

Comprehensive phylogenomics of *Methylobacterium* reveals four evolutionary distinct groups and underappreciated phyllosphere diversity.

Jean-Baptiste Leducq*^{1,2}, David Sneddon², Malia Santos², Domitille Condrain-Morel³, Geneviève Bourret³, N. Cecilia Martinez-Gomez⁴, Jessica A. Lee⁵, James A. Foster², Sergey Stolyar², B. Jesse Shapiro^{6,7}, Steven W. Kembel³, Jack M Sullivan², Christopher J. Marx².

1 – Université Laval – Quebec City (QC) Canada

2 - University of Idaho – Moscow (ID) US

3 - Université du Québec à Montréal – Montreal (QC) Canada

4 – UC, Berkeley – Berkeley (CA) US

5 – NASA Ames Research Center – Mountain View (CA) US

6 – Université de Montréal – Montreal (QC) Canada

7 – McGill University – Montreal (QC) Canada

*Corresponding author

Abstract – *Methylobacterium* is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well-studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that *Methylobacterium* is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of *Methylobacterium* have mostly been restricted to model species, often isolated from habitats other than the phyllosphere, and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 *Methylobacterium* genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfer. We showed that *Methylobacterium* contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content and genome architecture, revealing the

32 dynamic nature of *Methylobacterium* genomes. In addition to recovering 59 described
33 species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the
34 significance of plants as a reservoir of *Methylobacterium* diversity. We inferred an ancient
35 transition from a free-living lifestyle to association with plant roots in *Methylobacteriaceae*
36 ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose
37 early branching in *Methylobacterium* history has been heavily obscured by HGT. Together,
38 our work lays the foundations for a thorough redefinition of *Methylobacterium* taxonomy,
39 beginning with the abandonment of *Methylobacterium*.

40

41 **Key words** – *Methylobacterium*, *Methylobacterium*, species concept in bacteria, horizontal
42 gene transfers, genome architecture, core genome, lineage tree, species tree, phyllosphere

43

44 **Significance Statement**

45

46 *Methylobacterium* is an important group of plant-associated bacteria and a model organism
47 in microbiology. Ironically, *Methylobacterium* diversity and evolution have mostly been
48 studied outside plants. Here, we present the first comprehensive reconstruction of
49 *Methylobacterium* evolutionary history accounting for gene exchanges typical of Bacteria,
50 and for diversity with known plant association. We demonstrate that *Methylobacterium*
51 contains four evolutionarily divergent groups of bacteria, also distinguishable by their
52 genome architecture and composition, questioning *Methylobacterium* taxonomy. We
53 identified 104 *Methylobacterium* species, of which a large proportion is as of yet undescribed
54 and mostly plant-associated. We also infer an ancient transition in *Methylobacterium*
55 lifestyle from soil and plant roots, to plant leaves, stressing the significance of plants in
56 *Methylobacterium* evolution and diversity.

57

58 **Introduction**

59

60 For billions of years, bacteria have evolved rapidly through vertical and horizontal gene
61 transmission, mutation, selection, diversification, and extinction. These evolutionary
62 processes allowed bacteria to conquer every biome and living host on Earth and, at the same

63 time, resulted in blurring most traces of their ancient history (Louca et al. 2018). In the past
64 thousands of years, humans have increasingly imposed new selective pressures on bacterial
65 evolution, through bacterial host domestication and ecosystem perturbations (Gillings &
66 Paulsen 2014). Ironically, the human perception of microbial life was until recently limited
67 to the diversity we could “see” (through cultivation) and “use” (through domestication),
68 representing only an infinitesimal proportion of bacterial diversity in nature (Hugenholtz
69 2002). As a result, bacterial diversity, evolution and speciation concepts remain fuzzy and
70 largely biased (Shapiro et al. 2016). Yet, the advent of high-throughput sequencing
71 technologies, and our awakening to the essential role of bacteria in every living system has
72 spurred research into the evolutionary processes shaping the microbial world (Koonin et al.
73 2021).

74

75 *Methylobacterium* is a well-studied group of bacteria that are abundant and widespread in
76 every plant microbiome (Corpe & Rheem 1989; Keppler et al. 2006). *Methylobacterium* is
77 part of *Methylobacteriaceae* (class: *Alphaproteobacteria*; order: *Hyphomicrobiales* syn.
78 *Rhizobiales* (Hördt et al. 2020)), a family including three other genera, mostly isolated from
79 aquifers and soils, sometimes in association with plant roots: *Microvirga* (Kanso & Patel
80 2003), *Enterovirga* (Chen et al. 2017) and *Psychroglaciecola* (Qu et al. 2014). Easy to
81 isolate and to cultivate, thanks to a pink coloration due to carotenoids and their ability to use
82 methanol as sole carbon source (Clarke 1983; Anthony 1991; Keppler et al. 2006),
83 *Methylobacterium* are also essential players in plant functions, like growth stimulation
84 (Ivanova et al. 2001; Madhaiyan et al. 2005, 2007), heavy metal sequestration (Madhaiyan et
85 al. 2007), protection against phytopathogens and nitrogen fixation (Dourado et al. 2015),
86 sparking increasing interest in their use in plant biotechnology applications (Ryu et al. 2006;
87 Lee et al. 2006; Madhaiyan et al. 2007).

88

89 Recently, Green and Ardley (2018) questioned the taxonomy of *Methylobacterium*, noticing
90 a “*greater degree of phenotypic and genotypic heterogeneity than would normally be
91 expected for a single genus.*” Accordingly, these authors proposed to split the genus in three
92 distinct taxa corresponding to monophyletic groups in the 16S rRNA ribosomal gene
93 phylogeny (groups A, B and C). Group A, containing the *Methylobacterium* type species *M.*

94 *organophilum*, was retained as *Methylobacterium*. For group B, which included the model
95 species *M. extorquens*, the authors proposed a new genus: *Methylorubrum*. Finally, the
96 authors suggested that group C, including *M. aquaticum* and *M. nodulans*, should constitute a
97 distinct genus, pending future genetic and phenotypic investigations. The *Methylobacterium*
98 reclassification has been pointed out as problematic, because of the low phylogenetic
99 resolution of the 16S rRNA gene, and because no genus name was proposed for strains that
100 were not retained in *Methylorubrum* or *Methylobacterium*, which could potentially render
101 either new genus as paraphyletic (Hördt *et al.*, 2020; Leducq *et al.*, 2022). Accordingly, the
102 taxonomy of *Methylobacterium* was reexamined by coupling genome-wide DNA-DNA
103 hybridization and phenotypic information for 63 strains, each representative of a described
104 species (Alessa *et al.* 2021). Alessa *et al.* confirmed Green and Ardley's (2018) observation
105 that group C was phenotypically and genetically distinct from other groups, but they also
106 showed that *Methylorubrum* (group B) was embedded within *Methylobacterium* (group A),
107 forming a homogeneous group, and proposed to merge *Methylobacterium* and
108 *Methylorubrum* back into a single genus.

109
110 The evolutionary history of *Methylobacterium* remains poorly resolved for several reasons.
111 First, phylogenetic relationships among and within groups are often inconsistent depending
112 upon the chosen marker gene (Green and Ardley, 2018; Leducq *et al.*, 2022). Such
113 inconsistent phylogenetic signals suggest that these marker genes had different evolutionary
114 histories, perhaps due to horizontal gene transfer (HGT) or incomplete lineage sorting (ILS),
115 illustrating the dynamic nature of bacterial genome evolution and the limitations of bacterial
116 taxonomy based on a limited number of gene phylogenies (Castillo-Ramírez & González
117 2008; Creevey *et al.* 2011). Second, Alessa *et al.* (2021) based their *Methylobacterium*
118 taxonomy on DNA-DNA hybridization methods, which are widely used to classify
119 prokaryotic species, but are not phylogenetic methods *per se*, as they do not account for
120 ancestry. They also validated their taxonomy using a phylogenetic tree based on
121 concatenated protein sequences of core genes but did not present evaluations of the
122 uncertainty in the resulting tree. Finally, phylogenies based on concatenated gene alignments
123 assume the same tree for each gene, and thus do not take into account potential ILS and HGT
124 affecting topology and branch lengths differentially in each individual gene trees. With the

125 onset of genomics in evolutionary studies, several coalescent methods have been developed
126 to reconstruct the phylogeny and solve the taxonomy of organisms with complex
127 evolutionary history like bacteria (Davidson et al. 2015). For instance, coalescent-based
128 phylogenetic methods like ASTRAL-III (Mirarab et al. 2014; Zhang et al. 2018) and
129 SVDquartets (Chifman & Kubatko 2014) allow the reconstruction of a consensus tree (the
130 lineage tree) taking into account different levels of ILS and HGT among individual gene
131 trees.

132

133 Although more than 60 *Methylobacterium* species have been described so far (Green &
134 Ardley 2018; Chen et al. 2019; Feng et al. 2020; Jia et al. 2020; Kim, Chhetri, Kim, Lee, et
135 al. 2020; Kim, Chhetri, Kim, Kim, et al. 2020; Ten et al. 2020; Jiang et al. 2020; Pascual et
136 al. 2020; Alessa et al. 2021), available genomic and phenotypic information was until
137 recently limited to a few model species, mostly from groups B and C, and mostly isolated
138 from anthropogenically impacted environments, and in rare cases from plants (Marx et al.
139 2012; Tani et al. 2015; Minami et al. 2016; Morohoshi & Ikeda 2016; Belkhelfa et al. 2018).
140 Surveys of *Methylobacterium* diversity associated with plants have mainly focused on the
141 rhizosphere, especially in crop species (Sy et al. 2001; Jourand et al. 2004; Grossi et al.
142 2020). Recent studies however revealed that the phyllosphere of model plant species like *A.*
143 *thaliana* (Helfrich et al. 2018), of wheat (Zervas et al. 2019), and of natural temperate forests
144 (Leducq et al. 2022) are major reservoirs of undescribed *Methylobacterium* diversity, most of
145 which belongs to group A (Leducq et al. 2022).

146

147 Here, we explored *Methylobacterium* diversity from an evolutionary genomic perspective.
148 We *de novo* annotated 189 *Methylobacterium* genomes, including 62 strains isolated from
149 temperate forest, wheat, and *Arabidopsis* phyllosphere, and 127 additional genomes that
150 represent the remainder of the *Methylobacterium* species described so far. Using different
151 phylogenomic approaches, we reconstructed the *Methylobacterium* evolutionary tree from
152 384 *Methylobacteriaceae* core genes and showed that the genus is consistently constituted of
153 four monophyletic groups: A, B, C and D. Gene content and especially the highly dynamic
154 core genome architecture predicted the four *Methylobacterium* groups remarkably well. We
155 estimated that *Methylobacterium* includes at least 104 species, of which only 59 were

156 previously described. Most of the undescribed species were assigned to groups A and D and
157 were isolated from plant leaves, stressing the significance of the phyllosphere as a reservoir
158 of *Methylobacterium* diversity. Our inferences of the *Methylobacterium* evolutionary tree
159 also suggest an ancient transition from a free-living lifestyle to association with plant roots in
160 *Methylobacteriaceae* ancestor, followed by phyllosphere association of three of the major
161 groups (A, B, D), whose early branching in *Methylobacterium* history was heavily obscured
162 by HGT. Finally, our comprehensive phylogenetic analysis of *Methylobacterium* lays the
163 foundation for a profound redefinition of its taxonomy, beginning with the abandonment of
164 *Methylorubrum*.

165

166 **Results**

167

168 Definition of the *Methylobacteriaceae core genome*.

169

170 We assembled a collection of 213 *Methylobacteriaceae* genomes, including 189
171 *Methylobacterium* and 24 genomes from related genera as outgroups (*Microvirga*: n=22;
172 *Enterovirga*: n=2). Most *Methylobacterium* (n=98) and all outgroup genomes (n=24) came
173 from distinct studies (Dataset S1). We included 29 genomes from *Methylobacterium* type
174 strains recently sequenced (Alessa et al. 2021; Bijlani et al. 2021), hence covering most
175 *Methylobacterium* species described so far. We also included 38 genomes available from two
176 large surveys of the *Arabidopsis* and wheat phyllospheres (Helfrich et al. 2018; Zervas et al.
177 2019), and sequenced 24 additional genomes of isolates from a large survey of the temperate
178 forest phyllosphere (Leducq et al. 2022), hence extending our dataset to the leaf-associated
179 *Methylobacterium* diversity. The 24 newly assembled genomes had 41 to 405 scaffolds
180 (depth: 188-304x) for a total size (5-7Mb) and average GC content (67-70%) in the expected
181 range for *Methylobacterium* genomes (Dataset S2). We annotated 184 genomes *de novo*,
182 excluding 29 genomes that were not published at the time of the analysis (Alessa et al. 2021;
183 Bijlani et al. 2021) through the same pipeline (RAST) and after excluding hypothetical
184 proteins, repeat and mobile elements, we identified 9,970 unique gene annotations (i.e.,
185 regardless of copy number: Dataset S3), with on average 2637 (SD: 210) unique gene
186 annotations per genome. We identified 893 candidate core genes, i.e., genes that were

187 present in a single copy in at least 90% of *Methylobacteriaceae* genomes. After filtering for
188 missing data and false duplications attributable to large variations among genome assembly
189 qualities (Figures S1, S2), we identified 384 *Methylobacteriaceae* core genes (Dataset S4)
190 for which the complete nucleotide sequences could be retrieved for at least 181 out of 184
191 genomes. We repeated the RAST annotation for recently sequenced genomes from 29
192 *Methylobacterium* species type strains that were not available during our initial survey
193 (Alessa et al. 2021; Bijlani et al. 2021). Doing this, we slightly extended the number of
194 unique gene annotation in *Methylobacteriaceae* ($n = 10,190$). We confirmed that the 384
195 previously identified genes were part of the *Methylobacteriaceae* core genome and retrieved
196 each core gene nucleotide sequence for at least 26 out of these 29 genomes. Our final dataset
197 consisted of 213 genomes for which we retrieved 327 to 384 core genes nucleotide
198 sequences (average, SD: 381 ± 6).

199

200 *Inference of the Methylobacteriaceae lineage tree*

201

202 We reconstructed the lineage tree of *Methylobacteriaceae* from 213 genomes from the 384
203 core gene nucleotide sequences using three complementary approaches in order to assess the
204 effect of ILS and HGT in the evolutionary history of *Methylobacterium*. First, we used
205 RAxML to determine a maximum-likelihood tree (512 replicated tree; bootstraps) from
206 concatenated alignments of the core gene nucleotide sequences, assuming 57 groups of genes
207 (partitions) with different substitution models (partitions determined in IQ-tree; GTRCAT
208 model of substitution), but the same evolutionary tree for all genes, hence not accounting for
209 ILS or HGT (Figure 1a). Second, we used ASTRAL, a coalescent-based method combining
210 Maximum-Likelihood (ML) trees determined for each core gene independently (RAxML,
211 GTRGAMMA model, 1,000 replicated tree), accounting for ILS among genes (Figure 1b,
212 Figure S3a). Third, we used SVDquartets, a coalescent-based method estimating the tree for
213 each possible combination of four genomes and assuming all nucleotide sites are unlinked in
214 the concatenated alignment of 384 genes, hence accounting for ILS and HGT both within
215 and among genes (Figure 1c, Figure S3b). In all lineage trees rooted on *Microvirga* and
216 *Enterovirga*, *Methylobacterium* was monophyletic and consisted of four groups of genomes,
217 consistently monophyletic and strongly supported, regardless of the method used (nodal

218 support: 100% in RAxML and SVDquartets trees; local posterior probability: 1.0 in the
219 ASTRAL tree; Figure 1a,b,c). Group C always formed the most basal group of
220 *Methylobacterium*, confirming previous observations (Green & Ardley 2018; Alessa *et al.*
221 2021; Leducq *et al.* 2022). Group B regrouped clades B, formerly *Methylochromobacter* (Green &
222 Ardley 2018) and B2 (Alessa *et al.* 2021; corresponding to clade A4 in Leducq *et al.* 2022).
223 Most strains previously assigned to clade A (Green & Ardley 2018) were distributed across
224 two distinct monophyletic groups that we named A and D (Figure 1a). Group A included
225 clades A2, A3, A4 and A5 described by Alessa *et al.* (2021) and corresponded to clades A5,
226 A10, A19 and A7+A8 described by Leducq *et al.* (2022), respectively. Group D
227 corresponded to clade A1 proposed by Alessa *et al.* (2021) and clades A1, A2 and A3
228 proposed by Leducq *et al.* (2022).

229
230 Groups A, B and D consistently formed a monophyletic group (nodal support: 100% in
231 RAxML and SVDquartets trees; local posterior probability: 1.0 in the ASTRAL tree);
232 however, phylogenetic relationships among groups A, B and D were more challenging to
233 assess. Groups A, B, and D could not be resolved with the RAxML tree (nodal support = 9%;
234 Figure 1a). Group D was sister to groups A and B according to ASTRAL (local posterior
235 probability: 0.8; Figure 1b) and SVDquartets trees (nodal support: 100%; Figure 1c). We
236 evaluated differences between the three lineage tree topologies using the Robinson-Foulds
237 (RF) distance metric in PAUP (Wilgenbusch & Swofford 2003). RAxML and ASTRAL
238 lineage tree topologies were more similar to each other (RF = 0.181) than with the
239 SVDquartets tree (RF = 0.225 and 0.289, respectively; Figure S4). In order to determine
240 whether the difference between the RAxML and other trees was higher than expected by
241 chance, we estimated the distribution of RF distance between each replicate tree of the
242 RAxML search for the lineage tree (512 replicates). The normalized RF value ranges from
243 0.028 to 0.113 (RF= 0.069±0.015), indicating that the differences observed between lineage
244 trees were larger than expected by chance (Figure S4), and suggesting that ILS and HGT
245 among core genes had a significant impact on the *Methylobacteriaceae* lineage tree. The
246 larger difference between the SVDquartets tree and other trees also suggested that
247 recombination within core genes also occurred during *Methylobacteriaceae* evolution,
248 although without affecting the relationship among the four major groups (C/D/(A,B)).

249

250 *Inference of the Methylobacteriaceae taxonomy and species tree*

251

252 We classified *Methylobacteriaceae* genomes into 124 species using a 97% threshold on
253 percentage nucleotide similarity (PNS; analogous to average nucleotide identity; (Mende et
254 al. 2013; Chun & Rainey 2014); Dataset S5) on the core genome (concatenated alignments of
255 384 core genes; 361,403 bp). In the outgroups, we identified 2 *Enterovirga* species and 18
256 *Microvirga* species. We identified 104 *Methylobacterium* species (1 to 9 genomes per
257 species), of which 59 included the type strain for at least one described species (Table 1;
258 Dataset S5). *M. extorquens*, *M. chloromethanicum* and *M. dichloromethanicum* type strains
259 were assigned to the same species (PNS range: 97.61-99.68%), as previously reported
260 (Alessa et al. 2021). *M. populi* and *M. thiocyanatum* type strains were assigned to the same
261 species (PNS range: 98.97%-99.08%), as previously reported (Alessa et al. 2021). *M.*
262 *phyllosphaerae*, *M. ozyzae* and *M. fujisawaense* type strains were assigned to the same
263 species (99.23-100%), as previously reported (Alessa et al. 2021). We identified 45
264 candidate species that included no type strain, and thus corresponded to new candidate
265 *Methylobacterium* species (Table 1; Dataset S5). We numbered these candidate species from
266 *Methylobacterium* sp. 001 to 045. We used the 124 identified species to infer the
267 *Methylobacteriaceae* species trees with SVDquartets (Figure S5a) and ASTRAL (Figure
268 S5b). Although the two species trees were not strictly identical (normalized RF distance =
269 0.234), the monophyly and relationships among the four main groups was consistent between
270 ASTRAL and SVDquartets species trees (C/D/(AB); Figures S5a,b), and with ASTRAL and
271 SVDquartets lineage trees (Figure 1b,c). Each group of genomes assigned to the same
272 species was also monophyletic and strongly supported in lineage trees (Figure 1).

273

274 In summary, the *Methylobacterium* species are distributed across four groups, each of which
275 with somewhat distinct environmental sources of isolation (plant phyllosphere and
276 rhizosphere, water and sediments, soils, others), as well as the proportion of strain isolated
277 from anthropogenic environments (Table 1, Figure 1d). Group A contained 62 genomes
278 which fell into 41 species, including 17 new species (*Methylobacterium* sp. 018 to 034).
279 Group B contained 41 genomes which fell into 21 species, including 7 candidate species

280 (*Methylobacterium* sp. 035 to 041). Group C contained 25 genomes which fell into 19
281 species, including 4 new candidate species (*Methylobacterium* sp. 042 to 045; Table 1).
282 Group D contained 42 genomes which fell into 23 species, including 17 new candidate
283 species (*Methylobacterium* sp. 001 to 017). Species from *Microvirga* and *Enterovirga* were
284 mostly isolated from soil samples (65% of species; corrected by the number of genomes per
285 species), often in association with plant roots (Rhizosphere; 30%). Species from
286 *Methylobacterium* groups B and C were isolated from plants (40 and 31% of genomes,
287 respectively), soil samples (13 and 32%), sediments or water samples (18 and 21%), often in
288 association with anthropogenic environments (29 and 49%). Species from groups A and D
289 were mostly isolated from plants (62 and 75% of species, respectively), especially the
290 phyllosphere (51 and 67%). Of the 45 new candidate *Methylobacterium* species, most were
291 assigned to groups A (n=17) and D (n=17); the majority (81%) was isolated from plants, and
292 especially the phyllosphere (66%; Table 1; Figure 1d).

293

294 *Genome comparison across Methylobacterium groups*

295

296 The four main *Methylobacterium* groups have consistently contrasting genome
297 characteristics (Figure S6, Table 2). These four groups have significantly different genome
298 sizes (Tukey test, $p<0.001$), with group D having smaller genomes (4.99 ± 0.35 Mb; Average
299 \pm SD), than groups B (5.58 ± 0.49 Mb), A (6.21 ± 0.59 Mb) and C (7.15 ± 0.66 Mb). Groups
300 D and B had a smaller number of annotated genes ($5,224 \pm 476$ and $5,766 \pm 509$,
301 respectively) than groups A and C ($6,907 \pm 821$ and $7,670 \pm 956$, respectively; $p<0.001$). The
302 average number of gene annotation copies per genome was significantly different among
303 groups ($p<0.001$) and was smaller for group D (1.31 ± 0.04 copies per annotation) than for
304 group B (1.37 ± 0.05), A (1.46 ± 0.07) and C (1.54 ± 0.07). GC content was significantly
305 lower in groups D and B (68.8 ± 1.1 and 69.1 ± 0.8 %, respectively) than in group A ($70.1 \pm$
306 0.8 %; $p<0.001$) or group C (71.1 ± 0.7 %; $p<0.001$; Figure S6, Table 2). Although the
307 number of mobile elements per genome was slightly lower in group D (42 ± 21) compared to
308 A (60 ± 34), B (57 ± 31) and C (71 ± 49), these differences were not significant (Table 2;
309 Tukey test, $p>0.05$). We compared the abundance of 10,187 gene annotations (excluding
310 hypothetical proteins, repeat elements and mobile elements) across the four

311 *Methylobacterium* groups and outgroups (Figure 2). *Methylobacterium* genomes clustered
312 according to their gene content and abundance and matched the ASTRAL species tree
313 (Figure 2a). As observed for other genome characteristics, group D had the smaller pan
314 genome size ($n = 4,217 \pm 70$; estimation assuming rarefaction of 15 species per group, mean
315 and standard deviation over 100 replicates; Figure S7a), followed by group B ($n = 4,973 \pm$
316 137), group A ($n = 4,974 \pm 132$) and group D ($n = 5,636 \pm 91$ genes; Figure 2b). On the
317 contrary, group D had a larger core genome size (i.e. gene present in a single copy in all
318 species; $n = 1,103 \pm 29$ core genes) than groups A ($n = 845 \pm 79$), B ($n = 924 \pm 65$) and C
319 ($n = 843 \pm 39$; Figure 2c; Figure S7b). Venn diagrams on shared annotations indicate a limited
320 overlap of gene content among groups, with only $2,863 \pm 38$ pan genes shared among the
321 four groups (Figure 2b) and 350 ± 32 core genes (Figure 2c).

322

323 *Gene content comparison across Methylobacterium groups*

324

325 We next asked to what extent gene content evolved concordantly along the core genome
326 phylogeny. We used the Bray-Curtis index to measure the pairwise dissimilarity among
327 genomes based on their gene annotation abundance (BC; Hellinger normalization of gene
328 abundance; Figure S8). The dissimilarity matrix in gene content among species matched the
329 species tree (Figure S8). Gene content was more similar among genomes from the same
330 *Methylobacterium* species (BC range: 0.044 ± 0.017 - 0.080 ± 0.023) than among species
331 within *Methylobacterium* groups (BC range: 0.159 ± 0.031 - 0.197 ± 0.044) or than among
332 *Methylobacterium* groups (BC range: 0.238 ± 0.025 - 0.339 ± 0.019 ; Figure S8, Table 3). We
333 determined the relationships among *Methylobacteriaceae* members upon their gene content
334 using a ML phylogeny based on the occurrence of the 10,187 gene annotations across 213
335 genomes (RAxML assuming a BINCAT model; 1,001 replicate trees; Figures 2d, detailed
336 tree in Figure S9a). The gene content tree supported each of the 124 *Methylobacteriaceae*
337 species, as well as the monophyly of groups B, C and D (nodal support: 99, 94 and 87%,
338 respectively). Groups A, B and D formed a monophyletic group (nodal support: 100%),
339 making group C the most basal group, as observed for lineage (Figure 1) and species trees
340 (Figure S5). Most of the species assigned to group A clustered together (nodal support: 77%)
341 but five species formerly assigned to clade A2 (*M. planium*, *M. soli*, *M. oxalidis*, *M. durans*,

342 *M. segetis*; Alessa *et al.*, 2021) and *M. jeotgali* were more similar to groups B and D, which
343 altogether formed a monophyletic group (nodal support: 97%). The normalized RF value
344 between the gene content tree and lineage trees (Figure 1) ranged from 0.429 to 0.469. As a
345 comparison, normalized RF values between the best gene content tree and its 1,001 replicate
346 trees ranged from 0.085 to 0.249 (RF= 0.169±0.026), indicating that the gene content tree
347 had significantly different topology than lineage trees.

348

349 *Core genome architecture comparison (synteny) across Methylobacteriaceae genomes*

350

351 We next evaluated the level of conservation in the architecture of the *Methylobacteriaceae*
352 core genome to assess the extent of chromosomal rearrangement during *Methylobacterium*
353 evolution. Most genomes (177 out of 213) were not fully assembled (i.e., the chromosome
354 consisted of more than one scaffold), and we thus inferred the order of the 384 core genes
355 along the chromosome of draft genomes by aligning their scaffolds to the chromosomes of
356 36 completely assembled *Methylobacteriaceae* genomes, while conserving the order of core
357 genes within scaffolds. We compared the order of core genes among genomes using a
358 synteny index (*SI*) calculated as the proportion of pairs of core genes (links) that were
359 neighbors in two genomes, ranging from 0 (no link conserved) to 1 (fully conserved synteny;
360 Figure S8, Table 4). The matrix of synteny among species was generally concordant with the
361 species tree (Figure S8). In the 213 *Methylobacteriaceae* genomes, we observed 6,109
362 different links among the 384 core genes. Core genome architecture was well conserved
363 among genomes from the same *Methylobacterium* species (*SI* range: 0.914 ± 0.064 - 0.995 ±
364 0.007) but was highly reshuffled among species within *Methylobacterium* groups (*SI* range:
365 0.608 ± 0.118 - 0.769 ± 0.207; Figure S8, Table 4). As a comparison, the core genome
366 architecture among *Microvirga* species was remarkably well conserved (*SI* = 0.913 ± 0.048).
367 Average synteny among *Methylobacterium* groups A, B, C and D was low (*SI* range: 0.433 ±
368 0.025 - 0.528 ± 0.049) and in the same order of magnitude as synteny between
369 *Methylobacterium* and *Microvirga* genomes (*SI* range: 0.458 ± 0.010 - 0.525 ± 0.020; Figure
370 S8, Table 4). We identified *M. planium* (strain YIM132548, group A) as the species having,
371 on average, the highest core genome synteny with other *Methylobacterium* genomes.
372 Accordingly, we used *M. planium* as a reference to visualize the conservation of the 384

links identified in its genome across *Methylobacterium* species (Figure 3a; Figure S10). We identified 150 links (involving 231 genes; 60.2% of core genes) that were mostly conserved among *Methylobacteriaceae* genomes. With the exception of a remarkably well-conserved cluster of 26 genes that included ribosomal genes and gene *rpoB* (Figure 3a; Figure S10), most of the 150 conserved links were scattered across the *M. planium* chromosome. We determined the relationships among *Methylobacteriaceae* members in their core genome architecture using a ML phylogeny based on the occurrence of 6,109 links identified across 213 genomes (RAxML assuming a BINCAT model; 1,001 replicate trees; Figure 3b, detailed tree in Figure S9b). The synteny tree supported the monophyly of the four major *Methylobacterium* groups (nodal support = 100%). Groups A, B and D formed a monophyletic group (nodal support: 83%), making group C the most basal group, as observed for lineage trees (Figure 1), species trees (Figure S5) and the gene content tree (Figure 2d). The normalized RF value between the synteny tree and lineage trees ranged from 0.589 to 0.638. As a comparison, normalized RF values between the best synteny tree and its 1,001 replicate trees ranged from 0.235 to 0.390 (RF= 0.310 ± 0.026), indicating that the synteny tree had a significantly different topology than lineage trees. Interestingly, although *M. planium* and related species previously assigned to clade A2 (*M. soli*, *M. oxalidis*, *M. segetis*, *M. durans*; Alessa *et al.* (2021)) as well as *M. jeotgali* and *M. trifolii* were assigned to clade A in the ML synteny tree (Figure 3b), these species had on average higher synteny with species from group D ($SI = 0.651 \pm 0.045$) than with other species from group A ($SI = 0.556 \pm 0.031$; Figure 3c). Accordingly, we identified 29 links involving 54 core genes that were more often conserved between groups A and D than with other *Methylobacterium* groups. These links, however, were scattered along the *M. planium* chromosome (Figures 3a, S10).

397

398 **Discussion**

399

400 *Methylobacterium* consists of four evolutionarily divergent groups of bacteria

401

402 Recent work has suggested that *Methylobacterium* is much more diverse than thought

403 previously, questioning its genus status (Green & Ardley 2018; Hördt *et al.* 2020; Alessa et

404 al. 2021; Leducq et al. 2022). Here, we used a comprehensive phylogenomic approach to
405 provide unprecedented insight on the taxonomic diversity of *Methylobacterium*. Our
406 reconstructions of the *Methylobacteriaceae* lineage tree based on the core genome confirmed
407 previous comparative genomic and phenotypic studies that group C, including *M. nodulans*
408 and *M. aquaticum*, form a distinct and cohesive group at the root of the *Methylobacterium*
409 phylogeny (Green & Ardley 2018; Hördt et al. 2020; Alessa et al. 2021). On the contrary, we
410 demonstrated that Group B, including the model species *M. extorquens*, and previously
411 amended as a distinct genus, *Methylorubrum* (Green & Ardley 2018), formed a
412 monophyletic group with the *Methylobacterium* type species *M. organophilum* and other
413 species formerly assigned to group A (e.g. *M. oxalidis* and *M. planium*) (Green & Ardley
414 2018). Our analyses hence support the proposal to extend group B to *M. organophilum*, *M.*
415 *oxalidis*, *M. planium*, and relatives (Alessa et al. 2021). Although the newly defined group B
416 was monophyletic according to our different inferences of the *Methylobacteriaceae* species,
417 it was still embedded within former group A (Green & Ardley 2018), making the later
418 paraphyletic, and confirming that *Methylorubrum* cannot be considered as a distinct genus
419 without breaking apart *Methylobacterium* (Hördt et al. 2020; Alessa et al. 2021).

420 Accordingly, we support the proposal to abandon “*Methylorubrum*” as a designation for
421 group B, and to split group A into two monophyletic groups distinct from group B: group A
422 (including *M. brachiatum*, *M. komagatae*, *M. cerastii*, *M. jeotgali*, *M. trifolii*, *M. planium*
423 and relatives) and group D (including *M. bullatum*, *M. gossipicola*, *M. goesingense*, *M. iners*
424 and relatives).

425
426 We observed that the newly defined monophyletic groups (A, B, C and D) were
427 characterized by distinct genome sizes and GC content, two metrics that were highly
428 correlated with each other in *Methylobacterium*, as observed in other bacteria (Nishida
429 2012). With the exception of a few species from group A (including, *M. trifolii*, *M. jeotgali*,
430 *M. planium* and relatives), the four groups could also be distinguished upon their gene
431 content. GC content, genome size and gene content are widely accepted as criteria for
432 taxonomic definition in prokaryotes (Rosselló-Mora & Amann 2001; Coenye et al. 2005).
433 We also demonstrated that core gene order was highly reshuffled among the four
434 *Methylobacterium* groups. For instance, we observed the same level of rearrangement in core

435 gene order among *Methylobacterium* groups, as between *Microvirga* and *Methylobacterium*,
436 and the same level of core gene order conservation within *Methylobacterium* groups as
437 within *Microvirga*. Core gene order has recently been proposed as a complementary criterion
438 to define bacteria genus and species taxonomy (Chung et al. 2018). The fact that the four
439 groups were monophyletic, regardless of whether we used a concatenated or a coalescent-
440 based approach to infer the *Methylobacteriaceae* lineage tree and could be consistently
441 distinguished from each other upon different genome characteristics (gene content, core
442 genome architecture, GC content, genome size), supports considering them as distinct
443 genera.

444

445 *Role of HGT and ILS in the early divergence of groups A, B and D*

446

447 The evolution of bacteria is marked by recurrent HGT, gene duplication and loss events,
448 making the reconstruction of bacterial phylogenies challenging. Given that each gene
449 potentially has its own evolutionary history, marked by exchanges among divergent taxa, the
450 evolutionary tree of most bacteria is quite reticulate (Shapiro et al. 2016). The reconstruction
451 of a consensus phylogenetic tree (lineage tree) thus remains highly conceptual in bacteria and
452 could only be achieved by considering a pool of genes assumed to be representative of the
453 prevailing evolutionary history of the considered taxa: the core genome (Sakoparnig et al.
454 2021). Therefore, HGT and ILS must be considered when attempting to reconstruct bacterial
455 phylogeny. Accordingly, we showed that the concatenated-based reconstruction of
456 *Methylobacterium* lineage tree, assuming the same evolutionary history for each core gene,
457 significantly differed in its topology from lineages tree reconstructions accounting for ILS
458 and/or HGT among core genes (ASTRAL and SVDquartets lineage trees), indicating that
459 both processes were major drivers of *Methylobacterium* evolution. While the concatenated
460 tree suggested that groups A and D formed a monophyletic group, coalescent-based
461 estimations from ASTRAL (ILS + HGT among genes) and SVDquartets (ILS + HGT among
462 sites) rather indicated the earlier divergence of group D from the A/B/D group.

463

464 A possible explanation of the divergent topology in the concatenated lineage tree is that
465 shared polymorphism was retained by ILS and/or HGT between groups A and D after the

466 A/B divergence. Interestingly, although supporting the four *Methylobacterium* groups, our
467 phylogeny reconstructed from core genome architecture suggested the closer relationship
468 between groups A and D, in agreement with the concatenated lineage tree, hence supporting
469 the hypothesis of horizontal core gene exchanges having occurred between groups A and D
470 after the A/B divergence. Accordingly, we observed syntenic islands (groups of neighbor
471 core genes) shared between group D and some basal species of group A (*M. jeotgali*, *M.*
472 *trifolii*, *M. planium*, *M. oxalidis* and relatives). These islands were scattered across the
473 *Methylobacterium* chromosome, either suggesting that extensive chromosomal
474 rearrangements occurred after HGT between A and D, or that HGT occurred multiple times
475 during their evolutionary history, potentially among divergent lineages. According to a
476 phylogeny reconstructed from gene occurrence in *Methylobacterium*, *M. jeotgalii*, *M.*
477 *planium*, *M. oxalidis* and relatives, belonged to different lineages branching at the root of
478 groups A, B and D, supporting the hypothesis of multiple and independent gene exchanges
479 among distinct *Methylobacterium* lineages after the divergence of the three groups, blurring
480 their phylogenetic relationships.

481

482 *Outstanding Methylobacterium diversity: the role of the phyllosphere?*

483

484 *Methylobacterium* is frequently associated with the phyllosphere, yet taxonomic and
485 phylogenomic surveys of its diversity have mostly focused on human-impacted
486 environments such as food factories, contaminated soils, air conditioning systems or even the
487 International Space Station. Here we presented the first comprehensive genomic survey of
488 *Methylobacterium* diversity in the phyllosphere. By including genomes of strains isolated
489 from the phyllosphere of wheat (Zervas et al. 2019), of the model plant *A. thaliana* (Helfrich
490 et al. 2018), and of trees from natural temperate forests (Leducq et al. 2022), our
491 phylogenomic analysis of *Methylobacterium* revealed that its evolutionary and taxonomic
492 diversity was larger than previously thought. In addition to recovering the 59 previously
493 described species (Alessa et al. 2021), we identified 45 new (candidate) *Methylobacterium*
494 species, of which a majority belonged to groups A and D, and were mostly isolated from the
495 phyllosphere. Beyond taxonomic considerations, this result reveals a profound bias in our
496 understanding of natural processes underlying the existing diversity of *Methylobacterium*,

497 and more generally, of bacteria. For example, the evolutionary distinction between groups A
498 and D, and their importance in *Methylobacterium* diversity, could not have been revealed
499 without a thorough investigation of diversity in the phyllosphere, from which the majority of
500 candidate species from groups A, B and D were isolated. A recent survey of
501 *Methylobacterium* in metagenomes from various biomes (Lee et al. 2022) also suggested the
502 association of groups A (represented by *M. pseudosasicola* and *M. radiotolerans* in Lee et
503 al., 2022 study), B and especially D (represented by *M. gossipiicola* and *Methylobacterium*
504 sp. Leaf 88) with the aerial part of plants. Similarly, we recently showed that groups A and D
505 were the dominant *Methylobacterium* groups in the phyllosphere of trees from temperate
506 forests (Leducq et al. 2022). On the contrary, groups B and C included most
507 *Methylobacterium* model species frequently used in the lab and isolated from anthropogenic
508 environments. While group B is occasionally identified on and isolated from the surface of
509 leaves (Leducq et al. 2022; Lee et al. 2022), group C is rarely, if ever, found in the
510 phyllosphere, and seems to be more widespread in soil and in aquatic environments, often in
511 association with plant roots (Lee et al. 2022). Interestingly, authors from a recent study
512 estimated that *Rhizobiales* common ancestor likely had a free-living lifestyle, while
513 *Methylobacterium* groups A, B and D's common ancestor likely had a plant-associated
514 lifestyle (node 1 in Figure 1 from Wang et al. study (Wang et al. 2020)). The ancestral
515 lifestyle of *Methylobacterium*, and more widely, of *Methylobacteriaceae*, is more unclear.
516 The isolation source of group C genomes, as well as the two sister genera of
517 *Methylobacterium*, *Enterovirga* and *Microvirga*, and their survey in metagenomes (Lee et al.
518 2022) indicate that these three groups are mostly found with soils, sometimes in association
519 with the rhizosphere. These observations suggest that *Methylobacteriaceae* and
520 *Methylobacterium*'s ancestors inhabited soils, and were occasionally associated with plants,
521 for instance in the rhizosphere, and that *Methylobacterium* groups A/B/D's association with
522 the phyllosphere occurred after divergence from group C. The exact origin and nature of this
523 association is an open question, but the smaller genome size, gene copy number, GC content
524 and to a lower extent, mobile element number, we observed in group A/B/D in comparison
525 with group C could be the genomic signatures of a progressive specialization to life on plants
526 (Nishida 2012; Levy et al. 2018), among other things through the evolution of metabolic
527 pathways in response to contrasted nutrient availability between the soil and the phyllosphere

528 (Lee et al. 2022; Alessa et al. 2021). For instance, some genes involved in the metabolism of
529 aromatic compounds resulting from lignin degradation are present in *Microvirga* and
530 *Methylobacterium* group C, but absent from other *Methylobacterium* groups (Lee et al.
531 2022), suggesting that these functions essential for ground lifestyle were lost in A/B/D group
532 after they divergence with group C. Inversely, *Methylobacterium* from group A/B/D arbor a
533 larger panoply of genes allowing the use of methanol, available in the phyllosphere, than
534 group C, while most of these pathways are absent from *Microvirga* (Alessa et al. 2021),
535 suggesting that the transition from soil to phyllosphere lifestyle in *Methylobacterium* also
536 coincided with the acquisition and diversification of methylotrophic pathways.

537

538 According to our phylogenomic analyses of group A/B/D, group D diverged first, and, like
539 group A, was mostly isolated from the phyllosphere, suggesting that the A/B/D ancestor
540 inhabited the surface of plant leaves. The fact that our analyses support horizontal gene
541 exchanges between groups A, B and D is also consistent with the hypothesis that these
542 groups lived in the same habitat during their divergence. One can speculate that some
543 horizontally transferred, yet to be discovered, genes may have had shared roles in
544 *Methylobacterium* adaptation to the phyllosphere. For instance, strains from groups A and D
545 were often identified in the same studies, sometimes isolated from the same plants, indicating
546 that strains from these two groups likely share the same microhabitats on the surface of plant
547 leaves, hence favoring gene exchanges among them and the maintenance of similar
548 molecular pathways and functions. Further identifications of genes exchanges among these
549 groups and the characterization of their functions will be critical to understand evolutionary
550 mechanisms underlying the adaptive role and radiation of *Methylobacterium* in the
551 phyllosphere.

552

553 **Conclusion** - Our unprecedented phylogenomic analysis of *Methylobacterium* revealed the
554 outstanding diversity within this taxon, and the role of HGT in its early evolutionary history.
555 Future genomic and functional studies will be needed to characterize the evolutionary and
556 functional features of *Methylobacterium* adaptation to the phyllosphere. Finally, our work
557 lays the foundation for a thorough taxonomic redefinition of this genus.

558

559 **Methods**

560

561 *Methylobacteriaceae genome collection*

562

563 We assembled a collection of 213 complete and draft *Methylobacteriaceae* genomes,
564 including 189 *Methylobacterium* and 24 genomes from related genera as outgroups
565 (*Microvirga*: n=22; *Enterovirga*: n=2). Most *Methylobacterium* (n=98) and all outgroup
566 genomes (n=24) came from distinct studies (see references in Leducq *et al.* (2022)) and
567 corresponded to genomes publicly available in October 2020 on NCBI. We included 29
568 genomes from *Methylobacterium* type strains recently published (Alessa *et al.* 2021; Bijlani
569 *et al.* 2021) in order to cover most *Methylobacterium* species described so far. We also
570 included 38 genomes available from two large surveys of the *Arabidopsis* and wheat
571 phyllospheres (Helfrich *et al.* 2018; Zervas *et al.* 2019) and sequenced 24 additional genomes
572 (**see next section**) of isolates from a large survey of the temperate forest phyllosphere
573 (Leducq *et al.* 2022), hence extending our dataset to the leaf-associated *Methylobacterium*
574 diversity.

575

576 *Library preparation and genome assembly of 24 Methylobacterium strains*

577

578 We performed genome sequencing and *de novo* assembly of 24 *Methylobacterium* strains
579 representative of the diversity previously found in the phyllosphere of two temperate forests
580 in the province of Québec, Canada (Leducq *et al.* (2022); Dataset S2). DNA extraction was
581 performed from culture stocks frozen at -80 °C directly after isolation and identification
582 (Leducq *et al.* 2022) and thawed 30 min on ice. About 750 µl of cell culture were used for
583 DNA extraction with DNeasy PowerSoil Pro Kit (Qiagen) according to the manufacturer
584 protocol, with the following modification: final elution was repeated twice in 25 µl (total
585 volume: 50 µl). 300 bp paired-end shotgun libraries were prepared from 35 ng genomic DNA
586 with QIAseq FX DNA Library Kit (Qiagen) and protocol was adjusted to target DNA
587 fragments in the range 400-1000 bp. Genomes were assembled from libraries with
588 MEGAHIT (Li *et al.* 2015) with default parameters. Genome assemblies had 7050-24785
589 contigs with average depth in the range 188-304x and a total size in the range 7.2-17.1 Mb.

590 After removing contigs with depth <10x, we obtained 82-411 contigs per genome. Most
591 assemblies had total size (5-7 Mb) and average GC content (67-70%) in the expected range
592 for *Methylobacterium* genomes (Dataset S2). For three out of twenty-four genomes, GC
593 content and depth distribution were clearly bimodal, and total size was much higher (9.5-
594 11.9 Mb) suggesting that these assemblies contained genomes from at least two evolutionary
595 distinct taxa. For these three heterogeneous assemblies, we divided contigs into two pools
596 based on median depth value between two modes (threshold range: 100-150x). For each
597 heterogeneous assembly, the pool with highest average depth (174-241x) had average GC
598 content (67-68%) and total size (5.6-5.8 Mb) in the ranges expected for *Methylobacterium*.
599 Contigs with lower depth were considered as contaminants and discarded from assemblies.
600

601 *Gene annotation*

602

603 *Methylobacteriaceae* genomes (n=213) were individually annotated using RAST
604 (<https://rast.nmpdr.org/rast.cgi>) (Aziz et al. 2008) with following parameters: genetic
605 code=11; Annotation scheme=RASTtk; Preserve gene calls=no; Automatically fix
606 errors=yes; Fix frameshifts=no; Backfill gaps=yes. Annotation output from each genome
607 was retrieved separately as Spreadsheet (GFF file in tab-separated text format). Core genome
608 definition was conducted in R (R-Developement-Core-Team 2011). For each genome, we
609 retrieved the abundance of gene annotations (column *function* in RAST output), excluding
610 *Hypothetical proteins, repeat regions* and *Mobile element proteins* (Dataset S3).

611

612 *Methylobacteriaceae core genome definition*

613

614 We first defined the *Methylobacteriaceae* core genome from 184 genomes, excluding 29
615 genomes that were not yet published nor annotated at the time of the analysis (Alessa et al.
616 2021; Bijlani et al. 2021). In these 184 genomes, we identified 9,970 unique gene
617 annotations (i.e., regardless copy number: Dataset S3), with on average 2637 ± 210 unique
618 gene annotations per genome. We defined candidate core genes as genes present in one copy
619 in at least 90% of the 184 genomes, resulting in 893 candidate core genes, for which we
620 retrieved the nucleotide sequence (column *nucleotide_sequence* in RAST output). In order to

621 correct for false gene duplication events that increased consistently with assembly
622 incompleteness (Figure S1) and to estimate the actual copy number of each candidate core
623 gene, we used 36 complete *Methylobacteriaceae* genomes as references (defined as genomes
624 with $N50 > 3 \times 10^6$ Mb). For each candidate core gene, we calculated the average expected
625 nucleotide sequence size observed among 36 complete genomes. Then, for each genome
626 (n=184) and each candidate core gene, we retrieved all nucleotide sequences (0-10 per gene
627 and genome) and calculated their average size normalized (divided) by the average
628 nucleotide sequence size observed in complete genomes. By doing so, we could distinguish
629 between duplication caused by genome incompleteness (single copy genes divided between
630 different scaffolds) and real duplication events (Figure S2). We considered 398 genes for
631 which at least one genome had more than one copy with normalized size >0.75 as true
632 duplicates and removed them from candidate core genes. For the 495 remaining candidate
633 core genes, we considered single-copy genes with normalized size >1.3 and gene copies with
634 normalized size <0.7 (regardless copy number) as missing data in the considered genome.
635 After this filter, we removed 111 candidate core genes that were missing in at least 4
636 genomes, resulting in 384 core genes for which a single full-length copy could be retrieved
637 for at least 181 genomes (out of 184; Dataset S4). Subsequently, we included recently
638 sequenced genomes from 29 *Methylobacterium* species type strains that were missing from
639 our survey (Alessa et al. 2021; Bijlani et al. 2021). By doing this, we slightly extended the
640 number of unique gene annotations in *Methylobacteriaceae* ($n = 10,190$). We confirmed that
641 the 384 previously identified core genes were part of the *Methylobacteriaceae* core genome
642 and retrieved each core gene nucleotide sequence for at least 26 out of 29 genomes. Our final
643 dataset consisted of 213 genomes for which we retrieved 327 to 384 core genes nucleotide
644 sequences (381 ± 6 ; mean, SD; Dataset S1).

645

646 *Core gene nucleotide sequence alignments*

647

648 We performed an alignment for each core gene. For each genome ($n = 184 + 29 = 213$), we
649 first extracted nucleotide sequences of the 384 core genes (when not missing data for the
650 considered genome; column *nucleotide_sequence* in RAST output) and converted them in
651 sequence fasta files using R package *seqinr()*. We then performed an alignment for each core

652 gene using R packages *seqinr()* and *msa()*. For each gene, nucleotide sequences were
653 translated (function *getTrans()*) and alignments of amino-acid sequences were performed
654 using ClustalW with default parameters in function *msa()*. Sequences were converted back in
655 nucleotides (stop codons excluded) and 5' and 3' end codons with more than 90% of missing
656 data (gaps of “Ns”) were trimmed. We also constructed an alignment of concatenated core
657 genes nucleotide sequence alignments. In the concatenated alignment, sequences of genes
658 missing for at least one of the 213 genomes (0-6 genomes missing per gene) were replaced
659 by strings of “Ns”.

660

661 *Inferences of the Methylobacteriaceae lineage trees*

662

663 We reconstructed the lineage tree of *Methylobacteriaceae* from 213 genomes from the 384
664 core gene nucleotide sequences using three complementary approaches in order to assess the
665 effect of ILS and HGT in the evolutionary history of *Methylobacterium*.

666

667 First, we used RAxML v. 8.2.8 (Stamatakis 2014) to determine a maximum-likelihood (ML)
668 lineage tree from concatenated alignments of the core 384 gene nucleotide sequences
669 assuming a different substitution model for each gene but the same evolutionary tree for all
670 genes (and hence not accounting for ILS or HGT). We used PartitionFinder implemented in
671 IQ-tree2 (Minh et al. 2020) to determine an appropriate bipartitioning scheme allowing us to
672 merge genes evolving under similar nucleotide substitution models (Lanfear et al. 2012). The
673 best-fit partition scheme was determined using TESTMERGERONLY model (option *-m*) to
674 avoid tree reconstruction, and using the relaxed hierarchical clustering algorithm to reduce
675 the computation burden (Lanfear et al. 2014) by only examining the top 10% partition
676 merging schemes (option *-rcluster*). We then inferred the *Methylobacteriaceae* lineage tree
677 from the 384 core gene alignment with RAxML v. 8.2.8 (Stamatakis 2014), using the IQ-
678 tree2 best-scheme output file as partition file (option *-q* in RAxML). The program performed
679 512 replicate (bootstrap) searches from independent starting trees with a GTRCAT model of
680 substitution, estimating parameters for each partition separately. Of the 512 trees, the one
681 with the highest ML score (the best-scoring tree) was retained as the lineage tree.

682

683 Second, we used ASTRAL-III (Zhang et al. 2018), a coalescent-based method inferring the
684 lineage and the species trees by combining individual core gene trees, hence accounting for
685 ILS and HGT among genes. For each core gene, a gene tree was first inferred from
686 nucleotide sequence alignments with RAxML v. 8.2.8 (Stamatakis 2014). Briefly, for each
687 gene, the program performed 1,000 replicate (bootstrap) searches from independent starting
688 trees assuming a GTRgamma model of nucleotide substitution. Each gene tree in Newick
689 format, including branch length (L : nucleotide substitution per site) and node label (N : nodal
690 support representing the proportion of replicated supporting nodes), was imported in R as a
691 vector. The gene tree in RAxML format: $((():L1[N1]):L2[N2])$ was rewritten so that it could
692 be readable in R (package *ape* (Paradis & Schliep 2019)) and ASTRAL-III:
693 $((():L1):L2)N2$. The tree was then reopened in R with function *read.tree* (package *ape*)
694 and nodes with < 10% support were collapsed using function *collapseUnsupportedEdges*
695 (package *ips*), to optimize accuracy in estimating the lineage and species tree (Zhang et al.
696 2018). All reformatted gene trees were written in a single file (*multiPhylo* object), which was
697 used to infer the lineage and the species tree in ASTRAL-III v5.7.7, with default parameters.
698 In ASTRAL trees, branch lengths were measured in coalescent units and nodal support
699 represented local posterior probability (Sayyari & Mirarab 2016).

700
701 Third, we used SVDquartets (Chifman & Kubatko 2014) as implemented in PAUP* v4.0a
702 (build 169) (Wilgenbusch & Swofford 2003), a coalescent-based method estimating the tree
703 for each possible combination of four genomes and assuming all sites unlinked in the
704 concatenated alignment of 384 genes. We estimated the lineage tree from the concatenated
705 213 *Methylobacteriaceae* core genes by evaluating 2,000,000 random quartets for 100
706 bootstrap replicates. Phylogenies were estimated under the multispecies coalescent model
707 accounting for incomplete lineage sorting (ILS) and assessing all sites independently to
708 account for recombination within and among loci.

709
710 Lineage trees were displayed in Figtree v1.4.4 and rooted on *Microvirga* and *Enterovirga*.
711
712 *Methylobacteriaceae species definition and lineage tree inferences*
713

714 We classified *Methylobacteriaceae* genomes in species using percentage nucleotide
715 similarity (*PNS*) on the core genome (concatenated alignments on 384 core genes; 361,403
716 bp), similar to average nucleotide identity (Mende et al. 2013; Chun & Rainey 2014).
717 Briefly, *PNS* between two genomes was calculated in R as the proportion of conserved
718 nucleotide positions, gaps and “Ns” excluded (Dataset S4). Two genomes were considered
719 from the same species when their *PNS* was higher or equal to 97%, a threshold similar to
720 what is typically used for bacterial species (96.5% based on nucleotides sequences of 40
721 marker genes; (Mende et al. 2013; Chun & Rainey 2014)). We inferred the
722 *Methylobacteriaceae* species tree using both ASTRAL-III (Zhang et al. 2018) and
723 SVDquartets (Chifman & Kubatko 2014), as described above, using individual assignment to
724 species determined from *PNS*. Species trees were displayed in Figtree v1.4.4 and rooted on
725 *Microvirga* and *Enterovirga*.

726

727 *Test for HGT and ILS severity in lineage and species tree inferences*

728

729 We tested for the severity of HGT and ILS in our dataset by measuring the differences in tree
730 topologies estimated using different assumptions. To quantify differences between the
731 topologies obtained under different assumptions, we calculated normalized Robinson-Foulds
732 (RF) distances (Robinson & Foulds 1981), which evaluates the pairwise proportion of unique
733 nodes between tree topologies, between all three lineage trees (RAxML from concatenated
734 core gene alignments, SVDquartets, and ASTRAL) as well as between both species trees
735 (ASTRAL and SVDquartets). RF distances were estimated using the treedist function
736 implemented within PAUP* v4.0 (build 169) (Wilgenbusch & Swofford 2003) using final
737 phylogenies in NEWICK format as input. We also calculated the distribution of RF distances
738 between our best RAxML tree from concatenated core gene alignments and all 512 RAxML
739 bootstrap replicates. We then compared our RF distances between each inference method to
740 this distribution of distances to assess whether discordant topologies among lineage trees are
741 due to different assumptions of methods, or due to phylogenetic uncertainty.

742

743 *Methylobacteriaceae genome characteristics and gene content*

744

745 We analyzed *Methylobacteriaceae* genome characteristics (size, GC content and gene
746 content) of the coding sequence for each. We first calculated the number of gene annotations,
747 their total nucleotide size (coding genome size), their GC content, the number of unique
748 annotations (excluding hypothetical proteins, repeat elements and mobile elements), the
749 number of mobile elements, and the average copy number of annotations (Dataset S1, Table
750 2). For each statistic, we compared *Methylobacterium* groups (as defined by lineage trees)
751 and outgroups (*Microvirga*, *Enterovirga*) using a Tukey test.

752

753 In a heatmap, we displayed the average abundance of 10,187 gene annotations (excluding
754 hypothetical proteins, repeat elements and mobile elements) per *Methylobacteriaceae*
755 species, per *Methylobacterium* group and outgroup, ordered according to the ASTRAL
756 species tree (Figure S5a). For gene abundance per species, we calculated the average
757 occurrence (n) of each gene annotation across genomes assigned to the same species,
758 rounded to 0 ($n < 0.5$), 1 ($0.5 \leq n < 1.5$) or 2 copies ($n \geq 2$). For gene abundance per group, we
759 calculated the average occurrence of each gene annotation across species assigned to the
760 same group, using the same principle as for species.

761

762 We estimated pan genome and core genome sizes per *Methylobacterium* group (unknown
763 proteins, repeat and mobile elements excluded; Figure S7). To deal with biases in size
764 estimations due to the variable number of genomes per group, we applied rarefaction on gene
765 number estimates by randomly sampling 1 to N genomes per group (Park et al. 2019) and by
766 forcing resampling of one genome per species. For each N value and each group, we
767 calculated the average and standard deviation in core genome size (genes in 1:1 copy in each
768 genome of a given group) and in pan genome (any gene present in at least one copy in at
769 least one genome of a given group) over 100 replicates. As pan genome size estimations
770 increased with the number of sampled species per group (Figure S7a) and core genome size
771 estimations decreased (Figure S7b), curves of estimates per group did not cross each other,
772 nor reached a plateau, indicating that sizes were either under-estimated (pan genomes) or
773 over-estimated (core genome) but could still be compared among groups. Accordingly, we
774 compared pan and core genome sizes among *Methylobacterium* groups in a Venn diagram,
775 assuming 15 species per group (Figures 2b,c).

776
777 We constructed a phylogeny of *Methylobacteriaceae* based on gene content (Figure 2d).
778 First, we constructed a matrix of gene occurrence in each genome (0 for absence and 1 for
779 presence) and converted it into a fasta file (one sequence per genome). We inferred an
780 evolutionary tree of based on gene content using with RAxML v. 8.2.8 (Stamatakis 2014).
781 The program performed 1,000 replicate (bootstrap) searches from independent starting trees
782 with a BINCAT model of substitution assuming gene presence of absence as binary data. Of
783 the 1,000 replicate trees, the one with the highest Maximum-likelihood (ML) score (the best-
784 scoring tree) was considered as the best tree. The tree was displayed in Figtree v1.4.4 and
785 rooted on *Microvirga* and *Enterovirga*.
786
787 In order to compare *Methylobacteriaceae* genomes based upon their gene content, we
788 calculated an index of dissimilarity among each pair of genomes from their gene abundance
789 (Table 3, Figure S8b). As no index was available for this purpose, we used the Bray-Curtis
790 (BC) index of dissimilarity, initially developed in ecology for the comparison of
791 communities based on their species abundance (Bray & Curtis 1957). To minimize the effect
792 of higher copy number due to false gene duplications due to genome incompleteness, we
793 applied a normalization on gene abundances (Hellinger normalization; function *decostand* in
794 R package *vegan*). We calculated pairwise BC indexes of dissimilarity among normalized
795 gene abundances, using function *vegdist* in R package *vegan*.
796
797 *Core genome architecture (synteny)*
798
799 We evaluated the level of conservation in core gene organization (synteny) between
800 *Methylobacteriaceae* genomes. All analyses were performed in R (R-Developement-Core-
801 Team 2011). For each genome, we retrieved core gene coordinates (scaffold name and
802 coordinates in the scaffold). For complete genomes consisting of a single linear scaffold
803 (n=36), each core gene was paired with its two immediate neighbors, based on shortest
804 distance between gene *start* and *stop* coordinates, and core genes located on scaffold edges
805 were also paired together, assuming genome circularity. Hence, for each complete genome,
806 each of the 384 core genes was involved in two links (pairs of neighbor core genes), for a

807 total of $N=384$ links per genome. For the 177 draft genomes, core genes were located on
808 different scaffolds, so we predicted scaffold order and orientation using complete genomes as
809 references. The draft genome with the highest completeness was reorganized first. Briefly,
810 for each comparison with a reference genome, and for each scaffold of the draft genome, the
811 list of embedded core genes was retrieved, and a score based on gene average order in the
812 reference genome was calculated. Scaffolds of the draft genome were reordered according to
813 these scores (one per scaffold). Then, each scaffold was eventually reoriented (without
814 affecting gene order within scaffolds) to optimize pairing of edge genes (genes located at the
815 edge of a scaffold) as compared to the reference genome. We repeated the operation for
816 comparisons with the 36 reference genomes. Finally, for each of the 36 new configurations
817 of the draft genome, we calculated a synteny conservation index (SI) with each reference
818 genome, as the proportion of links conserved between two genomes. SI ranged from 0 (no
819 link conserved) to 1 (fully conserved synteny). The draft genome configuration with the
820 highest SI value was conserved for further analyses and added to the list of reference
821 genomes. We repeated this operation for each draft genome, ranked according to their
822 decreasing completeness, hence increasing the number of reference genomes and possible
823 configurations for highly fragmented genomes. Finally, we calculated SI for all possible
824 pairwise comparisons between genomes (Figure S8b), and average and standard deviation
825 values within and among *Methylobacteriaceae* species and groups (Table 4).

826
827 In order to visualize the spatial organization of core genes along the *Methylobacteriaceae*
828 chromosome, we used two approaches. First, we realized a heatmap of link conservation per
829 species, along a reference genome (Figure S10). We choose as reference the genome having
830 the highest average SI value with other *Methylobacterium* genomes. In the heatmap, we
831 displayed the 384 links identified in the reference genome, ordered according to core gene
832 order along its chromosome, and highlighted them when also present in other
833 *Methylobacteriaceae* species. For each species, we also reported the average SI value with
834 the reference genome. Finally, for each link in the reference genome, we calculated its
835 frequency in each *Methylobacterium* group. Second, we drew a consensus map of the
836 *Methylobacterium* core genome architecture, as well as major rearrangements within and
837 among *Methylobacterium* groups, as a network in Cytoscape v.3.4.0 (Shannon et al. 2003)

838 (Figure 3a). In this network, we represented the 384 core genes as nodes, ordered according
839 to *M. planium* YIM132548 core genome, and links among neighbor core genes as edges. The
840 network was drawn using 389 links observed in a majority (>50%) of species from a given
841 *Methylobacterium* group (5,720 links discarded).

842

843 In order to reconstruct the evolution of *Methylobacteriaceae* core genome based on its
844 architecture, we constructed a matrix of occurrence of each possible link observed among
845 genomes (0 for absence and 1 for presence) and converted it into a fasta file. We inferred an
846 ML evolutionary tree of *Methylobacteriaceae* based on synteny using with RAxML v. 8.2.8
847 (Stamatakis 2014) with a BINCAT model of substitution assuming pair of core genes
848 presence of absence as binary data, as described for annotations (Figure 3b).

849

850

851

852

853 **Data availability statement**

854 Draft genomes for 24 *Methylobacterium* strains corresponding to Bioproject PRJNA730554
855 (Biosamples listed in Dataset S1) were deposited on NCBI under accession numbers
856 JAKSXU000000000 - JAKSYR000000000. R code and related data were deposited on
857 Github (<https://github.com/JBLED/methylobacterium-phylogenomics.git>).

858

859 **Acknowledgments**

860 This research received funding from the National Science Foundation to C.J.M., N.C.M.-G.,
861 J.A.F, J.M.S., and J.A.L (DEB-1831838).

862 We thank Benjamin Oswald and the IBEST Computational Resources Core at University of
863 Idaho for their technical support, and Alex Alleman, as well as two anonymous reviewers for
864 their helpful suggestions on the manuscript.

865 J.-B. L., D. S., M. S. and J.M.S. performed the bioinformatic analyses, J.-B. L., D.C.-M., and
866 G.B. performed the experiments, N. C. M.-G., J. A. L., J. A. F. and S. S. provided discussion
867 at the early stage of the study, J.-B. L., B. J. S., S. W. K., J. M. S. and C. J. M. drafted the
868 manuscript, with help from N. C. M.-G., J. A. L. and S. S.

869

870

871 **Table 1:** Description and isolation source of 104 *Methylobacterium* species distributed in the
 872 four main phylogenetic groups. For each group, the number of species, of genomes, and the
 873 proportion of genomes isolated from each main category of environment, are given for
 874 described and candidate species (numbered from *Methylobacterium* sp 001 to 045),
 875 separately. Proportions were corrected by the number of genomes per species.
 876 Anthropogenic environments include several other isolations sources.

Group	Description	Species	Genomes	Isolation source							Anthropogenic environments*				
				Plant (phyllosphere)	Plant (rhizosphere)	Plant (other)	Water, sediments	Soil	Other						
B	Described species (<i>M. aminovorans</i> ; <i>M. brachythecii</i> ; <i>M. extorquens</i> <i>M. gnaphalii</i> ; <i>M. haplocladii</i> ; <i>M. organophilum</i> <i>M. podarium</i> ; <i>M. rhodesianum</i> ; <i>M. rhodinum</i> <i>M. salsuginis</i> ; <i>M. suomiense</i> ; <i>M. thiocyanatum</i> <i>M. thuringiense</i> ; <i>M. zatmanii</i>)	14	33	30%	1%	1%	13%	19%	35%	29%					
	Candidate species (<i>Methylobacterium</i> sp 035 to 041)			7	8	50%	-	7%	29%	-	14%	29%			
	All species			21	41	37%	1%	3%	18%	13%	28%	29%			
A	Described species (<i>M. aerolatum</i> ; <i>M. brachiatum</i> ; <i>M. cerastii</i> <i>M. dankookense</i> ; <i>M. durans</i> ; <i>M. fujisawaense</i> <i>M. gregans</i> ; <i>M. hispanicum</i> ; <i>M. jeotgali</i> <i>M. komagatae</i> ; <i>M. longum</i> ; <i>M. mesophilicum</i> <i>M. oxalidis</i> ; <i>M. persicinum</i> ; <i>M. phyllostachyos</i> <i>M. planium</i> ; <i>M. pseudosasicola</i> ; <i>M. radiodurans</i> <i>M. radiotolerans</i> ; <i>M. segetis</i> ; <i>M. soli</i> <i>M. symbioticum</i> ; <i>M. tardum</i> ; <i>M. trifolii</i>)	24	45	30%	1%	4%	28%	17%	20%	40%					
	Candidate species (<i>Methylobacterium</i> sp 018 to 034)			17	36	80%	10%	10%	-	-	-				
	All species			41	81	51%	4%	7%	16%	10%	12%	23%			
	Described species (<i>M. adhaesivum</i> ; <i>M. bullatum</i> ; <i>M. goesingense</i> <i>M. gossypicola</i> ; <i>M. iners</i> ; <i>M. marchantiae</i>)			6	10	47%	-	17%	20%	-	17%	17%			
D	Candidate species (<i>Methylobacterium</i> sp 001 to 017)	17	32	74%	6%	-	21%	-	-	-	-				
	All species			23	42	67%	4%	4%	20%	-	4%	4%			
	Described species (<i>M. ajmalii</i> ; <i>M. aquaticum</i> ; <i>M. crusticola</i> ; <i>M. currus</i> <i>M. frigidaeris</i> ; <i>M. indicum</i> ; <i>M. isbiliense</i> <i>M. nodulans</i> ; <i>M. nonmethylotrophicum</i> <i>M. oryzae</i> ; <i>M. platani</i> ; <i>M. tarhaniae</i> <i>M. terrae</i> ; <i>M. terricola</i> ; <i>M. variabile</i>)			15	21	8%	10%	7%	27%	33%	15%	55%			
C	Candidate species (<i>Methylobacterium</i> sp 042 to 045)	4	4	-	25%	25%	-	25%	25%	25%	25%				
	All species			19	25	7%	13%	11%	21%	32%	17%	49%			
	<i>Methylobacterium</i>	All described species	59	109	26%	3%	5%	23%	20%	22%	39%				
					45	80	66%	8%	7%	12%	2%	4%	7%		
					10	189	43%	5%	6%	18%	12%	14%	25%		
Microvirga (all species)				18	24	-	33%	6%	17%	33%	11%	6%			
Enterovirga (all species)				2	2	-	-	-	-	50%	50%	-			

877 **Table 2:** *Methylobacteriaceae* genome characteristics (average and standard deviation per
 878 group). GC content was estimated from coding sequences. Hypothetical protein, mobile and
 879 repeat elements were excluded from unique annotation counts and estimated copy numbers.
 880

Group	Genomes	Species	Size (Mb)	Annotations	Unique annotations	Estimated copy number	Mobile elements	% GC
<i>A</i>	81	41	6.21 ± 0.59	6907 ± 821	2696 ± 134	1.457 ± 0.067	60 ± 34	70.1 ± 0.8
<i>B</i>	41	21	5.58 ± 0.49	5766 ± 509	2706 ± 173	1.365 ± 0.048	57 ± 31	69.1 ± 0.8
<i>C</i>	25	19	7.15 ± 0.66	7670 ± 956	2899 ± 122	1.542 ± 0.066	71 ± 49	71.1 ± 0.7
<i>D</i>	42	23	4.99 ± 0.35	5224 ± 476	2421 ± 82	1.312 ± 0.042	42 ± 21	68.8 ± 1.1
<i>Enterovirga</i>	2	2	4.91 ± 0.36	5128 ± 182	2321 ± 14	1.414 ± 0.019	14 ± 10	68.8 ± 0.1
<i>Microvirga</i>	22	18	5.92 ± 1.74	6834 ± 2929	2495 ± 251	1.471 ± 0.173	128 ± 147	63.9 ± 1.6

881

882

883 **Table 3:** Average and standard deviation in gene content dissimilarity (*BC* index, Hellinger
 884 transformation on gene occurrence per genome) per and among *Methylobacterium* group and
 885 outgroups.

Group	<i>BC</i> within species	<i>BC</i> among species within groups	<i>BC</i> among groups				<i>Enterovirga</i>
			<i>A</i>	<i>B</i>	<i>C</i>	<i>D</i>	
<i>A</i>	0.06 ± 0.02	0.19 ± 0.05					
<i>B</i>	0.08 ± 0.02	0.17 ± 0.05	0.28 ± 0.02				
<i>C</i>	0.07 ± 0.03	0.20 ± 0.04	0.29 ± 0.02	0.34 ± 0.02			
<i>D</i>	0.04 ± 0.02	0.16 ± 0.03	0.24 ± 0.03	0.24 ± 0.03	0.32 ± 0.02		
<i>Enterovirga</i>	-	0.28	0.39 ± 0.01	0.41 ± 0.02	0.36 ± 0.02	0.37 ± 0.01	
<i>Microvirga</i>	0.03 ± 0.04	0.26 ± 0.04	0.41 ± 0.02	0.44 ± 0.02	0.38 ± 0.02	0.40 ± 0.02	0.36 ± 0.03

886

887 **Table 4:** Average and standard deviation in core genome synteny (*SI*) per and among
 888 *Methylobacterium* group and outgroups.

Group	<i>SI</i> within species	<i>SI</i> among species within groups	<i>SI</i> among groups				<i>Enterovirga</i>
			<i>A</i>	<i>B</i>	<i>C</i>	<i>D</i>	
<i>A</i>	0.98 ± 0.03	0.70 ± 0.17					
<i>B</i>	0.99 ± 0.01	0.77 ± 0.21	0.46 ± 0.03				
<i>C</i>	0.91 ± 0.06	0.61 ± 0.12	0.43 ± 0.03	0.44 ± 0.01			
<i>D</i>	0.98 ± 0.02	0.73 ± 0.11	0.53 ± 0.05	0.51 ± 0.02	0.48 ± 0.01		
<i>Enterovirga</i>	-	0.47	0.39 ± 0.03	0.39 ± 0.02	0.38 ± 0.02	0.42 ± 0.03	
<i>Microvirga</i>	1.00 ± 0.00	0.91 ± 0.05	0.49 ± 0.03	0.48 ± 0.01	0.46 ± 0.01	0.52 ± 0.02	0.52 ± 0.05

889

890

891 **Figure Legends**

892

893 **Figure 1: *Methylobacteriaceae* lineage trees inferred from 213 genomes.** a) Best tree from
894 RAxML ML search on the concatenated alignments of 384 core gene nucleotide sequences
895 (GTRCAT model, 512 replicated trees), rooted on *Microvirga* and *Enterovirga* (grey).
896 Colors indicate the four major *Methylobacterium* groups: A (red), B (purple), C (green) and
897 D (blue). Correspondence with clades described by previous studies is indicated. b)
898 ASTRAL tree inferred from 384 core gene ML trees. Each gene ML tree was inferred
899 assuming a GTRgamma model (1,000 replicated trees; nodes with less than 10% of support
900 collapsed) and combined in ASTRAL-III. Branch lengths are in coalescent units. Nodal
901 support values represent local posterior probability. c) SVD quartet tree inferred from the
902 concatenated alignments of 384 core gene nucleotide sequences. Nodes supported by less
903 than 75% of quartets were collapsed. d) Main isolation sources of species from
904 *Methylobacterium* group and *Microvirga* (see Table 1). For each group, ordered according to
905 a consensus tree (see panels b and c), the number of species is indicated in parenthesis.
906

907 **Figure 2: Gene content comparison among the four main *Methylobacterium* groups.** a)
908 Occurrence of 10,187 gene annotations (rows) in 124 *Methylobacteriaceae* species (average
909 occurrence per species; column, ordered according to the ASTRAL species tree, left) and in
910 four *Methylobacterium* groups and two outgroups (mean occurrence among species within
911 groups; legend in bottom right) are shown. b-c) Venn diagrams showing the overlap of pan
912 genomes (b) and core genome (c) among four groups. Pan and core genome sizes were
913 estimated assuming 15 species per group (mean and standard deviation over 100 random
914 resampling of 15 species per group). d) RAxML ML best tree based on annotation
915 occurrence per genome (best ML tree, BINCAT model, 1,001 replicate trees). Main groups
916 are shown and are monophyletic in the gene content tree, but group A: clade A2 (Alessa et
917 al. 2021) and *M. jeotgali* branched out of group A.

918

919 **Figure 3: Core genome architecture comparison (synteny) among *Methylobacteriaceae***
920 **genomes.** a) Consensus map of the *Methylobacterium* core genome architecture, and major
921 rearrangements within and among *Methylobacterium* groups, using *M. planium* YIM132548

922 core genome as a reference. The map was drawn as a network using 384 core genes as nodes,
923 and links among neighbor core genes as edges. Only 389 links that were observed in a
924 majority (>50%) of species from a given *Methylobacterium* group are shown (Venn diagram
925 on top right; 5,720 links discarded). Bold lines indicate links mostly conserved in group A,
926 colored according to their dominance in other groups (legend on bottom right). Thick lines
927 indicate links mostly absent in group A but dominant in other groups. A syntenic island
928 conserved in most *Methylobacterium* genomes and containing ribosomal genes and gene
929 *rpoB* is indicated (dotted frame). b) RAxML ML best tree based on link occurrence per
930 genome (6,109 links; best ML tree, BINCAT model, 1,001 replicate trees). Main groups are
931 shown and are monophyletic in the synteny tree. c) Detailed synteny plot for the comparison
932 of core genome architecture between seven species from group A and six species from group
933 D (best assembled genome per species). For each pairwise comparison, core gene (black
934 points) are ordered according to their relative position in species 1 genome (x-axis) and are
935 compared with their relative positions in species 2 genome (y-axis). Each plot is colored
936 according to the *SI* value between species 1 and 2 (scale on top right).

937

938

939 **References**

940 Alessa O et al. 2021. Comprehensive Comparative Genomics and Phenotyping of
941 *Methylobacterium* Species. *Frontiers in Microbiology*. 12:2852. doi:
942 10.3389/fmicb.2021.740610.

943 Anthony C. 1991. Assimilation of carbon by methylotrophs. *Biotechnology*. 18:79–109. doi:
944 10.1016/b978-0-7506-9188-8.50011-5.

945 Aziz RK et al. 2008. The RAST Server: Rapid Annotations using Subsystems Technology.
946 *BMC Genomics*. 9:75. doi: 10.1186/1471-2164-9-75.

947 Belkhelfa S et al. 2018. Complete Genome Sequence of the Facultative Methylotroph
948 *Methylobacterium extorquens* TK 0001 Isolated from Soil in Poland. *Genome*
949 *Announc.* 6. doi: 10.1128/genomeA.00018-18.

950 Bijlani S et al. 2021. *Methylobacterium ajmalii* sp. nov., Isolated From the International
951 Space Station. *Frontiers in Microbiology*. 12:534. doi: 10.3389/fmicb.2021.639396.

952 Bray JR, Curtis JT. 1957. An Ordination of the Upland Forest Communities of Southern
953 Wisconsin. *Ecological Monographs*. 27:325–349. doi: 10.2307/1942268.

954 Castillo-Ramírez S, González V. 2008. Factors affecting the concordance between
955 orthologous gene trees and species tree in bacteria. *BMC Evol Biol.* 8:300. doi:
956 10.1186/1471-2148-8-300.

957 Chen W-M, Cai C-Y, Li Z-H, Young C-C, Sheu S-Y. 2019. *Methylobacterium oryzihabitans*
958 sp. nov., isolated from water sampled from a rice paddy field. *International Journal of*
959 *Systematic and Evolutionary Microbiology*,. 69:3843–3850. doi:
960 10.1099/ijsem.0.003693.

961 Chen X et al. 2017. *Enterovirga rhinocerotis* gen. nov., sp. nov., isolated from *Rhinoceros*
962 *unicornis* faeces. *Antonie Van Leeuwenhoek*. 110:553–562. doi: 10.1007/s10482-016-
963 0823-1.

964 Chifman J, Kubatko L. 2014. Quartet Inference from SNP Data Under the Coalescent Model.
965 *Bioinformatics*. 30:3317–3324. doi: 10.1093/bioinformatics/btu530.

966 Chun J, Rainey FA. 2014. Integrating genomics into the taxonomy and systematics of the
967 Bacteria and Archaea. *International Journal of Systematic and Evolutionary*
968 *Microbiology*. 64:316–324. doi: 10.1099/ijss.0.054171-0.

969 Chung M, Munro JB, Tettelin H, Hotopp JCD. 2018. Using Core Genome Alignments To

970 Assign Bacterial Species. mSystems. doi: 10.1128/mSystems.00236-18.

971 Clarke PH. 1983. The biochemistry of Methylotrophs by C. Anthony Academic Press;
972 London, New York, 1982 xvi + 432 pages. £24.00, \$49.50. FEBS Letters. 160:303–
973 303. doi: 10.1016/0014-5793(83)80989-2.

974 Coenye T, Gevers D, de Peer YV, Vandamme P, Swings J. 2005. Towards a prokaryotic
975 genomic taxonomy*. FEMS Microbiology Reviews. 29:147–167. doi:
976 10.1016/j.fmrre.2004.11.004.

977 Corpe WA, Rheem S. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces.
978 FEMS Microbiol Ecol. 5:243–249. doi: 10.1111/j.1574-6968.1989.tb03698.x.

979 Creevey CJ, Doerks T, Fitzpatrick DA, Raes J, Bork P. 2011. Universally Distributed Single-
980 Copy Genes Indicate a Constant Rate of Horizontal Transfer. PLOS ONE. 6:e22099.
981 doi: 10.1371/journal.pone.0022099.

982 Davidson R, Vachaspati P, Mirarab S, Warnow T. 2015. Phylogenomic species tree
983 estimation in the presence of incomplete lineage sorting and horizontal gene transfer.
984 BMC Genomics. 16:S1. doi: 10.1186/1471-2164-16-S10-S1.

985 Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL. 2015. Biotechnological
986 and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic
987 Methyllobacterium spp. Biomed Res Int. 2015. doi: 10.1155/2015/909016.

988 Feng G-D et al. 2020. *Methyllobacterium nonmethylotrophicum* sp. nov., isolated from
989 tungsten mine tailing. International Journal of Systematic and Evolutionary
990 Microbiology,. 70:2867–2872. doi: 10.1099/ijsem.0.004112.

991 Gillings MR, Paulsen IT. 2014. Microbiology of the Anthropocene. Anthropocene. 5:1–8.
992 doi: 10.1016/j.ancene.2014.06.004.

993 Green PN, Ardley JK. 2018. Review of the genus *Methyllobacterium* and closely related
994 organisms: a proposal that some *Methyllobacterium* species be reclassified into a new
995 genus, *Methylorubrum* gen. nov. International Journal of Systematic and Evolutionary
996 Microbiology. 68:2727–2748. doi: 10.1099/ijsem.0.002856.

997 Grossi CEM et al. 2020. *Methyllobacterium* sp. 2A Is a Plant Growth-Promoting
998 Rhizobacteria That Has the Potential to Improve Potato Crop Yield Under Adverse
999 Conditions. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00071.

1000 Helfrich EJN et al. 2018. Bipartite interactions, antibiotic production and biosynthetic

1001 potential of the *Arabidopsis* leaf microbiome. *Nat Microbiol.* 3:909–919. doi:
1002 10.1038/s41564-018-0200-0.

1003 Hördt A et al. 2020. Analysis of 1,000+ Type-Strain Genomes Substantially Improves
1004 Taxonomic Classification of *Alphaproteobacteria*. *Frontiers in Microbiology*. 11:468.
1005 doi: 10.3389/fmicb.2020.00468.

1006 Hugenholtz P. 2002. Exploring prokaryotic diversity in the genomic era. *Genome Biol.*
1007 3:reviews0003.1. doi: 10.1186/gb-2002-3-2-reviews0003.

1008 Ivanova EG, Doronina NV, Trotsenko YuA. 2001. Aerobic Methylobacteria Are Capable of
1009 Synthesizing Auxins. *Microbiology*. 70:392–397. doi: 10.1023/A:1010469708107.

1010 Jia L juan et al. 2020. *Methylobacterium crusticola* sp. nov., isolated from biological soil
1011 crusts. *International Journal of Systematic and Evolutionary Microbiology*,. 70:2089–
1012 2095. doi: 10.1099/ijsem.0.004020.

1013 Jiang L et al. 2020. *Methylobacterium planium* sp. nov., isolated from a lichen sample. *Arch*
1014 *Microbiol.* 202:1709–1715. doi: 10.1007/s00203-020-01881-4.

1015 Jourand P et al. 2004. *Methylobacterium nodulans* sp. nov., for a group of aerobic,
1016 facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria.
1017 *International Journal of Systematic and Evolutionary Microbiology*,. 54:2269–2273.
1018 doi: 10.1099/ijsem.0.02902-0.

1019 Kanso S, Patel BKC. 2003. *Microvirga subterranea* gen. nov., sp. nov., a moderate
1020 thermophile from a deep subsurface Australian thermal aquifer. *Int J Syst Evol*
1021 *Microbiol.* 53:401–406. doi: 10.1099/ijsm.0.02348-0.

1022 Keppler F, Hamilton JT, Braß M, Röckmann T. 2006. Methane emissions from terrestrial
1023 plants under aerobic conditions. *Nature*. 439:187–191. doi: 10.1038/nature04420.

1024 Kim J, Chhetri G, Kim I, Lee B, et al. 2020. *Methylobacterium terricola* sp. nov., a gamma
1025 radiation-resistant bacterium isolated from gamma ray-irradiated soil. *International*
1026 *Journal of Systematic and Evolutionary Microbiology*,. 70:2449–2456. doi:
1027 10.1099/ijsem.0.004054.

1028 Kim J, Chhetri G, Kim I, Kim MK, Seo T. 2020. *Methylobacterium durans* sp. nov., a
1029 radiation-resistant bacterium isolated from gamma ray-irradiated soil. *Antonie van*
1030 *Leeuwenhoek*. 113:211–220. doi: 10.1007/s10482-019-01331-2.

1031 Koonin EV, Makarova KS, Wolf YI. 2021. Evolution of Microbial Genomics: Conceptual

1032 Shifts over a Quarter Century. *Trends in Microbiology*. 29:582–592. doi:
1033 10.1016/j.tim.2021.01.005.

1034 Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: Combined Selection of
1035 Partitioning Schemes and Substitution Models for Phylogenetic Analyses. *Molecular
1036 Biology and Evolution*. 29:1695–1701. doi: 10.1093/molbev/mss020.

1037 Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. 2014. Selecting optimal partitioning
1038 schemes for phylogenomic datasets. *BMC Evolutionary Biology*. 14:82. doi:
1039 10.1186/1471-2148-14-82.

1040 Leducq J-B et al. 2022. Fine-Scale Adaptations to Environmental Variation and Growth
1041 Strategies Drive Phyllosphere *Methylobacterium* Diversity. *mBio*. doi:
1042 10.1128/mbio.03175-21.

1043 Lee HS et al. 2006. Physiological enhancement of early growth of rice seedlings (*Oryza*
1044 *sativa* L.) by production of phytohormone of N₂-fixing methylotrophic isolates. *Biol
1045 Fertil Soils*. 42:402–408. doi: 10.1007/s00374-006-0083-8.

1046 Lee JA, Stolyar S, Marx CJ. 2022. Aerobic Methoxydotrophy: Growth on Methoxylated
1047 Aromatic Compounds by *Methylobacteriaceae*. *Frontiers in Microbiology*. 13.
1048 <https://www.frontiersin.org/article/10.3389/fmicb.2022.849573> (Accessed June 1,
1049 2022).

1050 Levy A et al. 2018. Genomic features of bacterial adaptation to plants. *Nat Genet*. 50:138–
1051 150. doi: 10.1038/s41588-017-0012-9.

1052 Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node
1053 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
1054 *Bioinformatics*. 31:1674–1676. doi: 10.1093/bioinformatics/btv033.

1055 Louca S et al. 2018. Bacterial diversification through geological time. *Nat Ecol Evol*.
1056 2:1458–1467. doi: 10.1038/s41559-018-0625-0.

1057 Madhaiyan M et al. 2005. Pink-pigmented facultative methylotrophic bacteria accelerate
1058 germination, growth and yield of sugarcane clone Co86032 (*Saccharum officinarum*
1059 L.). *Biol Fertil Soils*. 41:350–358. doi: 10.1007/s00374-005-0838-7.

1060 Madhaiyan M, Poonguzhali S, Sa T. 2007. Metal tolerating methylotrophic bacteria reduces
1061 nickel and cadmium toxicity and promotes plant growth of tomato (*Lycopersicon
1062 esculentum* L.). *Chemosphere*. 69:220–228. doi: 10.1016/j.chemosphere.2007.04.017.

1063 Marx CJ et al. 2012. Complete Genome Sequences of Six Strains of the Genus
1064 *Methylobacterium*. *J Bacteriol.* 194:4746–4748. doi: 10.1128/JB.01009-12.

1065 Mende DR, Sunagawa S, Zeller G, Bork P. 2013. Accurate and universal delineation of
1066 prokaryotic species. *Nat Methods.* 10:881–884. doi: 10.1038/nmeth.2575.

1067 Minami T et al. 2016. Complete Genome Sequence of *Methylobacterium* sp. Strain AMS5,
1068 an Isolate from a Soybean Stem. *Genome Announc.* 4. doi: 10.1128/genomeA.00144-
1069 16.

1070 Minh BQ et al. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
1071 Inference in the Genomic Era. *Molecular Biology and Evolution.* 37:1530–1534. doi:
1072 10.1093/molbev/msaa015.

1073 Mirarab S et al. 2014. ASTRAL: genome-scale coalescent-based species tree estimation.
1074 *Bioinformatics.* 30:i1541–i1548. doi: 10.1093/bioinformatics/btu462.

1075 Morohoshi T, Ikeda T. 2016. Complete Genome Sequence of *Methylobacterium populi* P-
1076 1M, Isolated from Pink-Pigmented Household Biofilm. *Genome Announc.* 4. doi:
1077 10.1128/genomeA.00458-16.

1078 Nishida H. 2012. Evolution of genome base composition and genome size in bacteria.
1079 *Frontiers in Microbiology.* 3.
1080 <https://www.frontiersin.org/article/10.3389/fmicb.2012.00420> (Accessed January 17,
1081 2022).

1082 Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and
1083 evolutionary analyses in R. *Bioinformatics.* 35:526–528. doi:
1084 10.1093/bioinformatics/bty633.

1085 Park S-C, Lee K, Kim YO, Won S, Chun J. 2019. Large-Scale Genomics Reveals the
1086 Genetic Characteristics of Seven Species and Importance of Phylogenetic Distance for
1087 Estimating Pan-Genome Size. *Frontiers in Microbiology.* 10.
1088 <https://www.frontiersin.org/article/10.3389/fmicb.2019.00834> (Accessed January 27,
1089 2022).

1090 Pascual JA et al. 2020. *Methylobacterium symbioticum* sp. nov., a new species isolated from
1091 spores of *Glomus iranicum* var. *tenuihypharum*. *Curr Microbiol.* 77:2031–2041. doi:
1092 10.1007/s00284-020-02101-4.

1093 Qu Z et al. 2014. *Psychroglaciecola arctica* gen. nov., sp. nov., isolated from Arctic glacial

1094 foreland soil. International Journal of Systematic and Evolutionary Microbiology,,
1095 64:1817–1824. doi: 10.1099/ijss.0.060913-0.

1096 R-Development-Core-Team. 2011. *R: A language and environment for statistical*
1097 *computing*. ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna,
1098 Austria, 2013. url: <http://www.R-project.org>.

1099 Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Mathematical
1100 Biosciences. 53:131–147. doi: 10.1016/0025-5564(81)90043-2.

1101 Rosselló-Mora R, Amann R. 2001. The species concept for prokaryotes. FEMS
1102 Microbiology Reviews. 25:39–67. doi: 10.1111/j.1574-6976.2001.tb00571.x.

1103 Ryu JH (Chungbuk NU et al. 2006. Plant Growth Substances Produced by *Methylobacterium*
1104 *spp.* and Their Effect on Tomato (*Lycopersicon esculentum* L.) and Red Pepper
1105 (*Capsicum annuum* L.) Growth. Journal of Microbiology and Biotechnology.
1106 <https://agris.fao.org/agris-search/search.do?recordID=KR2007002803> (Accessed
1107 September 12, 2020).

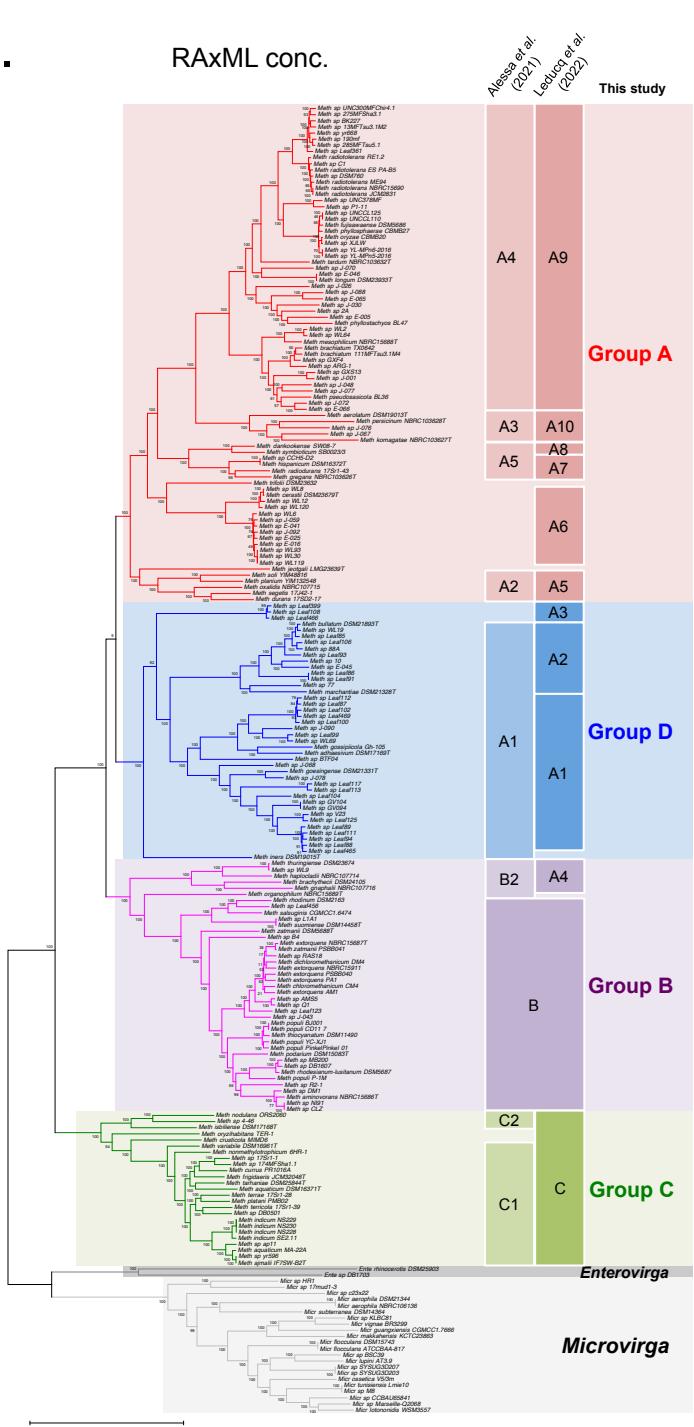
1108 Sakoparnig T, Field C, van Nimwegen E. 2021. Whole genome phylogenies reflect the
1109 distributions of recombination rates for many bacterial species Nourmohammad, A &
1110 Walczak, AM, editors. eLife. 10:e65366. doi: 10.7554/eLife.65366.

1111 Sayyari E, Mirarab S. 2016. Fast Coalescent-Based Computation of Local Branch Support
1112 from Quartet Frequencies. Molecular Biology and Evolution. 33:1654–1668. doi:
1113 10.1093/molbev/msw079.

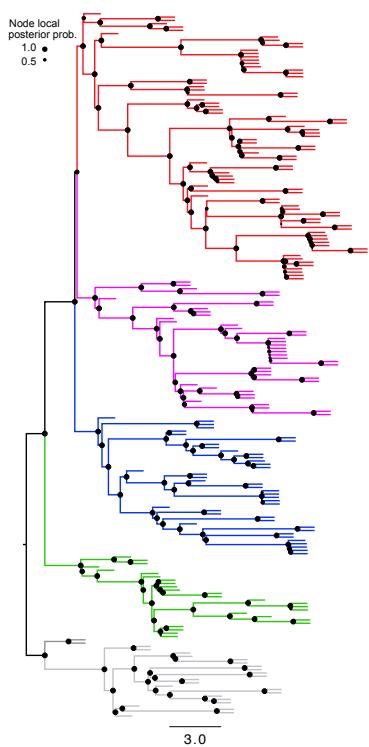
1114 Shannon P et al. 2003. Cytoscape: A Software Environment for Integrated Models of
1115 Biomolecular Interaction Networks. Genome Res. 13:2498–2504. doi:
1116 10.1101/gr.1239303.

1117 Shapiro BJ, Leducq J-B, Mallet J. 2016. What is speciation? PLoS Genet. 12:e1005860.

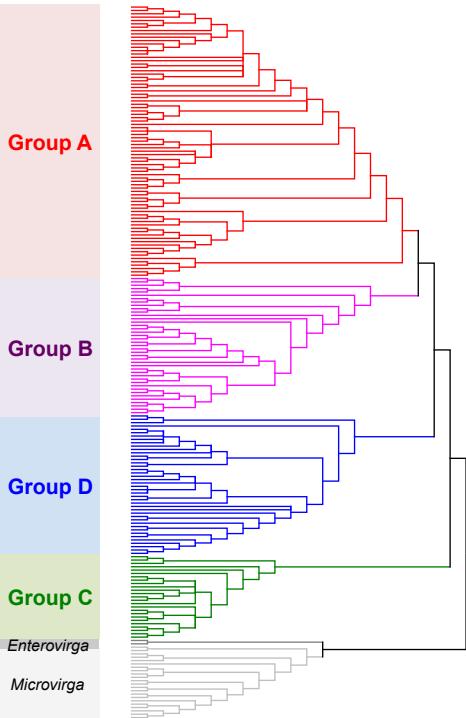
1118 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
1119 large phylogenies. Bioinformatics. 30:1312–1313. doi: 10.1093/bioinformatics/btu033.


1120 Sy A et al. 2001. Methylotrophic *Methylobacterium* Bacteria Nodulate and Fix Nitrogen in
1121 Symbiosis with Legumes. J Bacteriol. 183:214–220. doi: 10.1128/JB.183.1.214-
1122 220.2001.

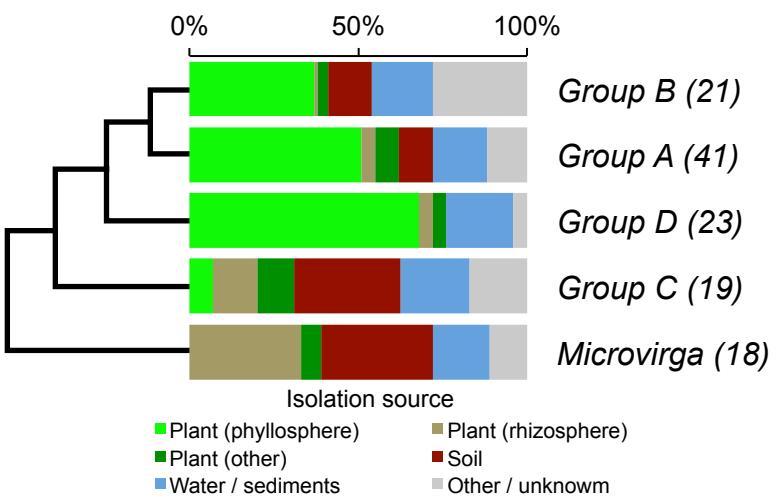
1123 Tani A, Ogura Y, Hayashi T, Kimbara K. 2015. Complete Genome Sequence of
1124 *Methylobacterium aquaticum* Strain 22A, Isolated from *Racomitrium japonicum* Moss.

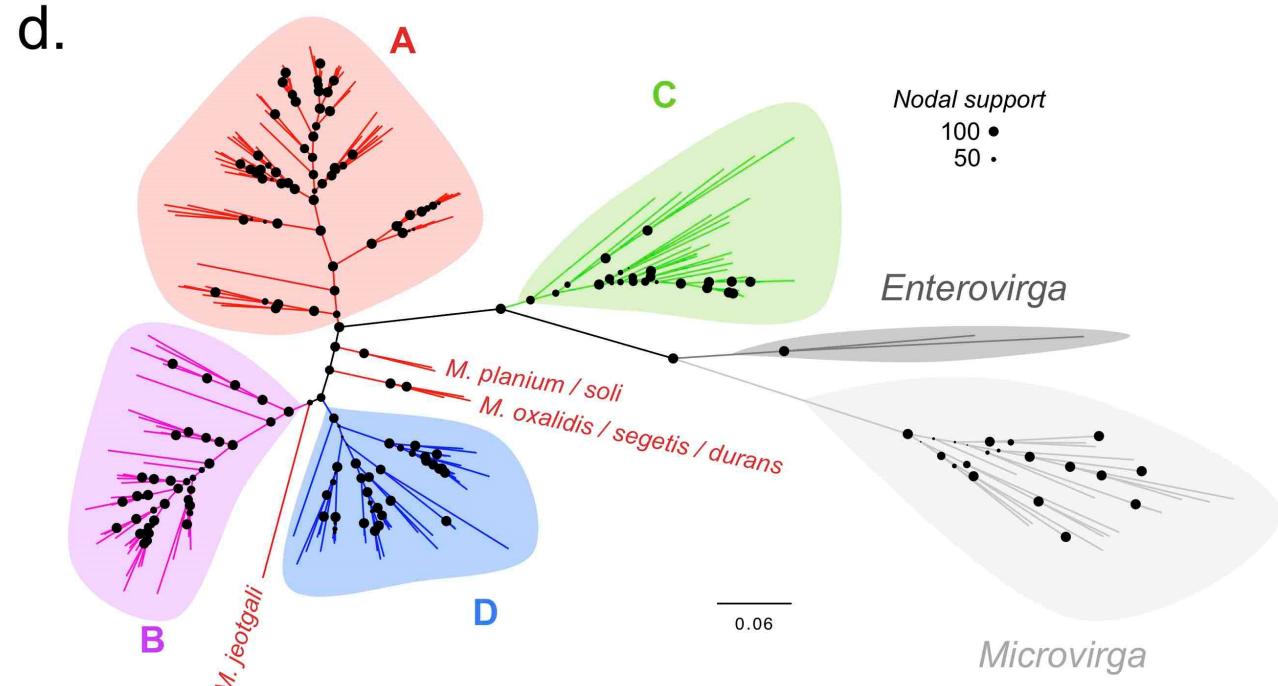
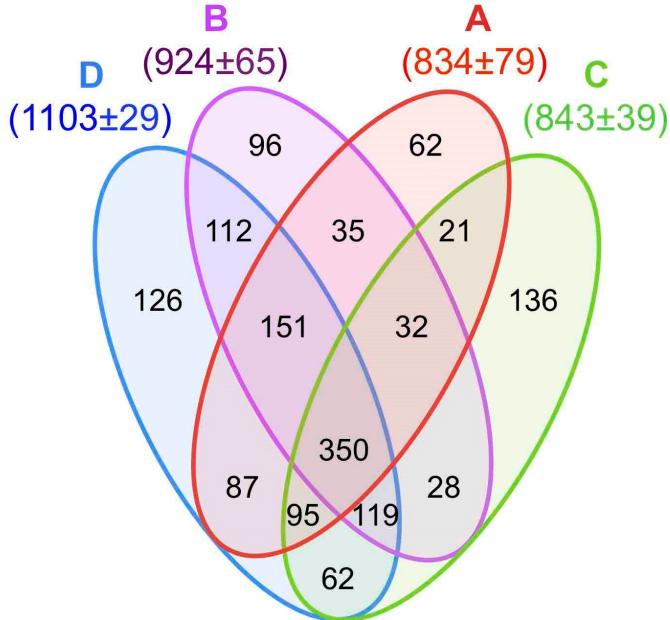
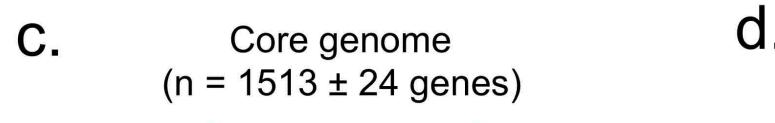
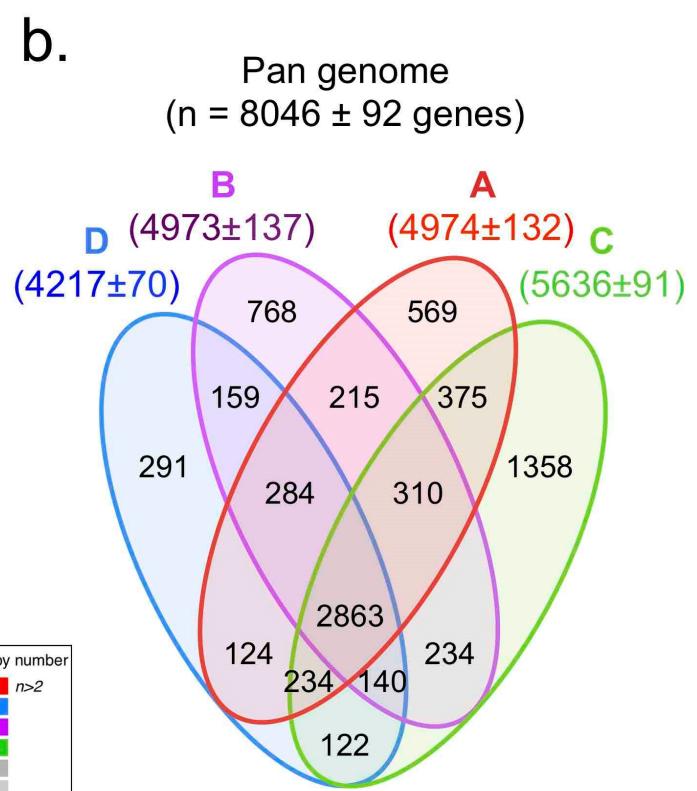


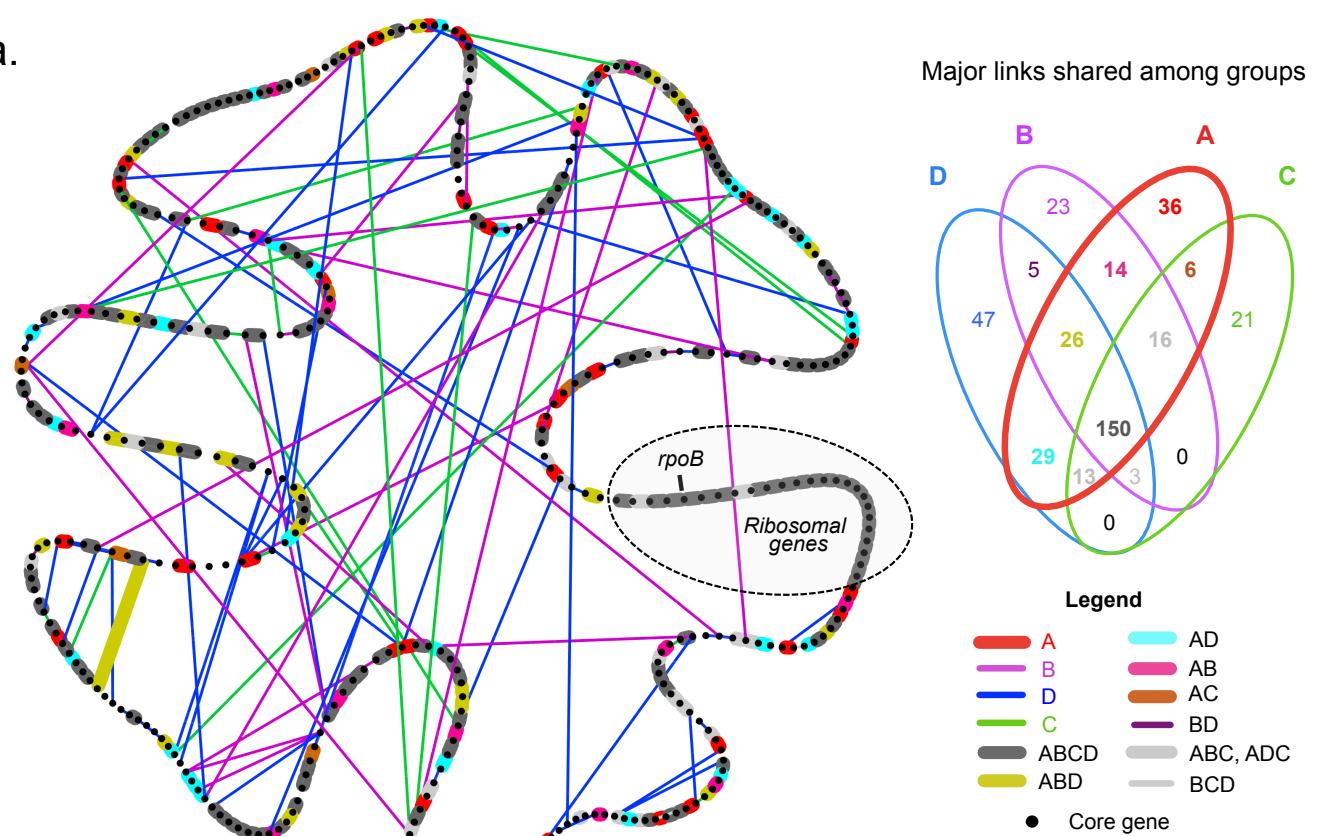
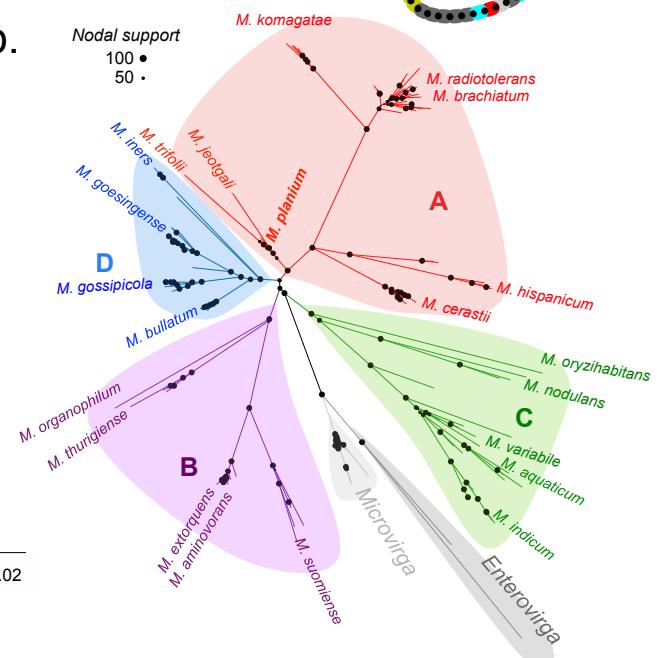
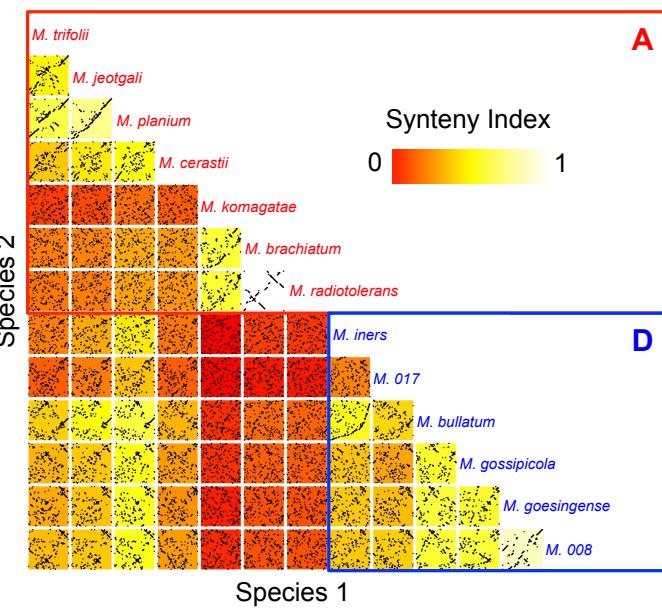
a.


RAxML conc.

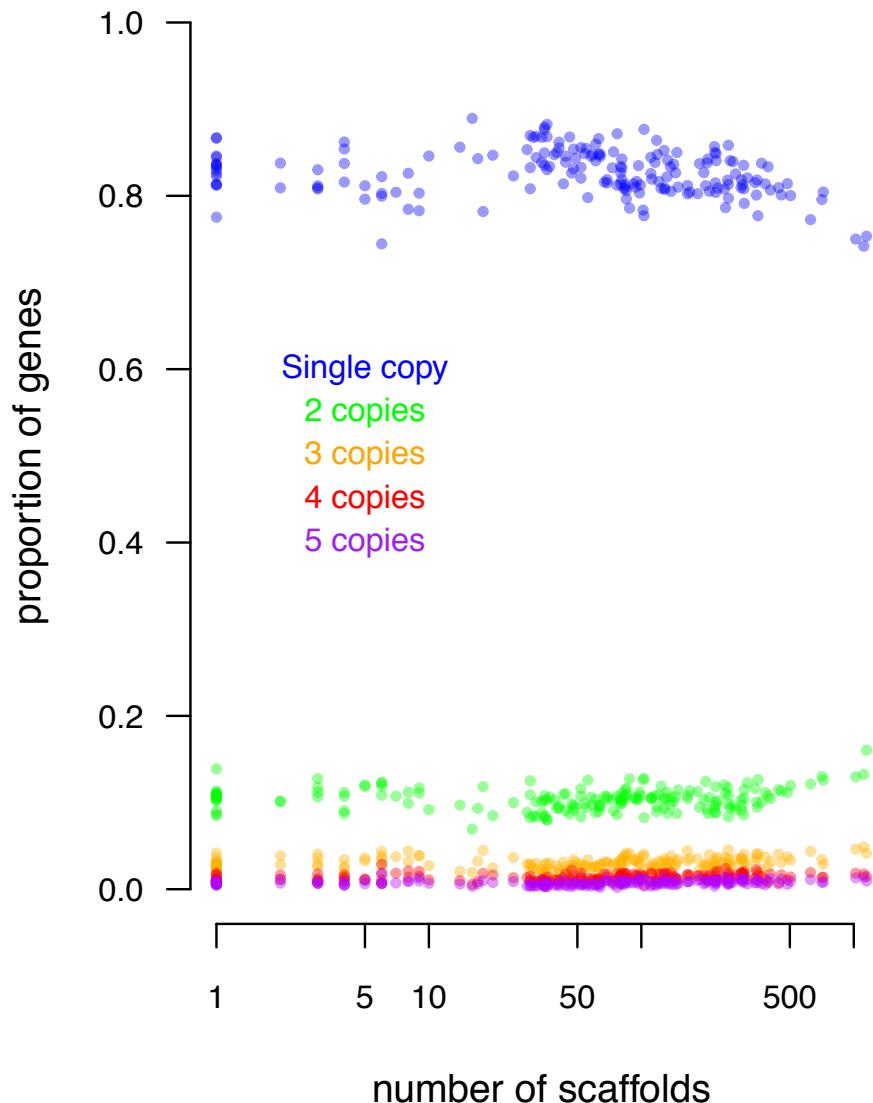
b.

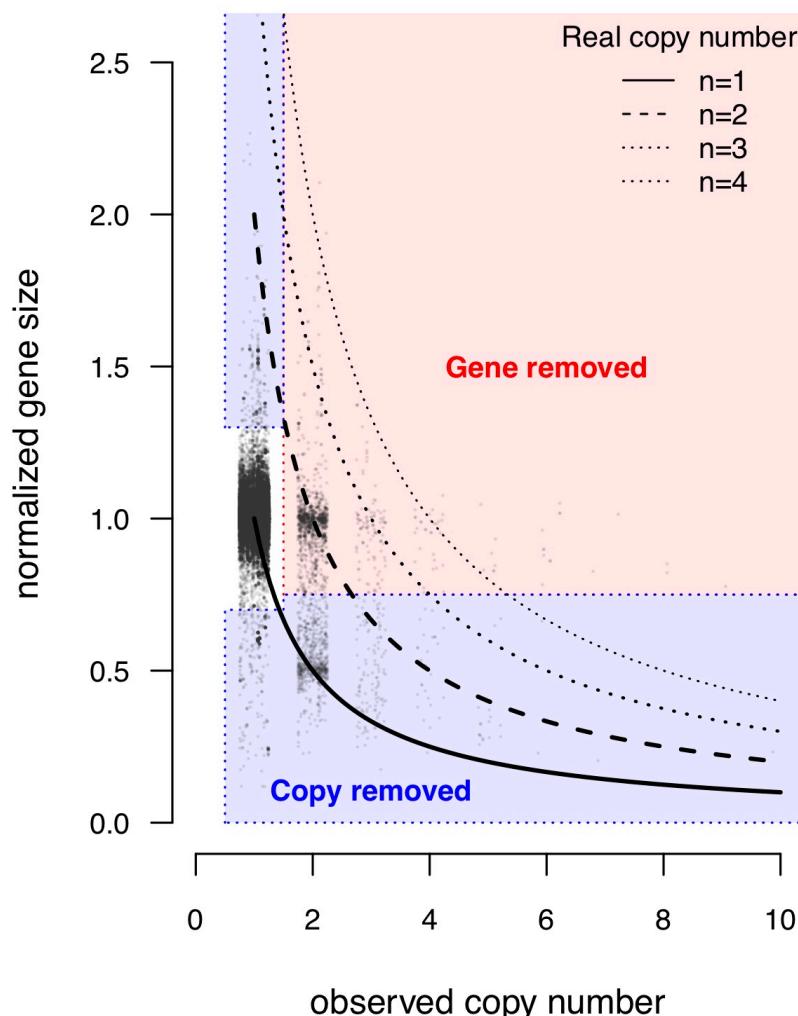

ASTRAL





c.

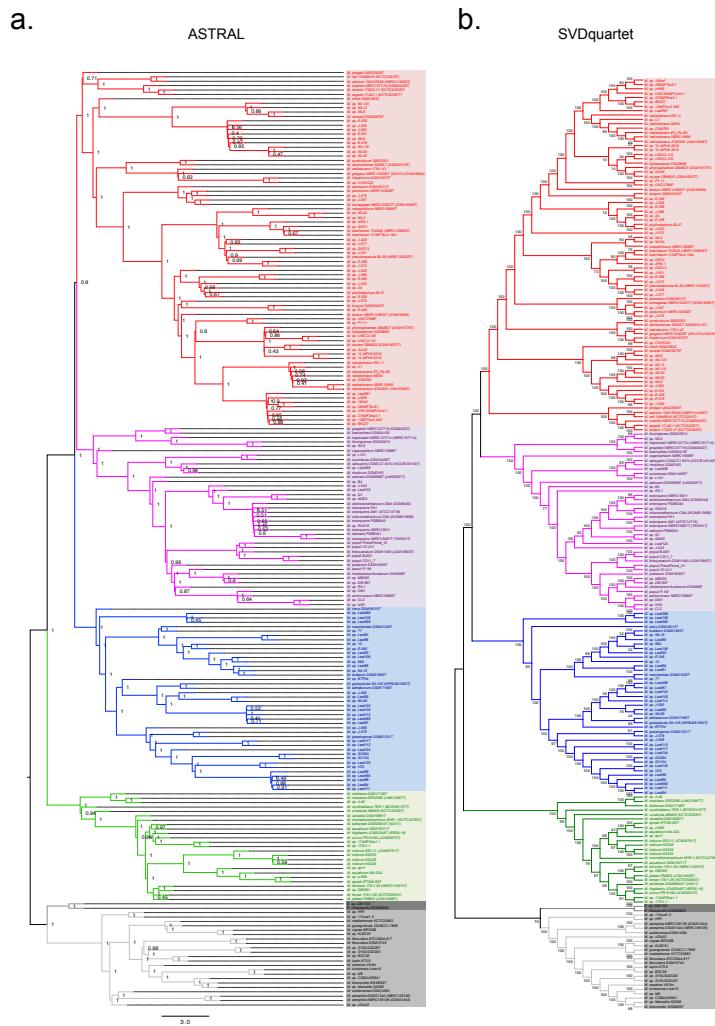



SVDquartets

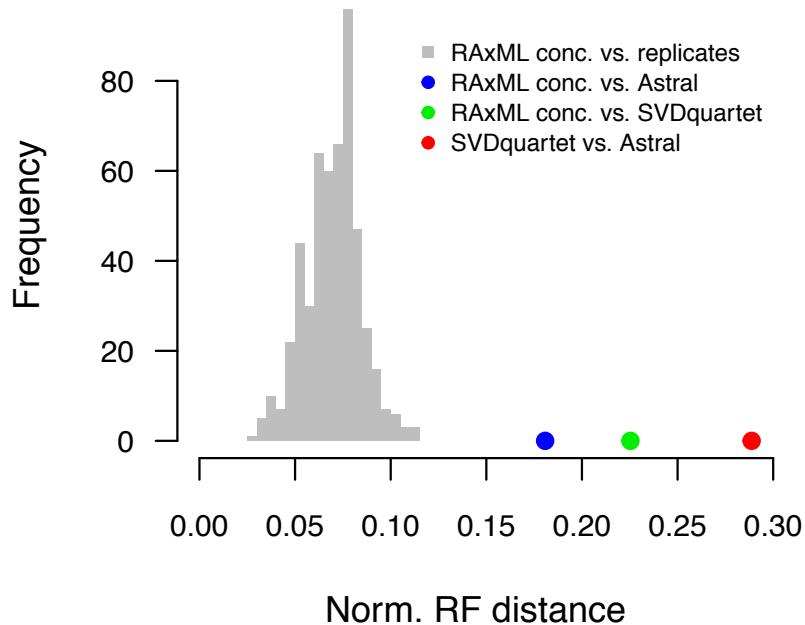
d.

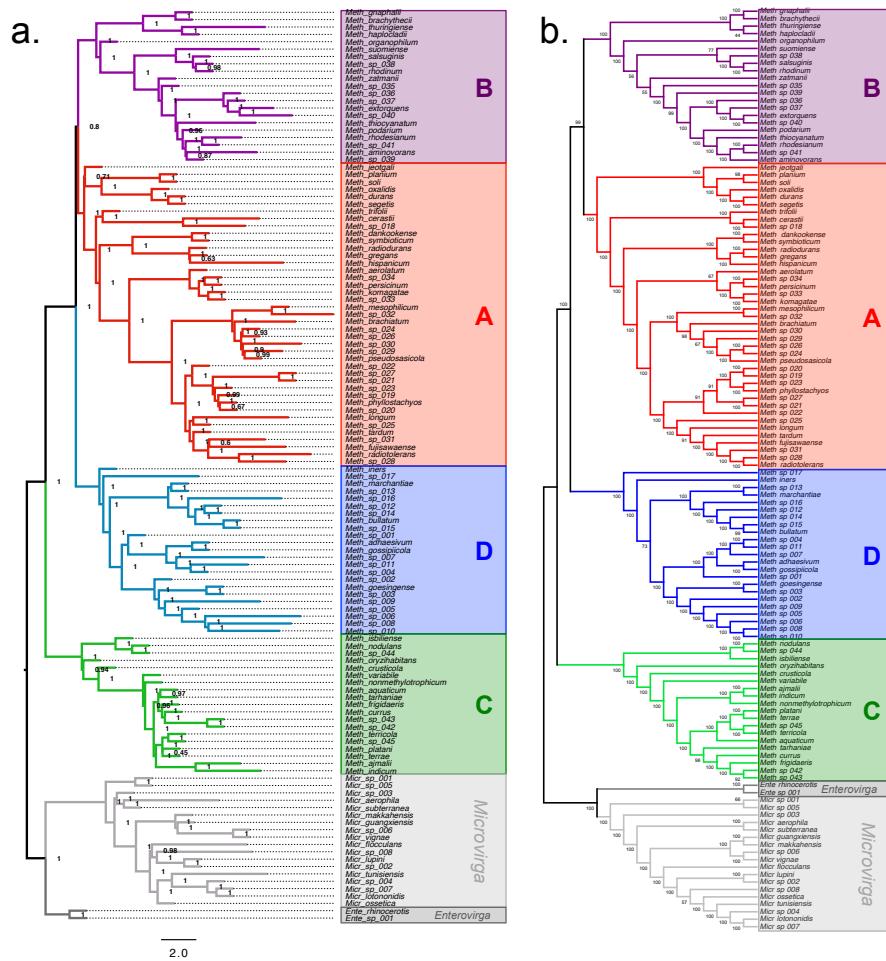

Proportion of species

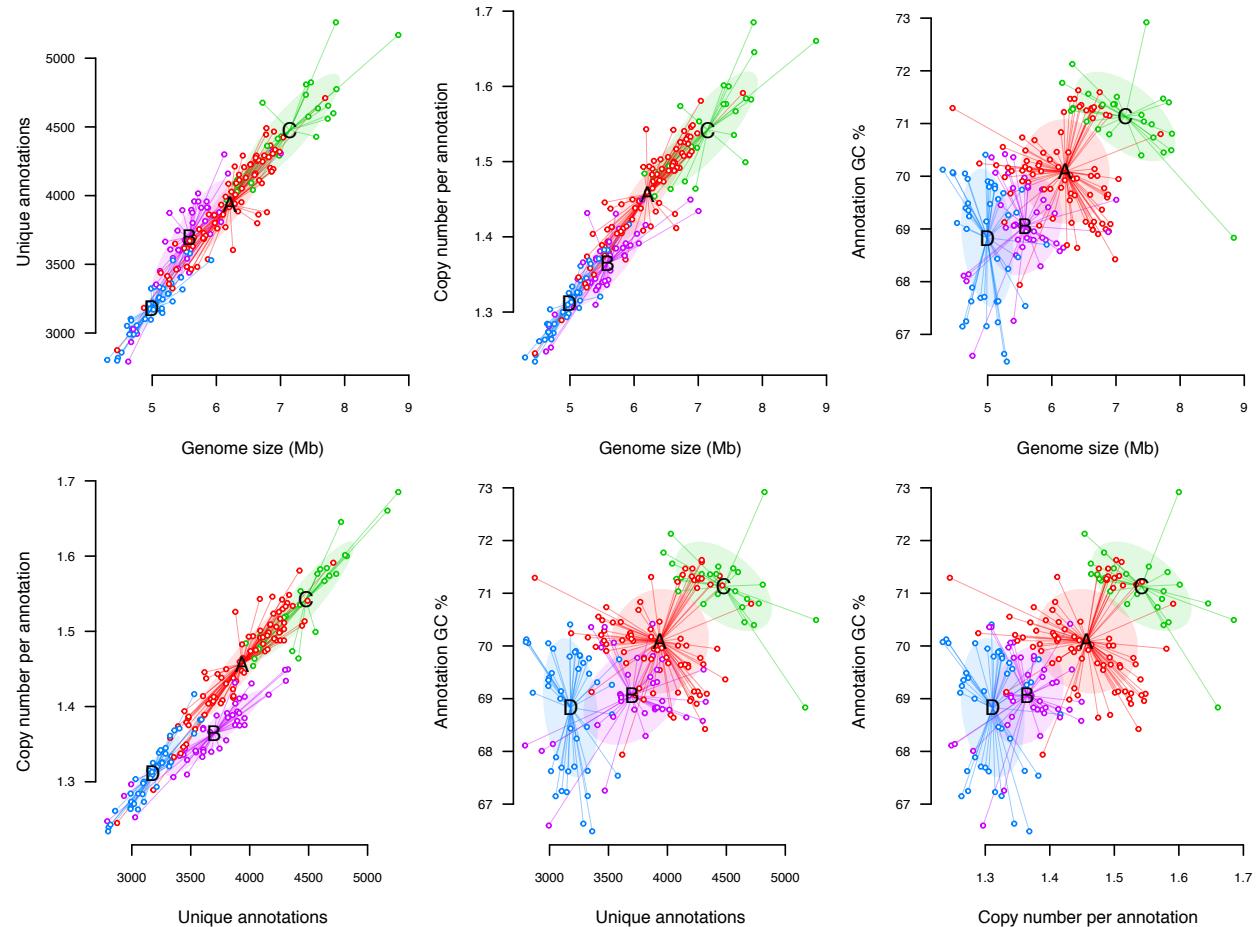


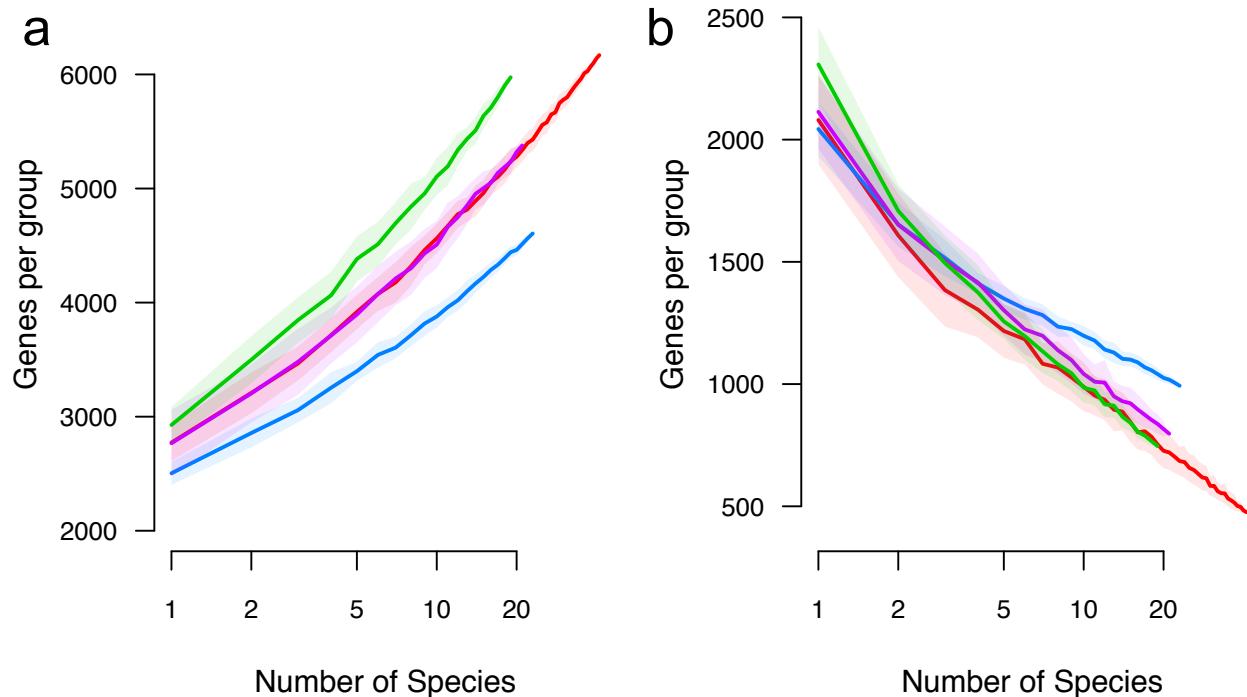
a.**b.****c.**

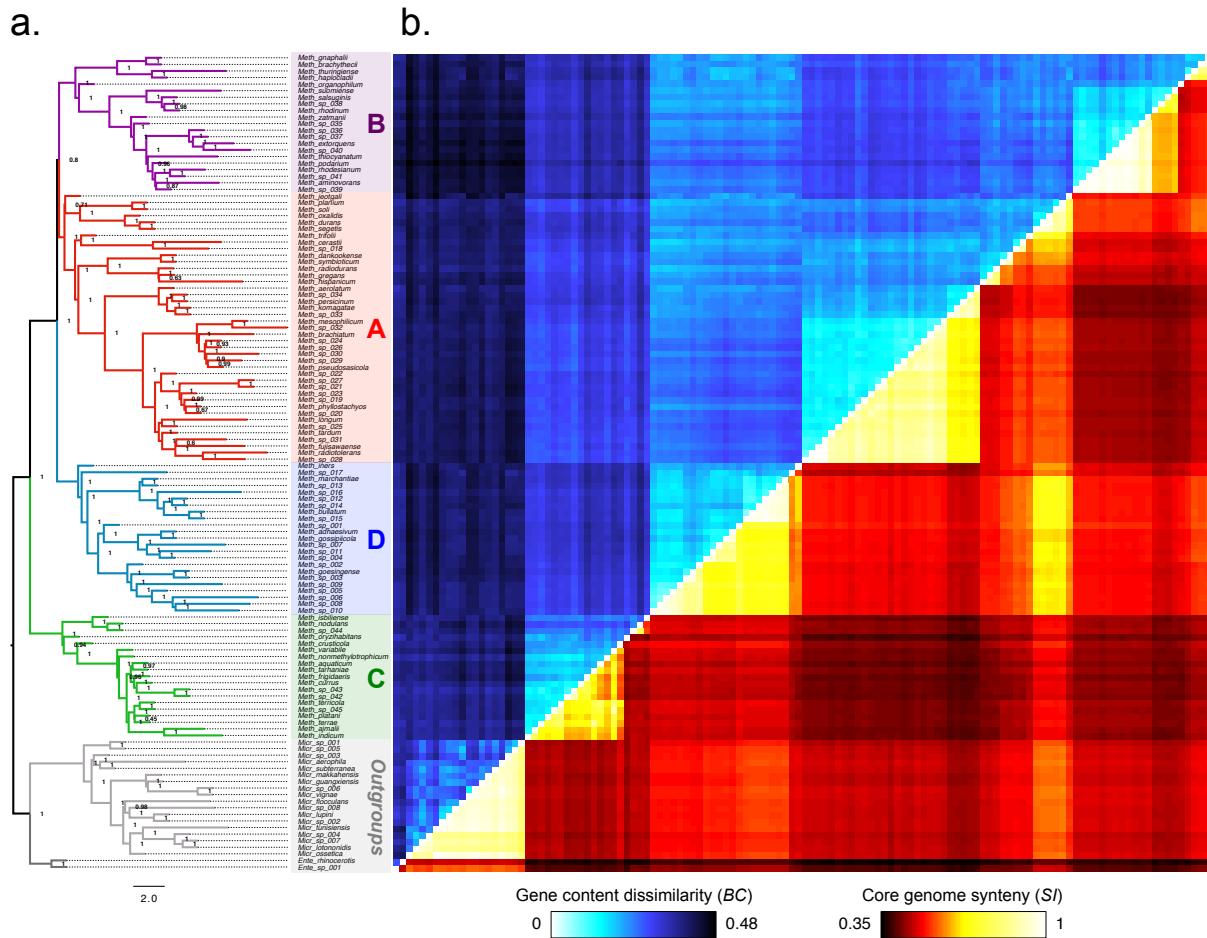

Figure S1 : Proportion of genes per genome present in 1 (blue), 2 (green), 3 (orange), 4 (red) or 5 (purple) copies per genome in function of genome assembly quality (given by the number of scaffolds per genome, log scale).

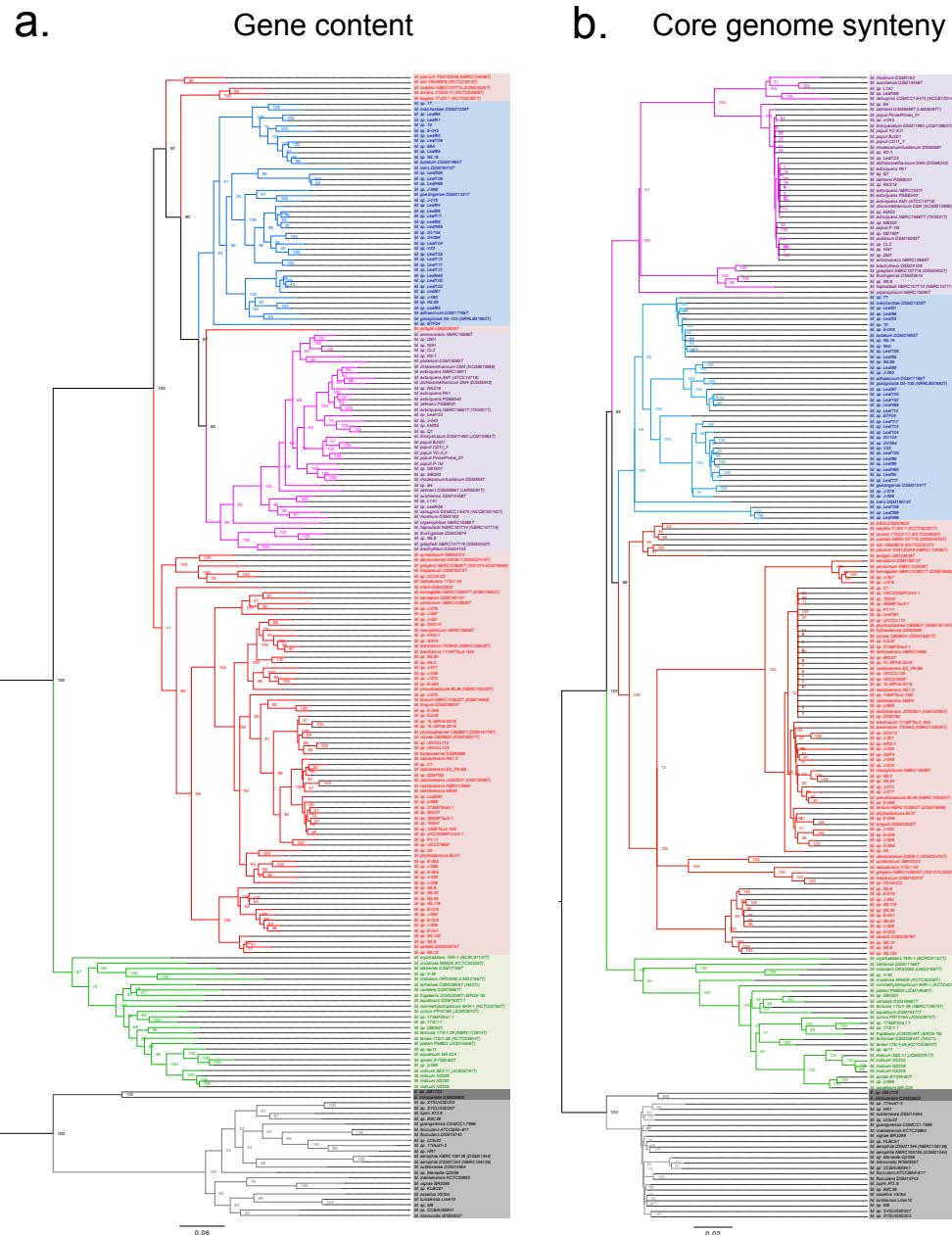

Figure S2: Identification of true core genes among 893 candidate core genes present in a single copy in at least 90% of 184 *Methylobacteriaceae* genomes. Average gene size normalized (divided) by the average nucleotide sequence size observed in complete genomes (defined as genomes with $N50 > 3 \times 10^6$ Mb) was plotted against the number of copies observed per genome. Each dot represents one copy in one genome. Lines represent the expected copy number for each normalized size/observed copy number combination. 398 genes for which at least one genome had more than one copy with normalized size >0.75 were considered as true duplicates and removed from the analysis (red). For the 495 remaining candidate core genes, single-copy genes with normalized size >1.3 and gene copies with normalized size <0.7 (regardless copy number) were considered as missing data (blue). Of the remaining genes, 384 genes with a single copy in at least 180 genomes were considered as true core genes.


Figure S3: Detailed lineage trees of *Methylobacteriaceae* reconstructed from 213 genomes using ASTRAL and SVDquartet. a) ASTRAL tree inferred from 384 core gene ML trees. Each gene ML tree was inferred in RAxML assuming a GTRgamma model (1,000 replicated trees; nodes with less than 10% of support collapsed) and combined in ASTRAL-III. Branch lengths are in coalescent units. Nodal support values represent local posterior probability. b) SVD quartet tree inferred from the concatenated alignments of 384 core gene nucleotide sequences. Nodal support values indicate the proportion of quartets supporting each node. Trees were rooted on *Microvirga* and *Enterovirga*. Branches and genomes names (Genus, species, strain) were colored according to assignation to *Methylobacterium* groups (A: red; B: purple; C: green; D: blue) and outgroups (*Microvirga*: grey; *Enterovirga*: dark grey)


Figure S4: Normalized RF distance distribution between the RAxML majority consensus rule lineage tree and the 512 replicate trees (grey; see Figure 1a) and normalized RF distances between lineage trees (points; legend on top right).


Figure S5: Detailed species trees of *Methylobacteriaceae* inferred from 213 genomes assuming 124 *Methylobacterium* species. a) ASTRAL tree inferred from 384 core gene ML trees. Each gene ML tree was inferred in RAxML assuming a GTRgamma model (1,000 replicated trees; nodes with less than 10% of support collapsed) and combined in ASTRAL-III. Branch lengths are in coalescent units. Nodal support values represent local posterior probability. b) SVD quartet tree inferred from the concatenated alignments of 384 core gene nucleotide sequences. Nodal support values indicate the proportion of quartets supporting each node. Trees were rooted on *Microvirga* and *Enterovirga*. Branches were colored according to assignation to *Methylobacterium* groups (A: red; B: purple; C: green; D: blue) and outgroups (*Microvirga*: grey; *Enterovirga*: dark grey)


Figure S6: Comparison of genome characteristics among 4 *Methylobacterium* groups. Genome size, number of unique gene annotations per genome (unknown proteins, repeat elements and mobile elements excluded), average gene copy number per genome, and GC content (in coding genome) are compared to each other. Each point represents values for a genome, colored according to assignment to *Methylobacterium* groups (A: red; B: purple; C: green; D: blue). Ellipses indicate 50% of standard deviation centered on average values for each group.


Figure S7: Pan (a) and core (b) genome size estimations in four *Methylobacterium* groups and *Microvirga*. Genome sizes per group (number of genes per group; y-axis) were estimated for every number of species assumed in the range 1-n (n = maximum number of species per group; x-axis). For each group and number of species, average (lines) and standard deviation (frames) over 100 random resampling of n species per group were estimated. Dotted lines indicate the value for which pan genome and core genome size where estimated (n=15 species per group; Figure 2).

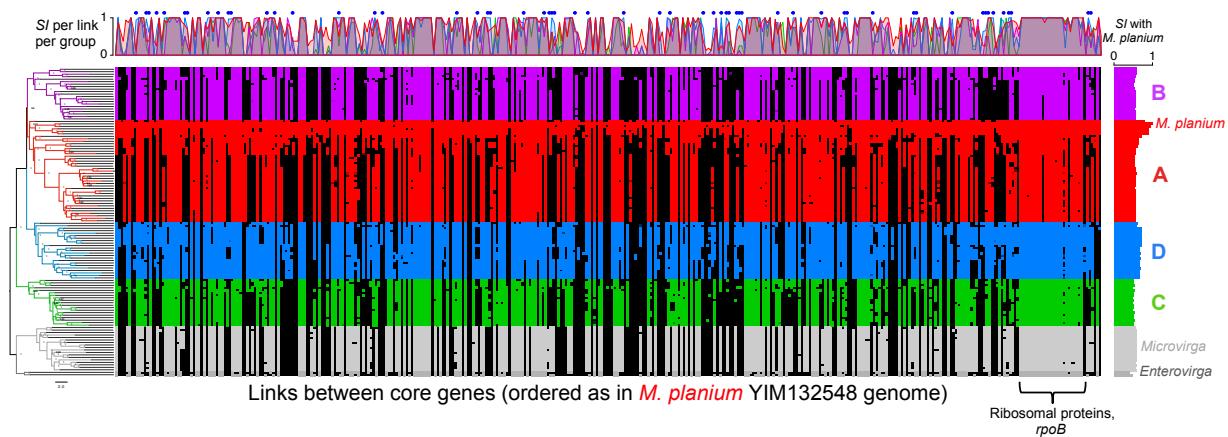

Figure S8: a) ASTRAL species tree. b) Heatmap of dissimilarity in gene content (*BC* index; blue scale; above diagonal) and similarity in core genome architecture (Synteny index; orange scale; below diagonal) among 104 *Methylobacterium* and 20 outgroups species, matching the species tree.

Figure S9: Detailed *Methylobacteriaceae* lineage trees inferred from gene content (a) and core genome synteny (b). Each ML tree was inferred in RAxML assuming a BINCAT model (1,000 replicated trees). Nodal support values indicate the proportion of replicate tree supporting each node. Trees were rooted on *Microvirga* and *Enterovirga*. Branches were colored according to assignation to *Methylobacterium* groups (A: red; B: purple; C: green; D: blue) and outgroups (*Microvirga*: grey; *Enterovirga*: dark grey)

Figure S10: Comparison of core genome architecture among 124 *Methylobacteriaceae* species (rows; ordered according to the ASTRAL species tree, left) using 384 links (pairs of contiguous core genes) observed in the *M. planium* genome as a reference (links are ordered according to the reference genome). For each species, *M. planium* links are colored according to their group (B: purple; A: red; D: blue; C: green; outgroups: grey) when observed. Average *SI* values per link per *Methylobacterium* group are indicated in the top diagram. Blue points indicate links that are more conserved in group D than group A. Average *SI* values with *M. planium* are indicated per species on the right diagram.

