This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Randomized Error Removal for Online Spread
Estimation in High-Speed Networks

Haibo Wang™', Graduate Student Member, IEEE, Chaoyi Ma™, Graduate Student Member, IEEE,
Olufemi O. Odegbile, Shigang Chen™, Fellow, IEEE, and Jih-Kwon Peir

Abstract—Flow spread measurement provides fundamental
statistics that can help network operators better understand
flow characteristics and traffic patterns with applications in
traffic engineering, cybersecurity and quality of service. Past
decades have witnessed tremendous performance improvement
for single-flow spread estimation. However, when dealing with
numerous flows in a packet stream, it remains a significant
challenge to measure per-flow spread accurately while reducing
memory footprint. The goal of this paper is to introduce new
multi-flow spread estimation designs that incur much smaller
processing overhead and query overhead than the state of the
art, yet achieves significant accuracy improvement in spread
estimation. We formally analyze the performance of these new
designs. We implement them in both hardware and software,
and use real-world data traces to evaluate their performance in
comparison with the state of the art. The experimental results
show that our best sketch significantly improves over the best
existing work in terms of estimation accuracy, packet processing
throughput, and online query throughput.

Index Terms— Traffic measurement, flow spread, randomiza-
tion, online, sketches.

I. INTRODUCTION

RAFFIC measurement in high-speed networks has many

challenging problems. One of them is how to efficiently
and accurately estimate flow spread over a packet steam
during a measurement period. A packet steam is sequence
of packets, each modelled as (f,e), where f is flow label
and e is element identifier. Both f and e can be defined
arbitrarily based on information from packet header or payload
for specific application need. Flow spread is defined as the
number of distinct elements carried by each flow in the packet
stream. It provides fundamental statistics that can help network
operators better understand flow characteristics and traffic

Manuscript received 21 April 2021; revised 28 September 2021 and 15 April
2022; accepted 21 July 2022; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor S. Schmid. This work was supported by NSF
under Grant SCC-2124858, Grant CSR-1909077, and Grant NeTS-1719222.
A preliminary version of this paper has been published in the Proceedings of
the VLDB Endowment, Copenhagen, Denmark, August 16-20, 2021 [DOI:
10.14778/3447689.3447707]. (Corresponding author: Shigang Chen.)

Haibo Wang, Chaoyi Ma, Shigang Chen, and Jih-Kwon Peir are with the
Department of Computer and Information Science and Technology, Univer-
sity of Florida, Gainesville, FL 32611 USA (e-mail: wanghaibo@ufl.edu;
ch.ma@ufl.edu; sgchen@cise.ufl.edu; peir@cise.ufl.edu).

Olufemi O. Odegbile is with the Department of Computer Science, Clark
University, Worcester, MA 01610 USA (e-mail: oodegbile @clarku.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2022.3197968, provided by the authors.

Digital Object Identifier 10.1109/TNET.2022.3197968

patterns with applications in traffic engineering, cybersecurity
and quality of service [2], [3], [4], [5], [6].

There are many practical applications that can benefit
from flow spread estimation, including P2P hot-spot local-
ization [7], web caching prioritization [8], [9], detection of
DDoS attacks [10], [11], port scanning measurement [2] and
worm propagation detection [12], [13]. Below we give several
examples in the context of Internet applications. Consider a
packet stream that arrives at a high-speed router. For example,
if we consider all packets from the same source address as
a flow and use destination addresses as the elements under
monitoring, a flow-spread measurement module deployed at a
gateway router will detect potential external adversaries that
are scanning the internal network — these are external sources
with large spreads (i.e., their flows contain too many distinct
destinations), or in case of stealthy scanning they are sources
with modest spreads at any measurement period but persisting
at a spread level higher than normal over a long time [14].
As an opposite example, if we use destination addresses as
flow labels and source addresses as elements, spread mea-
surement will help identify the victims of possible DDoS
attacks — these are internal destination addresses with large
spreads (i.e., their flows contain too many distinct source
addresses). In yet another example, a large server farm may
learn the popularity of its content by tracking the number of
distinct users accessing each file [15], where all users access-
ing the same file form a flow. Finally, spread measurement
has also been applied in various data analysis systems at
Google [16]. For instance, Sawzall [17], Dremel [18] and
PowerDrill [19] estimate the number of distinct users that
search the same key, where we can model all search requests
for the same key as a flow and user identities (e.g., their IP
addresses) as the elements in each flow.

This paper is interested in per-flow spread measurement,
allowing users to query the spread of any flow online in real
time. We have three performance requirements for the design
of a spread measurement module. First, it should incur low
processing overhead per packet in order to support high-rate
streaming. Second, it should be memory-efficient in order to
support software/hardware implementation on the data plane
of a streaming device which may operate on cache memory.
Third, it should support efficient online spread queries to
support real-time applications. We again use packet stream in
high-speed networks as example to justify the requirements.
Modern routers forward packets at hundreds of gigabits or

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4809-4897
https://orcid.org/0000-0002-3572-0046
https://orcid.org/0000-0001-7867-7765

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

even terabits per second (at least 8.3M packets or 83M
packets per second considering maximum transmission unit
for Ethernet is 1500 bytes). Tracking a large number of flows
simultaneously can be a serious challenge. Specifically, if one
wants to perform online flow spread measurement in real time,
one way is to implement the measurement module on data-
plane network processors. Since their on-chip circuitry and
cache memory have to be shared among many other rout-
ing/performance/security functions, low overhead and memory
efficiency become highly desirable properties in order not to
create performance bottleneck.

There are two categories of solutions for per-flow spread
measurement. One category estimates each flow with a sepa-
rate data structure, called spread estimator. To count distinct
elements, it must be able to remember the elements that it
has seen. Such single-flow estimators include bitmap [20],
FM [21], multi-resolution bit-map [3], SMB [22], KMV [23],
Loglog [24] and HyperLoglog (HLL) [16], [25]. They
require hundreds or thousands of bits for each flow in order to
achieve good accuracy and range. When the number of flows
is numerous, monitoring all flows with separate data structures
can be too costly. We need more compact data structures called
spread sketches that monitor all flows simultaneously without
linearly increasing the memory overhead, which leads to the
second category of solutions [9], [26], [27], [28]. They share
a certain number of spread estimators among all flows when
recording their elements. But sharing causes error in spread
estimation. When a flow shares an estimator with other flows,
the estimator produces the combined spread of all those flows
instead of the spread of an individual flow. To reduce the
error, the current approach [9], [26], [27] follows the idea of
CountMin [29] by mapping each flow to multiple estimators,
making multiple spread estimations, and taking the minimum
answer. However, it is well known that this approach has a
positively biased error that can be very large when the multiple
estimators are all shared with other large flows. Moreover,
since each flow has to be recorded in multiple estimators and
each query has to be computed from multiple estimators, both
the processing overhead per packet and the query overhead for
each flow are increased multi-fold.

The goal of this paper is to design new spread sketches for
online per-flow spread estimation (in the scenarios described
before) that incur much smaller processing overhead and query
overhead than the start of the art, yet result in much less
error in spread estimation. More specifically, we want the
processing overhead and the query overhead to be multiple
times smaller, and the error to be an order of magnitude
smaller. To achieve these seemingly conflicting objectives,
we cannot follow the prior approaches but need to explore
new paths toward compact and efficient recording of packets
in a way that enables error removal. We introduce two new
sketch designs, called randomized error-reduction sketch (rSkt)
and unit-level randomized error-reduction sketch (rSkt2). Their
basic idea is to spread the error due to estimator sharing evenly
between a primary estimator and a complement estimator,
so that the error can be subtracted away. Moreover, we also
present an improved design of rSkt, denoted as rSktl, to reduce
the query overhead. We formally analyze the performance of

IEEE/ACM TRANSACTIONS ON NETWORKING

these new sketches. We implement them in both hardware
and software, and use real-world data traces to evaluate their
performance in comparison with the state of the art. The exper-
imental results show that our best sketch significantly improves
over the best existing work in terms of estimation accuracy
(up to 99.5% estimation error reduction), packet processing
throughput (up to 126% throughput improvement), and online
query throughput (up to 3 times throughput improvement),
thanks to its randomized error-reduction design.

II. BACKGROUND AND PRIOR ART
A. Problem Statement

Consider the problem of monitoring the packet stream
received by a router or other network devices. Packets form a
Sflow if they carry the same flow label f, which can be protocol
identifier, source address, destination address, port numbers,
and/or other fields in the packet headers, depending on the
type of measurement functions and application requirements.
The packet stream under monitoring may consist of numerous
flows whose packets interleave arbitrarily. Within a flow, each
packet is abstracted as an element e, which may again be a
header-field combination or content in packet payload.

Flow spread is defined as the number of distinct ele-
ments carried by a flow f. It is worth noting that flow
spread is quite different from flow size [30], [31], [32],
[33], [34], which is defined as the number of elements
in a flow. As an example, consider a packet stream
{<f1,61>, <f2,62>, <f1,€1>, <f1,61>}, the size of flow f1 is
3 as packet (f1,e1) appears three times while the spread of
flow f; is 1 as the second and fourth packets are duplicates of
the first packet (f1,e1). Single-flow spread estimation refers
to estimating the spread for a single flow, which is more
difficult than single-flow size measurement. In contrast, the
problem of multi-flow spread estimation measures the spreads
of numerous flows simultaneously given any flow label of
interest, which is this paper will focus on. We provide the
problem statement: design an efficient sketch (i.e., compact
data structure) that records the packets of a given stream, and
support online queries for spread estimates on any given flow
labels. Online queries are performed live when we process the
packet stream. They are important for applications that require
real-time responses. In contrast, offline queries are performed
after the packet stream has been processed [4], [6], [9], [28],
and thus not subject to any real-time requirement.

For a continuous packet stream, measurement is typically
done in each pre-defined period, and the content of the sketch
is offloaded to a server for long-term storage after each period.

For a concrete example of zero delay cybersecurity, Internet
worms scan the Internet to identify and infect vulnerable hosts.
As more and more hosts are infected, they join the effort
of scanning, causing an exponential infection curve before
leveling off. A modern worm can infect the Internet in a matter
of minutes. The infected hosts are super spreaders as they scan.
We will prefer to identify them in real time instead of after
each epoch (which may be in minutes).

In some applications, we only need to monitor the
super spreaders (those with very large spreads) [26], [35].

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RANDOMIZED ERROR REMOVAL FOR ONLINE SPREAD ESTIMATION IN HIGH-SPEED NETWORKS 3

e
estimator of flow m:l

Fig. 1. An estimator is an array of units (bits, FM registers or HLL registers).
Any element e of flow f will be recorded in one of the units.

However, there are other scenarios where the spread infor-
mation of non-super spreaders is also useful. For example,
to avoid detection, stealthy scanners may probe a small number
of destination addresses/ports at any time but do so persistently
over a long period. If we measure the spreads of all flows and
analyze such information over time, we will be able to find
these stealthy scanners that are not aggressive at any instant
but persist in low-rate scanning. In another example, suppose
that an intrusion detection system identifies a set of worm-
infected hosts that perform probing to infect others. With per-
flow measurement, we will be able to examine these hosts in
the measurements taken from the previous periods and find out
when each of them begins its probing (which results in spread
increase). This helps us to establish infection timeline among
the hosts for trace-back purpose. Moreover, we can query their
current probing rates in real time as per-flow measurement is
performing in the current period. In general, measuring the
spreads of all flows enables us to perform broad analysis over
long-term flow behaviors in order to detect subtle anomalies
that deviate from the norm. Additional applications of per-flow
measurement on stealthy attack detection, fine-grained traffic
analysis, flow loss map, ECMP debugging, and TCP timely
attack detection can be found in [31].

It is more difficult to measure the spread of a flow than
doing so for the size of a flow (which requires only a counter).
The reason is that we have to “remember” the elements that
have been seen before in order to remove duplicate elements,
and that takes a lot of memory space if the flow has a very
large number of distinct elements. The overhead can be greatly
reduced if we provide a spread estimate. In this paper, we refer
to a data structure that records the elements of a flow and
provides a spread estimate as an estimator. Below we discuss
the related work, beginning with single-flow spread estimators.

B. Single-Flow Spread Estimators

To monitor the spread of a flow, a naive solution is to
use a hash table to store the received elements for duplicate
removal [36], [37], but this is costly as a flow may have
millions or billions of distinct elements.

More efficient single-flow spread estimators include
bitmap [3], [20], [26], FM sketch [21], and HLL sketch
[16], [25]. We unify their description as follows: As shown
in Figure 1, each estimator is an array U of m units, where
each unit, Ufi], 0 < ¢ < m, is a bit, a 32-bit register,
or a 5-bit register for bitmap, FM or HLL, respectively. The
memory consumption of single-flow spread estimators are
shown in Table L.

When receiving an element e of the flow, we hash e to one of
the units, U[h(e)], for recording, where h(.) is a hash function.
The recording operation depends on the unit type. In case of
bitmap, we set Ulh(e)] to one. In case of FM, we choose
the G(e)th bit in U[h(e)] to set, with G(e) = 4,0 < i < 32

TABLE I

MEMORY NEED FOR DIFFERENT SINGLE-FLOW
SPREAD ESTIMATORS WITH m UNITS

Estimators | Memory Remark
bitmap m mInm > n.nis the real spread of flow
FM 32m recommended as m = 128
HLL 5m recommended as m = 128

with probability (1)"**, where 0 < i < 32. In case of HLL,
we update Ulh(e)] = max{U|[h(e)], G(e) + 1}.

When we estimate the flow’s spread, we average across the
array. This computation also depends on the unit type. In case
of bitmap [20],

>Yitg Ul
m
In case of FM [21], let p(U[i]) be the number of consecutive
ones starting from the lowest-order bit in U[i].
Z;’;Ol 2r(U[il)
m

avg =

avg =

In case of HLL [16], [25], harmonic averaging is used to tame
the impact of outliers.

m
Sy g

From the average, we can estimate the flow spread based on
the formulas from the papers cited above. For example, in case
of bitmap [3], [20], the spread is estimated as —m In(1—avg).

While UnivMon [30] and ElasticSketch [33] are designed to
measure the sizes of flows, they also estimate the number of
flows, called cardinality, in a packet stream. For this purpose,
they treat the whole stream as a single giant flow and the
flow labels as elements. They belong to single-flow spread
estimators, and their memory overhead is very large when
comparing with bitmap/FM/ HLL.

avg =

C. Multiflow Overhead Challenge

To monitor multiple flows, we may assign each flow a
separate spread estimator. With 5,000 bits, a bitmap estimator
has an estimation range up to just —5000 x In(1/5000) =
42,586, according to [20]. To achieve good accuracy, an FM
(HLL) estimator will need hundreds or thousands of bits [28].
For example, when an HLL estimator takes 640 bits when it
uses 128 registers of 5 bits each [9]. Consider one million
concurrent flows. The memory requirement for one million
bitmaps is 5000 Mb, while that for one million HLL estimators
is 640 Mb, which can be a serious problem for online
operations, particularly when its implementation uses on-chip
cache memory for high speed [9], [38], [39], such as on
a network processor for Internet traffic. Today’s switches
may have 128MB SRAM [40], but this cache memory
has to store the routing table and support essential rout-
ing/security/performance functions. Moreover, there may be
multiple measurement tasks. Therefore, it is highly desirable
to minimize the memory consumption of any measurement
task.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
£ £ 7
Cl(N
an array C of estimators
Fig. 2. Flow f is hashed to estimator C[h(f)], which carries error from

other flows due to hash collision. Recall that each estimator is an array of
units.

A VA

c [1

Fig. 3. Hashing each flow f to d estimators, where d > 1. Note that f’ and
f!" are also hashed to d estimators each, which are not drawn.

To save space, if we use fewer estimators than the number
of flows, each estimator will have to handle multiple flows. For
example, we may hash the flows to an array C' of estimators,
as is shown in Figure 2, where flows f, f’ and f” are hashed
to the same estimator. When we query for the spread of
flow f, the estimator will produces an estimate that carries
noise (error) from f’ and f” due to hash collision.

We give an example to show the error can be very large
in practical scenarios. Suppose that the allocated memory is
10MD and the number of flows is 10%, which is validated by the
fact that a 10-min CAIDA dataset contains 2.52M flows if we
consider each source-destination pair as a flow. Considering
the most compact single-flow spread estimator, i.e., HLL,
which occupies 640 bits under recommended setting, if each
packet is recorded in one estimator, on average, 64 flows share
one estimator. Therefore, the error can be very large. Below
we explain how the existing literature handles such error.

D. Existing Multiflow Estimators

There are two approaches to reduce error caused by hash
collision. One is to hash each flow f to d estimators, as shown
in Figure 3, where d = 2. The d estimators each produce a
spread estimation for flow f. The smallest of the d estimations
carries the least error. Essentially, this approach [26], [27] uses
the CountMin idea [29] but replaces counters with spread esti-
mators. This idea has been proposed by [43] and a generalized
design called bSkt [9] that uses different single-flow spread
estimators, including bitmap, FM, and HLL, as plug-ins are
implemented and evaluated.

For online spread queries, the above approach has two
problems. First, even though error is reduced by taking the
smallest, our experiments still show significant error. Second,
the query computation overhead increases d-fold because, for
each flow, we have to perform estimation from d estimators
instead of one. This is fine if it is done offline, but will be
a problem if it is done online as we process the live stream.
Note that in order to ensure decent error reduction, d cannot
be too small. Our goal is to design a new sketch that reduces
error to a level much lower than bSkt [9] and in the meantime
reduces query computation as well.

Another approach in the literature for reducing estimation
error is virtual sketches [4], [6], [9], [28], which share a large

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II

COMPARISON AMONG EXISTING MULTI-FLOW
ESTIMATORS AND OUR WORK

Estimators Accuracy|Recording overhead|Query overhead
bSkt [9] Low Medium Medium
cSkt [9] Low Medium Medium

OpenSketch [27] Low Medium Medium
CSE [4] High Low High
vHLL [28] High Low High
vSkt [9] High Low High
AROMA [41], [42] High Low High
Randomized Sketches| High Low Low

array of units (e.g., bits, FM/HLL registers) for all flows. More
specifically, they construct virtual estimators for individual
flows from these shared units. Each flow has its own virtual
estimator, which produces a spread estimation that carries
error from other flows due to unit sharing. Removing this
error will require memory access to the whole unit array and
computation across the whole unit array. Such overhead is
many times larger than that of bSkt [9], making it unsuitable
for online spread queries. Specifically, in our test, the online
query throughput of bSkt is at least 50-300 times larger than
that of virtual sketches. We will not consider these approach
further in the paper for the desire of supporting online queries.
We compare existing work and ours in Table II.

Marple [44] is a query language that is backed by a new
programmable key-value store primitive on switch hardware.
It evicts the flow’s information to DRAM when the on-chip
cache is saturated and answers the online queries only using
the information stored in SRAM. BeauCoup [45] focuses
on detecting super spreaders for a number of applications
(which has different types of flow labels) simultaneously with
one-time update. This is different from the problem this paper
studies, which is to measure spreads for all flows under a
single application (which has one type of flow label).

The work in [36] studies super spreader detection. This
paper differs from them as our focus is per-flow spread
estimation. Per-flow spread estimation requires a sketch to
record the elements of all flows while the work in [36]
stores a limited number of flow-element pairs or flow labels
and samples out most small (sometimes medium) flows. It is
suitable for super-spreader measurements, but does not keep
any information for numerous flows that are sampled out.
This is particularly true when there exist very large flows
whose pairs will push out most other flows, according to our
experiments and paper [46].

AROMA [41] and [42] is the state of the art on spread
estimation. It employs the idea of sampling and provides
the flexibility on the accuracy-memory tradeoff. With more
memory allocated, more flows will be tracked and the accuracy
will be improved. We will compare with AROMA in the
evaluation and show that our work advances in some metrics.

The error removal techniques are proposed in [38] and [43],
where the authors propose eliminating the estimation bias in
flow size estimation using the CountMin sketch. Specifically,
by selecting one counter in each of the d rows and taking
the minimum among the values in the d counters, we can

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RANDOMIZED ERROR REMOVAL FOR ONLINE SPREAD ESTIMATION IN HIGH-SPEED NETWORKS 5
TABLE 1II)
NOTATIONS C | []
C,C hash table of estimators ‘ f/ f’ 1
V(.) result of an estimator \ /
f,e flow label and element identifier ol 7 |
sr/5¢ actual/estimated spread of f]
d No. of hashed estimators per packet ’

w No. of estimators per hash table
m No. of units per estimator

h(.) € [0,w) uniform hash function
g() €{0,1} uniform hash function
g'(.,.) € {0,1} | two-input uniform hash function

simulate querying the size of a flow that does not exist and
hence take this value as the noise and remove it from the
estimate. This technique can also be used in CountMin-based
spread estimation solutions. The work in [47] proposes that
we only need to maintain the value of the total spread in the
packet stream, from which we can easily calculate the noise
and then subtract it away.

III. RANDOMIZED ERROR-REDUCTION SKETCHES

In this section, we introduce two new randomized sketches
for flow spread measurement that produce spread estimates
with much lower error and much lower computation time than
the prior art.

A. Hash Table

Let’s first revisit the hash table approach in Section II-C
and Figure 2. The hash table is an array C' of w estimators.
The ith estimator in the table is denoted as C[i], 0 < i < w.
Each estimator is an array of m units which may be bits,
FM registers or HLL registers as explained in Section II-B
and Figure 1. The jth unit in the ith estimator is denoted as
Cli[j, 0<i<w, 0<j<m.

e Recording: Consider an arbitrary flow f. It is hashed
to C[h(f)]. After we receive an packet (f,e), we hash the
element e to a unit, C[h(f)][h(e)], where it is recorded based
on the unit type according to Section II-B. Note that a modulo
operation is always assumed in this paper to keep the hash
output in the proper range. For example, C'[h(f)][h(e)] should
actually be C[h(f) modw][h(e) modm]. Some important
notations are shown in Table III for reference.

e Querying: Upon receiving a spread query on flow f,
we produce an estimate from C[h(f)] based on its type
(bitmap, FM or HLL); see Section II-B. The result is denoted
as V(C[h(f)]), where V(.) refers to the type-dependent esti-
mation formula.

Let F be the set of flows that are hashed to C[h(f)], i..,
Vf' e Fr, h(f') = h(f) mod w. Let sy be the true spread of
flow f. The number of distinct packets (f, e) that are actually
recorded by C[h(f)] is >_scp, sy, Which is greater than or
equal to sy since f € Fy. The noise with respect to flow f is
Zf'eFf—{f} s/, which is what we want to remove.

B. Baseline Randomized Error-Reduction Sketch - rSkt

Our first solution, called randomized ergor-reduction sketch
(rSkt), is to use two hash tables, C' and C, each of w spread

Fig. 4. Flow f is hashed to a primary estimator (C[h(f)] for this
example) and a complement estimator (C'[h(f)] for this example). The noise
in Fiy — {f} is split between these two estimators with equal probability. For
example, f’ is recorded in C'[h(f)] and f” is recorded in C[h(f)].

estimators, as shown in Figure 4, where each flow f is hashed
to a pair of candidate estimators, C[h(f)] and C[h(f)]. Let
g(.) be a function that maps f to 0 or 1 pseudo-randomly with
equal probability. All elements of flow f will be recorded in
Clh(f)] if g(f) = 0 or in C[h(f)] if g(f) = 1. We call
the estimator that records elements of f as the flow’s primary
estimator and the other as the flow’s complement estimator.
In practice, we may implement g(f) by taking the least-order
bit of hash value A/(f) using another uniform hash function
h'(.) or taking the highest-order bit of h(f) before modulo w.

Consider an arbitrary noise flow f' € Fy — {f}, where
Fy is the set of flows that Vf' € Fy, h(f') = h(f)
mod w. It is also either recorded in C[h(f)] or C[h(f)], with
equal probability, depending on the value of g(f’). Hence,
it is either recorded in flow f’s primary estimator or its
complement estimator, with equal probability. Therefore, our
solution splits error F'y — {f} between f’s primary estimator
and its complement estimator, with equal probability. Roughly
speaking, the flow’s primary estimator records sy and about
half of the error, and its complement records about half of the
error, allowing us to subtract error away. The flow’s estimated
spread, denoted as 5y, is computed as follows.

8p =1 =29(/NV(CR]) = (V(CRHD] D)

We stress that the splitting operation of Fy — { f} between
C[h(f)] and C[h(f)] will not be perfect and residual error
will remain after subtraction. Due to the pseudo-randomness
of hashing, Fy—{ f} may happen to contain a large flow f’ that
dominates in Fy—{ f}. Even if the flows in Fy—{ f} are evenly
distributed between C[h(f)] and C[h(f)], the error caused by
these flows is not evenly distributed between the two. Most
error will go where [/ goes. In this case, subtraction will not
serve its purpose.

One approach to solve the above problem is to use d
independent hash functions, h;(f), 0 < ¢ < d, each mapping
f to a pair of candidate estimators, C[h;(f)] and C[h;(f)].
We also use d independent pseudo-random functions, g;(f),
0 < ¢ < d, each choosing a primary estimator from two
candidates: For 0 < ¢ < d, if g;(f) = 0, all elements of
f will be recorded in C[h;(f)]; if g;(f) = 1, all elements
of f will be recorded in C[h;(f)]. Hence, for each received
packet (f,e), it will be recorded for d times, once in each of
f's primary estimators.

To estimate the spread of flow f, we first find the pair
of candidate estimators, C[h,.(f)] and C[h(f)], that has the

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
h

£

5]

>

©)

o

g rSktl

o

Estimation Accuracy

Fig. 5. Design logic for randomized sketches.

smallest combined estimation, i.e.,
Jz € [0,d), V(Clha(£)]) + V(Clha(£)])

= min{V(C[hi(f)]) + V(Ch(H)]),0 < i < d}. ()

This is the pair that carries the least combined error in
Fy — {f} and is thus less likely to contain large flows. Finally,
we estimate 5y as follows:

sr=(1-29(N)V(Cha(N]) = (V(Cha(HN] 3)

We find through experiments that by choosing d > 1, the
estimation accuracy may be improved (in case of using HLL
estimators) or may be worse (in case of using bitmap/FM
estimators). The reason is that although using the pair with
the smallest combined error helps avoid large flows, each
element is now recorded for d times in C' and C, which
boost overall error among all estimators. Whether estimation
accuracy becomes better or worse will depend on the joint
impact of the above two factors.

In the following, we will introduce two more sophisticated
randomized sketches, i.e., rSktl and rSkt2, each improving
the performance in one metric. rSktl reduces query overhead
tremendously, while maintaining the same estimation accuracy
and similar recording overhead compared to rSkt, with less
than 5% additional memory consumption. rSkt2 improves
estimation accuracy for all bitmap/FM/HLL types to a level
that rSkt/rSktl cannot achieve with any d value. The design
logic of randomized sketches is illustrated in Figure 5. Based
on application needs (fast query or precise estimation), users
can choose to use rSktl or rSkt2.

C. Supporting Fast Query With rSktl

It is desirable that when online recording the high-speed
packet stream, the sketch module can support fast query at the
same time, such that any spread anomaly, e.g., DDoS attacks,
super spreaders, etc., can be detected instantly and handled
by the system admin as soon as possible. This requires that
the query overhead of sketches should be as low as possible,
allowing even per-packet online query without slowing down
packet-recording speed. We admit that per-packet online query
is demanding in computing resources, but reducing the query
overhead will definitely benefit the query process, either
making online queries more frequently or doing so with less
computing overhead. However, our experimental results on
rSkt’s throughput demonstrate that its query overhead is at
least 10 times higher than its recording overhead, regardless

IEEE/ACM TRANSACTIONS ON NETWORKING

of the types of the estimators we use, making it impractical to
answer spread query of the flow label carried by the incoming
packet on the fly when recording high-speed packet streams.
This motivates the design of rSktl that reduces the query
overhead to the same level as the recording overhead.

We use the case of using bitmap estimators as an example
to show why rSkt’s query overhead is much larger than its
recording overhead. From Section II-B, each bitmap can be
represented as an array U of m bits. rSkt records any packet
(f,e) to the bitmap by setting the bit U[h(f|e)] to one, where
| is the concatenation operator. It answers the spread query by
scanning all the m bits in the bitmap, increasing the memory
access overhead by m times.

Our solution is that we maintain an additional integer for
each bitmap estimator, which is initialized as 0. The integers
themselves can form two independent integer arrays, denoted
as B and B, with integer B|[j] responsible for C[j] and integer
B[j] responsible for C[j], and allowing parallel processing of
recording and query. Every time we set a bit in the bitmap
from zero to one, we increase the corresponding integer by
one. When answering the query, according to the [20], the
spread estimate of any estimator, e.g, C[j], can be calculated
as follows:

V(Clj]) = =mIn(1 = B[j]/m),0 <j < w “)

The above equation indicates that we only need to access
an integer B[j] for any bitmap estimator C'[j]. In contrast, the
querying operation in Section II-B needs to scan all the m bit
in C[j], m times of memory access overhead.

To estimate the spread of flow f, we calculate the values
of estimators C[h;(f)] and C[h;(f)], 0 < i < d by (4). After
that, following the processing similar to rSkt, we will find
the pair of candidate estimators C[h,.(f)] and C[h,(f)], that
has the smallest combined estimation, and further estimate the
spread of f by (3).

rSktl can also support FM and HLL estimators. For FM,
we still maintain two integer arrays, B and 5. Recall from
Section II-B that an FM estimator is an array U of m registers,
each with 32 bits. When recording any packet (f,e) to any
FM estimator C[j], we choose the G(f|e)th bit in register
C[j][h(e)] to set, where G(.) is a hash function and outputs
i,0 < i < 32 with probability (3)"*!. The integer Bl[j] is
increased by

p(CLlR(e)]) = p(C"[j][R(e))),)

where p(C[j][h(e)]) is the number of consecutive ones start-
ing from the lowest-order bit in C[j][h(e)] and C’[j][h(e)]
represents the register C[j][h(e)] before update.

When answering the query, according to [21], the spread
estimate of estimator C[j] in (4) for bitmap now becomes

V(CL) = m- 28007 6,0 < j < w ©

where ¢ is a pre-computed constant which is approximately
0.78 when m is large enough.

When using HLL estimators, two integer arrays B and B
now become two float arrays. From Section II-B, each HLL is
an array U of m registers, each with 5 bits. When recording

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RANDOMIZED ERROR REMOVAL FOR ONLINE SPREAD ESTIMATION IN HIGH-SPEED NETWORKS 7

any packet (f,e) to a HLL estimator C[j], we update the
register C[j][h(e)] = max{C[j][[h(e), G(fle) + 1}, where
G(-) =1,0 < i < 31 with probability ()i*t1. The float Blj]
is 1ncreased by

9=Clillh(e)] _ 9—C"[j]h(e)]

)
where C'[j][h(e)] represents the register U[i] before update.

When answering the query, according to [16], [25], the
spread estimate of estimator C[j] in (4) for bitmap now
becomes

V(C[j]) = o -m?/B[j,0 < j <w ®)

where «,,, is a constant whose value is related to the value of
m. When m > 128, a,, = 0.7213/(1 + 1.079/m).

The recording and querying operations of rSktl are given
in Algorithms 1 and 3, respectively.

Algorithm 1 Recording a Packet in rSktl
1: Input: packet (f,e)

2: Action: record e of f in C, C and do update in B, B
3:fori=0tod—1do

4 if g;(f) = 0 then

5 rSktl_Record_Plugin(f,e, C[j],
6: else
7

8

9

Blj))

rSkt1_Record_Plugin(f, e, C[j], B[j])
end if

: end for

Algorithm 2 rSkt1_Record_Plugin(f, e, C[j],

Blj))

1: Input: packet (f,e), estimator C[j] and integer/float B([j]
2: Action: record (f,e) in C[j] and update B][j]
3: switch (type of estimator C[h;(f)])

4: case bitmap:

5. if C[j][h(f]e)] = O then

6 Cljl[h(fle)] =1

7: B[j] +=1

8: end if

9: case FM:

10: - B[j] -= p(Clj][h(e)])

1 k@G = 1

12: - B[j] +=p(C[j][h(e)])

13: case HLL:

14: B[j] -= 9—p(Clillh(e)])

15: C[j][h(e)] = max{C[j][h(e)],
16: B[j] +=2-~(Clllh(e))

17: end switch

G(fle) +1}

rSktl reduces query overhead by maintaining an additional
integer/float for each estimator, which accelerates query speed.
The cost is additional memory consumption, which we claim
is less than 5%. In case of using bitmap estimators, the
bitmap contains m bits and the additional integer may take up
[logy(m)] bits. As a result, we need [log,(m)]/m additional
memory. Since m is usually very large, e.g., 5000, to accom-
modate large flows, we have [log,(m)]/m = 0.3%. In case of

Algorithm 3 Querying on a Flow in rSktl
1: Input: flow label f,
MAX_VALUE

: Output: spread estimate

: X=MAX_VALUE

cfori=0tod—1do

Obtain V(C[h;(f)]) and V(C[h

(6) for FM and (8) for HLL.

6 i X > V(Clhi(f))) + V(C[hi(f)]) then

7 X =V(Chi()]) + V(C[hi(f)])

8:

9

maximum integer value

A RS T O]

:(f)]) by (4) for bitmap,

engfleZ
10: end for
11: if g,(f) = 0 then ~
12 return V(C[h.(f)]) — V(C[h(f)])
13: else ~
14: return V(C[h,(f)]) — V(C[h(f)])
15: end if

using FM estimators, each FM estimator needs 32m bits and
m is recommended as 128 [21]. The integer stores the sum of
the number of leading zeros in each register, which takes up
[log,(32m)| = 12 bits, resulting in the memory addition of
% = 0.3%. In case of using HLL estimators, a float takes
up 32 bits, and each HLL estimator needs 5m bits where m is
recommended as 128 [21], resulting in the memory addition of
% = m = 5%. Therefore, we can conclude that the memory
addition memory consumption can be neglected compared to
the memory consumption by rSkt.

It is worth noting that compared to rSkt, rSkt1 will not make
any changes on the estimation accuracy, under the same values
of w and d. Next, we will present a new design that significant

improves the estimation accuracy compared to rSkt and rSktl.

D. Unit-Level Randomized Error-Reduction Sketch - rSkt2

We use an example to illustrate the idea behind our third
design, referred to as rSkt2. Consider the baseline sketch rSkt
with d = 1. A flow f is hashed to C[h(f)] and C[h(f)].
Without loss of generality, suppose that g(f) = 0 and f is
recorded in C[h(f)]. Suppose there are only two flows, f and
f',in Fy. Flow f’ is a flow of large spread. There are two
possible cases.

Case 1: f’ is recorded in C[h(f)]. Because all elements
of f and f’ are recorded in C[h(f)], V(C[h(f)]) is an
estimate of the combined spread of f and f’. Because no
element is recorded in C[h(f)], V(C[h(f)]) = 0. Hence, the
estimate by (1) becomes 37 = V(C[h(f)]) — V(C[h(f)]) =
V(CTh(f)]), which carries large positive error introduced
by f’.

Case 2: f’ is recorded in C[h(f)]. Because all elements
of f are recorded in C[h(f)], V(CJh(f)]) is an estimate of
the spread of f. Because all elements of f’ are recorded
in C[h(f)], V(C[h(f)]) is an estimate of the spread of f’.
As 5p = V(CIh(f)]) = V(C[h(f)]), it is the estimated spread
of f minus the estimated spread of f’, thus carrying large
negative error introduced by f’.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

To resolve the above dilemma, we have to look deeper
at C[h(f)] and C[h(f)] into their unit-level structures and
break up f’ into pieces such that half of the pieces are stored
with f and half are stored away from f, allowing them to
be subtracted away. In fact, we need to break up every flow
in such a way because any flow has a potential to cause
error to other flows due to hash collision. Below we describe
how rSkt2 will record the elements of an arbitrary flow f
differently from rSkt.

Recall from Section II-B that each estimator in the hash
table C' (or C) is an array of m units, which may be bits,
FM registers or HLL registers. Flow f is hashed to a pair
of estimators, C[h(f)] and C[h(f)]. Different from rSkt, our
new idea will not use either of them to record f in its entirety.
Instead, we construct a logical primary estimator L ¢ from the
units of C[h(f)] and C[h(f)] to record f. Ly is also an array
of m units. Its 7th unit is taken from the ¢th unit of either
C[h(f)] or C[h(f)], with equal probability. Let ¢’(f,7) be
a pseudo-random function taking two input parameters ¢ and
f and returning a bit, O or 1, with equal probability, where
0 <1i < m. We define

C[h(H][E], if g'(f, i) =0

”m—{CWﬁmhﬁymn—l ©

When we receive an element e of flow f, it is recorded as
usual in Ly[h(e)], which is C[h(f)][h(e)] if ¢'(f, h(e)) =0
or C[h(f)][h(e)] if ¢'(f, h(e)) = 1. The actual recording
operation is explained in Section II-B.

The logical complement estimator of flow f, denoted as L,
is constructed from the units that L; does not use.

= { QPR ot =0
Cl(NNE, i g'(f,i) =1
Consider an arbitrary flow f’ € Fy—{f}, where h(f’) = h(f)
by definition. The flow is recorded in its own logical primary
estimator Ly that is constructed similarly from the units of
C[h(f)] and C[h(f)]. Each unit from C[h(f)] or C[h(f)] has
50% chance to be in L and also independently 50% chance to
be in L’f. Hence, when an element ¢’ of f is recorded in a unit
of L’f, it has 50% chance to be in Ly as well because that unit
has 50% chance to be in L. By the same token, element e’ has
50% chance to be in L. Hence, we are successful in splitting
f’ to two halves. One half is stored in Ly, and the other half
in Ly, allowing us to subtract them away. We estimate the
spread of flow f based on its logical primary estimator and
the logical complement estimator as follows:

5y =V(Lyg) = V(Ly),

(10)

Y

which not only solves the accuracy problem raised at the
beginning of this subsection, but does so with a low query
overhead of computing V(.) only twice. Moreover, each
element is recorded for d times in rSkt, and it is recorded just
once in rSkt2. This smaller processing overhead allows rSkt2
to handle an incoming stream of packets at higher throughput.
The recording and querying operations of rSkt2 are formally
presented in Algorithms 4 and 5, respectively.

Our experimental results show that rSkt2 significantly
improves the estimation accuracy compared to rSkt/rSktl.

IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 4 Recoding a Packet in rSkt2
: Input: packet (f,e)
. Action: record e of f in hash tables C' and C'
- if ¢'(f, h(e)) = 0 then
record (f,e) to C[h(f)][h(e)]
else
record (f,e) to C[h(f)][h(e)]
. end if

F o E s

Algorithm 5 Querying on a Flow in rSkt2
1: Input: flow label f

2: Output: spread estimate

3: for i= 0 to m do

4 if ¢'(f,i) = 0 then
s Lli] = CIr(A)i]
6: Lg[i) = C[h(f)][i]
7. else ~

s Leli] = Clh(F)l
9: Lyli] = C[h(f)][i]
10: end if

11: end for

12: return V(Ly) — V(l_/f)

One may expect that rSkt2 can be further optimized by the
design idea of rSkt—rSktl in Figure 5, in order to support
fast query. In other words, can we maintain an additional
integer/float for each estimator, so that V(Lz)/V(Ly) in
(11) is obtained by accessing only the respective integer/float
instead of all the m units in the estimator? Unfortunately,
we claim it is infeasible and the reason is that the estimator
for each flow in rSkt2 is logical and distinct, resulting in the
number of logical estimators equal to the number of flows.
Since we cannot assign each flow an integer/float, we cannot
maintain an additional integer/float for each logical estimator.

E. Network-Wide Measurement

The proposed randomized error reduction sketches can
be deployed on multiple locations to jointly measure multi-
ple packets concurrently [9], [26]. For example, it may be
deployed on multiple routers to support network-wide flow
spread monitoring. Suppose there are & measurement points
in a network, each running an instance of rSkt2 with the same
parameter setting, e.g., d, w and hash functions. The recorded
hash tables, C; and C'j, 0 < j < k, are sent to a central
controller for merging together into two tables, C, and C..
The merge operation is dependent on the estimator type.

e bitmap or FM: Bitmap/FM estimators from k routers,
Cjli], 0 < i < k, are merged to C.[i] by bitwise OR. C}][i],
0 <i < k, are merged to C.[i] by bitwise OR.

e HLL: HLL estimators from k routers, C;[i], 0 < i < k,
are merged to C.[i] by taking the maximum unit values, i.e.,
C.i][z] = max{C}i][z],0 < j < k}, 0 < z < m. Likewise,
C.li][z] = max{C;[i][z],0 < j < k}, 0 < 2 < m.

After merging, spread estimation is performed on C, and
C. as described earlier in the section.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RANDOMIZED ERROR REMOVAL FOR ONLINE SPREAD ESTIMATION IN HIGH-SPEED NETWORKS 9

Our sketches usually require the amount of memory that is
much less than what programmable switch can offer. Specif-
ically, our sketches consumes a memory allocation of 10*Mb
(default setting for memory in the experiments is 2Mb). The
operations that randomized sketches need for recording and
query are primarily hash, addition, max and bitwise AND,
which are supported by programmable switches.

IV. ANALYSIS

Let sy be the actual spread of flow f, 55 be the spread
estimate of flow f, S be the total number of distinct packets
(f,e) in the packet stream, and Fy be the set of flows f’
such that h(f") = h(f) in case of rSkt2 or that Ji € [0,d),
hi(f") = hi(f), in case of rSkt/rSktl. The packets in flow
f' € Fy —{f} are called error packets with respect to f. The
value of m for bitmap, FM and HLL is set as recommended
in Table I, where m > 16 usually holds.

Theorem 1: For any given flow f, supposing m > 16, the
expectation of 5y produced by rSkt/rSktl/rSkt2 satisfies

(Sf) + 0(Qw)a
if using HLL/FM estimators;

s if S—s
S)

2w
if using bitmap estimators.
The proof can be found in the supplementary materials.

Note that w is a large value: when using HLL estimators
with 128 units and allocated 10Mb memory, w is about 8k.
The bound for expectation of the spread estimate produced by
rSkt/rSkt2 can be small when f’s spread is large. For instance,
5 5L represents the average error in each estimator. If it is
smaller than sy, the bound will become o(sf) < sy. Consider
a special case where each flow is allocated an estimator and 2w
approaches the number of flows. If using HLL estimators, the
bound is o(sf) + O(S

|E(8f) —sfl<

==L, S;—l;f is equal to the average flow
spread among all flows. Under this circumstance, |E(5f) —
sfl < o(sy) if f’ spread is above the average flow spread,
which is much smaller compared to its actual flow spread.

Theorem 2: For any given flow f, supposing m > 16, the
variance of the spread estimate 5y from rSkt/rSktl can be
derived as

Var(sy)

104 (s +(S—sf)sf+Tf)+ Qf+0(5f+Qf)
1f using HLL estimators;

782 (S—sy)s

= m
if using FM estimators;

(Ty— (S Sf) Y(A1+A5)? +/\4+)\8+()\1+/\5)0(%)
if using bitmap estimators.

where § =S = s, Q= Yy Ef”#f/ FUEf
spspr(L=(L =)D + Xprppsp (1= (L=5)0. Ty =
Yopts 2aprtp gt s;/if” (L= (=52 4+ Xy 41—
1=3)" M = (7‘$‘1+1) A= m(ei%%_%_
1), As = (%H), and \g = m(emmm — 72— —1).

Theorem 3: For any given flow f, supposing m > 16, the
variance of the spread estimate 5 from rSkt2 can be derived as

Var(sy)
1042 (sfc—l——’a(sfu%) +%)+g+0(sfg+Rf)7

m
if using HLL estimators;

078" (2 4 Blorts) L Bey) 04 o(s2 4 Ry),

= m
if using FM estimators;

L O+ 26)? + A F s+ (A As)o(2),
if using bitmap estimators.

13)

2
S /8 1"
where Rf_zf;éfo”yéf’ frEf w2 +Ef7£f w and
G, 1, A4, A5, \g are the same as those in Theorem 2.

The proofs of Theorems 3 and 2 are provided in the
supplementary materials.

Interpretation of Theorems 2 and 3. After the rigorous
derivation of the variances of the spread estimate produced by
rSkt/rSktl/rSkt2. We interpret Theorems 2 and 3 with some
approximation. We first do approximation on I2;.

Ry
2
Sf/Sf// Sf/
=2 2 St
w w
FIEL AL ES I'#f
Sf/sf” S?c/ S?/ S?c/
=2 D ot el et
w w w w
F'#F AL A F'#f I'#f I'#f
O Sf’)2 S —s 1 S —s
< I en(CH) < 2R ()
w n w

where n is the number of flows. The last inequality holds as
n > w usually holds in practical settings. Similarly, we can
do approximation on () and 7.

1 d(s —s
Q ~ (5591 - (1 - 2yt w2(ME=20) 2 1s)
w w
d(S —sf) o
Ty ~ (———= 16
r (=) (16)
Consider approximation on \;. sy + % represents the

expected spread stored in f” primary estimator, which is O(m)
as the estimation upper bound of bitmap (also called linear
counting) is linear to the bitmap length m. Therefore, we have

8

Sftow f+2w
M=(——l+1)~ (HT+1)“

Doing the similar approximation on A5, A4, and \g, we have

)\5 ~ 1
s +—% S + i S + i 2
)\4=mefm2 _ YT o 2”“"—1)%7(f 2)
m 2m
8 54 1 B 2
Mg = 2w — — —) &~ — - ~0
s = mle 2muw) Qm(Qmw)

From the above approximations, we give a concise version
of the variance of estimate produced by rSkt/rSkt1/rSkt2.

e For any given flow f, the rigorous variance of the spread
estimate 5y from rSkt/rSktl in (12) can be approximately

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

bounded as
2 d(S—s¢ d(S—s¢
1.2? (sp+ (- f))2+2((- .;f))z7
if using HLL estimators;
0.782 A(S—sr)y\2 A(S—sr)y\2
if using FM estimators;
S—s ¢ S—s
o (s + 520 2+ (ad?—1) (55222,
if using bitmap estimators.
o For rSkt2, variance in (13) can be approximately
bounded as
R 2 S —s S —s
Var(ag) < S (s + 8222 B8 g

where ¢ is 1.04, 0.78, and 1/+/2 if using HLL, FM, and bitmap
estimators, respectively.

Comparing (18) with (17), we can find the variance of
spread estimate produced by rSkt2 is smaller than that of
rSkt/rSktl. Consider (18) for rSkt2. S;wsﬁ can be interpreted
as the average error in the each pair of candidate estimators.
When the spread of flow f is far larger than the average error,
the variance is bounded by f—i (sp)?+ % When the spread
of flow f is far smaller than the average error, the variance is
bounded by %

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed rSkt, rSktl,
and rSkt2 on both hardware and software platforms through
experiments based on real-world data traces. We also compare
them with the state of the art under various performance
metrics. In addition, we perform an application case study on
super spread detection in comparison with the prior art.

A. Implementation

We have implemented the following sketches: (1) the
proposed sketches, rSkt, rSktl and rSkt2, (2) the state-of-
the-art prior work that performs per-flow spread estimation,
bSkt [9] and c¢Skt-CM [9], [26], and (3) the state-of-the-art
prior work that performs super spreader detection, SS [35].
SS uses multi-resolution bitmaps [3]. The other sketches
can work with bitmaps, FM estimators, and HLL estimators,
which are explained in Section II-B. With different estima-
tors, they are denoted respectively as rSkt(bitmap), rSkt(FM),
and rSkt(HLL); rSktl(bitmap), rSkt1(FM), and rSkt1(HLL);
rSkt2(bitmap), rSkt2(FM), and rSkt2(HLL); bSkt(bit-map),
bSkt(FM), and bSkt(HLL); cSkt-CM(bitmap), cSkt-CM(FM),
and cSkt-CM(HLL). We also compare the proposed sketches
with AROMA [41] and CountMin based solution with a
error removal technique [47], denoted as CM-ER. AROMA
is the state of the art on spread estimation with a flex-
ible memory-accuracy tradeoff— with more memory allo-
cated, more flows will be measured and the accuracy will
be improved. CM-ER tries to remove the estimation bias
caused by the hash collision among flows. It maintain an
additional spread estimator (i.e., HLL) to estimate the total
spread and calculate the expected error by [47] that should
be subtracted from the estimate. Our implementation is done

IEEE/ACM TRANSACTIONS ON NETWORKING

on three platforms. CPU Implementation: This is software
implementation. The experiments are performed on a computer
with Intel Core Xeon W-2135 3.7GHz and 32 GB memory.
GPU Implementation: GPU has become cheaper and widely
available. We find that it serves well as a low-cost accelerator
for software implementation. With CUDA toolkit, all sketches
are programmed to support parallel execution on a computer
equipped with GeForce GTX 1070, 8GB GDDRS5 memory
and 1920 CUDA cores, each at a rate of 1506-1683 MHz clock
rate. FPGA Implementation: This is hardware implementation.
All sketches are implemented on XILINX NEXYS 4DDR/A7
-100T FPGA platform, with 128MB DDR2 DRAM, 4860Kb
Block RAM, and 100MHz clock rate.

B. Experimental Setting

The packet streams used in our evaluation are real Internet
traffic traces downloaded from CAIDA [48]. We use 10 traces,
each of tens of millions of packets. Each experiment is
performed over these 10 packet streams independently, and
we present the average results. Flow label f is defined as
destination address carried in each packet’s header. Each
trace contains around 110k flows and around 400k distinct
packets. Element e is source address also from packet header.
All packets toward the same destination form a flow. Flow
spread is the number of distinct sources that communicate
with a destination. Anomaly in flow spread may signal flash
crowd in service requests or denial-of-service attack against
a destination service (which could be judged in conjunction
with flow size); both cases will require immediate attention
from service admin.

For rSkt(bitmap), rSkt2(bitmap), bSkt(bitmap) and cSkt-
CM(bit-map), we set the bitmap size to be 5000 bits, which
produces a spread estimation range that covers all flows in
the traces. The bitmap size of SS is chosen according to
the original paper [35]. For rSkt(FM), rSkt2(FM), bSkt(FM)
and cSkt-CM(FM), each register is 32 bits. For rSkt(HLL),
rSkt2(HLL), bSkt(HLL) and cSkt-CM(HLL), each register is
5 bits. The number of registers in each estimator is 128. For
rSkt, bSkt and cSkt-CM, d = 4. Namely, each packet is
recorded in four estimators and each query requires estimation
from four estimators; see Section III-B. The above parameter
setting is in line with those in [9].

The sketches are evaluated and compared under the follow-
ing four performance metrics. Estimation Accuracy. We use
absolute error to measure estimation accuracy. Let §; be the
estimated spread of flow f, and s be the actual spread of flow
/. The absolute error is calculated as |§ —5¢|, and the average
absolute error is defined as »_,[3; — s¢[/N, where N is the
number of flows in the packet stream. Recording Throughput.
We measure the rate at which the packet (f,e) are recorded
by each sketch on any given software/hardware platform. The
unit is million packets per second, abbreviated as Mpps. Online
Query Throughput. We measure the rate at which the queries
can be performed on f after each packet (f, e) from a stream is
recorded. For each query, we produce an estimate of f’s spread
up to the time when the query is performed. Query Overhead.
It is to measure the processing time to answer one query on
any flow’s spread. The unit is ms.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RANDOMIZED ERROR REMOVAL FOR ONLINE SPREAD ESTIMATION IN HIGH-SPEED NETWORKS 11

TABLE IV

PROCESSING TIME (MS) PER QUERY BY VSKT, CSE, VHLL, AROMA,
AROMA+, BSKT, CSKT-CM, CM-ER, RSKT, RSKT1, AND RSKT2
USING DIFFERENT SINGLE-FLOW SPREAD ESTIMATORS,
INCLUDING BITMAP, FM AND HLL. NOTE THAT AROMA
DOES NoT USE BITMAP, FM, AND HLL AS PLUG-INS.
AROMA+ Is THE MODIFIED VERSION OF AROMA
FOR ONLINE SPREAD ESTIMATION. IN COMPARISON,

VSKT, CSE AND VHLL AND AROMA HAVE
MUCH HIGHER QUERY OVERHEAD
THAN OTHERS

Plug-ins .
Sketchos & HLL | FM | bitmap
VSKt [9] 9260 | 0376 | 1.644
CSE [6] - - 1745
VHLL [28] 7299 . -
AROMA [41], [42] 0.100
AROMA+ 0.001
BSKE [9] 0.005 | 0.002 | 0.060
CSKe-CM [9], [26], [27] | 0.005 | 0.002 | 0.060
CM-ER [47] 0.006 | 0.003 | 0.064
Skt 0.008 | 0.002 | 0.120
1Sktl 0.001 | 0.001 | 0.001
1Sk2 0.002 | 0.001 | 0.030

C. Query Overhead

We compare two groups of spread estimation solutions
in terms of the query overhead. The first group includes
bSkt, cSkt-CM, CM-ER, rSkt, rSktl, and rSkt2. The second
group includes vSkt, CSE, vHLL and AROMA. We set the
memory as 1Mb under which AROMA have similar accuracy
performance to our most accurate sketches, i.e., rSkt2(HLL)
and rSkt2(bitmap), which will be explained later. Note that
AROMA can be modified reduce its query overhead. Specif-
ically, we can maintain a hash table to store the number
of samples for each flow and maintain an additional HLL
to estimate the total spread, which is used to calculate the
sampling rate. In our experiment, we find the memory of
hash table and an HLL takes up around 10% of the total
memory. The modified version is denoted as AROMA+. The
results on the processing time per query are given in Table IV.
Among the second group of solutions, AROMA has the lowest
processing time, which however is far higher than what the first
group can achieve. Specifically, AROMA needs a processing
time of 0.10 ms to query the spread of one flow, 50 times larger
than what bSkt, cSkt-CM, CM-ER, rSkt, rSktl and rSkt2 need
(<£0.002 ms when the proper single-flow spread estimators
are used as plug-ins). The reason is that the second group of
solutions all need to scan the whole data structure to answer
the online queries on the spread of one flow, while the first
group of solutions only need to access O(d) single-flow spread
estimators or even 2 (for rSkt2). Since this paper focuses on
online spread estimation, in the rest of the evaluation, we will
focus on comparing the first group of solutions and AROMA
(and AROMA+) as it can be easily modified to support fast
online queries.

D. Estimation Accuracy

We first compare randomized sketches with cSkt, CM and
bSkt comprehensively using various types of spread estima-
tors, i.e., HLL, FM and bitmap. Then we compare randomized

,
%)

Absolute Error (107)

S N & o

bSKH(HLL) ——o—
lcSki~CM(HLL) —e—
rSKi(HLL) —x—
rSki2(HLL) —=—

bSkt(HLL) o
cSkt-CM(HLL) -
rSki(HLL) -
rSkt2(HLL)

™

AU

o
-

0

Bxoo
o

Absolute Error (102)

&
Absolute Error (10
=]

S

::gszsgegﬁggzg;ggﬁ@
100 10> 10 10
Flow Spread

(c) 4Mb Memory

4 4

10 107 10° 10
Flow Spread

0

Memory Size (Mb)

(a) Various memory (b) IMb Memory

Fig. 6. Accuracy comparison of rSkt(HLL), rSkt2(HLL), bSkt(HLL) and
¢Skt-CM(HLL) under CAIDA dataset. (a) Average absolute error of all flows
w.r.t memory size, (b)-(c) error distribution under a given memory size.
Compared to the prior art bSkt(HLL) and cSkt-CM(HLL), the proposed
rSkt(HLL) and rSkt2(HLL) reduce absolute error by 73.6%-81.1% and
93.9%-97.8%, respectively, in plot (a).

sketches with the existing error removal method, i.e., CM-ER.
Finally, we select our most accurate ones and compare them
with the state-of-the-art on spread estimation, i.e., AROMA.

1) Compare Randomized Sketches With cSkt, CM and bSkt:
Our first set of experiments compare the proposed sketches
with the state of the art in terms of estimation accuracy.
Note that accuracy is the same across different implemen-
tation platforms, which only affect throughput. We want to
stress that the estimation accuracy of rSkt and rSktl are
the same under the same values of w and d. As we have
explained in Section III-C, compared to rSkt, rSktl increases
the memory consumption by <5% under the same w, which
can be neglected. Therefore, we do not plot the estimation
accuracy results of rSktl in the figure and only compare
the throughput results in the following subsections. We begin
by comparing rSkt(HLL), rSkt2(HLL), bSkt(HLL) and cSkt-
CM(HLL). Figure 6 (a) shows the average absolute error
among all flows under 1Mb-16Mb memory allocations to each
sketch. In contrast, if we ideally assign each flow a single-flow
spread estimator, it needs 70Mb/450Mb/550Mb memory using
HLL, FM, and bitmap estimators, respectively. bSkt(HLL) and
cSkt-CM(HLL) performs similarly. Compared to the better one
of them, rSkt(HLL) reduces average error by more than 73.6%,
and rSkt2(HLL) reduces average error by more than 93.9%.
Figures 6(b)-6(c) show the detailed error distribution at a given
memory allocation, IMb and 4Mb, respectively. The flows are
placed in bins based on their true spreads (which can be found
directly from the traffic traces). The spread bins are [2¢,2¢1]
for : > 0. We average the absolute error of flows in each bin
and plot a point in the figure.

In Figure 6(a), when memory allocation increases, the
average absolute error of rSkt(HLL), rSkt2(HLL), bSkt(HLL)
or cSkt-CM(H-LL) decreases, which is expected because the
probability of hash collision decreases. The figure shows that
rSkt and rSkt2 are much more accurate than bSkt(HLL) and
cSkt-CM(HLL), especially under tight memory. For example,
when 1Mb memory is used, rSkt(H-LL) and rSkt2(HLL)
reduce the average absolute error by 81.1% and 97.8%, respec-
tively, compared to bSkt(HLL). Figure 6(a) also shows the
error bars of average absolute error of rSkt(HLL), rSkt2(HLL),
bSkt(HLL) and cSkt-CM(HLL) under 10 traces. As we can
see, the advantages of rSkt(HLL), rSkt2(HLL) over bSkt(HLL)
and cSkt-CM(HLL) in terms of estimation accuracy hold under
different traces.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

I
=]
2

v
S

kS bSKi(FM) e S S0 RN £ DSKUEM) o

< 40 oS-CMIEN) S5 1 = 40 asaatanesd SN < 40 cSkGM(EM) o

g SKHFM)

ol SEES | Faol wommoe {Ewl &SR

< 2 S 2 [SK(EM < 2

g g rski2(FM) —e—] 2 .

ER 210 st 5 1] G 10 $-000-0-0-0-0-0-0-0-0"

2, w2 et 2 e D

8 16 100 100 10 100 10t 0% 100 100 10° 10t

Memory Size (Mb) Flow Spread Flow Spread

(a) Various memory (b) IMb Memory (c) 4Mb Memory

Fig. 7. Accuracy comparison of rSkt(FM), rSkt2(FM), bSkt(FM) and
cSkt-CM(FM) under CAIDA dataset. (a) Average absolute error of all
flows w.r.t memory size, (b)-(c) error distribution under a given memory
size. Compared to the prior art bSkt(FM) and cSkt-CM(FM), the pro-
posed rSkt(FM) and rSkt2(FM) reduce absolute error by 83.5%-84.5% and
97.9%-98.4%, respectively, in plot (a).

%)

bkt ﬁilmap]

= (oitmap] G 5o ¢eeeee BB S o) [T Miskpimap) o

ol Skt-CM(bitmap) =<3 | = = cSkt-CM(bitmap) ---e——

5 4 ISk(bitmap) & 40 bSkt(bitmap) - 5 40 rSkt(bitmap) -

E 3 rSki2(bitmap) £ 30| cSki-CM(bitmap) - S 30| rSki2(bitmap) —e—

s | rSki(bitmap) - =

= 2 = 20 rSkt2(bitmap) = 20

S 1 T 10 hserocisone XK ERT) Saaaaa s
1 2 4 8 16 100 100 107 100 10t 10 10 107 100 10t
Memory Size (Mb) Flow Spread Flow Spread

(a) Various memory (b) IMb Memory (c) 4Mb Memory

Fig. 8. Accuracy comparison of rSkt(bitmap), rSkt2(bitmap), bSkt(bitmap)
and cSkt-CM(bitmap) under CAIDA dataset. (a) Average absolute error of all
flows w.r.t memory size, (b)-(c) error distribution under a given memory size.
Compared to the prior art bSkt(bitmap) and cSkt-CM(bitmap), the proposed
rSkt(bitmap) and rSkt2(bitmap) reduce absolute error by 83.0%-84.5% and
98.7%-99.5%, respectively, in plot (a).

Figures 6(b)-6(c) show that absolute error is larger for flows
of larger spreads. The proposed rSkt(HLL) and rSkt2(HLL)
have much smaller error distributions than bSkt(HLL) and
c¢Skt-CM(HLL), thanks to their randomized error reduction
design. rSkt2(HLL) is more accurate than rSkt(HLL) due to
its logical estimator design that splits noise flows into pieces.
Its improvement over rSkt will be more pronounced when we
use FM estimators and bitmaps below and when we consider
throughput shortly.

The experimental results
rSkt2(FM), bSkt-(FM) and cSkt-CM(FM) are shown
in Figure 7. The results that compare rSkt(bitmap),
rSkt2(bitmap), bSkt(bitmap) and cSkt-CM(bit-map) are
shown in Figure 8. Similar conclusion can be drawn as
those from Figure 6. For example, from Figure 7(a), using
bSkt(FM) as a baseline, rSkt(FM) reduces average error by
more than 83.5%, and rSkt2(FM) reduces average error by
more than 97.9%. From Figure 8 (a), using bSkt(bitmap) as
a baseline, rSkt(bitmap) reduces average error by more than
83.0%, and rSkt2(bitmap) reduces average error by more
than 98.7%. From error distributions in Figure 7 (b)-(c) and
Figure 8(b)-(c), rSkt2 performs consistently better than rSkt,
which is in turn much better than bSkt and cSkt-CM.

2) Compare Randomized Sketches With AROMA and
CM-ER: From the above accuracy comparison, we find
that rSkt2(HLL) and rSkt2(bitmap) are the best ran-
domized sketches in terms of accuracy performance.
Therefore, we compare them with AROMA (and AROMA+),
CM-ER(HLL) and CM-ER(bitmap). AROMA is the state
of the art on spread estimation with a flexible memory-
accuracy tradeoff and AROMA+ is the modified version of
AROMA to support online queries, which has been explained
in Section V-C. CM-ER is based on CM but applies an error

that compare rSkt(FM),

IEEE/ACM TRANSACTIONS ON NETWORKING

removal technique from [47]. It can be plugged in various
types of spread estimators, e.g., HLL and bitmap, and is
denoted as CM-ER(HLL) and CM-ER(bitmap), respectively.
The parameter settings for HLL and bitmap are consistent for
both rSkt2 and CM-ER. We first set memory allocation for
each solution to 1Mb and then observe the average absolute
error of flows with respect to the actual flow spread. Note
that the line for AROMA starts from x = 1/p, where p is
the sampling rate, meaning that most flows with spread less
than 1/p will not be sampled. The results in Figure 10 show
that rSkt2(HLL) is the most accurate for small flows, whereas
AROMA samples out most small flows (see Figure 10(a))
and show that rSkt2(bitmap) is the most accurate for large
flows, whereas AROMA outperforms rSkt2(HLL) for large
flows (see Figure 10(b)). AROMA-+ is slightly less accurate
than AROMA as it needs around 10% of the memory to
maintain a hash table and an HLL. When we increase the
memory allocation to 4Mb, the same conclusion can be drawn
from Figure 11. What’s more, rSkt2 will always outperforms
CM-ER, reducing the error by at least 66% using various types
of spread estimators.

E. Recording Throughput

1) Compare Randomized Sketches With cSkt, CM and bSkt:
Our second set of experiments compare the proposed sketches
with the state of the art in terms of recording throughput
(at which rate the incoming packets can be processed on
different platforms). The experimental results of recording
throughput on the CPU platform are shown in Figure 9(a).
The recording throughput of rSkt2 is highest for any type of
estimators (i.e., bitmap, FM and HLL) because it records each
packet just once, whereas the other three sketches records each
packet d times. The throughputs of bSkt and rSkt are similar,
while that of rSkt is slightly lower due to computing an addi-
tional function ¢ and that of rSktl is also slightly lower due
to maintaining additional integer/float arrays. As example, the
throughput of rSkt2(bitmap) is 3.33 times that of bSkt(bitmap)
or cSkt-CM(bitmap), and it is 4.19 times that of rSkt(bitmap)
and 6.04 times that of rSktl(bitmap). For all sketches, the
highest throughput is achieved when bitmaps are used. That
is because FM and HLL require an additional geometric hash
operation; see Section II-B. The throughput is lowest when
HLL is used because it incurs more memory accesses.

The experimental results of recording throughput on the
GPU platform are shown in Figure 9(b). All sketches achieve
much higher throughput on GPU than on CPU due to massive
parallelism. Still, rSkt2 achieves much higher throughput,
around 600 Mpps, about three that of bSkt or cSkt-CM and
about four times that of rSkt and rSktl.

The recording throughput of the sketches on FPGA is
shown in Figure 9(c). Note that rSkt1(HLL) needs a float for
each HLL estimator. For ease of implementation, we multiply
the float by 232, such that the value becomes integer. The
proposed rSkt2 achieves a throughput of 100 Mdps, while
bSkt, rSkt and rSktl only support a throughput of 25 Mdps.
This is because bSkt, rSkt and rSktl record each packet four
times in the same memory block, which consumes four clock
cycles, whereas rSkt2 records each packet once in one clock

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RANDOMIZED ERROR REMOVAL FOR ONLINE SPREAD ESTIMATION IN HIGH-SPEED NETWORKS

13

30 ———r 800 P — & 2 ‘ &40 — Z
2z HLL e 2 HLL e nl 2 s HLL s 5 HLL e St
225 ~ FM o=z 7z &600 _ FM ===3 E‘ &120 <5 a <3 _ FM ===3 (<3
520 bitmap =zzzza g bitmap zzzzza Ea g «é . ? i bitmap zzzzza E. 9l
5 3 VI) 7))
215 2.400 Y 2 1 vl 20 L
£ kS VIRE: 2 7 2 I
910 £ vl 240 £ 7 £ g
MV =" | & i T i
= = > = =
S ﬁ@ ! = 0 Vil= § 0 ﬁ 71 B S E 0 lm |
bSkt cSkt rSkt rSkt1 rSkt2 bSkt ¢Skt rSkt rSkt1rSkt2 o bSkt ¢Skt rSktrSkt1rSkt2 O bSkt cSkt rSkt rSkt1rSkt2 O bSkt ¢Skt rSkt rSktl rSkt2

(@) CPU

(b) GPU
Fig. 9. Plots (a)-(c): Recording throughput on CPU, GPU and FPGA platforms. Plots (d)-(f): Online query throughput on CPU, GPU and FPGA platforms.

(c) FPGA

Mpps stands for Mega packets per second.

‘ 8 ‘
g | CM-ER(HLL) o | CM-ER(HLL) -~
_~ 9 [CM-ER(bitmap) = &~ [CM-ER(bitmag) =
= AROMA v g S 6l AROMA -+ |
= AROMA+ o z AROMA+ ---o--
5 6 rSKt2(HLL) -~] 5 rSKt2(HEL) -
B rSkt2(bitmap) P =} rSkt2(bitmap) --&-
3] 7 m 4+ / 1
e 45 -0 2
5 o & 5
2 T sey =
2 2F y 2
< ¥ S <
0 L
10° 10" 10

Flow Spread
(a) Flows with spread <100

Flow Spread
(b) Flows with spread >100

Fig. 10. Accuracy comparison of CM-ER(HLL), CM-ER(bitmap), AROMA,
AROMA+, rSkt2(bitmap) and rSkt2(HLL) with respect to flow spread under
IMb memory allocation. Plot (a): error of small flows whose spreads are
smaller than 100; Plot (b): error of flows whose spreads are equal to or larger
than 100. rSkt2(bitmap) achieves the best accuracy among large flows, while
rSkt2(HLL) performs best for small flows. Using the same spread estimators,
rSkt2 always outperforms CM-ER. Note that AROMA starts from x ~ 45 as
its sampling rate under 1Mb memory is ﬁ, meaning that most flows with
spread less than 40 will not be sampled.

g 8 -
- s | CM-ER(HLL) o
B «— CMER(bitmap) -
: SRR
z = D
5 S o= 1 B Ski2(HLL)
= T AROMA o = rSkt2(bitmap) —&-
P4l AROMA+ o | i |
2 rSKE2(HLL) —— 2
° rSkt2(bitmap) - =
2 2 i
< <
10” 10' 10? 10% 10° 10*
Flow Spread Flow Spread

(a) Flows with spread <100 (b) Flows with spread >100

Fig. 11. Accuracy comparison of CM-ER(HLL), CM-ER(bitmap), AROMA,
AROMA+, rSkt2(bitmap) and rSkt2(HLL) with respect to flow spread under
4Mb memory allocation. Plot (a): error of small flows whose spreads are
smaller than 100; Plot (b): error of flows whose spreads are equal to or larger
than 100. Same conclusion from Fig. 10 can be drawn. Note that AROMA
starts from x ~ 11 as its sampling rate under 4Mb memory is 1—11, meaning
that most flows with spread less than 10 will not be sampled.

cycle (with hardware pipelining). Interestingly, cSkt-CM also
achieves 100 Mpps because it uses d arrays, which can be
placed on different memory blocks, allowing parallel access.
Due to pipelining, each sketch achieves the same throughput
under different estimator types (bit-map, FM and HLL). One
may observe that hardware implementation on FPGA achieves
smaller throughput than software implementation on GPU.
There are two reasons. First, GPU allows massive parallelism
which compensates the software disadvantage. Second, our
FPGA is a cheap one. Throughput will be higher if a high-end
FPGA is used. We conclude that GPU is a viable alternative
to hardware implementation for high throughput.

(d) CPU

RECORDING THROUGHPUT (MPPS) OF AROMA,

(e) GPU

() FPGA

TABLE V

AROMA+ AND CM-ER, RSKT2

CM-ER(HLL) | CM-ER(FM) | CM-ER(bitmap) | AROMA+
Th. 1.3 4.0 6.2 3.8
rSkt2(HLL) rSkt2(FM) rSkt2(bitmap) AROMA
Th. 6.2 10.5 26.4 40.4

2) Compare Randomized Sketches With AROMA and
CM-ER: We also compare our best sketches, i.e., rSkt2(HLL)
and rSkt2(bitmap) with AROMA, AROMA+ (modified ver-
sion to support online queries) and CM-ER. The results in
Table V show that rSkt2 rSkt2(HLL) and rSkt2(bitmap) record
packets much faster than CM-ER. The reason is that CM-ER
needs to record each packet d times while rSkt2 only needs to
record once. Among all, AROMA has the highest recording
throughput, but we will show that its query throughput is very
limited. Its online version, i.e., AROMA+ records packets
slightly slower than rSkt2. The reason is that it needs to
maintain the number of samples and an additional HLL for
total spread estimation.

F. Query Throughput

Our third set of experiments compare the proposed sketches
with the state of the art in terms of query throughput. We want
to stress that the computation of spread estimation is nothing
similar to that of size estimation [30], [32], [34], [49]. The
latter incurs similar overhead as recording, and therefore
its query throughput is similar to recording throughput. But
spread estimation is much more computation intensive than
recording, and spread query throughput is much smaller than
recording throughput. Queries cannot be performed on per
packet basis, which makes it practically important to design
novel sketches that improve on query throughput.

The experimental results of query throughput on the CPU
platform are shown in Figure 9(d). As is expected, the query
throughput of rSktl is the highest for any type of estimators
(i.e., bitmap, FM and HLL) because we maintain an additional
integer/float for each estimator, without accessing m units
compared to other sketches. Moreover, its query throughput is
100%, 50%, and 40% of its recording throughput when using
HLL, FM and bitmap estimators, respectively. That means,
rSktl can almost support per-two-packet online query or
even per-packet online query if using HLL estimators. Aside
from rSktl, the query throughput of rSkt2 is highest because
it computes from two estimators per query, whereas bSkt
and cSkt-CM each compute from d estimators per query,
while rSkt computes 2d estimators. Because d = 4 in our

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

5 T
< DN 2 routers EmER
2 24t 4 routers ==Y
s = 6 routers zzzz2
g g 8 routers NN
8 fotters E3r 0 routers wzzz
routers 7z
510 s
2 L2r
2 =2
Z s 20l
< S
< <
0

ilmap FM
(b) rSkt2

Fig. 12. Network-wide measurement estimation accuracy of rSkt and rSkt2
using different plug-in estimators.

experiments, the throughput of rSkt2 is expected to be about
twice that of bSkt (or cSkt-CM) and about four times that of
rSkt, matching well with the experimental results.

The experimental results of query throughput on the GPU
platform are shown in Figure 9(e). Again, GPU is a great
accelerator thanks to its numerous cores that process in par-
allel. The query throughput on GPU is more than an order of
magnitude higher than that on CPU across different sketches
and different types of estimators. Yet, relative performance
between sketches remain similar. The query throughput of
rSktl is the highest (124 Mpps, 120 Mpps, and 132 Mpps
when HLL, FM, and bitmap estimators are used respectively),
ten times more than those of other sketches. The query
throughput of rSkt2 is the second highest, about twice that
of bSkt (or cSkt-CM) and about four times that of rSkt.

The complexity of query computation is far greater than
that of recording, particularly for FM estimators and HLL
estimators, which prevent us from implementing query solely
on the FPGA board that we have. Instead, we implement
a module that, upon query, will output the estimators of
the flow for bSkt, cSkt-CM, rSkt and rSkt2 and the corre-
sponding integers for rSktl, from which one can compute
spread estimation off-board by software (which may be GPU-
accelerated) or by ASIC hardware. The throughput of this
FPGA module is shown in Figure 9(f). Due to our maintaining
of additional integers for each estimator, rSktl can achieve
the query throughput of 12.5 Mpps, at least fours time larger
that those of other sketches. Aside from rSktl, both cSkt-
CM and rSkt2 achieve higher throughput, thanks to pipelining,
as the design of cSkt-CM allows parallel access to its d
estimators per flow on FPGA, while rSkt2 also allows parallel
access to its 2 estimators per flow. Both bSkt and rSkt have
lower throughput because their designs do not allow fully
parallelized access to multiple estimators per flow on FPGA.

G. Case Study 1: Network-Wide Measurement

In this subsection, we conduct experiments to evaluate
the performance of randomized sketches for network-wide
measurement, in terms of the estimation accuracy. We want to
stress again that the estimation accuracy of rSktl is the same
as that of rSkt under the same value of w and d. Therefore, we
do not repeat the results and only present the results of rSkt
and rSkt2. The number of measurement locations, e.g., routers,
is up to 10. We combine 10 1-minute CAIDA data trace
together as a whole packet stream in the network. For each
packet in the whole stream, we assign it to a randomly selected
router. The performance metric is average absolute error,
which has been defined before. The memory allocation for

IEEE/ACM TRANSACTIONS ON NETWORKING

0.2 T ; 0.6 . .
- Skt2(bitmap) ---o--- - Skt2(bitmap) ---o--
5016 RROMA o 505K SROMA o 1
ia} L B | {04 S§ —&
0.12 BemE— el
L = 03+ E
2 3 S - N S . B
= 0.08 T2 02 L 8.]
= =026 o e e
) | 1l o -
x 0.04 & _ . ~ 0.1 P \e——-»e\\ﬁy@___%
0 B i 0 e s S S —"
200 400 600 800 200 400 00 800
Threshold k Threshold k

(a) 16Mb memory (b) 2Mb memory

Fig. 13. rSkt2(bitmap) incurs smaller relative error than SS and AROMA,
particularly when memory allocation is small.

each router is 4Mb. We vary the number of routers from 2 to
10 to observe the estimation accuracy of rSkt and rSkt2 under
different numbers of measurement locations. The results are
presented in Figure 12, which demonstrates that with the
number of routers increasing (i.e, the total number of packets
received increasing), the average absolute error of each sketch
increases accordingly. By comparison, rSkt2 outperforms rSkt
under the same parameter setting, regardless of the plug-ins
used. Among all the plug-ins, rSkt(HLL) and rSkt2(HLL)
outperform rSkt(FM) and rSkt(bitmap), and rSkt2(FM) and
rSkt2(bitmap), respectively. The best sketch, i.e., rSkt2(HLL)
can maintain very low average absolute error, i.e, less than 50,
even for network-wide measurement with 10 routers.

H. Case Study 2: Super Spreader Detection

We use a case study to investigate how the proposed
sketches perform in detecting super spreaders, which are
defined as the flows whose spreads exceed a threshold k that
the user chooses based on application need. We have shown
that the proposed rSkt2 outperforms the state of the art on
per-flow spread estimation. This case study is different. It is
to identify super spreaders only and estimate their spreads. The
focus of this subsection is to evaluate the detection accuracy.
In this experiment, we compare rSkt2(bitmap) with the state-
of-the-art sketch for this purpose, SpreadSketch (SS) [35]
that uses multi-resolution bitmaps and AROMA [41] that is
based on sampling. SS is a modified version of cSkt-CM,
with each estimator expanded for storing a flow label. With
online queries, if the estimated spread of a flow after element
record exceeds k, we keep the flow label in a hash map. For
query, AROMA accesses the whole register array after record-
ing all packets to collect the labels of super spreaders and
estimate their spreads. The parameter setting can be found in
Section V-B. We evaluate the performance with three metrics.
Average relative error, which is defined as fer. |f;‘7rs|‘
where I'; is the set of super spreaders detected. Number of
false positives, i.e., the number of detected “super spreaders”
whose true spreads are below k. Number of false negatives,
i.e., the number of real super spreaders that are not detected.

We perform two experiments with different memory allo-
cations, 16Mb and 2Mb, respectively. Figure 13(a) shows the
results under 16Mb. The relative error of SS is in the range
of [9.0%,11.2%] and that of AROMA is in the range of
[8.1%.,9.7%] where the threshold ranges from 200 to 800,
whereas rSkt2(bitmap) performs better with relative error
between 1.0% and 3.3%. Figure 13(b) shows the results under
2Mb. The relative error of SS is in the range of [17.3%,51.0%]

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RANDOMIZED ERROR REMOVAL FOR ONLINE SPREAD ESTIMATION IN HIGH-SPEED NETWORKS 15

TABLE VI

NUMBER OF TRUE SUPER SPREADERS UNDER
DIFFERENT SUPER SPREADER THRESHOLD

Threshold | 200 | 300 | 400 | 500 | 600 | 700 | 800
Number 146 88 55 49 36 34 32
TABLE VII
NUMBER OF FALSE POSITIVES

Threshold 200 300 | 400 | 500 | 600 | 700 | 800
rSkt2(bitmap) 43 15 9 3 4 2 0
SS 1122 | 113 67 27 19 15 6
AROMA 32 22 14 2 5 2 0
TABLE VIII
NUMBER OF FALSE NEGATIVES
Threshold 200 | 300 | 400 | 500 | 600 | 700 | 800
rSkt2(bitmap) 6 2 1 0 0 0 0
SS 12 6 2 1 0 0 0
AROMA 9 11 7 4 1 1 3

and that of AROMA is in the range of [6.2%, 16.2%], whereas
rSkt2(bitmap) performs better with relative error between
2.8% and 10.0%. We find that rSkt2(bitmap) works well under
tight memory when the performance of SS and AROMA
deteriorates. This is also true in terms of false positives and
false negatives. Table VI shows the true number of super
spreaders in the packet traces that we use in this experiment.
Under 2Mb, Table VII shows that SS reports much more
false positives than rSkt2(bitmap) and AROMA reports similar
number of false positives to rSkt2(bitmap). In practice, more
false positives may lead to additional false alarms and take
extra time from system admin to investigate. Table VIII shows
that SS and AROMA also produce more false negatives than
rSkt2(bitmap). In practice, more false negatives may allow
some true offenders to escape timely detection.

VI. CONCLUSION

In this paper, we have proposed three randomized error-
reduction sketches for online measurement of flow spread.
They provide an implementation framework with bitmaps,
FM estimators or HLL estimators as plug-ins to meet different
performance-overhead requirements. The new sketch designs
split error (introduced by other flows due to estimator sharing)
into two halves, one stored with the flow of interest in a
primary estimator and the other half stored separately in a
complement estimator. By subtracting the complement from
the primary estimator, we are able to statistically remove
the error and achieve an accuracy one order of magnitude
better than the prior art. Through theoretical analysis and
experimental studies, we show that our randomized sketches
work well on both software platform and hardware platform,
producing accurate spread estimates in tight memory at low
processing overhead for online queries.

REFERENCES

[1] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in data streaming,” Proc.
VLDB Endowment, vol. 14, no. 6, pp. 1040-1052, Feb. 2021.

[2] Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-wide view
of internet-wide scanning,” in Proc. 23rd USENIX Secur. Symp., 2014,
pp. 65-78.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]
[13]
[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 925-937, Oct. 2006.

P. Lieven and B. Scheuermann, “High-speed per-flow traffic measure-
ment with probabilistic multiplicity counting,” in Proc. IEEE INFO-
COM, Mar. 2010, pp. 1-9.

A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and
B. Stiller, “An overview of IP flow-based intrusion detection,” IEEE
Commun. Surveys Tuts., vol. 12, no. 3, pp. 343-356, 3rd Quart.,
2010.

M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in small
memory,” in Proc. IEEE INFOCOM 28th Conf. Comput. Commun.,
Apr. 2009, pp. 504-512.

S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large net-
works,” in Proc. 2nd ACM SIGCOMM Workshop Internet Measurment,
2002, pp. 137-150.

J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and T. Zhong,
“Web caching for database applications with Oracle web cache,” in Proc.
ACM SIGMOD Int. Conf. Manag. Data, 2002, pp. 594-599.

Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, pp. 1-34, Dec. 2019.

A. Akella, A. Bharambe, M. Reiter, and S. Seshan, “Detecting DDoS
attacks on ISP networks,” in Proc. 22nd ACM SIGMOD/PODS Workshop
Manag. Process. Data Streams, 2003, pp. 1-3.

J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Comput. Commun. Rev., vol. 34,
no. 2, pp. 39-53, Apr. 2004.

S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting,” in Proc. OSDI, vol. 4, 2004, pp. 1-16.

S. Chen and Y. Tang, “Slowing down internet worms,” in Proc. 24th
Int. Conf. Distrib. Comput. Syst., 2004, pp. 312-319.

Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent spread mea-
surement for big network data based on register intersection,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 45, no. 1, p. 67, Sep. 2017.

A. Bronselaer, S. Debergh, D. Van Hyfte, and G. D. Tré, “Estimation
of topic cardinality in document collections,” in Proc. SIAM Conf. Data
Mining (SDM), 2010, pp. 31-39.

S. Heule, M. Nunkesser, and A. Hall, “HyperLoglLog in practice:
Algorithmic engineering of a state of the art cardinality estimation
algorithm,” in Proc. 16th Int. Conf. Extending Database Technol., 2013,
pp. 683-692.

P. Rob, “Interpreting the data: Parallel analysis with Sawzall,” Sci.
Program., vol. 13, no. 4, pp. 277-298, 2005.

S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,”
Proc. VLDB Endowment, vol. 3, pp. 330-339, Sep. 2010.

A. Hall, O. Bachmann, R. Biissow, S. Gdnceanu, and M. Nunkesser,
“Processing a trillion cells per mouse click,” Proc. VLDB Endowment,
vol. 5, no. 11, pp. 1436-1446, Jul. 2012.

K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208-229, Jun. 1990.

P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182-209,
Oct. 1985.

H. Wang, C. Ma, S. Chen, and Y. Wang, “Fast and accurate cardi-
nality estimation by self-morphing bitmaps,” IEEE/ACM Trans. Netw.,
early access, Feb. 10, 2022, doi: 10.1109/TNET.2022.3147204.

K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla,
“On synopses for distinct-value estimation under multiset operations,”
in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2007, pp. 199-210.
M. Durand and P. Flajolet, “Loglog counting of large cardinalities,”
in Proc. Eur. Symp. Algorithms. Berlin, Germany: Springer, 2003,
pp. 605-617.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
The analysis of a near-optimal cardinality estimation algorithm,” in Proc.
Conf. Anal. Algorithm, Nancy, France, 2007, pp. 137-156.

G. Cormode and S. Muthukrishnan, “Space efficient mining of multi-
graph streams,” in Proc. 24th ACM SIGMOD-SIGACT-SIGART Symp.
Princ. Database Syst., 2005, pp. 271-282.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proc. 10th USENIX Symp. Networked Syst. Design
Implement. (NSDI), 2013, pp. 29-42.

Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual
estimators for big network data based on register sharing,” in Proc.
ACM SIGMETRICS Int. Conf. Meas. Model. Comput. Syst., Jun. 2015,
pp. 417-428.

G. Cormode and S. Muthukrishnan, “Estimating dominance norms of
multiple data streams,” in Proc. Eur. Symp. Algorithms. Berlin, Germany:
Springer, 2003, pp. 148-160.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNET.2022.3147204

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 101-114.
Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow
for data centers,” in Proc. 13th USENIX Symp. Networked Syst. Design
Implement. (NSDI), 2016, pp. 311-324.

Q. Huang et al., “SketchVisor: Robust network measurement for soft-
ware packet processing,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 113-126.

T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 561-575.

Z. Liu et al., “Nitrosketch: Robust and general sketch-based monitoring
in software switches,” in Proc. ACM Special Interest Group Data
Commun., Aug. 2019, pp. 334-350.

L. Tang, Q. Huang, and P. Lee, “SpreadSketch: Toward invertible and
network-wide detection of superspreaders,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Jul. 2020, pp. 1608-1617.

S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New stream-
ing algorithms for fast detection of superspreaders,” School Com-
put. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.
CMU-CS-04-142, 2005.

S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Streaming
algorithms for robust, real-time detection of DDoS attacks,” in Proc.
27th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2007, p. 4.

C. Ma, H. Wang, O. Odegbile, and S. Chen, “Noise measurement and
removal for data streaming algorithms with network applications,” in
Proc. IFIP Netw. Conf., Jun. 2021, pp. 1-9.

C. Ma, H. Wang, O. O. Odegbile, S. Chen, and D. Melissourgos,
“Virtual filter for non-duplicate sampling with network applica-
tions,” IEEE/ACM Trans. Netw., early access, Jun. 22, 2022, doi:
10.1109/TNET.2022.3182694.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “SCREAM: Sketch
resource allocation for software-defined measurement,” in Proc. 11th
ACM Conf. Emerg. Netw. Exp. Technol., Dec. 2015, pp. 1-13.

R. B. Basat, X. Chen, G. Einziger, S. L. Feibish, D. Raz, and M. Yu,
“Routing oblivious measurement analytics,” in Proc. IFIP Netw. Conf.,
2020, pp. 449-457.

R. Ben-Basat, G. Einziger, S. L. Feibish, J. Moraney, B. Tayh, and
D. Raz, “Routing-oblivious network-wide measurements,” I[EEE/ACM
Trans. Netw., vol. 29, no. 6, pp. 2386-2398, Dec. 2021.

G. Cormode, “Sketch techniques for approximate query processing,” in
Foundations and Trends in Databases. Florham Park, NJ, USA: NOW,
2011.

S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 85-98.

X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “BeauCoup:
Answering many network traffic queries, one memory update at a time,”
in Proc. Annu. Conf. ACM Special Interest Group Data Commun. Appl.,
Technol., Archit., Protocols Comput. Commun., Jul. 2020, pp. 226-239.
C. Ma, S. Chen, Y. Zhang, Q. Xiao, and O. O. Odegbile, “Super
spreader identification using geometric-min filter,” IEEE/ACM Trans.
Netw., vol. 30, no. 1, pp. 299-312, Feb. 2022.

B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proc. 3rd ACM
SIGCOMM Conf. Internet Meas., 2003, pp. 234-247.

UCSD. (2015). Caida UCSD Anonymized 2015 Internet
Traces. [Online]. Available: https://www.caida.org/data/passive/

passive_2015_dataset.xml

Y. Zhou et al., “Cold filter: A meta-framework for faster and more
accurate stream processing,” in Proc. Int. Conf. Manag. Data, 2018,
pp. 741-756.

Haibo Wang (Graduate Student Member, IEEE)
received the B.E. degree in nuclear science and
the master’s degree in computer science from the
University of Science and Technology of China
in 2016 and 2019, respectively. He is currently
pursuing the Ph.D. degree with the Department of
Computer and Information Science and Engineering,
University of Florida. His main research interests
include the Internet traffic measurement, software
defined networks, and optical circuit scheduling. His
work received IEEE ICNP2021 Best Paper Award.

IEEE/ACM TRANSACTIONS ON NETWORKING

Chaoyi Ma (Graduate Student Member, IEEE)
received the B.S. degree in computer information
security from the University of Science and Tech-
nology of China in 2018. He is currently pursuing
the Ph.D. degree in computer and information sci-
ence and engineering with the University of Florida,
under the supervision of Prof. Shigang Chen. His
research interests include big data, network traffic
measurement, computer network security, and data
privacy in machine learning. His work received IEEE
ICNP2021 Best Paper Award.

Olufemi O. Odegbile received the B.S. degree in
mathematics from the University of Ibadan, Nigeria,
the master’s degree in computer science from Boston
University, USA, and the Ph.D. degree in computer
science from the University of Florida. He is cur-
rently an Assistant Professor with the Department
of Computer Science, Clark University, Worcester,
MA, USA. His research interests include computer
networks, network security, network traffic measure-
ment, and RFID Technology.

Shigang Chen (Fellow, IEEE) received the B.S.
degree in computer science from the University
of Science and Technology of China in 1993 and
the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana-Champaign
in 1996 and 1999, respectively. After graduation,
he had worked with Cisco Systems for three years
before joining the University of Florida in 2002.
He is currently a Professor with the Department of
Computer and Information Science and Engineering,
University of Florida. He held the University of
Florida Research Foundation Professorship and the University of Florida
Term Professorship. He published over 200 peer-reviewed journal/conference
papers. He holds 13 U.S. patents, and many of them were used in soft-
ware products. His research interests include the Internet of Things, big
data, cybersecurity, data privacy, edge-cloud computing, intelligent cyber-
transportation systems, and wireless systems. He is an ACM Distinguished
Scientist. He received the NSF CAREER Award and other research/best paper
awards. He served in various chair positions or as a committee members
for numerous conferences. He served as an Associate Editor for IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE/ACM TRANSACTIONS ON
NETWORKING, and a number of other journals.

Jih-Kwon Peir received the master’s degree from
the University of Wisconsin—-Milwaukee in 1981 and
the Ph.D. degree in computer science from the
University of Illinois in 1986.

He joined the IBM T. J. Watson Research Center
and served as a Research Staff Member during
1986 to 1992. At IBM, he participated in the design
and development of high-performance mainframe
computers. From 1992 to 1994, he joined the Com-
puter and Communication Laboratory, Taiwan, as the

' Deputy Director of the Computer System Division,
where he oversaw the development of an Intel Pentium-based symmetric
multiprocessor system. Since 1994, he has been a Faculty Member at the
Department of Computer and Information Science and Engineering, University
of Florida. He spent a sabbatical year and several summers as a Visiting
Professor at the Intel’s Microprocessor Research Laboratory and the IBM’s
Almaden Research Center. He has published over 100 papers in interna-
tional journals and conferences, book chapters as well as in IBM invention
disclosures. He has six patents and nine published inventions. He received
an IBM Invention Achievement Award and filed several patents in cache
memories. He received two best paper awards at the IEEE International
Conference on Computer Design (ICCD) in 1990 and 2001. His paper, “Bloom
Filtering Cache Misses for Accurate Data Speculation and Prefetching,” was
selected to be included in the 25 years of ACM International Conference on
Supercomputing (ICS). He received a National Science Foundation Career
Award in 1996, and an IBM Research Partnership Award in 1995. He also
received an outstanding Alumni Award from the College of Engineering,
University of Wisconsin—-Milwaukee, in 2010.

Authorized licensed use limited to: University of Florida. Downloaded on September 07,2022 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNET.2022.3182694

