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Abstract – Methylobacterium is a group of methylotrophic microbes associated with soil, 19 

fresh water, and particularly the phyllosphere, the aerial part of plants that has been well-20 

studied in terms of physiology but whose evolutionary history and taxonomy are unclear. 21 

Recent work has suggested that Methylobacterium is much more diverse than thought 22 

previously, questioning its status as an ecologically and phylogenetically coherent taxonomic 23 

genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been 24 

restricted to model species, often isolated from habitats other than the phyllosphere, and have 25 

yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or 26 

synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, 27 

including the phyllosphere, we inferred a robust phylogenetic tree while explicitly 28 

accounting for the impact of horizontal gene transfer. We showed that Methylobacterium 29 

contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by 30 

different genome size, GC content, gene content and genome architecture, revealing the 31 
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dynamic nature of Methylobacterium genomes. In addition to recovering 59 described 32 

species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the 33 

significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient 34 

transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae 35 

ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose 36 

early branching in Methylobacterium history has been heavily obscured by HGT. Together, 37 

our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, 38 

beginning with the abandonment of Methylorubrum. 39 

 40 
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 43 

Significance Statement 44 

 45 

Methylobacterium is an important group of plant-associated bacteria and a model organism 46 

in microbiology. Ironically, Methylobacterium diversity and evolution have mostly been 47 

studied outside plants. Here, we present the first comprehensive reconstruction of 48 

Methylobacterium evolutionary history accounting for gene exchanges typical of Bacteria, 49 

and for diversity with known plant association. We demonstrate that Methylobacterium 50 

contains four evolutionarily divergent groups of bacteria, also distinguishable by their 51 

genome architecture and composition, questioning Methylobacterium taxonomy. We 52 

identified 104 Methylobacterium species, of which a large proportion is as of yet undescribed 53 

and mostly plant-associated. We also infer an ancient transition in Methylobacterium 54 

lifestyle from soil and plant roots, to plant leaves, stressing the significance of plants in 55 

Methylobacterium evolution and diversity. 56 

 57 

Introduction 58 

 59 

For billions of years, bacteria have evolved rapidly through vertical and horizontal gene 60 

transmission, mutation, selection, diversification, and extinction. These evolutionary 61 

processes allowed bacteria to conquer every biome and living host on Earth and, at the same 62 
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time, resulted in blurring most traces of their ancient history (Louca et al. 2018). In the past 63 

thousands of years, humans have increasingly imposed new selective pressures on bacterial 64 

evolution, through bacterial host domestication and ecosystem perturbations (Gillings & 65 

Paulsen 2014). Ironically, the human perception of microbial life was until recently limited 66 

to the diversity we could “see” (through cultivation) and “use” (through domestication), 67 

representing only an infinitesimal proportion of bacterial diversity in nature (Hugenholtz 68 

2002). As a result, bacterial diversity, evolution and speciation concepts remain fuzzy and 69 

largely biased (Shapiro et al. 2016). Yet, the advent of high-throughput sequencing 70 

technologies, and our awakening to the essential role of bacteria in every living system has 71 

spurred research into the evolutionary processes shaping the microbial world (Koonin et al. 72 

2021).  73 

 74 

Methylobacterium is a well-studied group of bacteria that are abundant and widespread in 75 

every plant microbiome (Corpe & Rheem 1989; Keppler et al. 2006). Methylobacterium is 76 

part of Methylobacteriaceae (class: Alphaproteobacteria; order: Hyphomycrobiales syn. 77 

Rhizobiales (Hördt et al. 2020)), a family including three other genera, mostly isolated from 78 

aquifers and soils, sometimes in association with plant roots: Microvirga (Kanso & Patel 79 

2003), Enterovirga (Chen et al. 2017) and Psychroglaciecola (Qu et al. 2014). Easy to 80 

isolate and to cultivate, thanks to a pink coloration due to carotenoids and their ability to use 81 

methanol as sole carbon source (Clarke 1983; Anthony 1991; Keppler et al. 2006), 82 

Methylobacterium are also essential players in plant functions, like growth stimulation 83 

(Ivanova et al. 2001; Madhaiyan et al. 2005, 2007), heavy metal sequestration (Madhaiyan et 84 

al. 2007), protection against phytopathogens and nitrogen fixation (Dourado et al. 2015), 85 

sparking increasing interest in their use in plant biotechnology applications (Ryu et al. 2006; 86 

Lee et al. 2006; Madhaiyan et al. 2007). 87 

   88 

Recently, Green and Ardley (2018) questioned the taxonomy of Methylobacterium, noticing 89 

a “greater degree of phenotypic and genotypic heterogeneity than would normally be 90 

expected for a single genus.” Accordingly, these authors proposed to split the genus in three 91 

distinct taxa corresponding to monophyletic groups in the 16S rRNA ribosomal gene 92 

phylogeny (groups A, B and C). Group A, containing the Methylobacterium type species M. 93 
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organophilum, was retained as Methylobacterium. For group B, which included the model 94 

species M. extorquens, the authors proposed a new genus: Methylorubrum. Finally, the 95 

authors suggested that group C, including M. aquaticum and M. nodulans, should constitute a 96 

distinct genus, pending future genetic and phenotypic investigations. The Methylobacterium 97 

reclassification has been pointed out as problematic, because of the low phylogenetic 98 

resolution of the 16S rRNA gene, and because no genus name was proposed for strains that 99 

were not retained in Methylorubrum or Methylobacterium, which could potentially render 100 

either new genus as paraphyletic (Hördt et al., 2020; Leducq et al., 2022). Accordingly, the 101 

taxonomy of Methylobacterium was reexamined by coupling genome-wide DNA-DNA 102 

hybridization and phenotypic information for 63 strains, each representative of a described 103 

species (Alessa et al. 2021). Alessa et al. confirmed Green and Ardley’s (2018) observation 104 

that group C was phenotypically and genetically distinct from other groups, but they also 105 

showed that Methylorubrum (group B) was embedded within Methylobacterium (group A), 106 

forming a homogeneous group, and proposed to merge Methylobacterium and 107 

Methylorubrum back into a single genus.  108 

 109 

The evolutionary history of Methylobacterium remains poorly resolved for several reasons. 110 

First, phylogenetic relationships among and within groups are often inconsistent depending 111 

upon the chosen marker gene (Green and Ardley, 2018; Leducq et al., 2022). Such 112 

inconsistent phylogenetic signals suggest that these marker genes had different evolutionary 113 

histories, perhaps due to horizontal gene transfer (HGT) or incomplete lineage sorting (ILS), 114 

illustrating the dynamic nature of bacterial genome evolution and the limitations of bacterial 115 

taxonomy based on a limited number of gene phylogenies (Castillo-Ramírez & González 116 

2008; Creevey et al. 2011). Second, Alessa et al. (2021) based their Methylobacterium 117 

taxonomy on DNA-DNA hybridization methods, which are widely used to classify 118 

prokaryotic species, but are not phylogenetic methods per se, as they do not account for 119 

ancestry. They also validated their taxonomy using a phylogenetic tree based on 120 

concatenated protein sequences of core genes but did not present evaluations of the 121 

uncertainty in the resulting tree. Finally, phylogenies based on concatenated gene alignments 122 

assume the same tree for each gene, and thus do not take into account potential ILS and HGT 123 

affecting topology and branch lengths differentially in each individual gene trees. With the 124 
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onset of genomics in evolutionary studies, several coalescent methods have been developed 125 

to reconstruct the phylogeny and solve the taxonomy of organisms with complex 126 

evolutionary history like bacteria (Davidson et al. 2015). For instance, coalescent-based 127 

phylogenetic methods like ASTRAL-III (Mirarab et al. 2014; Zhang et al. 2018) and 128 

SVDquartets (Chifman & Kubatko 2014) allow the reconstruction of a consensus tree (the 129 

lineage tree) taking into account different levels of ILS and HGT among individual gene 130 

trees.  131 

 132 

Although more than 60 Methylobacterium species have been described so far (Green & 133 

Ardley 2018; Chen et al. 2019; Feng et al. 2020; Jia et al. 2020; Kim, Chhetri, Kim, Lee, et 134 

al. 2020; Kim, Chhetri, Kim, Kim, et al. 2020; Ten et al. 2020; Jiang et al. 2020; Pascual et 135 

al. 2020; Alessa et al. 2021), available genomic and phenotypic information was until 136 

recently limited to a few model species, mostly from groups B and C, and mostly isolated 137 

from anthropogenically impacted environments, and in rare cases from plants (Marx et al. 138 

2012; Tani et al. 2015; Minami et al. 2016; Morohoshi & Ikeda 2016; Belkhelfa et al. 2018). 139 

Surveys of Methylobacterium diversity associated with plants have mainly focused on the 140 

rhizosphere, especially in crop species (Sy et al. 2001; Jourand et al. 2004; Grossi et al. 141 

2020). Recent studies however revealed that the phyllosphere of model plant species like A. 142 

thaliana (Helfrich et al. 2018), of wheat (Zervas et al. 2019), and of natural temperate forests 143 

(Leducq et al. 2022) are major reservoirs of undescribed Methylobacterium diversity, most of 144 

which belongs to group A (Leducq et al. 2022).  145 

 146 

Here, we explored Methylobacterium diversity from an evolutionary genomic perspective. 147 

We de novo annotated 189 Methylobacterium genomes, including 62 strains isolated from 148 

temperate forest, wheat, and Arabidopsis phyllosphere, and 127 additional genomes that 149 

represent the remainder of the Methylobacterium species described so far. Using different 150 

phylogenomic approaches, we reconstructed the Methylobacterium evolutionary tree from 151 

384 Methylobacteriaceae core genes and showed that the genus is consistently constituted of 152 

four monophyletic groups: A, B, C and D. Gene content and especially the highly dynamic 153 

core genome architecture predicted the four Methylobacterium groups remarkably well. We 154 

estimated that Methylobacterium includes at least 104 species, of which only 59 were 155 
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previously described. Most of the undescribed species were assigned to groups A and D and 156 

were isolated from plant leaves, stressing the significance of the phyllosphere as a reservoir 157 

of Methylobacterium diversity. Our inferences of the Methylobacterium evolutionary tree 158 

also suggest an ancient transition from a free-living lifestyle to association with plant roots in 159 

Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major 160 

groups (A, B, D), whose early branching in Methylobacterium history was heavily obscured 161 

by HGT. Finally, our comprehensive phylogenetic analysis of Methylobacterium lays the 162 

foundation for a profound redefinition of its taxonomy, beginning with the abandonment of 163 

Methylorubrum. 164 

 165 

Results 166 

 167 

Definition of the Methylobacteriaceae core genome. 168 

 169 

We assembled a collection of 213 Methylobacteriaceae genomes, including 189 170 

Methylobacterium and 24 genomes from related genera as outgroups (Microvirga: n=22; 171 

Enterovirga: n=2). Most Methylobacterium (n=98) and all outgroup genomes (n=24) came 172 

from distinct studies (Dataset S1). We included 29 genomes from Methylobacterium type 173 

strains recently sequenced (Alessa et al. 2021; Bijlani et al. 2021), hence covering most 174 

Methylobacterium species described so far. We also included 38 genomes available from two 175 

large surveys of the Arabidopsis and wheat phyllospheres (Helfrich et al. 2018; Zervas et al. 176 

2019), and sequenced 24 additional genomes of isolates from a large survey of the temperate 177 

forest phyllosphere (Leducq et al. 2022), hence extending our dataset to the leaf-associated 178 

Methylobacterium diversity. The 24 newly assembled genomes had 41 to 405 scaffolds 179 

(depth: 188-304x) for a total size (5-7Mb) and average GC content (67-70%) in the expected 180 

range for Methylobacterium genomes (Dataset S2). We annotated 184 genomes de novo, 181 

excluding 29 genomes that were not published at the time of the analysis (Alessa et al. 2021; 182 

Bijlani et al. 2021) through the same pipeline (RAST) and after excluding hypothetical 183 

proteins, repeat and mobile elements, we identified 9,970 unique gene annotations (i.e., 184 

regardless of copy number: Dataset S3), with on average 2637 (SD: 210) unique gene 185 

annotations per genome. We identified 893 candidate core genes, i.e., genes that were 186 
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present in a single copy in at least 90% of Methylobacteriaceae genomes. After filtering for 187 

missing data and false duplications attributable to large variations among genome assembly 188 

qualities (Figures S1, S2), we identified 384 Methylobacteriaceae core genes (Dataset S4) 189 

for which the complete nucleotide sequences could be retrieved for at least 181 out of 184 190 

genomes. We repeated the RAST annotation for recently sequenced genomes from 29 191 

Methylobacterium species type strains that were not available during our initial survey 192 

(Alessa et al. 2021; Bijlani et al. 2021). Doing this, we slightly extended the number of 193 

unique gene annotation in Methylobacteriaceae (n = 10,190). We confirmed that the 384 194 

previously identified genes were part of the Methylobacteriaceae core genome and retrieved 195 

each core gene nucleotide sequence for at least 26 out of these 29 genomes. Our final dataset 196 

consisted of 213 genomes for which we retrieved 327 to 384 core genes nucleotide 197 

sequences (average, SD: 381 ± 6). 198 

 199 

Inference of the Methylobacteriaceae lineage tree  200 

 201 

We reconstructed the lineage tree of Methylobacteriaceae from 213 genomes from the 384 202 

core gene nucleotide sequences using three complementary approaches in order to assess the 203 

effect of ILS and HGT in the evolutionary history of Methylobacterium. First, we used 204 

RAxML to determine a maximum-likelihood tree (512 replicated tree; bootstraps) from 205 

concatenated alignments of the core gene nucleotide sequences, assuming 57 groups of genes 206 

(partitions) with different substitution models (partitions determined in IQ-tree; GTRCAT 207 

model of substitution), but the same evolutionary tree for all genes, hence not accounting for 208 

ILS or HGT (Figure 1a). Second, we used ASTRAL, a coalescent-based method combining 209 

Maximum-Likelihood (ML) trees determined for each core gene independently (RAxML, 210 

GTRGAMMA model, 1,000 replicated tree), accounting for ILS among genes (Figure 1b, 211 

Figure S3a). Third, we used SVDquartets, a coalescent-based method estimating the tree for 212 

each possible combination of four genomes and assuming all nucleotide sites are unlinked in 213 

the concatenated alignment of 384 genes, hence accounting for ILS and HGT both within 214 

and among genes (Figure 1c, Figure S3b). In all lineage trees rooted on Microvirga and 215 

Enterovirga, Methylobacterium was monophyletic and consisted of four groups of genomes, 216 

consistently monophyletic and strongly supported, regardless of the method used (nodal 217 
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support: 100% in RAxML and SVDquartets trees; local posterior probability: 1.0 in the 218 

ASTRAL tree; Figure 1a,b,c). Group C always formed the most basal group of 219 

Methylobacterium, confirming previous observations (Green & Ardley 2018; Alessa et al. 220 

2021; Leducq et al. 2022). Group B regrouped clades B, formerly Methylorubrum (Green & 221 

Ardley 2018) and B2 (Alessa et al. 2021; corresponding to clade A4 in Leducq et al. 2022). 222 

Most strains previously assigned to clade A (Green & Ardley 2018) were distributed across 223 

two distinct monophyletic groups that we named A and D (Figure 1a). Group A included 224 

clades A2, A3, A4 and A5 described by Alessa et al. (2021) and corresponded to clades A5, 225 

A10, A19 and A7+A8 described by Leducq et al. (2022), respectively. Group D 226 

corresponded to clade A1 proposed by Alessa et al. (2021) and clades A1, A2 and A3 227 

proposed by Leducq et al. (2022).  228 

 229 

Groups A, B and D consistently formed a monophyletic group (nodal support: 100% in 230 

RAxML and SVDquartets trees; local posterior probability: 1.0 in the ASTRAL tree); 231 

however, phylogenetic relationships among groups A, B and D were more challenging to 232 

assess. Groups A, B, and D could not be resolved with the RAxML tree (nodal support = 9%; 233 

Figure 1a). Group D was sister to groups A and B according to ASTRAL (local posterior 234 

probability: 0.8; Figure 1b) and SVDquartets trees (nodal support: 100%; Figure 1c). We 235 

evaluated differences between the three lineage tree topologies using the Robinson-Foulds 236 

(RF) distance metric in PAUP (Wilgenbusch & Swofford 2003). RAxML and ASTRAL 237 

lineage tree topologies were more similar to each other (RF = 0.181) than with the 238 

SVDquartets tree (RF = 0.225 and 0.289, respectively; Figure S4). In order to determine 239 

whether the difference between the RAxML and other trees was higher than expected by 240 

chance, we estimated the distribution of RF distance between each replicate tree of the 241 

RAxML search for the lineage tree (512 replicates). The normalized RF value ranges from 242 

0.028 to 0.113 (RF= 0.069±0.015), indicating that the differences observed between lineage 243 

trees were larger than expected by chance (Figure S4), and suggesting that ILS and HGT 244 

among core genes had a significant impact on the Methylobacteriaceae lineage tree. The 245 

larger difference between the SVDquartets tree and other trees also suggested that 246 

recombination within core genes also occurred during Methylobacteriaceae evolution, 247 

although without affecting the relationship among the four major groups (C/D/(A,B)). 248 
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 249 

Inference of the Methylobacteriaceae taxonomy and species tree 250 

 251 

We classified Methylobacteriaceae genomes into 124 species using a 97% threshold on 252 

percentage nucleotide similarity (PNS; analogous to average nucleotide identity; (Mende et 253 

al. 2013; Chun & Rainey 2014); Dataset S5) on the core genome (concatenated alignments of 254 

384 core genes; 361,403 bp). In the outgroups, we identified 2 Enterovirga species and 18 255 

Microvirga species. We identified 104 Methylobacterium species (1 to 9 genomes per 256 

species), of which 59 included the type strain for at least one described species (Table 1; 257 

Dataset S5). M. extorquens, M. chloromethanicum and M. dichloromethanicum type strains 258 

were assigned to the same species (PNS range: 97.61-99.68%), as previously reported 259 

(Alessa et al. 2021). M. populi and M. thiocyanatum type strains were assigned to the same 260 

species (PNS range: 98.97%-99.08%), as previously reported (Alessa et al. 2021). M. 261 

phyllosphaerae, M. ozyzae and M. fujisawaense type strains were assigned to the same 262 

species (99.23-100%), as previously reported (Alessa et al. 2021). We identified 45 263 

candidate species that included no type strain, and thus corresponded to new candidate 264 

Methylobacterium species (Table 1; Dataset S5). We numbered these candidate species from 265 

Methylobacterium sp. 001 to 045. We used the 124 identified species to infer the 266 

Methylobacteriaceae species trees with SVDquartets (Figure S5a) and ASTRAL (Figure 267 

S5b). Although the two species trees were not strictly identical (normalized RF distance = 268 

0.234), the monophyly and relationships among the four main groups was consistent between 269 

ASTRAL and SVDquartets species trees (C/D/(AB); Figures S5a,b), and with ASTRAL and 270 

SVDquartets lineage trees (Figure 1b,c). Each group of genomes assigned to the same 271 

species was also monophyletic and strongly supported in lineage trees (Figure 1).  272 

 273 

In summary, the Methylobacterium species are distributed across four groups, each of which 274 

with somewhat distinct environmental sources of isolation (plant phyllosphere and 275 

rhizosphere, water and sediments, soils, others), as well as the proportion of strain isolated 276 

from anthropogenic environments (Table 1, Figure 1d). Group A contained 62 genomes 277 

which fell into 41 species, including 17 new species (Methylobacterium sp. 018 to 034). 278 

Group B contained 41 genomes which fell into 21 species, including 7 candidate species 279 
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(Methylobacterium  sp. 035 to 041). Group C contained 25 genomes which fell into 19 280 

species, including 4 new candidate species (Methylobacterium  sp. 042 to 045; Table 1). 281 

Group D contained 42 genomes which fell into 23 species, including 17 new candidate 282 

species (Methylobacterium  sp. 001 to 017). Species from Microvirga and Enterovirga were 283 

mostly isolated from soil samples (65% of species; corrected by the number of genomes per 284 

species), often in association with plant roots (Rhizosphere; 30%). Species from 285 

Methylobacterium groups B and C were isolated from plants (40 and 31% of genomes, 286 

respectively), soil samples (13 and 32%), sediments or water samples (18 and 21%), often in 287 

association with anthropogenic environments (29 and 49%). Species from groups A and D 288 

were mostly isolated from plants (62 and 75% of species, respectively), especially the 289 

phyllosphere (51 and 67%). Of the 45 new candidate Methylobacterium species, most were 290 

assigned to groups A (n=17) and D (n=17); the majority (81%) was isolated from plants, and 291 

especially the phyllosphere (66%; Table 1; Figure 1d). 292 

 293 

Genome comparison across Methylobacterium groups 294 

 295 

The four main Methylobacterium groups have consistently contrasting genome 296 

characteristics (Figure S6, Table 2). These four groups have significantly different genome 297 

sizes (Tukey test, p<0.001), with group D having smaller genomes (4.99 ± 0.35 Mb; Average 298 

± SD), than groups B (5.58 ± 0.49 Mb), A (6.21 ± 0.59 Mb) and C (7.15 ± 0.66 Mb). Groups 299 

D and B had a smaller number of annotated genes (5,224 ± 476 and 5,766 ± 509, 300 

respectively) than groups A and C (6,907 ± 821 and 7,670 ± 956, respectively; p<0.001). The 301 

average number of gene annotation copies per genome was significantly different among 302 

groups (p<0.001) and was smaller for group D (1.31 ± 0.04 copies per annotation) than for 303 

group B (1.37 ± 0.05), A (1.46 ± 0.07) and C (1.54 ± 0.07). GC content was significantly 304 

lower in groups D and B (68.8 ± 1.1 and 69.1 ± 0.8 %, respectively) than in group A (70.1 ± 305 

0.8 %; p<0.001) or group C (71.1 ± 0.7 %; p<0.001; Figure S6, Table 2). Although the 306 

number of mobile elements per genome was slightly lower in group D (42 ± 21) compared to 307 

A (60 ± 34), B (57 ± 31) and C (71 ± 49), these differences were not significant (Table 2; 308 

Tukey test, p>0.05). We compared the abundance of 10,187 gene annotations (excluding 309 

hypothetical proteins, repeat elements and mobile elements) across the four 310 
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Methylobacterium groups and outgroups (Figure 2). Methylobacterium genomes clustered 311 

according to their gene content and abundance and matched the ASTRAL species tree 312 

(Figure 2a). As observed for other genome characteristics, group D had the smaller pan 313 

genome size (n = 4,217 ± 70; estimation assuming rarefaction of 15 species per group, mean 314 

and standard deviation over 100 replicates; Figure S7a), followed by group B (n = 4,973 ± 315 

137), group A (n = 4,974 ± 132) and group D (n = 5,636 ± 91 genes; Figure 2b). On the 316 

contrary, group D had a larger core genome size (i.e. gene present in a single copy in all 317 

species; n = 1,103 ± 29 core genes) than groups A (n=845 ± 79), B (n=924 ± 65) and C 318 

(n=843 ± 39; Figure 2c; Figure S7b). Venn diagrams on shared annotations indicate a limited 319 

overlap of gene content among groups, with only 2,863 ± 38 pan genes shared among the 320 

four groups (Figure 2b) and 350 ± 32 core genes (Figure 2c). 321 

 322 

Gene content comparison across Methylobacterium groups 323 

 324 

We next asked to what extent gene content evolved concordantly along the core genome 325 

phylogeny. We used the Bray-Curtis index to measure the pairwise dissimilarity among 326 

genomes based on their gene annotation abundance (BC; Hellinger normalization of gene 327 

abundance; Figure S8). The dissimilarity matrix in gene content among species matched the 328 

species tree (Figure S8). Gene content was more similar among genomes from the same 329 

Methylobacterium species (BC range: 0.044 ± 0.017 - 0.080 ± 0.023) than among species 330 

within Methylobacterium groups (BC range: 0.159 ± 0.031- 0.197 ± 0.044) or than among 331 

Methylobacterium groups (BC range: 0.238 ± 0.025 - 0.339 ± 0.019; Figure S8, Table 3). We 332 

determined the relationships among Methylobacteriaceae members upon their gene content 333 

using a ML phylogeny based on the occurrence of the 10,187 gene annotations across 213 334 

genomes (RAxML assuming a BINCAT model; 1,001 replicate trees; Figures 2d, detailed 335 

tree in Figure S9a). The gene content tree supported each of the 124 Methylobacteriaceae 336 

species, as well as the monophyly of groups B, C and D (nodal support: 99, 94 and 87%, 337 

respectively). Groups A, B and D formed a monophyletic group (nodal support: 100%), 338 

making group C the most basal group, as observed for lineage (Figure 1) and species trees 339 

(Figure S5). Most of the species assigned to group A clustered together (nodal support: 77%) 340 

but five species formerly assigned to clade A2 (M. planium, M. soli, M. oxalidis, M. durans, 341 
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M. segetis; Alessa et al., 2021) and M. jeotgali were more similar to groups B and D, which 342 

altogether formed a monophyletic group (nodal support: 97%). The normalized RF value 343 

between the gene content tree and lineage trees (Figure 1) ranged from 0.429 to 0.469. As a 344 

comparison, normalized RF values between the best gene content tree and its 1,001 replicate 345 

trees ranged from 0.085 to 0.249 (RF= 0.169±0.026), indicating that the gene content tree 346 

had significantly different topology than lineage trees. 347 

 348 

Core genome architecture comparison (synteny) across Methylobacteriaceae genomes  349 

 350 

We next evaluated the level of conservation in the architecture of the Methylobacteriaceae 351 

core genome to assess the extent of chromosomal rearrangement during Methylobacterium 352 

evolution. Most genomes (177 out of 213) were not fully assembled (i.e., the chromosome 353 

consisted of more than one scaffold), and we thus inferred the order or the 384 core genes 354 

along the chromosome of draft genomes by aligning their scaffolds to the chromosomes of 355 

36 completely assembled Methylobacteriaceae genomes, while conserving the order of core 356 

genes within scaffolds. We compared the order of core genes among genomes using a 357 

synteny index (SI) calculated as the proportion of pairs of core genes (links) that were 358 

neighbors in two genomes, ranging from 0 (no link conserved) to 1 (fully conserved synteny; 359 

Figure S8, Table 4). The matrix of synteny among species was generally concordant with the 360 

species tree (Figure S8). In the 213 Methylobacteriaceae genomes, we observed 6,109 361 

different links among the 384 core genes. Core genome architecture was well conserved 362 

among genomes from the same Methylobacterium species (SI range: 0.914 ± 0.064 - 0.995 ± 363 

0.007) but was highly reshuffled among species within Methylobacterium groups (SI range: 364 

0.608 ± 0.118 - 0.769 ± 0.207; Figure S8, Table 4). As a comparison, the core genome 365 

architecture among Microvirga species was remarkably well conserved (SI = 0.913 ± 0.048). 366 

Average synteny among Methylobacterium groups A, B, C and D was low (SI range: 0.433 ± 367 

0.025 - 0.528 ± 0.049) and in the same order of magnitude as synteny between 368 

Methylobacterium and Microvirga genomes (SI range: 0.458 ± 0.010 - 0.525 ± 0.020; Figure 369 

S8, Table 4). We identified M. planium (strain YIM132548, group A) as the species having, 370 

on average, the highest core genome synteny with other Methylobacterium genomes. 371 

Accordingly, we used M. planium as a reference to visualize the conservation of the 384 372 
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links identified in its genome across Methylobacterium species (Figure 3a; Figure S10). We 373 

identified 150 links (involving 231 genes; 60.2% of core genes) that were mostly conserved 374 

among Methylobacteriaceae genomes. With the exception of a remarkably well-conserved 375 

cluster of 26 genes that included ribosomal genes and gene rpoB (Figure 3a; Figure S10), 376 

most of the 150 conserved links were scattered across the M. planium chromosome. We 377 

determined the relationships among Methylobacteriaceae members in their core genome 378 

architecture using a ML phylogeny based on the occurrence of 6,109 links identified across 379 

213 genomes (RAxML assuming a BINCAT model; 1,001 replicate trees; Figure 3b, detailed 380 

tree in Figure S9b). The synteny tree supported the monophyly of the four major 381 

Methylobacterium groups (nodal support = 100%). Groups A, B and D formed a 382 

monophyletic group (nodal support: 83%), making group C the most basal group, as 383 

observed for lineage trees (Figure 1), species trees (Figure S5) and the gene content tree 384 

(Figure 2d). The normalized RF value between the synteny tree and lineage trees ranged 385 

from 0.589 to 0.638. As a comparison, normalized RF values between the best synteny tree 386 

and its 1,001 replicate trees ranged from 0.235 to 0.390 (RF= 0.310 ± 0.026), indicating that 387 

the synteny tree had a significantly different topology than lineage trees. Interestingly, 388 

although M. planium and related species previously assigned to clade A2 (M. soli, M. 389 

oxalidis, M. segetis, M. durans; Alessa et al. (2021)) as well as M. jeotgali and M. trifolii 390 

were assigned to clade A in the ML synteny tree (Figure 3b), these species had on average 391 

higher synteny with species from group D (SI = 0.651 ± 0.045) than with other species from 392 

group A (SI= 0.556 ± 0.031; Figure 3c). Accordingly, we identified 29 links involving 54 393 

core genes that were more often conserved between groups A and D than with other 394 

Methylobacterium groups. These links, however, were scattered along the M. planium 395 

chromosome (Figures 3a, S10). 396 

 397 

Discussion 398 

 399 

Methylobacterium consists of four evolutionarily divergent groups of bacteria 400 

 401 

Recent work has suggested that Methylobacterium is much more diverse than thought 402 

previously, questioning its genus status (Green & Ardley 2018; Hördt et al. 2020; Alessa et 403 
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al. 2021; Leducq et al. 2022). Here, we used a comprehensive phylogenomic approach to 404 

provide unprecedented insight on the taxonomic diversity of Methylobacterium. Our 405 

reconstructions of the Methylobacteriaceae lineage tree based on the core genome confirmed 406 

previous comparative genomic and phenotypic studies that group C, including M. nodulans 407 

and M. aquaticum, form a distinct and cohesive group at the root of the Methylobacterium 408 

phylogeny (Green & Ardley 2018; Hördt et al. 2020; Alessa et al. 2021). On the contrary, we 409 

demonstrated that Group B, including the model species M. extorquens, and previously 410 

amended as a distinct genus, Methylorubrum (Green & Ardley 2018), formed a 411 

monophyletic group with the Methylobacterium type species M. organophilum and other 412 

species formerly assigned to group A (e.g. M. oxalidis and M. planium) (Green & Ardley 413 

2018). Our analyses hence support the proposal to extend group B to M. organophilum, M. 414 

oxalidis, M. planium, and relatives (Alessa et al. 2021). Although the newly defined group B 415 

was monophyletic according to our different inferences of the Methylobacteriaceae species, 416 

it was still embedded within former group A (Green & Ardley 2018), making the later 417 

paraphyletic, and confirming that Methylorubrum cannot be considered as a distinct genus 418 

without breaking apart Methylobacterium (Hördt et al. 2020; Alessa et al. 2021). 419 

Accordingly, we support the proposal to abandon “Methylorubrum” as a designation for 420 

group B, and to split group A into two monophyletic groups distinct from group B: group A 421 

(including M. brachiatum, M. komagatae, M. cerastii, M. jeotgali, M. trifolii, M. planium 422 

and relatives) and group D (including M. bullatum, M. gossipicola, M. goesingense, M. iners 423 

and relatives).  424 

 425 

We observed that the newly defined monophyletic groups (A, B, C and D) were 426 

characterized by distinct genome sizes and GC content, two metrics that were highly 427 

correlated with each other in Methylobacterium, as observed in other bacteria (Nishida 428 

2012). With the exception of a few species from group A (including, M. trifolii, M. jeotgali, 429 

M. planium and relatives), the four groups could also be distinguished upon their gene 430 

content. GC content, genome size and gene content are widely accepted as criteria for 431 

taxonomic definition in prokaryotes (Rosselló-Mora & Amann 2001; Coenye et al. 2005). 432 

We also demonstrated that core gene order was highly reshuffled among the four 433 

Methylobacterium groups. For instance, we observed the same level of rearrangement in core 434 
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gene order among Methylobacterium groups, as between Microvirga and Methylobacterium, 435 

and the same level of core gene order conservation within Methylobacterium groups as 436 

within Microvirga. Core gene order has recently been proposed as a complementary criterion 437 

to define bacteria genus and species taxonomy (Chung et al. 2018). The fact that the four 438 

groups were monophyletic, regardless of whether we used a concatenated or a coalescent-439 

based approach to infer the Methylobacteriaceae lineage tree and could be consistently 440 

distinguished from each other upon different genome characteristics (gene content, core 441 

genome architecture, GC content, genome size), supports considering them as distinct 442 

genera. 443 

 444 

Role of HGT and ILS in the early divergence of groups A, B and D  445 

 446 

The evolution of bacteria is marked by recurrent HGT, gene duplication and loss events, 447 

making the reconstruction of bacterial phylogenies challenging. Given that each gene 448 

potentially has its own evolutionary history, marked by exchanges among divergent taxa, the 449 

evolutionary tree of most bacteria is quite reticulate (Shapiro et al. 2016). The reconstruction 450 

of a consensus phylogenetic tree (lineage tree) thus remains highly conceptual in bacteria and 451 

could only be achieved by considering a pool of genes assumed to be representative of the 452 

prevailing evolutionary history of the considered taxa: the core genome (Sakoparnig et al. 453 

2021). Therefore, HGT and ILS must be considered when attempting to reconstruct bacterial 454 

phylogeny. Accordingly, we showed that the concatenated-based reconstruction of 455 

Methylobacterium lineage tree, assuming the same evolutionary history for each core gene, 456 

significantly differed in its topology from lineages tree reconstructions accounting for ILS 457 

and/or HGT among core genes (ASTRAL and SVDquartets lineage trees), indicating that 458 

both processes were major drivers of Methylobacterium evolution. While the concatenated 459 

tree suggested that groups A and D formed a monophyletic group, coalescent-based 460 

estimations from ASTRAL (ILS + HGT among genes) and SVDquartets (ILS + HGT among 461 

sites) rather indicated the earlier divergence of group D from the A/B/D group.  462 

 463 

A possible explanation of the divergent topology in the concatenated lineage tree is that 464 

shared polymorphism was retained by ILS and/or HGT between groups A and D after the 465 
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A/B divergence. Interestingly, although supporting the four Methylobacterium groups, our 466 

phylogeny reconstructed from core genome architecture suggested the closer relationship 467 

between groups A and D, in agreement with the concatenated lineage tree, hence supporting 468 

the hypothesis of horizontal core gene exchanges having occurred between groups A and D 469 

after the A/B divergence. Accordingly, we observed syntenic islands (groups of neighbor 470 

core genes) shared between group D and some basal species of group A (M. jeotgali, M. 471 

trifolii, M. planium, M. oxalidis and relatives). These islands were scattered across the 472 

Methylobacterium chromosome, either suggesting that extensive chromosomal 473 

rearrangements occurred after HGT between A and D, or that HGT occurred multiple times 474 

during their evolutionary history, potentially among divergent lineages. According to a 475 

phylogeny reconstructed from gene occurrence in Methylobacterium, M. jeotgalii, M. 476 

planium, M. oxalidis and relatives, belonged to different lineages branching at the root of 477 

groups A, B and D, supporting the hypothesis of multiple and independent gene exchanges 478 

among distinct Methylobacterium lineages after the divergence of the three groups, blurring 479 

their phylogenetic relationships.  480 

 481 

Outstanding Methylobacterium diversity: the role of the phyllosphere? 482 

 483 

Methylobacterium is frequently associated with the phyllosphere, yet taxonomic and 484 

phylogenomic surveys of its diversity have mostly focused on human-impacted 485 

environments such as food factories, contaminated soils, air conditioning systems or even the 486 

International Space Station. Here we presented the first comprehensive genomic survey of 487 

Methylobacterium diversity in the phyllosphere. By including genomes of strains isolated 488 

from the phyllosphere of wheat (Zervas et al. 2019), of the model plant A. thaliana (Helfrich 489 

et al. 2018), and of trees from natural temperate forests (Leducq et al. 2022), our 490 

phylogenomic analysis of Methylobacterium revealed that its evolutionary and taxonomic 491 

diversity was larger than previously thought. In addition to recovering the 59 previously 492 

described species (Alessa et al. 2021), we identified 45 new (candidate) Methylobacterium 493 

species, of which a majority belonged to groups A and D, and were mostly isolated from the 494 

phyllosphere. Beyond taxonomic considerations, this result reveals a profound bias in our 495 

understanding of natural processes underlying the existing diversity of Methylobacterium, 496 
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and more generally, of bacteria. For example, the evolutionary distinction between groups A 497 

and D, and their importance in Methylobacterium diversity, could not have been revealed 498 

without a thorough investigation of diversity in the phyllosphere, from which the majority of 499 

candidate species from groups A, B and D were isolated. A recent survey of 500 

Methylobacterium in metagenomes from various biomes (Lee et al. 2022) also suggested the 501 

association of groups A (represented by M. pseudosasicola and M. radiotolerans in Lee et 502 

al., 2022  study), B and especially D (represented by M. gossipiicola and Methylobacterium  503 

sp. Leaf 88) with the aerial part of plants. Similarly, we recently showed that groups A and D 504 

were the dominant Methylobacterium groups in the phyllosphere of trees from temperate 505 

forests (Leducq et al. 2022). On the contrary, groups B and C included most 506 

Methylobacterium model species frequently used in the lab and isolated from anthropogenic 507 

environments. While group B is occasionally identified on and isolated from the surface of 508 

leaves (Leducq et al. 2022; Lee et al. 2022), group C is rarely, if ever, found in the 509 

phyllosphere, and seems to be more widespread in soil and in aquatic environments, often in 510 

association with plant roots (Lee et al. 2022). Interestingly, authors from a recent study 511 

estimated that Rhizobiales common ancestor likely had a free-living lifestyle, while 512 

Methylobacterium groups A, B and D’s common ancestor likely had a plant-associated 513 

lifestyle (node 1 in Figure 1 from Wang et al. study (Wang et al. 2020)). The ancestral 514 

lifestyle of Methylobacterium, and more widely, of Methylobacteriaceae, is more unclear. 515 

The isolation source of group C genomes, as well as the two sister genera of 516 

Methylobacterium, Enterovirga and Microvirga, and their survey in metagenomes (Lee et al. 517 

2022) indicate that these three groups are mostly found with soils, sometimes in association 518 

with the rhizosphere. These observations suggest that Methylobacteriaceae and 519 

Methylobacterium’s ancestors inhabited soils, and were occasionally associated with plants, 520 

for instance in the rhizosphere, and that Methylobacterium groups A/B/D’s association with 521 

the phyllosphere occurred after divergence from group C. The exact origin and nature of this 522 

association is an open question, but the smaller genome size, gene copy number, GC content 523 

and to a lower extent, mobile element number, we observed in group A/B/D in comparison 524 

with group C could be the genomic signatures of a progressive specialization to life on plants 525 

(Nishida 2012; Levy et al. 2018), among other things through the evolution of metabolic 526 

pathways in response to contrasted nutrient availability between the soil and the phyllosphere 527 
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(Lee et al. 2022; Alessa et al. 2021). For instance, some genes involved in the metabolism of 528 

aromatic compounds resulting from lignin degradation are present in Microvirga and 529 

Methylobacterium group C, but absent from other Methylobacterium groups (Lee et al. 530 

2022), suggesting that these functions essential for ground lifestyle were lost in A/B/D group 531 

after they divergence with group C. Inversely, Methylobacterium from group A/B/D arbor a 532 

larger panoply of genes allowing the use of methanol, available in the phyllosphere, than 533 

group C, while most of these pathways are absent from Microvirga (Alessa et al. 2021), 534 

suggesting that the transition from soil to phyllosphere lifestyle in Methylobacterium also 535 

coincided with the acquisition and diversification of methylotrophic pathways. 536 

 537 

According to our phylogenomic analyses of group A/B/D, group D diverged first, and, like 538 

group A, was mostly isolated from the phyllosphere, suggesting that the A/B/D ancestor 539 

inhabited the surface of plant leaves. The fact that our analyses support horizontal gene 540 

exchanges between groups A, B and D is also consistent with the hypothesis that these 541 

groups lived in the same habitat during their divergence. One can speculate that some 542 

horizontally transferred, yet to be discovered, genes may have had shared roles in 543 

Methylobacterium adaptation to the phyllosphere. For instance, strains from groups A and D 544 

were often identified in the same studies, sometimes isolated from the same plants, indicating 545 

that strains from these two groups likely share the same microhabitats on the surface of plant 546 

leaves, hence favoring gene exchanges among them and the maintenance of similar 547 

molecular pathways and functions. Further identifications of genes exchanges among these 548 

groups and the characterization of their functions will be critical to understand evolutionary 549 

mechanisms underlying the adaptive role and radiation of Methylobacterium in the 550 

phyllosphere. 551 

 552 

Conclusion - Our unprecedented phylogenomic analysis of Methylobacterium revealed the 553 

outstanding diversity within this taxon, and the role of HGT in its early evolutionary history. 554 

Future genomic and functional studies will be needed to characterize the evolutionary and 555 

functional features of Methylobacterium adaptation to the phyllosphere. Finally, our work 556 

lays the foundation for a thorough taxonomic redefinition of this genus. 557 

  558 
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Methods 559 

 560 

Methylobacteriaceae genome collection 561 

 562 

We assembled a collection of 213 complete and draft Methylobacteriaceae genomes, 563 

including 189 Methylobacterium and 24 genomes from related genera as outgroups 564 

(Microvirga: n=22; Enterovirga: n=2). Most Methylobacterium (n=98) and all outgroup 565 

genomes (n=24) came from distinct studies (see references in Leducq et al. (2022)) and 566 

corresponded to genomes publicly available in October 2020 on NCBI. We included 29 567 

genomes from Methylobacterium type strains recently published (Alessa et al. 2021; Bijlani 568 

et al. 2021) in order to cover most Methylobacterium species described so far. We also 569 

included 38 genomes available from two large surveys of the Arabidopsis and wheat 570 

phyllospheres (Helfrich et al. 2018; Zervas et al. 2019) and sequenced 24 additional genomes 571 

(see next section) of isolates from a large survey of the temperate forest phyllosphere 572 

(Leducq et al. 2022), hence extending our dataset to the leaf-associated Methylobacterium 573 

diversity.  574 

 575 

Library preparation and genome assembly of 24 Methylobacterium strains 576 

 577 

We performed genome sequencing and de novo assembly of 24 Methylobacterium strains 578 

representative of the diversity previously found in the phyllosphere of two temperate forests 579 

in the province of Québec, Canada (Leducq et al. (2022); Dataset S2). DNA extraction was 580 

performed from culture stocks frozen at -80 °C directly after isolation and identification 581 

(Leducq et al. 2022) and thawed 30 min on ice. About 750 μl of cell culture were used for 582 

DNA extraction with DNeasy PowerSoil Pro Kit (Qiagen) according to the manufacturer 583 

protocol, with the following modification: final elution was repeated twice in 25 μl (total 584 

volume: 50 μl). 300 bp paired-end shotgun libraries were prepared from 35 ng genomic DNA 585 

with QIAseq FX DNA Library Kit (Qiagen) and protocol was adjusted to target DNA 586 

fragments in the range 400-1000 bp. Genomes were assembled from libraries with 587 

MEGAHIT (Li et al. 2015) with default parameters. Genome assemblies had 7050-24785 588 

contigs with average depth in the range 188-304x and a total size in the range 7.2-17.1 Mb. 589 
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After removing contigs with depth <10x, we obtained 82-411 contigs per genome. Most 590 

assemblies had total size (5-7 Mb) and average GC content (67-70%) in the expected range 591 

for Methylobacterium genomes (Dataset S2). For three out of twenty-four genomes, GC 592 

content and depth distribution were clearly bimodal, and total size was much higher (9.5-593 

11.9 Mb) suggesting that these assemblies contained genomes from at least two evolutionary 594 

distinct taxa. For these three heterogeneous assemblies, we divided contigs into two pools 595 

based on median depth value between two modes (threshold range: 100-150x). For each 596 

heterogeneous assembly, the pool with highest average depth (174-241x) had average GC 597 

content (67-68%) and total size (5.6-5.8 Mb) in the ranges expected for Methylobacterium. 598 

Contigs with lower depth were considered as contaminants and discarded from assemblies. 599 

 600 

Gene annotation 601 

 602 

Methylobacteriaceae genomes (n=213) were individually annotated using RAST 603 

(https://rast.nmpdr.org/rast.cgi) (Aziz et al. 2008) with following parameters: genetic 604 

code=11; Annotation scheme=RASTtk; Preserve gene calls=no; Automatically fix 605 

errors=yes; Fix frameshifts=no; Backfill gaps=yes. Annotation output from each genome 606 

was retrieved separately as Spreadsheet (GFF file in tab-separated text format). Core genome 607 

definition was conducted in R (R-Developement-Core-Team 2011). For each genome, we 608 

retrieved the abundance of gene annotations (column function in RAST output), excluding 609 

Hypothetical proteins, repeat regions and Mobile element proteins (Dataset S3).  610 

 611 

Methylobacteriaceae core genome definition 612 

 613 

We first defined the Methylobacteriaceae core genome from 184 genomes, excluding 29 614 

genomes that were not yet published nor annotated at the time of the analysis (Alessa et al. 615 

2021; Bijlani et al. 2021). In these 184 genomes, we identified 9,970 unique gene 616 

annotations (i.e., regardless copy number: Dataset S3), with on average 2637 ± 210 unique 617 

gene annotations per genome. We defined candidate core genes as genes present in one copy 618 

in at least 90% of the 184 genomes, resulting in 893 candidate core genes, for which we 619 

retrieved the nucleotide sequence (column nucleotide_sequence in RAST output). In order to 620 

https://rast.nmpdr.org/rast.cgi
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correct for false gene duplication events that increased consistently with assembly 621 

incompleteness (Figure S1) and to estimate the actual copy number of each candidate core 622 

gene, we used 36 complete Methylobacteriaceae genomes as references (defined as genomes 623 

with N50 > 3×106 Mb). For each candidate core gene, we calculated the average expected 624 

nucleotide sequence size observed among 36 complete genomes. Then, for each genome 625 

(n=184) and each candidate core gene, we retrieved all nucleotide sequences (0-10 per gene 626 

and genome) and calculated their average size normalized (divided) by the average 627 

nucleotide sequence size observed in complete genomes. By doing so, we could distinguish 628 

between duplication caused by genome incompleteness (single copy genes divided between 629 

different scaffolds) and real duplication events (Figure S2). We considered 398 genes for 630 

which at least one genome had more than one copy with normalized size >0.75 as true 631 

duplicates and removed them from candidate core genes. For the 495 remaining candidate 632 

core genes, we considered single-copy genes with normalized size >1.3 and gene copies with 633 

normalized size <0.7 (regardless copy number) as missing data in the considered genome. 634 

After this filter, we removed 111 candidate core genes that were missing in at least 4 635 

genomes, resulting in 384 core genes for which a single full-length copy could be retrieved 636 

for at least 181 genomes (out of 184; Dataset S4). Subsequently, we included recently 637 

sequenced genomes from 29 Methylobacterium species type strains that were missing from 638 

our survey (Alessa et al. 2021; Bijlani et al. 2021). By doing this, we slightly extended the 639 

number of unique gene annotations in Methylobacteriaceae (n = 10,190). We confirmed that 640 

the 384 previously identified core genes were part of the Methylobacteriaceae core genome 641 

and retrieved each core gene nucleotide sequence for at least 26 out of 29 genomes. Our final 642 

dataset consisted of 213 genomes for which we retrieved 327 to 384 core genes nucleotide 643 

sequences (381 ± 6; mean, SD; Dataset S1). 644 

 645 

Core gene nucleotide sequence alignments 646 

 647 

We performed an alignment for each core gene. For each genome (n = 184 + 29 = 213), we 648 

first extracted nucleotide sequences of the 384 core genes (when not missing data for the 649 

considered genome; column nucleotide_sequence in RAST output) and converted them in 650 

sequence fasta files using R package seqinr(). We then performed an alignment for each core 651 
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gene using R packages seqinr() and msa(). For each gene, nucleotide sequences were 652 

translated (function getTrans()) and alignments of amino-acid sequences were performed 653 

using ClustalW with default parameters in function msa(). Sequences were converted back in 654 

nucleotides (stop codons excluded) and 5’ and 3’ end codons with more than 90% of missing 655 

data (gaps of “Ns”) were trimmed. We also constructed an alignment of concatenated core 656 

genes nucleotide sequence alignments. In the concatenated alignment, sequences of genes 657 

missing for at least one of the 213 genomes (0-6 genomes missing per gene) were replaced 658 

by strings of “Ns”. 659 

 660 

Inferences of the Methylobacteriaceae lineage trees  661 

 662 

We reconstructed the lineage tree of Methylobacteriaceae from 213 genomes from the 384 663 

core gene nucleotide sequences using three complementary approaches in order to assess the 664 

effect of ILS and HGT in the evolutionary history of Methylobacterium.  665 

 666 

First, we used RAxML v. 8.2.8 (Stamatakis 2014) to determine a maximum-likelihood (ML) 667 

lineage tree from concatenated alignments of the core 384 gene nucleotide sequences 668 

assuming a different substitution model for each gene but the same evolutionary tree for all 669 

genes (and hence not accounting for ILS or HGT). We used PartitionFinder implemented in 670 

IQ-tree2 (Minh et al. 2020) to determine an appropriate bipartitioning scheme allowing us to 671 

merge genes evolving under similar nucleotide substitution models (Lanfear et al. 2012). The 672 

best-fit partition scheme was determined using TESTMERGERONLY model (option –m) to 673 

avoid tree reconstruction, and using the relaxed hierarchical clustering algorithm to reduce 674 

the computation burden (Lanfear et al. 2014) by only examining the top 10% partition 675 

merging schemes (option –rcluster). We then inferred the Methylobacteriaceae lineage tree 676 

from the 384 core gene alignment with RAxML v. 8.2.8 (Stamatakis 2014), using the IQ-677 

tree2 best-scheme output file as partition file (option –q in RAxML). The program performed 678 

512 replicate (bootstrap) searches from independent starting trees with a GTRCAT model of 679 

substitution, estimating parameters for each partition separately. Of the 512 trees, the one 680 

with the highest ML score (the best-scoring tree) was retained as the lineage tree. 681 

 682 
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Second, we used ASTRAL-III (Zhang et al. 2018), a coalescent-based method inferring the 683 

lineage and the species trees by combining individual core gene trees, hence accounting for 684 

ILS and HGT among genes. For each core gene, a gene tree was first inferred from 685 

nucleotide sequence alignments with RAxML v. 8.2.8 (Stamatakis 2014). Briefly, for each 686 

gene, the program performed 1,000 replicate (bootstrap) searches from independent starting 687 

trees assuming a GTRgamma model of nucleotide substitution. Each gene tree in Newick 688 

format, including branch length (L: nucleotide substitution per site) and node label (N: nodal 689 

support representing the proportion of replicated supporting nodes), was imported in R as a 690 

vector. The gene tree in RAxML format: ((():L1[N1]):L2[N2]) was rewritten so that it could 691 

be readable in R (package ape (Paradis & Schliep 2019)) and ASTRAL-III: 692 

((():L1)N1:L2)N2. The tree was then reopened in R with function read.tree (package ape) 693 

and nodes with < 10% support were collapsed using function collapseUnsupportedEdges 694 

(package ips), to optimize accuracy in estimating the lineage and species tree (Zhang et al. 695 

2018). All reformatted gene trees were written in a single file (multiPhylo object), which was 696 

used to infer the lineage and the species tree in ASTRAL-III v5.7.7, with default parameters. 697 

In ASTRAL trees, branch lengths were measured in coalescent units and nodal support 698 

represented local posterior probability (Sayyari & Mirarab 2016).  699 

 700 

Third, we used SVDquartets (Chifman & Kubatko 2014) as implemented in PAUP* v4.0a 701 

(build 169) (Wilgenbusch & Swofford 2003), a coalescent-based method estimating the tree 702 

for each possible combination of four genomes and assuming all sites unlinked in the 703 

concatenated alignment of 384 genes. We estimated the lineage tree from the concatenated 704 

213 Methylobacteriaceae core genes by evaluating 2,000,000 random quartets for 100 705 

bootstrap replicates. Phylogenies were estimated under the multispecies coalescent model 706 

accounting for incomplete lineage sorting (ILS) and assessing all sites independently to 707 

account for recombination within and among loci.  708 

 709 

Lineage trees were displayed in Figtree v1.4.4 and rooted on Microvirga and Enterovirga. 710 

 711 

Methylobacteriaceae species definition and lineage tree inferences 712 

 713 
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We classified Methylobacteriaceae genomes in species using percentage nucleotide 714 

similarity (PNS) on the core genome (concatenated alignments on 384 core genes; 361,403 715 

bp), similar to average nucleotide identity (Mende et al. 2013; Chun & Rainey 2014). 716 

Briefly, PNS between two genomes was calculated in R as the proportion of conserved 717 

nucleotide positions, gaps and “Ns” excluded (Dataset S4). Two genomes were considered 718 

from the same species when their PNS was higher or equal to 97%, a threshold similar to 719 

what is typically used for bacterial species (96.5% based on nucleotides sequences of 40 720 

marker genes; (Mende et al. 2013; Chun & Rainey 2014)). We inferred the 721 

Methylobacteriaceae species tree using both ASTRAL-III (Zhang et al. 2018) and 722 

SVDquartets (Chifman & Kubatko 2014), as described above, using individual assignment to 723 

species determined from PNS. Species trees were displayed in Figtree v1.4.4 and rooted on 724 

Microvirga and Enterovirga. 725 

 726 

Test for HGT and ILS severity in lineage and species tree inferences 727 

 728 

We tested for the severity of HGT and ILS in our dataset by measuring the differences in tree 729 

topologies estimated using different assumptions. To quantify differences between the 730 

topologies obtained under different assumptions, we calculated normalized Robinson-Foulds 731 

(RF) distances (Robinson & Foulds 1981), which evaluates the pairwise proportion of unique 732 

nodes between tree topologies, between all three lineage trees (RAxML from concatenated 733 

core gene alignments, SVDquartets, and ASTRAL) as well as between both species trees 734 

(ASTRAL and SVDquartets). RF distances were estimated using the treedist function 735 

implemented within PAUP* v4.0 (build 169) (Wilgenbusch & Swofford 2003) using final 736 

phylogenies in NEWICK format as input. We also calculated the distribution of RF distances 737 

between our best RAxML tree from concatenated core gene alignments and all 512 RAxML 738 

bootstrap replicates. We then compared our RF distances between each inference method to 739 

this distribution of distances to assess whether discordant topologies among lineage trees are 740 

due to different assumptions of methods, or due to phylogenetic uncertainty.  741 

 742 

Methylobacteriaceae genome characteristics and gene content  743 

 744 
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We analyzed Methylobacteriaceae genome characteristics (size, GC content and gene 745 

content) of the coding sequence for each. We first calculated the number of gene annotations, 746 

their total nucleotide size (coding genome size), their GC content, the number of unique 747 

annotations (excluding hypothetical proteins, repeat elements and mobile elements), the 748 

number of mobile elements, and the average copy number of annotations (Dataset S1, Table 749 

2). For each statistic, we compared Methylobacterium groups (as defined by lineage trees) 750 

and outgroups (Microvirga, Enterovirga) using a Tukey test.  751 

 752 

In a heatmap, we displayed the average abundance of 10,187 gene annotations (excluding 753 

hypothetical proteins, repeat elements and mobile elements) per Methylobacteriaceae 754 

species, per Methylobacterium group and outgroup, ordered according to the ASTRAL 755 

species tree (Figure S5a). For gene abundance per species, we calculated the average 756 

occurrence (n) of each gene annotation across genomes assigned to the same species, 757 

rounded to 0 (n<0.5), 1 (0.5≤n<1.5) or 2 copies (n≥2). For gene abundance per group, we 758 

calculated the average occurrence of each gene annotation across species assigned to the 759 

same group, using the same principle as for species.  760 

 761 

We estimated pan genome and core genome sizes per Methylobacterium group (unknown 762 

proteins, repeat and mobile elements excluded; Figure S7). To deal with biases in size 763 

estimations due to the variable number of genomes per group, we applied rarefaction on gene 764 

number estimates by randomly sampling 1 to N genomes per group (Park et al. 2019) and by 765 

forcing resampling of one genome per species. For each N value and each group, we 766 

calculated the average and standard deviation in core genome size (genes in 1:1 copy in each 767 

genome of a given group) and in pan genome (any gene present in at least one copy in at 768 

least one genome of a given group) over 100 replicates. As pan genome size estimations 769 

increased with the number of sampled species per group (Figure S7a) and core genome size 770 

estimations decreased (Figure S7b), curves of estimates per group did not cross each other, 771 

nor reached a plateau, indicating that sizes were either under-estimated (pan genomes) or 772 

over-estimated (core genome) but could still be compared among groups. Accordingly, we 773 

compared pan and core genome sizes among Methylobacterium groups in a Venn diagram, 774 

assuming 15 species per group (Figures 2b,c). 775 
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 776 

We constructed a phylogeny of Methylobacteriaceae based on gene content (Figure 2d). 777 

First, we constructed a matrix of gene occurrence in each genome (0 for absence and 1 for 778 

presence) and converted it into a fasta file (one sequence per genome). We inferred an 779 

evolutionary tree of based on gene content using with RAxML v. 8.2.8 (Stamatakis 2014). 780 

The program performed 1,000 replicate (bootstrap) searches from independent starting trees 781 

with a BINCAT model of substitution assuming gene presence of absence as binary data. Of 782 

the 1,000 replicate trees, the one with the highest Maximum-likelihood (ML) score (the best-783 

scoring tree) was considered as the best tree. The tree was displayed in Figtree v1.4.4 and 784 

rooted on Microvirga and Enterovirga. 785 

 786 

In order to compare Methylobacteriaceae genomes based upon their gene content, we 787 

calculated an index of dissimilarity among each pair of genomes from their gene abundance 788 

(Table 3, Figure S8b). As no index was available for this purpose, we used the Bray-Curtis 789 

(BC) index of dissimilarity, initially developed in ecology for the comparison of 790 

communities based on their species abundance (Bray & Curtis 1957). To minimize the effect 791 

of higher copy number due to false gene duplications due to genome incompleteness, we 792 

applied a normalization on gene abundances (Hellinger normalization; function decostand in 793 

R package vegan). We calculated pairwise BC indexes of dissimilarity among normalized 794 

gene abundances, using function vegdist in R package vegan.  795 

 796 

Core genome architecture (synteny) 797 

 798 

We evaluated the level of conservation in core gene organization (synteny) between 799 

Methylobacteriaceae genomes. All analyses were performed in R (R-Developement-Core-800 

Team 2011). For each genome, we retrieved core gene coordinates (scaffold name and 801 

coordinates in the scaffold). For complete genomes consisting of a single linear scaffold 802 

(n=36), each core gene was paired with its two immediate neighbors, based on shortest 803 

distance between gene start and stop coordinates, and core genes located on scaffold edges 804 

were also paired together, assuming genome circularity. Hence, for each complete genome, 805 

each of the 384 core genes was involved in two links (pairs of neighbor core genes), for a 806 
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total of N=384 links per genome. For the 177 draft genomes, core genes were located on 807 

different scaffolds, so we predicted scaffold order and orientation using complete genomes as 808 

references. The draft genome with the highest completeness was reorganized first. Briefly, 809 

for each comparison with a reference genome, and for each scaffold of the draft genome, the 810 

list of embedded core genes was retrieved, and a score based on gene average order in the 811 

reference genome was calculated. Scaffolds of the draft genome were reordered according to 812 

these scores (one per scaffold). Then, each scaffold was eventually reoriented (without 813 

affecting gene order within scaffolds) to optimize pairing of edge genes (genes located at the 814 

edge of a scaffold) as compared to the reference genome. We repeated the operation for 815 

comparisons with the 36 reference genomes. Finally, for each of the 36 new configurations 816 

of the draft genome, we calculated a synteny conservation index (SI) with each reference 817 

genome, as the proportion of links conserved between two genomes. SI ranged from 0 (no 818 

link conserved) to 1 (fully conserved synteny). The draft genome configuration with the 819 

highest SI value was conserved for further analyses and added to the list of reference 820 

genomes. We repeated this operation for each draft genome, ranked according to their 821 

decreasing completeness, hence increasing the number of reference genomes and possible 822 

configurations for highly fragmented genomes. Finally, we calculated SI for all possible 823 

pairwise comparisons between genomes (Figure S8b), and average and standard deviation 824 

values within and among Methylobacteriaceae species and groups (Table 4).   825 

 826 

In order to visualize the spatial organization of core genes along the Methylobacteriaceae 827 

chromosome, we used two approaches. First, we realized a heatmap of link conservation per 828 

species, along a reference genome (Figure S10). We choose as reference the genome having 829 

the highest average SI value with other Methylobacterium genomes. In the heatmap, we 830 

displayed the 384 links identified in the reference genome, ordered according to core gene 831 

order along its chromosome, and highlighted them when also present in other 832 

Methylobacteriaceae species. For each species, we also reported the average SI value with 833 

the reference genome. Finally, for each link in the reference genome, we calculated its 834 

frequency in each Methylobacterium group. Second, we drew a consensus map of the 835 

Methylobacterium core genome architecture, as well as major rearrangements within and 836 

among Methylobacterium groups, as a network in Cytoscape v.3.4.0 (Shannon et al. 2003) 837 
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(Figure 3a). In this network, we represented the 384 core genes as nodes, ordered according 838 

to M. planium YIM132548 core genome, and links among neighbor core genes as edges. The 839 

network was drawn using 389 links observed in a majority (>50%) of species from a given 840 

Methylobacterium group (5,720 links discarded).  841 

 842 

In order to reconstruct the evolution of Methylobacteriaceae core genome based on its 843 

architecture, we constructed a matrix of occurrence of each possible link observed among 844 

genomes (0 for absence and 1 for presence) and converted it into a fasta file. We inferred an 845 

ML evolutionary tree of Methylobacteriaceae based on synteny using with RAxML v. 8.2.8 846 

(Stamatakis 2014) with a BINCAT model of substitution assuming pair of core genes 847 

presence of absence as binary data, as described for annotations (Figure 3b).  848 

 849 

 850 

 851 

  852 
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Draft genomes for 24 Methylobacterium strains corresponding to Bioproject PRJNA730554 854 

(Biosamples listed in Dataset S1) were deposited on NCBI under accession numbers 855 

JAKSXU000000000 - JAKSYR000000000. R code and related data were deposited on 856 

Github (https://github.com/JBLED/methylobacterium-phylogenomics.git). 857 
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Table 1: Description and isolation source of 104 Methylobacterium species distributed in the 871 

four main phylogenetic groups. For each group, the number of species, of genomes, and the 872 

proportion of genomes isolated from each main category of environment, are given for 873 

described and candidate species (numbered from Methylobacterium sp 001 to 045), 874 

separately. Proportions were corrected by the number of genomes per species. 875 

Anthropogenic environments include several other isolations sources. 876 
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B 

Described species 
(M. aminovorans ; M. brachythecii ; M. extorquens  
M. gnaphalii ; M. haplocladii ;M. organophilum  
M. podarium ; M. rhodesianum ; M. rhodinum  
M. salsuginis ; M. suomiense ; M. thiocyanatum  
M. thuringiense ; M. zatmanii) 

14 33 30% 1% 1% 13% 19% 35% 29% 

Candidate species (Methylobacterium sp 035 to 041)  7 8 50% - 7% 29% - 14% 29% 

All species 21 41 37% 1% 3% 18% 13% 28% 29% 

A 

Described species 
(M. aerolatum ; M. brachiatum ; M. cerastii  
M. dankookense ; M. durans ; M. fujisawaense  
M. gregans ; M. hispanicum ; M. jeotgali  
M. komagatae ; M. longum ; M. mesophilicum  
M. oxalidis ; M. persicinum ; M. phyllostachyos  
M. planium ; M. pseudosasicola ; M. radiodurans  
M. radiotolerans ; M. segetis ; M. soli  
M. symbioticum ; M. tardum ; M. trifolii) 

24 45 30% 1% 4% 28% 17% 20% 40% 

Candidate species (Methylobacterium sp 018 to 034)  17 36 80% 10% 10% - - - - 

All species 41 81 51% 4% 7% 16% 10% 12% 23% 

D 

Described species 
(M. adhaesivum ; M. bullatum ; M. goesingense  
M. gossipiicola ; M. iners ; M. marchantiae)  

6 10 47% - 17% 20% - 17% 17% 

Candidate species (Methylobacterium sp 001 to 017) 17 32 74% 6% - 21% - - - 

All species 23 42 67% 4% 4% 20% - 4% 4% 

C 

Described species 
(M. ajmalii ; M. aquaticum ; M. crusticola ; M. currus  
M. frigidaeris ; M. indicum ; M. isbiliense 
M. nodulans ; M. nonmethylotrophicum  
M. oryzihabitans ; M. platani ; M. tarhaniae  
M. terrae ; M. terricola ; M. variabile) 

15 21 8% 10% 7% 27% 33% 15% 55% 

Candidate species (Methylobacterium sp 042 to 045)  4 4 - 25% 25% - 25% 25% 25% 

All species 19 25 7% 13% 11% 21% 32% 17% 49% 

Methylobacterium 

All described species 59 109 26% 3% 5% 23% 20% 22% 39% 

All candidate species 45 80 66% 8% 7% 12% 2% 4% 7% 

All species 
10
4 

189 43% 5% 6% 18% 12% 14% 25% 

Microvirga (all species) 18 24 - 33% 6% 17% 33% 11% 6% 

Enterovirga (all species) 2 2 - - - - 50% 50% - 
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Table 2: Methylobacteriaceae genome characteristics (average and standard deviation per 877 

group). GC content was estimated from coding sequences. Hypothetical protein, mobile and 878 

repeat elements were excluded from unique annotation counts and estimated copy numbers. 879 

 880 

Group Genomes Species Size (Mb) Annotations 
Unique  

annotations 

Estimated copy 

number 

Mobile 

elements 
% GC 

A 81 41 6.21 ± 0.59 6907 ± 821 2696 ± 134 1.457 ± 0.067 60 ± 34 70.1 ± 0.8 

B 41 21 5.58 ± 0.49 5766 ± 509 2706 ± 173 1.365 ± 0.048 57 ± 31 69.1 ± 0.8 

C 25 19 7.15 ± 0.66 7670 ± 956 2899 ± 122 1.542 ± 0.066 71 ± 49 71.1 ± 0.7 

D 42 23 4.99 ± 0.35 5224 ± 476 2421 ± 82 1.312 ± 0.042 42 ± 21 68.8 ± 1.1 

Enterovirga 2 2 4.91 ± 0.36 5128 ± 182 2321 ± 14 1.414 ± 0.019 14 ± 10 68.8 ± 0.1 

Microvirga 22 18 5.92 ± 1.74 6834 ± 2929 2495 ± 251 1.471 ± 0.173 128 ± 147 63.9 ± 1.6 

 881 

 882 

Table 3: Average and standard deviation in gene content dissimilarity (BC index, Hellinger 883 

transformation on gene occurrence per genome) per and among Methylobacterium group and 884 

outgroups. 885 

Group 
BC within 

species 

BC among 

species 

within groups 

BC among groups 

A B C D Enterovirga 

A 0.06 ± 0.02 0.19 ± 0.05           

B 0.08 ± 0.02 0.17 ± 0.05 0.28 ± 0.02         

C 0.07 ± 0.03 0.20 ± 0.04 0.29 ± 0.02 0.34 ± 0.02       

D 0.04 ± 0.02 0.16 ± 0.03 0.24 ± 0.03 0.24 ± 0.03 0.32 ± 0.02     

Enterovirga - 0.28 0.39 ± 0.01 0.41 ± 0.02 0.36 ± 0.02 0.37 ± 0.01   

Microvirga 0.03 ± 0.04 0.26 ± 0.04 0.41 ± 0.02 0.44 ± 0.02 0.38 ± 0.02 0.40 ± 0.02 0.36 ± 0.03 

 886 

Table 4: Average and standard deviation in core genome synteny (SI) per and among 887 

Methylobacterium group and outgroups. 888 

Group 
SI within 

species 

SI among 

species 

within groups 

SI among groups 

A B C D Enterovirga 

A 0.98 ± 0.03 0.70 ± 0.17           

B 0.99 ± 0.01 0.77 ± 0.21 0.46 ± 0.03         

C 0.91 ± 0.06 0.61 ± 0.12 0.43 ± 0.03 0.44 ± 0.01       

D 0.98 ± 0.02 0.73 ± 0.11 0.53 ± 0.05 0.51 ± 0.02 0.48 ± 0.01     

Enterovirga  - 0.47 0.39 ± 0.03 0.39 ± 0.02 0.38 ± 0.02 0.42 ± 0.03   

Microvirga 1.00 ± 0.00 0.91 ± 0.05 0.49 ± 0.03 0.48 ± 0.01 0.46 ± 0.01 0.52 ± 0.02 0.52 ± 0.05 
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Figure Legends 891 

 892 

Figure 1: Methylobacteriaceae lineage trees inferred from 213 genomes. a) Best tree from 893 

RAxML ML search on the concatenated alignments of 384 core gene nucleotide sequences 894 

(GTRCAT model, 512 replicated trees), rooted on Microvirga and Enterovirga (grey). 895 

Colors indicate the four major Methylobacterium groups: A (red), B (purple), C (green) and 896 

D (blue). Correspondence with clades described by previous studies is indicated. b) 897 

ASTRAL tree inferred from 384 core gene ML trees. Each gene ML tree was inferred 898 

assuming a GTRgamma model (1,000 replicated trees; nodes with less than 10% of support 899 

collapsed) and combined in ASTRAL-III. Branch lengths are in coalescent units. Nodal 900 

support values represent local posterior probability. c) SVD quartet tree inferred from the 901 

concatenated alignments of 384 core gene nucleotide sequences. Nodes supported by less 902 

than 75% of quartets were collapsed. d) Main isolation sources of species from 903 

Methylobacterium group and Microvirga (see Table 1). For each group, ordered according to 904 

a consensus tree (see panels b and c), the number of species is indicated in parenthesis.  905 

 906 

Figure 2: Gene content comparison among the four main Methylobacterium groups. a) 907 

Occurrence of 10,187 gene annotations (rows) in 124 Methylobacteriaceae species (average 908 

occurrence per species; column, ordered according to the ASTRAL species tree, left) and in 909 

four Methylobacterium groups and two outgroups (mean occurrence among species within 910 

groups; legend in bottom right) are shown. b-c) Venn diagrams showing the overlap of pan 911 

genomes (b) and core genome (c) among four groups. Pan and core genome sizes were 912 

estimated assuming 15 species per group (mean and standard deviation over 100 random 913 

resampling of 15 species per group). d) RAxML ML best tree based on annotation 914 

occurrence per genome (best ML tree, BINCAT model, 1,001 replicate trees). Main groups 915 

are shown and are monophyletic in the gene content tree, but group A: clade A2 (Alessa et 916 

al. 2021) and M. jeotgali branched out of group A.  917 

 918 

Figure 3: Core genome architecture comparison (synteny) among Methylobacteriaceae 919 

genomes. a) Consensus map of the Methylobacterium core genome architecture, and major 920 

rearrangements within and among Methylobacterium groups, using M. planium YIM132548 921 
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core genome as a reference. The map was drawn as a network using 384 core genes as nodes, 922 

and links among neighbor core genes as edges. Only 389 links that were observed in a 923 

majority (>50%) of species from a given Methylobacterium group are shown (Venn diagram 924 

on top right; 5,720 links discarded). Bold lines indicate links mostly conserved in group A, 925 

colored according to their dominance in other groups (legend on bottom right). Thick lines 926 

indicate links mostly absent in group A but dominant in other groups. A syntenic island 927 

conserved in most Methylobacterium genomes and containing ribosomal genes and gene 928 

rpoB is indicated (dotted frame). b) RAxML ML best tree based on link occurrence per 929 

genome (6,109 links; best ML tree, BINCAT model, 1,001 replicate trees). Main groups are 930 

shown and are monophyletic in the synteny tree. c) Detailed synteny plot for the comparison 931 

of core genome architecture between seven species from group A and six species from group 932 

D (best assembled genome per species). For each pairwise comparison, core gene (black 933 

points) are ordered according to their relative position in species 1 genome (x-axis) and are 934 

compared with their relative positions in species 2 genome (y-axis). Each plot is colored 935 

according to the SI value between species 1 and 2 (scale on top right).  936 

 937 

  938 
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Figure S1 : Proportion of genes per genome present in 1 (blue), 2 (green), 3 (orange), 4 (red) or 5 

(purple) copies per genome in function of genome assembly quality (given by the number of 

scaffolds per genome, log scale). 
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Figure S2: Identification of true core genes among 893 candidate core genes present in a single 

copy in at least 90% of 184 Methylobacteriaceae genomes. Average gene size normalized 

(divided) by the average nucleotide sequence size observed in complete genomes (defined as 

genomes with N50 > 3×106 Mb) was plotted against the number of copies observed per genome. 

Each dot represents one copy in one genome. Lines represent the expected copy number for each 

normalized size/observed copy number combination. 398 genes for which at least one genome 

had more than one copy with normalized size >0.75 were considered as true duplicates and 

removed from the analysis (red). For the 495 remaining candidate core genes, single-copy genes 

with normalized size >1.3 and gene copies with normalized size <0.7 (regardless copy number) 

were considered as missing data (blue). Of the remaining genes, 384 genes with a single copy in 

at least 180 genomes were considered as true core genes. 

 
  



Figure S3: Detailed lineage trees of Methylobacteriaceae reconstructed from 213 genomes using 

ASTRAL and SVDquartet. a) ASTRAL tree inferred from 384 core gene ML trees. Each gene 

ML tree was inferred in RAxML assuming a GTRgamma model (1,000 replicated trees; nodes 

with less than 10% of support collapsed) and combined in ASTRAL-III. Branch lengths are in 

coalescent units. Nodal support values represent local posterior probability. b) SVD quartet tree 

inferred from the concatenated alignments of 384 core gene nucleotide sequences. Nodal support 

values indicate the proportion of quartets supporting each node. Trees were rooted on Microvirga 

and Enterovirga. Branches and genomes names (Genus, species, strain) were colored according 

to assignation to Methylobacterium groups (A: red; B: purple; C: green; D: blue) and outgroups 

(Microvirga: grey; Enterovirga: dark grey)  
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Figure S4: Normalized RF distance distribution between the RAxML majority consensus rule 

lineage tree and the 512 replicate trees (grey; see Figure 1a) and normalized RF distances 

between lineage trees (points; legend on top right).  
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Figure S5: Detailed species trees of Methylobacteriaceae inferred from 213 genomes assuming 

124 Methylobacterium species. a) ASTRAL tree inferred from 384 core gene ML trees. Each 

gene ML tree was inferred in RAxML assuming a GTRgamma model (1,000 replicated trees; 

nodes with less than 10% of support collapsed) and combined in ASTRAL-III. Branch lengths 

are in coalescent units. Nodal support values represent local posterior probability. b) SVD quartet 

tree inferred from the concatenated alignments of 384 core gene nucleotide sequences. Nodal 

support values indicate the proportion of quartets supporting each node. Trees were rooted on 

Microvirga and Enterovirga. Branches were colored according to assignation to 

Methylobacterium groups (A: red; B: purple; C: green; D: blue) and outgroups (Microvirga: grey; 

Enterovirga: dark grey)  
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Figure S6: Comparison of genome characteristics among 4 Methylobacterium groups. Genome 

size, number of unique gene annotations per genome (unknown proteins, repeat elements and 

mobile elements excluded), average gene copy number per genome, and GC content (in coding 

genome) are compared to each other. Each point represents values for a genome, colored 

according to assignment to Methylobacterium groups (A: red; B: purple; C: green; D: blue). 

Ellipses indicate 50% of standard deviation centered on average values for each group. 
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Figure S7: Pan (a) and core (b) genome size estimations in four Methylobacterium groups and 

Microvirga. Genome sizes per group (number of genes per groups; y-axis) were estimated for 

every number of species assumed in the range 1-n (n = maximum number of species per group; 

x-axis). For each group and number of species, average (lines) and standard deviation (frames) 

over 100 random resampling of n species per group were estimated. Dotted lines indicate the 

value for which pan genome and core genome size where estimated (n=15 species per group; 

Figure 2). 
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Figure S8: a) ASTRAL species tree. b) Heatmap of dissimilarity in gene content (BC index; blue 

scale; above diagonal) and similarity in core genome architecture (Synteny index; orange scale; 

below diagonal) among 104 Methylobacterium and 20 outgroups species, matching the species 

tree. 
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Figure S9: Detailed Methylobacteriaceae lineage trees inferred from gene content (a) and core 

genome synteny (b). Each ML tree was inferred in RAxML assuming a BINCAT model (1,000 

replicated trees). Nodal support values indicate the proportion of replicate tree supporting each 

node. Trees were rooted on Microvirga and Enterovirga. Branches were colored according to 

assignation to Methylobacterium groups (A: red; B: purple; C: green; D: blue) and outgroups 

(Microvirga: grey; Enterovirga: dark grey) 
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M. sp. R2-1
M. sp. Leaf123
M. dichloromethanicum DM4 (DSM6343)
M. extorquens PA1
M. sp. Q1
M. zatmanii PSBB041
M. sp. RAS18
M. extorquens NBRC15911
M. extorquens PSBB040
M. extorquens AM1 (ATCC14718)
M. chloromethanicum CM4 (NCIMB13688)
M. sp. AMS5
M. extorquens NBRC15687T (TK0001T)
M. sp. MB200
M. populi P-1M
M. sp. DB1607
M. podarium DSM15083T
M. sp. CLZ
M. sp. NI91
M. sp. DM1
M. aminovorans NBRC15686T
M. brachythecii DSM24105
M. gnaphalii NBRC107716 (DSM24027)
M. thuringiense DSM23674
M. sp. WL9
M. haplocladii NBRC107714 (NBRC107714)
M. organophilum NBRC15689T
M. sp. 77
M. marchantiae DSM21328T
M. sp. Leaf91
M. sp. Leaf86
M. sp. Leaf93
M. sp. 10
M. sp. E-045
M. bullatum DSM21893T
M. sp. WL19
M. sp. 88A
M. sp. Leaf106
M. sp. Leaf85
M. sp. WL69
M. sp. Leaf99
M. sp. J-090
M. adhaesivum DSM17169T
M. gossipiicola Gh-105 (NRRLB51692T)
M. sp. Leaf87
M. sp. Leaf100
M. sp. Leaf102
M. sp. Leaf469
M. sp. Leaf112
M. sp. BTF04
M. sp. Leaf117
M. sp. Leaf113
M. sp. Leaf104
M. sp. GV104
M. sp. GV094
M. sp. V23
M. sp. Leaf125
M. sp. Leaf88
M. sp. Leaf89
M. sp. Leaf465
M. sp. Leaf94
M. sp. Leaf111
M. goesingense DSM21331T
M. sp. J-078
M. sp. J-068
M. iners DSM19015T
M. sp. Leaf108
M. sp. Leaf399
M. sp. Leaf466
M. trifolii DSM23632
M. segetis 17J42-1 (KCTC62267T)
M. durans 17SD2-17 (KCTC52908T)
M. oxalidis NBRC107715 (DSM24028T)
M. soli YIM48816 (KCTC22810T)
M. planium YIM132548 (NBRC114056T)
M. jeotgali LMG23639T
M. aerolatum DSM19013T
M. persicinum NBRC103628T
M. komagatae NBRC103627T (DSM19563T)
M. sp. J-067
M. sp. J-076
M. sp. C1
M. sp. UNC300MFChir4.1
M. sp. 190mf
M. sp. 285MFTsu5.1
M. sp. P1-11
M. sp. Leaf361
M. sp. UNCCL110
M. phyllosphaerae CBMB27 (DSM19779T)
M. fujisawaense DSM5686
M. oryzae CBMB20 (DSM18207T)
M. sp. XJLW
M. sp. 275MFSha3.1
M. radiotolerans NBRC15690
M. sp. BK227
M. sp. YL-MPn6-2016
M. radiotolerans ES_PA-B5
M. sp. UNCCL125
M. sp. UNC378MF
M. sp. YL-MPn5-2016
M. radiotolerans RE1.2
M. sp. 13MFTsu3.1M2
M. radiotolerans ME94
M. sp. yr668
M. radiotolerans JCM2831 (IAM12098T)
M. sp. DSM760
M. brachiatum 111MFTsu3.1M4
M. brachiatum TX0642 (NBRC103629T)
M. sp. GXS13
M. sp. J-001
M. sp. ARG-1
M. sp. J-026
M. sp. GXF4
M. sp. J-048
M. sp. J-070
M. mesophilicum NBRC15688T
M. sp. WL2
M. sp. WL64
M. sp. J-072
M. sp. J-077
M. pseudosasicola BL36 (NBRC105203T)
M. sp. E-066
M. tardum NBRC103632T (DSM19566)
M. phyllostachyos BL47
M. sp. E-046
M. longum DSM23933T
M. sp. J-030
M. sp. E-005
M. sp. J-088
M. sp. E-065
M. sp. 2A
M. dankookense SW08-7 (DSM22415T)
M. symbioticum SB0023/3
M. radiodurans 17Sr1-43
M. gregans NBRC103626T (002-074,DSM19564)
M. hispanicum DSM16372T
M. sp. CCH5-D2
M. sp. WL6
M. sp. E-016
M. sp. J-092
M. sp. WL119
M. sp. WL30
M. sp. E-041
M. sp. WL93
M. sp. J-059
M. sp. E-025
M. cerastii DSM23679T
M. sp. WL12
M. sp. WL8
M. sp. WL120
M. oryzihabitans TER-1 (BCRC81157T)
M. isbiliense DSM17168T
M. nodulans ORS2060 (LMG21967T)
M. sp. 4-46
M. crusticola MIMD6 (KCTC52305T)
M. nonmethylotrophicum 6HR-1 (KCTC42760T)
M. platani PMB02 (JCM14648T)
M. sp. DB0501
M. variabile DSM16961T
M. terricola 17Sr1-39 (NBRC112874T)
M. aquaticum DSM16371T
M. currus PR1016A (JCM32670T)
M. sp. 174MFSha1.1
M. sp. 17Sr1-1
M. frigidaeris JCM32048T (IER25-16)
M. tarhaniae DSM25844T (N4211)
M. terrae 17Sr1-28 (KCTC52904T)
M. sp. ap11
M. indicum SE2.11 (JCM30761T)
M. indicum NS230
M. indicum NS228
M. indicum NS229
M. ajmalii IF7SW-B2T
M. sp. yr596
M. aquaticum MA-22A
E. sp. DB1703
E. rhinocerotis DSM25903
M. sp. 17mud1-3
M. sp. HR1
M. subterranea DSM14364
M. sp. c23x22
M. guangxiensis CGMCC1.7666
M. makkahensis KCTC23863
M. vignae BR3299
M. sp. KLBC81
M. aerophila DSM21344 (NBRC106136)
M. aerophila NBRC106136 (DSM21344)
M. sp. Marseille-Q2068
M. lotononidis WSM3557
M. sp. CCBAU65841
M. flocculans ATCCBAA-817
M. flocculans DSM15743
M. lupini AT3.9
M. sp. BSC39
M. ossetica V5/3m
M. tunisiensis Lmie10
M. sp. M8
M. sp. SYSUG3D207
M. sp. SYSUG3D203

a. b. Gene content Core genome synteny 



Figure S10: Comparison of core genome architecture among 124 Methylobacteriaceae species 

(rows; ordered according to the ASTRAL species tree, left) using 384 links (pairs of contiguous 

core genes) observed in the M. planium genome as a reference (links are ordered according to the 

reference genome). For each species, M. planium links are colored according to their group (B: 

purple; A: red; D: blue; C: green; outgroups: grey) when observed. Average SI values per link per 

Methylobacterium group are indicated in the top diagram. Blue points indicate links that are more 

conserved in group D than group A. Average SI values with M. planium are indicated per species 

on the right diagram.  
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