) (r+1) k
1/fej,k(X) . v-/iej = curlwe’jk (x) - v.,'|ej = Vgoe,jk (x) - r.,'|ej = m

is the derivative of a Lagrange basis polynomial £ (), where x(¢) = (1 — )X, j 1 +
t Xy, j fort € [0, 1]. Thus

t r .
ozcj/o p,-(x(s))ds—zo”*"—m—aj,ot, (103)

=l |Xv,j - Xu,j71|

and the coefficients can be read off by substituting in the Lagrange points ty = £/(r+1)
for¢ = 1,...,r + 1. The global basis is now fully defined.

8 Stability and approximation properties for V;

In this section, we develop the stability and convergence theory for our new direct
mixed finite elements. Again, we assume that diam(£2) = 1 for simplicity.

As was done by Raviart and Thomas [41] for their mixed spaces, we can define a
projection operator 7 : H (div; £2) N (L>T€(2))?> — Vi, s =r — 1,7, where € > 0.
The operator 7 is pieced together from locally defined operators 7. Following [1],
we define g v in terms of the DoFs (80)—(82). The operator 7 satisfies the commuting
diagram property [25], which is to say that

PwNV-v=V_-mv, (104)
where Py, is the L?-orthogonal projection operator onto Wy = V - V.

To show that certain important properties of 7 do not depend on the vertices of E
except for scale, we work over the scaled element £, which was introduced in Sect. 6.2.
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We need to fix a basis for the DoFs (80)~(82), so let j;(f) = 7/ and p; x(X) = )?f)?lz‘

where j, k are integers. For any v € H 1 (E ), we define the linear functional N ﬁé V)
with index B as follows:

/f’-f)[ﬁjdl:, B=U,i,j),i=1,2,3,4,0<j<r,
¢
Vi@ =1 [ 59 B=(1.jh). 1=j+k<s,
[v.curl(ilbigmj,k)dx, B=(II,j k), 0<j+k<r-—3.
E

Denote the set of all possible indices of 8 as Z. By a continuity and compactness
argument, similar to that given in Sect. 6.2, there exists a constant C > 0, independent
of the vertices of E, such that V8 € 4,

INF D < CII¥ll, g ¥V e HY(E), (105)

where | - || » is the norm of sz (w) = H’(w). By unisolvence, there exists a basis
(¢F. B € B} for V3(E), such that

NE @) =0py, VB.y € 2.

Then 7 £ can be defined as

niv =Y NE@E. (106)
BeA

Note that ¢ g varies continuously with respect to vertices of E, and so there exists a
constant C > 0, such that

¢l z <C. VBe B (107)

Corpbining (105) and (107), there exists a constant C > 0, independent of the vertices
of E, such that

lwz¥llo z < CIVI, g V9 € H'Y(E). (108)

By the boundedness of 7 in H !, the Bramble-Hilbert Lemma (61), and usual scaling
arguments, there exists a polynomial p € IP’,%_I (E) for 1 < k < r + 1 such that

Iv—mevllo.e = HIV—mpVll, ;

< H([¥ = pllg s + 17 — Do, )
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< Chll¥ - Bll, z
< Chl¥l, ;

< Ch*|Vlk. E,

where the constants do not depend on the vertices of E. The L?-orthogonal projection
Pw, gives optimal approximation, andsoalso V- (u —z7u) =V -u— Py, V -uis
optimally approximated. We have shown the following.

Lemma 2 With the assumptions of Lemma 1, there is a constant C > 0, independent
of I, and h > 0, such that

Iv—7vllo.e < ClIVikeh*, k=1,...,r+1, (109)
IV-v=aVloge < CIV-Vieh k=0,1,...,s+1,  (110)
Ip — Pw,plo.e < Clplkg ht, k=0,1,...,s+1, (111

where s =r —1 > 0and s = r > 1 for reduced and full H(div)-approximation,
respectively. Moreover, the discrete inf-sup condition

(whv V. Vh)

>y llwallo.e, Ywn € Wy, (112)
vievs IVellE(aiv)

holds for some y > 0 independent of F), and h > 0.

9 Numerical results
We test our finite elements on the Dirichlet problem

-V .-(aVp) = f in$2, (113)
p=0 onas2, (114)

where the second order tensor a(x) is uniformly positive definite and bounded, and
f € L*(2). The problem can be written in the weak form: Find p € HO1 (£2) such
that
@Vp,Vq) = (f.q). Vq € Hy (%), (115)
where (-, -) is the L2(£2) inner product. Setting
u=—aVp, (116)
we also have the mixed weak form: Find u € H (div; £2) and p € L?(£2) such that

@ 'u,v)—(p,V-v) =0, Vve Hdiv;2), (117)
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(V-w,w) = (f,w), Ywe L*(). (118)

These weak forms give rise to finite element approximations. In view of Theorem 3
and Lemma 2, it is well known that the following theorem holds [19, 21].

Theorem 5 With the assumptions of Lemma 1, there exists a constant C > 0, inde-
pendent of 9y, and h > 0, such that

Ip = pullme < ChH ™ pleiie, €=0,1,...,r, m=0,1, (119)

where py, € 9.7 ,(82) N HOl (82) approximates (115). Moreover, withs =r — 1,1,

lu —wpllo.e < Cllull.oh, k=1,....r+1, (120)
Ip — pullo.e < Clulle.oh”, k=1,...,5+1, (121)
IV - (—wp)lloe < CIV-ullxoh, k=0,1,....,s+1, (122)

where (y,, pp) € V3 x Wy approximates (117)—(118).

We consider the test problem (113)—(114) defined on the unit square £2 = [0, 172
with the coefficient a being the 2 x 2 identity matrix, i.e., we solve the Poisson
equation. We use the method of manufactured solutions, taking the exact solution to
be u(x, y) = sin(7rx) sin(r y) and the source term is f (x, y) = 272 sin(rx) sin(rr y).

Solutions are computed on three different sequences of meshes. The first sequence,
ﬂhl, is a uniform mesh of n? square elements (two sets of parallel edges per element).
The second sequence, .7;2, is a mesh of n? trapezoids of base  and one pair of parallel
edges of size 0.75h and 1.25h, as proposed in [8]. The third sequence, .7;>, is chosen
so as to have no pair of edges parallel. The first 4 x 4 meshes for each sequence are
shown in Fig. 5. Finer meshes are constructed by repeating the same pattern over the
domain.

Our computer program uses the deal.Il library [14]. The integrals must be approxi-
mated using quadrature rules, since we have nonpolynomial basis functions. In general,
one can use a rule based on squares mapped to the quadrilateral, or one can cut each
quadrilateral into two triangles and use a rule suitable for triangles. To accurately
approximate the bilinear form, the order of the quadrature rule should be at least 2r.
Construction of the finite element basis requires some computation, as described in
Sects. 3 and 7. If one uses parallel computing, the time cost for these routines can be
scaled nearly perfectly in parallel, since they basically involve only local computa-
tions. Moreover, in a time dependent problem, the basis needs to be computed only
once. We find that reducing the global number of degrees of freedom in a serendipity
space versus a tensor product space, even at the expense of a slightly more expensive
basis construction, is worthwhile [2, 47].

9.1 Direct serendipity spaces

We present convergence studies for the fully direct serendipity spaces Z.%, using the
elements defined in (11) and (14), i.e., the ones that use no mappings. We compare
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IS

7 Ty T

Fig.5 The three 4 x 4 base meshes. Finer meshes are constructed by repeating the base mesh pattern over
the domain. The meshes have 2, 1, and 0 parallel edges per element, respectively

with the two spaces of elements given by mapping the local serendipity spaces .¥; (E )
and the tensor product spaces IP”(E ) to the mesh elements (the latter are simply
called the [P, , spaces).

We take the simple choice (16) for A4 and Xj3. We do not quite use the simple
choice (18) for Rj3 and Ry4. Instead, we let vy = (v — v4)/|v2 — v4]| and vy =
(v1 —v3)/|v1 —v3|,definea; = /1 — (vg -vi)2 (i =1,3)and b; = /1 — (vy - v;)?
(i =2,4), and then set

Ri3(x) = ME) @ g Ros(x) = A () — @
air (x) + azrz(x) oo (X) + bara(X)

(123)

These functions are constant on each opposite pair of edges, but not £1 (this makes
no difference to the development presented above).

For an n x n mesh, the total number of degrees of freedom for P, , is (nr + 2=
O(r*n?), and for .7, and 2.7, it is

dim(;) = dim(2.%,) = (number of vertices) + (number of edges)(r — 1)
+ (number of cells) 1 (r — 2)(r — 3)
=+ 1> +2n0n+ D — D) +n2Le -0 - 3)
= %(r2 —r+dn’+2rn+1= ﬁ(%(r2 _r+4)n2>.

Therefore, the total number of degrees of freedom for a serendipity space is asymp-
totically about half the size of that for a tensor product space of the same order.

9.1.1 Convergence order versus maximal element diameter h

We report the L? and H'-seminorm errors and convergence orders for r = 2,3,4,5
as h decreases (i.e., as n increases) on mesh sequence ,7;,1 in Tables 2 and 3. The direct
serendipity space 2.7, and the regular serendipity space .#, coincide on the square
mesh ﬁhl. All three spaces show an (r + 1)-th order convergence in the LZ-norm and
an r-th order convergence in the H!'-seminorm, as we should expect from theory (see
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Table2 L2-errors and convergence rates for P, 2.7, and ., spaces on square meshes

n r=2 r=73 r=4 r=>5

Error Rate Error Rate Error Rate Error Rate

P, » on le meshes
8 2.451e—04 2.99 5.564e—06 3.99 1.054e—07 4.99 1.688e—09 6.00
12 7.282e—05 2.99 1.101e—06 4.00 1.389e—08 5.00 1.483e—10 6.00
16 3.075e—05 3.00 3.486e—07 4.00 3.298e—09 5.00 2.640e—11 6.00
24 9.116e—06 3.00 6.890e—08 4.00 4.344e—10 5.00 2.420e—12 5.89
S =9 on 9,11 meshes
8 2.457e—04 2.99 1.805e—05 4.09 1.422e—06 5.01 6.440e—08 5.93
12 7.289e—05 3.00 3.497e—06 4.05 1.870e—07 5.00 5.739e—09 5.96
16 3.076e—05 3.00 1.099e—06 4.02 4.437e—08 5.00 1.027e—09 5.98
24 9.118e—06 3.00 2.161e—07 4.01 5.841e—09 5.00 9.049e—11 5.99

Theorem 5). Our results are fully consistent with the recently reported results in [24]
for the standard serendipity elements on rectangles.

Tables 4 and 5 show the errors and orders of convergence for the trapezoidal mesh
sequence ﬁhz. The tensor product spaces P, , and .7,