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Abstract

Interior modeling of Jupiter and Saturn has advanced to a state where thousands of models are generated that cover
the uncertainty space of many parameters. This approach demands a fast method of computing their gravity field
and shape. Moreover, the Cassini mission at Saturn and the ongoing Juno mission delivered gravitational
harmonics up to J12. Here we report the expansion of the theory of figures, which is a fast method for gravity field
and shape computation, to the seventh order (ToF7), which allows for computation of up to J14. We apply three
different codes to compare the accuracy using polytropic models. We apply ToF7 to Jupiter and Saturn interior
models in conjunction with CMS-19 H/He equation of state. For Jupiter, we find that J6 is best matched by a
transition from an He-depleted to He-enriched envelope at 2–2.5 Mbar. However, the atmospheric metallicity
reaches 1× solar only if the adiabat is perturbed toward lower densities, or if the surface temperature is enhanced
by ∼14 K from the Galileo value. Our Saturn models imply a largely homogeneous-in-Z envelope at 1.5–4× solar
atop a small core. Perturbing the adiabat yields metallicity profiles with extended, heavy-element-enriched deep
interior (diffuse core) out to 0.4 RSat, as for Jupiter. Classical models with compact, dilute, or no core are possible
as long as the deep interior is enriched in heavy elements. Including a thermal wind fitted to the observed wind
speeds, representative Jupiter and Saturn models are consistent with all observed Jn values.
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1. Introduction

Since the era of the Voyager 1 and 2 gravity field
determinations and shape measurements of the outer planets,
only two methods have extensively been employed to calculate
the shape and gravity field from interior models to compare
with the data. These methods are the theory of figures (ToF;
Zharkov & Trubitsyn 1978) and the Concentric Maclaurin
Spheroid (CMS) method (Hubbard 2012, 2013). ToF has
served that purpose before the advent of accurate gravity data
from Juno at Jupiter and from the Cassini Grand Finale Tour at
Saturn. Beforehand, only the gravitational moments J2, J4, and
J6 were measured, and the smallest given uncertainty in
Jupiter’s J6 of 10% was still rather large (Jacobson 2003).

The low-order gravitational harmonics are important obser-
vables, as they constrain the density profile about midway into
the planetary interior. They are expansion coefficients of the
external planetary gravity field evaluated at a reference radius
in the equatorial plane, Req, which encompasses the planet’s
total mass. They are defined as integrals over density ρ(r) in the

planet’s interior,
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where Pn are the Legendre polynomials and ϑ is colatitude.
Thanks to the Juno and Cassini missions, the observational
accuracy in the even harmonics J2n has seen significant
improvement (Iess et al. 2018, 2019; Durante et al. 2020). For
both Jupiter and Saturn, the uncertainties in the low-order
harmonics reduced to a level that can be considered exact from
the perspective of adjusting internal density distributions to
reproduce the data. However, significant spread in the deep
interior density distributions is still possible (see Movshovitz
et al. 2020 for Saturn), as the sensitivity of the J2n toward the
center fades with r R n

eq
2( ) (see Equation (1)). This spread is a

residual uncertainty related to other causes such as the
positioning of internal helium gradients due to uncertainty in
the H–He phase diagram, the temperature profile in stably
stratified regions, the H–He equations of state (EOSs), or the
positioning of heavy-element gradients due to uncertainties in
planet formation and evolution.
ToF to the fourth order (ToF4) has been deemed sufficiently

accurate for computation of J2 and J4 usually used to constrain
the density distribution (Nettelmann 2017). Higher-order
moments beyond J4 have been provided to a precision in J6 to
J10 of better than (0.01–0.1)× 10−6 for Jupiter (Durante et al.
2020) and (0.1–1)× 10−6 for Saturn (Iess et al. 2019), but as
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the order increases, so does the influence by the zonal flows on
the harmonics. At present, this is where the limitations of the
ToF method become evident. ToF is an expansion method. An
nth-order expansion (ToFn) allows us to compute up to J2n and
to an error of the order of qnrot

1+ , where q R GMrot
2

eq
3w= is the

ratio of centrifugal to gravitational force at the equatorial
radius. The highest presented ToF order so far is 5 (Zharkov &
Trubitsyn 1975). It has recently been applied to compute
Saturn’s J2–J10 values (Ni 2020); however, its accuracy has not
been validated yet.

Although the CMS method is also an expansion method, it can
conveniently be carried out to the order of 15–20 or higher
(Hubbard 2013). Therefore, it enables high-accuracy computation
of the high-order J2n up to the order of the measurements (Wahl
et al. 2017b; Militzer et al. 2019). The CMS method provides
further advantages, such as its expansion to 3D to account for tidal
shape and gravity field perturbations (Wahl et al. 2017a) and
brevity in its formulation (Hubbard 2013). Its only drawback is
that the CMS method goes along with high computational cost
even in its accelerated version (Militzer et al. 2019). This is
because the CMS method explicitly solves for the 2D planetary
shape not only by taking the sum over radial spheroids but also by
integrating over latitude. Even if making use of Gaussian
quadrature, typically several tens of angular grid points are
required. If the integrand were a polynomial, only Nlat= n+ 1
grid points would be required to evaluate the integrals over P2n,
which for J12 (n= 6) amounts to only Nlat= 7, or even 4 points
when accounting for hemispheric symmetry. However, the
integrands are functions of the nonpolynomial shape itself. In
practice, 48 grid points (Wahl et al. 2017a) are used. Obtaining the
shape to sufficient accuracy at these grid points is the most time-
consuming part of the CMS method. In contrast, ToF solves for
the shape explicitly only in the equatorial plane, while the shape at
higher latitudes is obtained by spherical harmonics expansion, and
the required precision of the shape is only the one wanted for the
J2n. One may thus see a benefit in using ToF for computation of
the high-order moments.

Here we introduce ToF7 tables, which allow one to calculate up
to J14. In Section 2, we give an overview of the ToF method,
while for further details we refer to the Appendix. In Section 3, we
assess the accuracy of the ToF method by comparing to the
analytic n= 1 polytrope solution. In Section 4, we apply the new
tables to Jupiter models, and in Section 5 we apply them to
Saturn. In Section 6, we connect representative interior models to
thermal wind models to predict the wind decay depth profiles.
Observing notoriously low atmospheric metallicities of our Jupiter
models, we discuss further influences in Section 7. Section 8
concludes the main body of the paper. In Appendix A.3 we
introduce the ToF7 tables for public usage.

2. Theory of Figures

The ToF is described in Zharkov & Trubitsyn (1978), and
the coefficients up to the third order are presented therein.
Nettelmann (2017) followed their notation and calculated the
fourth-order coefficients. We note that fifth-order coefficients
were presented in Zharkov & Trubitsyn (1975) and adopted by
Ni (2020) for application to Saturn. Building on the work of
Nettelmann (2017), we here conduct the expansion of ToF to
the seventh order, meaning that the even harmonics up to J14
can be calculated.

Both the ToF and CMS methods assume that surfaces of equal
potential U exist on which density and pressure are constant. One

can show that this assumption holds for planets in hydrostatic
equilibrium that rotate along cylinders, e.g., if their rotation rate
can be expressed as s ew w= w( ) 

with axis distance s. Rigid
rotation and no rotation meet this condition. For rotation along
cylinders, the odd harmonics J2n+1 disappear. However, the Juno
measurements at Jupiter (Iess et al. 2018; Durante et al. 2020) and
Cassini Grand Finale at Saturn (Iess et al. 2019) revealed that
these planets’ odd harmonics are nonzero. Instead, they are of the
order of 0.1× 106, comparable to the values of J10, J12, and
Saturn’s uncertainty in J6. Based on the commonly used approach
of using the thermal wind equation (TWE) to infer the density
anomalies (Kaspi et al. 2010; Kaspi 2013), the depth of the wind-
induced deviation from cylinder rotation has been inferred to be
about 3000 km (∼ 0.035 RJup) in Jupiter (Kaspi et al. 2018) and
9000 km (∼ 0.14RSat) in Saturn (Galanti et al. 2019). These
results are consistent with the tangent-cylinder model of Dietrich
et al. (2021), which goes beyond the TWE simplification by
including not only the wind-induced density perturbation but also
the associated gravitational perturbation, which has long been
argued to be significant (Zhang et al. 2015). Taking into account
also constraints from the observed secular variation of the
magnetic field on deep flows (Moore et al. 2019) suggests a
somewhat steeper decay function for the winds, with the zonal
flow extending inward on cylinders almost barotropicaly to a
depth of about 2000 km on Jupiter and 8000 km on Saturn, and
then the winds decay abruptly within the next 1000 km (Galanti &
Kaspi 2021). While the nonasymmetric gravity field is important
for these width depth issues, here we have to neglect the
asymmetries, as otherwise neither the ToF nor the CMS method
could be applied.
In the absence of tides, the problem at hand is axisymmetric

and thus 2D: r, ϑ. In ToF, the description is further reduced to
1D by introducing the mean radius coordinate l. Spheres of
radius l are defined by the condition that they enclose the same
volume as the equipotential surface rl(ϑ),

l d dr r
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On the surface of the planet,
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with R(π/2)= Req. In ToF, the potential is thus constant on
spheres. Both the total potential U(l) and the axisymmetric 2D
shape rl(ϑ) are expanded into Legendre polynomials. One can
write

U l
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while the shape of an equipotential surface, also called level
surface, is given by

r l s l P1 cos , 4l
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where the s2k(l) are the figure functions. The condition that U(l)
is constant on spheres of radius l implies that A2k= 0 for k> 0.
These expansions are carried out up to an order O. In the
absence of tides, U is a superposition of only the gravitational
potential V and the centrifugal potential Q so that U= V+Q
and A A Ak k

V
k
Q

2 2 2= +( ) ( ). By definition, the gravitational
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harmonics J2n can be obtained in the ToF as

J R R S 1 , 5i m
i

i2 eq
2

2= -( ) ( ) ( )

where the integrals S2i, not to be confused with the figure
functions s2i, are given by Equation (A7) in the Appendix.
However, using Equation (A7) for the Sn and the ToF expansion
coefficients to calculate the functions fn on which the Sn depend
(see Equations (A7) and (A9) in the Appendix) implies that only
information on the equatorial radius rl(π/2) enters the computa-
tion of the J2n, while information on the full shape r(l, θ) is
reduced to the order of the expansion, that is, up to P14. An
alternative method is to calculate the integrals over latitude
explicitly. In Section 3.3 we compare both methods. For details on
how the ToF coefficients are computed and for an example of the
machine-readable ASCII tables that contain their values for public
usage, see Appendix A.3. Moreover, to facilitate the application of
our ToF7 tables, we share computer routines for read-in of the
tables and documentation at https://doi.org/10.6084/m9.
figshare.16822252.

3. Validation against the n= 1 Polytrope

The n= 1 polytropic planet is specified by a number of
conditions. First, the polytropic EOS P=K ρ2. Furthermore, the
gravity field of the rotating polytrope depends on the values of
qrot, equatorial radius Req, and planet mass M. The density profile
ρ(r) is not known in advance but is obtained from solution of the
equation of hydrostatic equilibrium, ∇P/ρ=∇U. In ToF, the
radial coordinate r is transformed to the level surface l, and the
equation of hydrostatic equilibrium reduces to dP/dl= ρdU(l).
The internal m–l relation is obtained by integrating the equation of

mass conservation, m l dl l l4
l

0
2òp r=( ) ( ) . The latter is a source

of numerical inaccuracy. We employ three different codes to
compute the solution to the rotating polytrope. All polytropic
models use qrot= 0.089195487 and GM= 126686536.1×
109 km3 s−1 as in Wisdom & Hubbard (2016).

Before we compare the results of our application of three
different codes and different orders of expansion of ToF to the
analytic, Bessel-function-based method of Wisdom & Hubbard
(2016) in Figure 1, we describe each of the three employed
methods in Sections 3.1–3.3.

3.1. Polytrope with MOGROP

In the MOGROP code (Nettelmann 2017), the constant K is
adjusted to fit the mass M. The mean radius Rm is adjusted to fit
Req. The radial grid, for this application, is split into N grid points,
out of which N/2 are equally distributed over 0–0.95 Rm, and the
other half equally over 0.95–1 Rm. Such a choice was found to
give a better match to the analytic solution than a split at 0.9 Rm or
deeper. Indeed, with MOGROP, we find that the accuracy
increases the farther out the separation is made, with a difference
up to an order of magnitude compared to a flat distribution. The
integrals in Equations (A7, A8) are converted into integrals over
density by partial integration and solved by the simple trapezoidal
rule. The integration of the equations of mass conservation,
dm/dl= 4π l2ρ(l), and hydrostatic equilibrium, (1/ρ(l))dP/
dl= dU/dl, is performed by the Runge–Kutta fourth-order
method. The J2n are computed using Equation (5) and denoted
by “4,7/Ne” and shown as green curves in Figure 1.

3.2. Polytrope with TOF-PLANET

The second code we use in our n= 1 polytrope comparison test
case is an independent implementation of the ToF algorithm using
the same coefficients but otherwise unrelated to the MOGROP
code. The two codes are therefore expected to reproduce very
similar solutions if given the same conditions. TOF-PLANET has
previously been applied in a Bayesian study of Saturn’s possible
interior (Movshovitz et al. 2020). Since for that purpose it was
necessary to run tens of millions of density models to draw
representative statistical samples, the code had to be optimized for
speed and memory usage. An optional feature allows the shape
functions to be explicitly calculated on a subset of level surfaces,
while the shape of the rest can be spline interpolated in the radial
direction. This “skip-n-spline” trick can provide a significant
speed advantage when high-resolution density profiles are needed.
We find that, even when a very high resolution of the density
profile is required to accurately calculate integrals over density,
there is no advantage in calculating the shape functions for more
than a few hundred level surfaces. The speed advantage of this
optimization applies mainly to high-resolution ToF7 calculations.
For lower resolution, and for most ToF4 runs, the interpolation
overhead ruins the effort. (ToF7 is much slower than ToF4 for a
given N owing to the many more terms appearing in each of the
shape function equations.)
To validate TOF-PLANET with both ToF4 and ToF7

coefficients, we use it to reproduce the n= 1 polytrope test of
Wisdom & Hubbard (2016). To make a direct comparison in a
consistent way, some care is needed. The mass and equatorial
radius are taken as in Wisdom & Hubbard (2016) and remain
fixed for the duration of the calculation. (The mass is taken from
the reported GM and with G= 6.6738480× 10−11 m3 kg−1 s−2.)
However, in Wisdom & Hubbard (2016) the rotation state is given
by the parameter qrot, whereas the ToF algorithm needs the related
parameter mrot. The conversion needs the ratio Req/Rm, which is
only available after the equilibrium shape is solved. To obtain a
self-consistent solution, we fix the planet’s rotation frequency ω
using the value qrot= 0.089195487. We then proceed with a guess
for Req/Rm and therefore mrot, solve for the shape function and
gravity field, integrate the hydrostatic equilibrium equation to
solve for pressure everywhere, update the density everywhere to
match the polytropic relation, renormalize the level radii grid to
match the reference equatorial radius, renormalize the density to
match the reference mass, recalculate mrot for the updated
Req/Rmean ratio, and rerun all the steps until a self-consistent
solution is found.
In this test, for both ToF7 and ToF4, we compute all integrals

with the trapezoidal rule and constant grid spacing. With TOF-
PLANET, we experimented and found that different integration
schemes and grid spacing schemes did not reduce substantially the
number of grid points required for a given precision. This should
not discourage, however, future users of our ToF7 tables from
optimizing their grids and integration schemes for their particular
cases.
The resultant J2n values appear in blue and are denoted by

“4,7/Mo” in Figure 1.

3.3. Polytrope with CEPAM

As in previous work (Ni 2020), we apply the CEPAM code
(Guillot & Morel 1995) to calculate the gravity field and shape
using ToF5 (Zharkov & Trubitsyn 1975). Here we have
expanded the code to address the case of the rotating n= 1
polytrope.

3
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For the n= 1 polytropic EOS P= Kρ2, the constant K is
determined in terms of mass conservation, and the mean radius
Rm is adjusted to reproduce the equatorial radius Req= 71,492
km. The initial density distribution is first given by that of a
nonrotating n= 1 polytrope z z zsincr r p p=( ) . The figure
function s2k(z) and total potential U(z) are computed using the
ToF5 as described in Zharkov & Trubitsyn (1975) and Ni
(2019). In its original version, CEPAM uses an automatic grid
refinement method that distributes the grid points in a way that
a distribution function of the variables pressure, temperature,
mass, radius, and luminosity changes by a constant amount at
the grid points. This method requires smooth behavior of the
variables and their derivatives. B-splines are used as the
interpolating polynomials, which exhibit the desired properties.
However, for number of grid points larger than 103, we did not
obtain stable solutions with CEPAM. Therefore, for a higher
number of grid points we switched to our own solution of the
pressure profile using the trapozoidal rule

P z P z z z U z U z0.5

6
j j j j j j1 1 1r r= + + -- - -( ) ( ) [ ( ) ( )][ ( ) ( )]

( )

with the outer boundary condition P(Rm)= 0 Mbar. In this
case, and in view of the fact that gravitational harmonics show

greater sensitivities to the external levels of a planet, more
radial grid points are taken for the outer part: N/2 equally
distributed over 0.85–1 Rm and the other half equally over
0–0.85 Rm. With CEPAM, we find that this choice yields a
modest optimum in accuracy.
Finally, the new density distribution is obtained from the

n= 1 polytropic EOS z P z Kj jr =( ) ( ) . This procedure is
iteratively performed until all changes in the density distribu-
tion are reduced to within a specified tolerance.
In the work of Ni (2020), the gravitational zonal harmonics

are calculated as weighted integrals over the internal density
distribution ρ(z) using the resulting figure functions s2k(z),
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Using the scaled mean radius z= l/Rm and abbreviating the

level surface Equation (4) as r= zRm[1+Σ(z, θ)], one can

Figure 1. Relative differences |ΔJn/Jn| between ToF solutions and the analytic Bessel-function-based solution (Wisdom & Hubbard 2016). Dashed lines (green and
blue): ToF4; lines with open symbols (green and blue): ToF7; red lines with stars: ToF5 using CEPAM and labeled 5/Ni; green lines and labeled 4/Ne or 7/Ne: using
MOGROP; blue lines and labeled 4/Mo or 7/Mo: using TOF-PLANET; gray bars labeled Gui18: CEPAM-WH16 from Guillot et al. (2018); black bars labeled Juno
(Du20): obs. uncertainty (Durante et al. 2020). X-axis shows number N of radial grid points used in this work. Green diamonds placed at N = 9000 are for extrapolated
J2n values based on linear regression on the three computed values at N = 1000, 2000, and 4000.
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express the function T(Rm, θ) as
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Table 1 shows a comparison of the even harmonics obtained
from Equation (7) and from Equation (5) for a typical number
of grid points N= 2000. The numerical accuracy in J2 is almost
the same for both of them. But the results from Equation (7) are
in better agreement with the analytic Bessel-function-based
solution for J4–J10, where the numerical accuracy for
Equation (7) is about 1–2 orders of magnitude better than that
for Equation (5).

3.4. Comparison of the J2n of the Uniformly Rotating Polytrope

In Figure 1 we show the relative deviations of the calculated
even harmonics from the analytic solutions of Wisdom &
Hubbard (2016) as a function of the number N of radial grid
points.

With the CEPAM code and ToF5, denoted by 5/Ni in the
figure, the numerical accuracy of all the calculated J2i shows good
convergence with an increased number of grid points. When the
number of grid points is increased beyond∼ 103, the numerical
accuracy in J4–J10 falls below the current observational
uncertainty (Juno D20) reported in Durante et al. (2020).
Moreover, the accuracy in all the harmonics J2–J10 is better than
the CEPAM-WH16 results from Guillot et al. (2018), who
reportedly applied ToF4, by a factor of roughly 5–100.

Using ToF4 and ToF7 in conjunction with the MOGROP code,
denoted by 4/Ne and 7/Ne in the figure, the accuracy
significantly improves with denser grid points. Apparently, this
code requires a factor of 100 more radial grid points than CEPAM
to obtain the same accuracy in J2 and J4. For these low-order
harmonics, ToF7 versus ToF5 provides a negligible improvement
in accuracy. The situation changes with J6. Here, CEPAM with
ToF5 levels off at a relative uncertainty of∼ 5× 10−5, while the
higher accuracy of ToF7 versus ToF5 becomes evident as N
increases beyond 20,000. However, the typical number of grid
points used for planet interior models ranges between 2000 and
4000. For such N values, the numerical accuracy in J6 with 7/Ne
is about the same as the current observational uncertainty reported
in Durante et al. (2020). ToF7 begins to pay off with J8 and
higher, even with MOGROP, where J8 becomes an order of
magnitude better than the observational one, 2.5 orders of mag in
J10, and 3 orders of mag in J12. We conclude that ToF7 is

sufficiently accurate to address the influence of the winds on J6
and higher, given current observational uncertainties.
Using the independent TOF-PLANET code of Movshovitz et al.

(2020), we obtained similar J2n values to those with the MOGROP
code; compare the blue and green lines in Figure 1. In particular,
the results for J4–J8 with ToF4 after convergence with grid point
number N agree, indicating that the remaining errors ΔJn/Jn of
2.5× 10−4 in J4, 10

−2 in J6, and 10−1 in J8 are due to the
truncation of the expansion of ToF4. The ToF7 values also agree
when convergence is reached, though this applies only to J10 and
J12 for high values of N> 10,000. Before convergence with N is
reached, the ToF7 errors deviate by a factor of a few, suggesting
that the radial grid discretization error matters, which can differ
between different implementations even if they use the same
trapezoidal rule.
The similar accuracy of MOGROP and TOF-PLANET is due to

similar methods for the numerical integration over density
(trapezoidal rule) and of the differential equations dm/dr and
dP/dr (Runge–Kutta). There is room for improvement. As an
example, we extrapolate the J2n values using linear regression on
the three solutions for N= 1000, 2000, and 4000 for each J2n. In
Figure 1, the resulting accuracy is conservatively compared to the
result for N= 9000, corresponding to the computational cost that
scales linearly with N and a small offset for each run. Apparently,
the gain in accuracy amounts to two orders of magnitude in J2 and
J4, and it is still better than compared to using 105 grid points.
This suggests that methods other than simply skyrocketing the
number of grid points may help to improve the accuracy of
numerical J2n computations.
We note that at present ToF is entirely outperformed by the

CMS method with regard to accuracy. Militzer et al. (2019)
reported relative inaccuracies of only 7.3× 10−9 in J2, 2.1×
10−10 in J4, 3.6× 10−8 in J6, 4.2× 10−8 in J8, 1.1× 10−7 in J10,
and 6.7× 10−9 in J12 for N= 217= 131,072 CMS layers, out of
which only 512 are treated explicitly, while the shape of
intermediate ones is obtained by interpolation.

4. Application to Jupiter

4.1. Jupiter Models

The models of this work assume a four-layer structure. By Yi
we denote the helium mass fraction in layer number i with respect
to the H/He system. Layer 4 is a compact rocky core. Layer 1 is
an atmosphere with a helium mass fraction of Y1= 0.238 as
measured by the Galileo entry probe. Layers 2 and 3 have the
same helium abundance (Y2= Y3), which is adjusted to yield an
overall helium mass fraction Y= 0.2700(4). A possible He-rain
region in Jupiter is represented by a jump in helium abundance
between layers 1 and 2. Transition pressures of 1–4 Mbar for P12
are considered, which are typical pressures where the Jupiter

Table 1
Comparison of the J2n Obtained from Equation (7) and from Equation (5)

Method J2 × 106 J4 × 106 J6 × 106 J8 × 106 J10 × 106

Bessel 13 988.51 −531.8281 30.118 32 −2.13212 0.174 07
Equation (7) 13 988.54 −531.8292 30.119 89 −2.13048 0.17446
J Ji i2 2

BesselD∣ ∣ 2.42 × 10−6 1.99 × 10−6 5.22 × 10−5 7.67 × 10−4 2.23 × 10−3

Equation (5) 13 988.55 −531.8207 30.135 06 −2.10486 0.19555
J Ji i2 2

BesselD∣ ∣ 2.52 × 10−6 1.40 × 10−5 5.56 × 10−4 1.28 × 10−2 1.23 × 10−1

Note. The numerical values in this table are for a typical number of grid points N = 2000 and using the ToF5 coefficients of Zharkov & Trubitsyn (1975). The Bessel
solution is taken from Wisdom & Hubbard (2016)
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adiabat reaches the closest point to the H/He demixing boundary
of H/He phase diagrams for protosolar H/He ratios as predicted
by first-principles simulations (Lorenzen et al. 2011; Morales et al.
2013; Hubbard & Militzer 2016; Schoettler & Redmer 2018).
Adjusting the local He abundance to the local P–T conditions
along the phase boundary yields an approximately linear increase
in Y; however, the gradient and width of the He-rain region
depend on the temperature profile assumed therein (Nettelmann
et al. 2015), which may range in Jupiter from adiabatic to modest
superadiabaticity (Mankovich & Fortney 2021). A recent analysis
of reflectivity data obtained for H/He samples that were pre-
compressed to 2–4 GPa in diamond anvil cells and further shock-
compressed to 60–180 GPa using the OMEGA layer indicates
that an even larger portion of the Jupiter adiabat may intersect
with the H/He phase boundary, as at the highest pressure where
evidence of demixing is seen, 150 GPa, the measured
temperatures were 10,000 K (Brygoo et al. 2021). Assuming a
flat T(P) phase curve at Mbar pressures, such a temperature
corresponds to ∼8 Mbar along the Jupiter adiabat (Hubbard &
Militzer 2016).

Although He droplets may carry specific elements such as Ne
with them downward (Wilson & Militzer 2010) and affect the

metallicity between the He-depleted outer and He-enriched inner
regions, we assume constant heavy-element mass fractions across
that boundary (Z1= Z2). Finally, between layers 2 and 3, the
heavy-element mass fraction is allowed to change. We use either a
constant Z3 value, implying a jump in Z at a transition pressure
P23, or a Gaussian-Z3 profile that starts with Z(P23)= Z2 and
smoothly increases toward a maximum Z3,max at P= 38 Mbar
near the core. The choice of 38Mbar is arbitrary and was taken to
be just above the usual core–mantle boundary pressures, which
are found to be around 40 Mbar in Jupiter. The two free
parameters in that setup to adjust J2 and J4 are Z1 and Z3 or Z3,max.
We employ the CMS-2019 EOSs for H and He (Chabrier et al.

2019) and mix them with the water EOS H2O-REOS with respect
to density only. The T–P profile is that of the H/He adiabat,
which begins at T= 166.1 K at 1 bar. We construct curves of
constant entropy (adiabats) by using the specific entropy values
sH(P, T) and sHe(P, T) provided in the tables for hydrogen and
helium (Chabrier et al. 2019) after adding a composition-
dependent entropy of mixing term s X X,mix H He2( ). For the
concentrations, we assume that helium is nonionized and that
hydrogen is either molecular or ionized, taking the degree of
ionization as in Nettelmann et al. (2008). Since we found these H/

Figure 2. J2n values scaled by 106, observed by Juno (white squares), corrected for latitude-dependent winds (brown squares; Kaspi et al. 2018), models with MH13
EOS (orange stars; Wahl et al. 2017b), models in Extended Data Figure 1 of Guillot et al. (2018; yellow), models with CMS-19 H/He EOS and P12 = 1, 3, 4 Mbar
(triangles), P12 = 2 Mbar and P23 varied from 5 to 20 Mbar, and constant Z3 (diamonds) or Gaussian Z3 (circles). All J2n values are multiplied by 106.
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He adiabats to be too dense to yield Jupiter models with
nonnegative atmospheric metallicity, we also perturb that adiabat
toward lower densities as described in Section 4.3.

4.2. Results for Jupiter’s Even Harmonics

In Figure 2 we show the even J2–J10 values from rigidly
rotating Jupiter models. Models adjusted to the Juno observations
of J2 and J4 (Durante et al. 2020) are shown in bluish color, while
models adjusted to the wind-corrected J2 and J4 values by the
corrections of Kaspi et al. (2018) applied to the J2, J4 values of
Durante et al. (2020) are shown in reddish color.

Due to imperfect fit to the J2, J4 values, the scatter in model
J2 and J4 values is larger than the observational uncertainty. For
J4, the scatter ΔJ4/J4 is about±2× 10−4 and of the same size
as the relative uncertainty due to using ToF7 in the MOGROP
code, while for J2 the latter relative uncertainty is with
7× 10−5 overwhelming. Still, these relative deviations are too
small to matter for the inferred metallicities. Guillot et al.
(2018) allowed for a similarly wide scatter in J2 model values
of±3.4× 10−5 and a wider scatter in J4 of±10−3 relative
deviations. They found that, nevertheless, the high-order
moments J8 versus J6 and J10 versus J8 were strictly confined
to a straight line. We confirm that behavior.

Notably, the model |J8| values are higher than the observed
value, and a trend in that direction is also seen for J10, although
the model J10 values are still within the 3σ observational
uncertainty. Wind models assuming rotation along cylinders
indeed predict a slight decrease in |J8| and J10 if the observed
wind profile of the southern hemisphere is applied to the entire
surface, while they predict an enhancement if the wind profile of
the northern hemisphere is used (Hubbard 1999). The wind model
by Kaspi et al. (2018) that was adjusted to explain the odd
moments of Jupiter observed by Juno yields a correction

qualitatively in the direction as predicted for the southern winds
and seen in the model values for rigid rotation, albeit
quantitatively stronger by a factor of two. This deviation may
have many reasons; clearly, further exploration of the connection
between interior and wind models is desirable.
For J6, the uncertainties from the application of ToF7 in the

MOGROP code, from observations, and from the wind contribution
are all small and of the same size. In contrast, model assumptions
such as the location of layer boundaries not only have a larger
influence on J6 but also yield a scatter around the observed value.
Hence, we conclude that Jupiter’s J6 is unique in that it neither is
adjusted nor seems to be significantly influenced by the winds,
and therefore it offers an additional parameter to further constrain
interior models. We find that models with a Gaussian Z3 and an
abrupt He-poor/He-rich transition at P12= 1–2 Mbar yield J6=
( 34.11–34.18) x10−6, slightly below the observed value, while
models with that transition deeper inside at P12= 2.5–3 Mbar
yield J6= ( 34.23–34.28) x 10−6, slightly above the observed
value. Constant-Z3 profiles and P12= 2 Mbar stretch from J6=
( 34.18 to 34.28) times 10−6 around the observed value
(34.200 7± 0.0067) x 10−6 upon shifting P23 from 5 Mbar
deeper down to 18 Mbar. Taken at face value, Jupiter’s observed
J6 value indicates that the He-depleted/He-enriched transition
occurs at around 2–2.5 Mbar.

4.3. Z Profiles for Jupiter

In Figure 3 we show the radial heavy-element distribution of
some of the models with Gaussian Z in layer No. 3. Models
with unmodified H/He adiabat appear in light blue and are
described in Section 4.3.1, while models with modified H/He
adiabat appear in red and are described in Section 4.3.2.

Figure 3. Internal heavy-element abundance profiles over radius (left panel) and over mass (right panel) of some of the Jupiter models in Figure 2 with Gaussian Z3
(blue), with constant Z3 (cyan), and for a model with ρ(P) along the adiabat modified to yield 1 × solar Z (red). Overplotted are the outer envelope Z-level of model
DFT-MD7.15 from Hubbard & Militzer (2016) (orange), the Z(m) profiles of the formation models A and C (dark blue) of Lozovsky et al. (2017) at the final stage of
mass accretion, after settling but before possible homogenization by mixing, and Z(m) profiles of Müller et al. (2020) for their envelope accretion models assuming a
hot-compact or a cold-extended state at the onset of gas accretion (green).
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4.3.1. Unmodified H/He Adiabat

All our models with CMS-19 EOSs that fit J2 and J4 have
negative Z1 values between −0.005 and −0.020 (−0.33 to
−1.33× solar). This is consistent with Hubbard & Militzer
(2016), who obtained−0.6ME of heavy elements in the
molecular region for their MH13 EOS-based model DFT-
MD7.15, which, with J4= 587 x 10−6 , is the one that comes
closest to the Juno value of -586.61 x10−6. For a conservative
estimate of their Z1 value we take 1 Mbar, the entry of their
Jovian adiabat into the H/He demixing boundary of Morales
et al. (2013), or 2 Mbar, the pressure medium in their H/He-
rain region. With a corresponding molecular envelope mass of
∼30ME and ∼53ME, respectively, we obtain Z1 between
−0.011 and −0.02 for model DFT-MD7.15. In contrast,
Debras & Chabrier (2019) found a variety of models for
nonnegative atmospheric Z values of 1× ZGal= 0.0167 using
CMS-19 H/He EOSs. We cannot reproduce the results of
Debras & Chabrier (2019) quantitatively.

The deeper the layer boundary for heavy elements is placed,
the higher will the deep interior heavy-element abundance
become, and the smaller the core mass (Nettelmann et al.
2012). With CMS-19 EOSs, the response of Mcore to P23 is
comparably weak, so that P23 can be placed as deep as 20 Mbar
before the compact core disappears. The thick blue model in
Figure 3 is for P23= 21 Mbar and has a core mass of only
0.25ME.

The nonexclusive compact core mass values of our models
range from 0.2 to 4.8ME for P12= 2 Mbar and Gaussian-Z
envelopes, from 0.6 to 6.0ME for constant-Z envelopes, and
from 1.2 to 3.8ME for wind-corrected models.

For Gaussian-Z deep envelopes, Z3,max can become quite
large toward the center. We obtained Z3,max values up to 0.5,
although larger values may be possible if the maximum of the
Gaussian curve is placed at the center, while we placed it
slightly off at 38 Mbar.

The mass of heavy elements in the deep interior below the
negative-Z envelope amounts to 7.5–10.1 ME. Assuming a
1× solar instead of negative-Z envelope would add another
3.8ME of heavy elements. A total of 11.3–13.9 ME of heavy
elements is consistent with the Jupiter core accretion formation
models A and C of Lozovsky et al. (2017). These models assume
solid surface densities of 6 and 10 g cm−2 and planetesimal sizes
of 100 and 1 km, respectively. Lozovsky et al. (2017) find that a

total amount of heavy elements of 9.3ME (A) and 16.4ME (C)
is accreted. Correspondingly, for the average Z value after
final mass accretion, Helled & Stevenson (2017) find
∼(0.03–0.05)×MJ= 9.5–16ME of heavy elements for model
A and a third model D, which assumes a solid surface density of
10 g cm−2 like model C. In Figure 3, models A and C are shown
after settling of heavy elements but before possible convective
mixing. Settling takes place if the partial pressure of ablated
incoming material exceeds its vapor pressure. The resulting Z(m)
profiles after formation resemble our interior models with
Gaussian Z3, although the Z gradient in the post-formation
models begins farther out at∼0.5MJ than at ∼0.2–0.3MJ as in
our models. On the other hand, a shallow, primordial composi-
tional gradient has been found to erode and to be erased in
present Jupiter if vigorous convection takes place in the envelope
(Müller et al. 2020), while a steep compositional gradient may
still persist within 0.2MJ. The present-state models for Jupiter of
Müller et al. (2020) are similar to our models with either
Gaussian Z3 or constant Z3 when the heavy-element-enriched
deep interior (or dilute core) is assumed to begin deep inside
at> 15 Mbar, except that our models underestimate the outer
envelope metallicity while the evolution models of Müller et al.
(2020) overestimate it, as they yield too small a present-day
radius.

4.3.2. H/He Adiabat Modification

Models with negative Z values are, needless to say, not
considered a viable solution. There are two obvious ways how
negative Z values in the atmosphere and outer envelope can be
circumvented. One possibility is to assume a superadiabatic
region above the region where J4 is most sensitive, which—for
a polytropic Jupiter model—is in the molecular envelope at
around 50 GPa (0.9 RJ). A superadiabatic temperature profile
may result from stable stratification. Christensen et al. (2020)
showed that meridional flows in a stably stratified, slightly
conducting region slow down the strong zonal flows and
suggested the existence of such a region in Jupiter as an
explanation for the truncation of the zonal flows, which,
according to recent combined analysis of magnetic field and
gravity field data, occurs rather sharply at 0.97 RJup (Galanti &
Kaspi 2021).
However, stable stratification does not necessarily result in a

superadiabatic temperature profile. Depending on its origin,

Figure 4. J2–J4 (left) and J6–J4 (middle) values of three-layer models with Z1 = 1 × solar and modified Jupiter adiabats. Only the red-highlighted model meets the
Juno constraints. Its adiabat is shown in the right panel (red curve).
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stable stratification can also be accompanied by a subadiabatic
temperature profile. For instance, in the absence of alkali
metals the opacity of the H/He fluid becomes sufficiently low
for the intrinsic heat to be transported by radiation along a
subadiabatic radiative gradient (Guillot et al. 1994, 2004),
leading to subadiabatic stable stratification according to the
Schwarzschild criterion. Superadiabatic gradients are predicted
in a Ledoux-stable, inhomogeneous medium of upward-
decreasing mean molecular weight. Clouds formed by
condensibles of higher molecular weight than the background
composition has can induce Ledoux stability if their abundance
is high enough. Such a scenario has been proposed for the
presumably water-rich atmospheres of the ice giants (Leconte
et al. 2017). Water clouds may occur in Jupiter at 100 bars, and
silicate clouds at 1000 bars, both below the level that so far
could be probed by the Galileo entry probe (22 bars) and Juno
MWR remote sensing (Li et al. 2020). Therefore, clouds are
candidate causes for superadiabatic stable stratification.

Another possibility to avoid negative metallicities is to
perturb the H/He adiabat toward lower densities. The CMS-19
hydrogen EOS shows excellent agreement with a variety of
experimental data ranging from shock compression experi-
ments for H and D at various initial conditions to isentropic
compression (Chabrier et al. 2019). At 50 GPa, the H EOS is
even slightly stiffer than the experimental data. Only the helium
EOS shows significantly higher densities in the 20–150 GPa
area than inferred from the shock compression experiments
(Chabrier et al. 2019). Although the good agreement between
the theoretical P–ρ relations and the experiments, as well as
between CMS-19 H/He adiabats and MH13 EOS adiabats, is
far from suggesting that the CMS-19 H/He EOS would
significantly overestimate the density along the Jupiter adiabat,
we here perturb it toward lower densities. We conduct a three-
parameter study where we vary the maximum deviation maxdr ,
the pressure entry point Pstart, and the pressure exit point Pend.
Between Pstart and Pend, δρ adopts its maximum at the
logarithmic mean pressure value and is otherwise linearly
interpolated as Plogdr ( ). We explore Pstart values between 1
and 50 GPa and Pend values between 50 and 150 GPa. The
smaller Pstart and Pend, the lower the |J4| and |J4|/J2 ratio. We
find Pstart� 30 GPa necessary in order to have a noticeable
influence on J4. Conversely, higher Pend values lead to a
stronger reduction on J2. The question we ask is, for what
values of dr, Pstart, and Pend can a model be found with a
1× solar homogeneous Z?

For a homogeneous, unperturbed adiabat at Y1= 0.238 and
Y2 adjusted to meet Y= 0.27, both |J4| and J2 turn out to be
significantly too large. This is in contrast to the result by
Debras & Chabrier (2019), who could match J2 at 1× ZGal.
Thus, we need Pstart to be sufficiently low for J4 and Pend

sufficiently high for J2. We find such an optimized solution for
Pstart= 26 GPa, Pend= 150 GPa, and δρ=−0.1257, i.e., a
maximum reduction of the H/He adiabat by 12.57%. The
resulting P–ρ profile is shown in Figure 4(c), while the
ensemble of models in the J2–J4 and J6–J4 space is shown in
Figures 4(a) and (b). Notably, among the wide spread of
intermediate models in the J2–J4–J6 space, the one model (red
cross) that meets the Juno J2, J4 values yields J6= 34.20 x
10−6, in excellent agreement with the Juno observation. For
this model, the total Z amounts to 15.6ME, in good agreement
with the formation model of Lozovsky et al. (2017). This

exploration suggests that winds on Jupiter have a negligible
influence on J6.

4.3.3. Models for Enhanced 1 bar Temperature

In this section, we present Jupiter models for T1bar= 175 K
and T1bar= 180 K. Here, we do not modify the adiabat or EOS,
and we adjust the J2, J4 model values to the wind-corrected
observed values using the corrections of Kaspi et al. (2018).
Such warmer models are not preferred, first, because these 1

bar temperatures significantly exceed the Galileo entry probe
measurement of 166.1 K. This would not have posed a problem
if a mechanism had been studied that predicted a superadiabatic
region underneath the 22 bar region, wherein temperatures and
thus entropy would rise to the level corresponding to these or
even higher 1 bar temperatures. Clouds may have a warming
effect if they stabilize the region of condensation (Leconte et al.
2017); however, latent heat release from condensation opposes
this effect and leads to a cooler interior underneath the cloud
region, as has been discussed for ice giant atmospheres
(Kurosaki & Ikoma 2017). Second, Jovian adiabats for
different H/He EOSs tend to intersect with H/He demixing
curves at best in a small region at 1–3 Mbar. At present, only
the rather cool MH13 EOS-based Jupiter adiabat for 166.1 K
shows a clear intersection by about 450 K (Hubbard &
Militzer 2016) with the state-of-the-art first-principles-based
H/He demixing curve of Morales et al. (2013), while the
intersection with the lower demixing curve Tdmx(P) of
Schoettler & Redmer (2018) is only marginal (Mankovich &
Fortney 2021). Since enhancing T1 bar from the Galileo value of
166.1 K by only 14 K leads to an enhancement by ∼350 K at 1

Figure 5. Outer-envelope heavy-element mass fraction (water) and J6 values of
Jupiter models with 1 bar temperature of 166.1 K for transition pressures from
left to right of P12 = 2, 3, 6 Mbar (blue); 175 K for P12 of 2, 6, 8, 8.5 Mbar
(red); and 180 K for P12 of 2, 6, 8–10 Mbar (orange). The models are calculated
using the unmodified H/He CMS-19 EOS and fit the wind-corrected J2, J4
values using the corrections of Kaspi et al. (2018). Horizontal dotted lines
indicate ±1 × solar metallicity Zsolar = 0.015, while vertical lines indicate the
observed J6 value of Durante et al. (2020; dashed) and its wind-corrected value
(dotted–dashed).
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Mbar and even by 460 K at 2 Mbar according to our CMS-19
EOS-based Jupiter adiabats, higher surface temperatures might
let the demixing region in Jupiter entirely disappear. We stress
that although our CMS-19 Jupiter adiabat for T1 bar= 166.1 is
rather dense, it is also rather warm and, with 5700 K at 1 Mbar
and 6840 K at 2 Mbar, outside of the first-principles-based
demixing regions (Morales et al. 2013; Schoettler &
Redmer 2018).

On the other hand, the recent experimentally predicted phase
boundary inferred from an observed upward jump in
reflectivity at 0.93 Mbar and downward jump at 1.5 Mbar,
which are interpreted as the entry and exit of the compressed
H/He sample in and out from the demixing region (Brygoo
et al. 2021), suggests high demixing temperatures of 10,000 K.
Primarily it is this finding that motivates us to allow for higher
surface temperatures and for higher transition pressures, which
we allow to reach the maximum where the core mass
disappears, or for practical reasons drops below 1 ME.

In Figure 5 we show the resulting outer envelope metallicity
Zatm and J6 values. Obtaining 1× solar metallicity requires
T1bar of 180 K (orange curve) or higher. While not negligible,
additional uncertainties in the atmospheric helium abundance
and J4 are small and not considered here. Notably, for
T1 bar= 180 K and at the transition pressure between the He-
poor and He-rich regions at P12= 6 Mbar, we obtain 1× solar
metallicity throughout the interior down to∼ 0.4RJ, thus a
largely solar-metallicity envelope. At 6 Mbar, the temperature
amounts to 10,400 K and is thus at the upper limit of the
experimentally inferred demixing temperature (Brygoo et al.
2021). For that model, the static J6 value is consistent with the
observed value and its small wind correction according to
Kaspi et al. (2018). As is well known (Nettelmann et al. 2012),
Z1 rises with P12.

If there were no uncertainties in the H/He EOS, these
models would suggest that the internal Jupiter adiabat lies at
higher entropy than the observed adiabat down to 22 bars, and
that Jupiter’s envelope metallicity is not much higher than
1× solar.

5. Application to Saturn

5.1. Saturn Models

The Saturn models of this work are built in the same manner
as the Jupiter models described in Section 4.1, although in the
real planets, helium rain may induce a dichotomy (Mankovich
& Fortney 2021). We fit the Saturn models to the observed J2,
J4 values without accounting for the wind corrections. We
assume that a rotation rate of 10:32:45 hr, as suggested by
Helled et al. (2015), would yield a best match of interior
models to the observed pre-Cassini Grand Finale gravity and
Pioneer and Voyager shape data. Within the given uncertainty
of 46 s, this value is consistent with the more recently
suggested rotation rates of 10:33:34 hr (Militzer et al. 2019),
using the Cassini Grand Finale gravity and the same shape data,
and with the rotation rate of 10:33:38 hr m s

m s
1 19
1 52

-
+ inferred from the

comparison of Saturn ring wave frequencies observed by
Cassini with theoretical predictions for f-mode frequencies as a
function of the planet’s rigid-body rotation rate (Mankovich
et al. 2019). We set the 1 bar surface temperature to 135 K in
accordance with the Voyager measurement of 135± 5 K
(Lindal 1992). The outer boundary is placed at a reference

radius for the Jn of 60,330 km, which corresponds to the 0.1 bar
level.
Saturn’s atmospheric He abundance can be considered

poorly known, as different estimates only agree in finding
depletion compared to the protosolar value Yproto∼ 0.27 but
disagree about the level of depletion. The lowest estimate
Y1= 0.06± 0.05 stems from a combined Voyager radio
occultation and infrared spectra analysis (Conrath et al.
1984), while the highest estimate Y1= 0.18–0.25 stems from
a reanalysis of only the Voyager infrared data (Conrath &
Gautier 2000). More recent Cassini-data-based estimates fall in
between, ranging from Y1= 0.075–0.13 from Cassini infrared
remote sensing (Achterberg & Flasar 2020) to
Y1= 0.158–0.217 from Cassini stellar occultations and infrared
spectra (Koskinen & Guerlet 2018). A low value of 0.07± 0.01
is independently inferred from shifting the most recent H/He
phase diagram of Schoettler & Redmer (2018) to reproduce the
He abundance measurement by the Galileo entry probe on
Jupiter, in conjunction with the MH13 H/He EOS and adiabat
(Mankovich & Fortney 2021). When the same procedure is
applied to the H/He phase diagram of Lorenzen et al. (2011) in
conjunction with the SCvH-H/He EOS, which both are now
outdated, the yield is Y1= 0.13–0.16 (Nettelmann et al. 2015),
in between the most recent observational estimates (Achterberg
& Flasar 2020; Koskinen & Guerlet 2018). Here we construct
models for the two moderate depletion values Y1= 0.14 and
Y1= 0.18 using the CMS-19 EOS and allow for a wider spread
of 0.06–0.18 when using the modified CMS-19 adiabat. For
comparison, Galanti et al. (2019) used Y1= 0.18± 0.07,
Militzer et al. (2019) used Y1= 0.18–0.26, and Ni (2020) used
Y1= 0.12–0.23. Lower Y1 values yield higher atmospheric and
higher maximum deep interior metallicities (Militzer et al.
2019; Ni 2020).
Saturn thermal evolution models with H/He phase separa-

tion and helium rain predict that in Saturn helium rains down to
the core, forming an He-rich shell of 0.90–0.95 mass percent
helium atop the core (Püstow et al. 2016; Mankovich &
Fortney 2021). If the helium abundance between the onset
pressure of H/He phase separation and the He shell follows an
H/He phase diagram, it increases gradually with depth.
However, these thermal evolution models assume for simplicity
a constant low envelope metallicity. How deep He droplets can
sink in a high-Z and thus higher-density deep interior, as
predicted by Saturn models constrained by gravity and ring
seismology data (Mankovich & Fuller 2021), remains to be
investigated. For simplicity, we here represent the He gradient
by a jump in the He abundance at a pressure of P12= 2–4 Mbar
deep within the He-rain region, for which predicted onset
pressures in present Saturn range from 0.8 Mbar (Militzer et al.
2019) to 2 Mbar (Mankovich & Fortney 2021). Below P12, we
keep the He/H ratio constant with depth.
Typical core-envelope pressures are around 15 Mbar. We

vary P23 between 4 and 7 Mbar and let the Gaussian-Z3 profiles
adopt its maximum at 12 Mbar if the core is compact (Z= 1) or
farther out at 6–12 Mbar if the core is dilute and thus more
extended. Dilute cores are created by setting Z= 0.6–0.7 in the
core, the remaining constituent being the H/He/Z mix from
envelope layer No. 3 above.

5.2. Results for Saturn’s Even Harmonics

Figure 6 shows the even Jn values from our Saturn models,
from the two Saturn models of uniform rotation (UR) in Iess
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et al. (2019), and from the Cassini Grand Finale observed
values (Iess et al. 2019). Unlike the case of Jupiter, Saturn’s
observed even |Jn| values are clearly enhanced over the model
predictions for n� 6. The enhancement can be explained by
rotation along cylinders that rotate approximately but not
exactly with the observed speeds of clouds in the equatorial
region and midlatitude region up to ±40° (Militzer et al. 2019).
The observed Jn can also be explained by a thermal wind if a
little deviation of the deeper wind speeds from the cloud speeds
is allowed (Galanti et al. 2019). The enhancement of the even
Jn by the zonal winds is quite substantial. Already for J6, we
find a 4.2%–5.3% influence, although it diminishes to 2.4%–

3.7% for the modified adiabat. Iess et al. (2019) obtain slightly
lower UR model J6 values and a 5.5% effect, while Galanti
et al. (2019), who allow for a much wider scatter in model J4
values of ±40× 10−6, obtain UR model J6 values up to
87× 10−6, which encompasses the observed value. However,
the mean of their distribution for fast, uniform rotation lies at
82× 10−6, implying a 5.5% influence of the winds on J6,
consistent with this work. The strong influence of the winds
seen in J6 suggests that also J4 and J2 are affected by the winds.
In Section 6, we investigate whether the observed winds are

consistent with a smaller influence on J6 than found in previous
work (Iess et al. 2019).

5.3. Z and ρ Profiles for Saturn

Saturn interior models allow for higher atmospheric
metallicities than Jupiter interior models when using the same
H/He EOS. For instance, Nettelmann et al. (2013) obtains
1.5–6× solar for Saturn and fast rotation of 10:32:00 hr, but
only 0–2.5× solar for Jupiter when applying H-REOS.2 EOS.
Wahl et al. (2017b) obtained only 0–0.7× solar for Jupiter
using MH13 EOS, while Militzer et al. (2019) obtained
1–4× solar for Saturn, consistent with Ni (2020), who obtained
0–6× for Saturn by considering a wide range of atmospheric
He abundances, rotation rates, and wind corrections.
Here we obtain Z1= 0.02–0.06 (1.5–4× solar) for nominal

He abundances Y1 of 0.14–0.18, and we obtain compact
nonexclusive core masses of 5–8.6 ME, meaning that solutions
with lower core masses are expected to be possible for deeper
transition pressures than considered here. Representative Z and
ρ profiles are shown in Figure 7. Compact rocky cores yield
higher central densities than suggested by the 16th–84th
percentile probability range of models of Movshovitz et al. (2020),

Figure 6. J2n values multiplied by 106 for Saturn: Observed J2n values from the Cassini Grand Finale (CGR; gray squares; Iess et al. 2019), ToF7 uncertainties are
overplotted to the observed values (cyan), interior model results assuming uniform rotation between 10h32m44s and 10h47m06s (Iess et al. 2019; golden). This
work’s models: blue upward-pointing triangles: adiabatic, Y1 = 0.14, Gaussian Z3; blue downward-pointing triangles: adiabatic, Y1 = 0.14, constant Z3; blue circles:
Y1 = 0.18, superadiabatic; red circles: modified H/He adiabat, dilute core, Y1 = 0.18; red diamonds: modified H/He EOS and Y1 between 0.16 and 0.06, dilute core,
Gaussian Z3.
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which are constrained by the gravity data. The latter models agree
well with density distributions with inhomogeneous Z profiles
constrained by Cassini ring seismology data (Mankovich &
Fuller 2021). However, we were not able to find a model with a
low-density core and the original H/He EOS, as such cores extend
far out and yield J2 values that are too large. Applying the same
modification to the Saturn adiabat as for the Jupiter-optimized
adiabat (see Section 4.3.2), we are able to obtain Saturn models
with extended, low-density cores, in agreement with the likelihood
distributions. As we mix H/He, with little addition of ice, into the
rocky core region, we need rather high H/He amounts of 30%–

40% by mass (Figure 7, right panel) to reduce the core densities to
6–7 cm−3 (left panel). This is consistent with Mankovich & Fuller
(2021), who need 30%–40% of H/He for rocky cores but only
0%–10% for icy cores. When also allowing the atmospheric He
abundance to decrease down to 0.06, we obtain up to 7× solar
atmospheric Z.

Even in our dilute core models, the high-Z part is
concentrated in the innermost 0.4 RSat at pressures above 4
Mbar. For comparison, seismic constraints are required
(Mankovich & Fuller 2021) to extend the Z-gradient zone,
depending on the assumed functional form of Z(r), out to
0.6–0.7 RSat, where the pressure is around 1 Mbar. While we
did not explore such extended Z gradients in order to keep them
separated from the He-gradient zone, which we placed at at 2–4
Mbar, this comparison suggests that in the real Saturn heavy-
element and helium gradients overlap. Together, the Z and He
abundance profiles of our models suggest that the composi-
tional gradient required to explain the ring seismology data
could be due to both a diffuse core (inner region) and helium
rain (outer region).
In comparison to Jupiter, the total amount of heavy elements

is clearly higher in Saturn. Models with the unperturbed H/He

adiabat yield MZ∼ 12.6–13.6ME for Saturn and 7.5–10.1ME

for Jupiter (Section 4.3.1). Lower densities along the H/He
adiabat and warmer interior temperatures would increase these
values.

6. Including the Zonal Wind Profiles

Our Jupiter models with a modified or unmodified H/He
adiabat allow for a largely homogeneous interior down to 0.4
RJ with a small rock core (Figure 3) and for J6 unaffected by
the winds (Figure 2). Our Saturn models allow for larger static
J6 values in the range (82.5–84.0)× 10−6 than previous work
(81.8× 10−6); see Figure 6.
Here we investigate whether such models for Jupiter and

Saturn are consistent with the observed wind profiles and odd
and even Jn values. We pick one representative Jupiter model
(unmodified adiabat, P12= 2, P23= 20 Mbar, compact core of
mass 1.26 ME) and the Saturn model highlighted in red in
Figure 7 (modified H/He adiabat, dilute core, Y= 0.14).
The wind modeling approach is the same as described in

Galanti & Kaspi (2021), except that the Saturn rotation period
to which the wind speeds refer is adjusted to the value of the
interior model, 10h32m45s. We use either only the gravity data
to constrain the wind decay depth profiles, as in Kaspi et al.
(2018) and Galanti et al. (2019), or both the gravity and
magnetic field data combined (grav+MHD), as in Galanti &
Kaspi (2021). As an uncertainty in the static J2n values we take
the Tof7 errors produced by MOGROP for N= 4000.
With this approach, we are able to find fits that reproduce all

the observed Jn within the observational uncertainties. The
wind profiles and decay depths are shown in Figure 8. This
implies that extending the wind profiles, roughly as they appear
at the cloud level, gives a good match to the difference between
the Juno and Cassini measurements and our preferred models.

Figure 7. Density profiles (left panel) and radial Z profiles (right panel) of Saturn models with a compact core (blue) or a dilute core of xR = 0.6–0.7 and using the
Jupiter-optimized adiabat (red), approximate 2σ-likelihood distribution of Movshovitz et al. (2020; gray), and likelihood mean from seismic constraints (green)
adapted from Mankovich & Fuller (2021) assuming a linear Z(r) (thick dashed) or a sigmoidal Z(r) (right panel only). The highest atmospheric Z levels of the red
curves are for lowest atmospheric Y = 0.06.
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Nonetheless, there is enough freedom in these solutions that
other wind profiles with small shifts to the wind profiles can
give fitting solutions as well (Galanti et al. 2021). For these
wind profiles, grav and grav+MHD yield similar solutions.
Jupiter’s wind profile is slightly less well matched (red and blue
lines more strongly deviate from the observed profile (gray)
than does the black dashed line), while for Saturn, the
shoulders at 20°–40° latitude are somewhat better matched
than in previous work (Galanti et al. 2019; Iess et al. 2019).
The wind decay depths for grav only are slightly steeper than
for previous interior models and thus closer to the grav+MHD
solutions.

For each of Jupiter and Saturn, we picked only one specific
interior model to calculate the wind contribution and optimize
for the agreement with the observed wind velocities and
gravitational harmonics. The fact that these two interior models
allowed for solutions within the observed values and the ToF7/
MOGROP uncertainty strongly suggests that there are further
interior models for which such a fit can be obtained. This
means that the joint interior and wind solutions are not unique,
given the uncertainties we allowed for. In addition, alternative
interior models which fit all the Jn when combined with a wind
model may be possible for different EOSs and wind models,
such as the MH13 H/He EOS and wind models that account
for the oblate shape (Cao & Stevenson 2017) or solve for the
gravo-thermal wind equation that accounts for the dynamic
self-gravity of the flow (TGWE; Kong et al. 2018; Wicht et al.
2020). We note that Galanti et al. (2017) find that these
modified wind models introduce corrections that are an order of
magnitude smaller for most Jn, while Dietrich et al. (2021)

obtain corrections of ∼60% and ∼20% for J3 and J5,
respectively, when including the dynamic self-gravity for
polytropic models and an additional correction of ∼40% and
∼10% when accounting for Jupiter-model specific background
density and gravity profiles.
Internal flow structures, which are decoupled from the

observed cloud-level winds, can also be found to fit the Jn
(Kaspi et al. 2018; Kong et al. 2018) and thus lead to
nonuniqueness of the solutions (Kong et al. 2018). Here we
conclude for nonuniqueness because of uncertainties in the
interior models, the high-order Jn to be fitted, and the wind
profile.

7. Discussion

Our Jupiter and Saturn models exhibit a strong trend toward
low envelope metallicities that extend deep into Saturn’s
interior to∼ 0.4 RS (Figure 7) or are negative in Jupiter
(Figure 3). We have attributed these model properties to
possible uncertainties in the H/He EOS; however, one may
think of further processes.

7.1. Z and the Adiabatic P–T Profile

We did not include Z in the computation of the adiabatic P
−T profile. This leads to a slight overestimation of the
temperatures along the adiabat. Mixing first the EOSs H/He-
REOS and H2O-REOS linearly and then computing the
adiabats as a function of Z using thermodynamic integration
described in Nettelmann et al. (2012) shows that 10× solar
water would lower the temperatures by only −100 K in the

Figure 8. Wind profiles (top) for Jupiter (left) and Saturn (right) using the constraints from observed gravity data only (blue) or also from MHD (red). The black
dashed lines for Jupiter are taken from Kaspi et al. (2018; grav only), while for Saturn they are adjusted from Galanti & Kaspi (2021; grav only). Solutions for grav
+MHD from that previous work are not shown since the solutions are close to the ones from this work. The gray lines in the top panels show the observed profiles
(Tollefson et al. 2017).
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10–100 GPa region relevant for J2 and J4. Conversely, an
adiabat more rich in atomic helium would be warmer.
Considering molecular volatiles in the entropy calculation
would tend to make the adiabat slightly cooler and denser and
therefore lead to even lower envelope metallicities, but our
estimate shows that this effect should be small.

7.2. H/He Demixing?

Inspired by the recent experimentally derived H/He
demixing boundary that extends over a large region from
∼0.9 Mbar to ∼10,000 K (8–10 Mbar) in Jupiter (Brygoo et al.
2021), one could consider helium abundances that increase
over a wide region, allowing for more heavy elements to
replace helium. However, our variation of the H/He adiabat
showed that reduced densities are needed near the top and
beyond (∼20 GPa) the demixing region. Exploration of the
helium abundance profile deep inside may thus have too little
influence to solve the low atmospheric metallicity problem in
Jupiter.

7.3. Deep Internal Flows in Jupiter?

Guillot et al. (2018) constrained the maximum amplitude of
a deep wind that would extend along cylinders all the way to
the center and be consistent with the even Jn to< 10 m s–1.
Kong et al. (2018) found that a flow with 1 m s–1 down to
0.8 RJ can explain the odd Jn, but including the influence of the
induced magnetic field through ohmic heat dissipation bounded
by the total convective power (Wicht et al. 2019), Li et al.
(2020) are able to limit this depth to only 0.96RJup results.
Moore et al. (2019) even constrain the flow velocity to a few
millimeters per second at depths of 0.93–0.95 RJ by explaining
the observed secular variation of the magnetic field with
advection by the flow.

In contrast, in order to lift Jupiter’s atmospheric metallicities
substantially, a much stronger and retrograde deep wind in the
interior where J2 and J4 are sensitive would be needed. This
deep wind must not be seen in the high-order gravity data, in
the secular variation of the magnetic field, or in the System III
rotation period derived from magnetic field observations. It
would be seen in the moment of inertia, the static Love
numbers, and the shape. At present, there is no indication of a
strong (>10 m s−1) wind in Jupiter’s deep interior.

7.4. Uncertainty in the Shape due to Dynamical Effects?

With both the CMS and ToF methods the interior models are
derived from a self-consistent, static solution between the
gravity field and the shape; however, the shape and the gravity
field of the planet can be influenced by various dynamic effects.

For instance, Kong & Zhang (2020) propose that the winds
are shallow while convective motions could induce a zonal
flow disjunct from the surface winds. They find a dynamic
influence of 1 × 106 in J2 and 0.2× 106 for J4. While small,
this effect on J4 could be noticeable in the interior models.
However, this estimate of the dynamic contribution due to
convective motions is based on an Ekman number of 5 × 10−5,
about 10 orders of magnitude larger than in the real Jupiter and
Saturn. It is therefore possible that the dynamic contribution
from convective motions on the low-order J2n is smaller in the
real planets.

For Saturn, the uncertainty in its deep rotation rate maps on
an uncertainty in equipotential shape of about 120 km (Helled

& Guillot 2013), far outweighting other influences like from
the winds, which lift the dynamical height above a reference
isobar to no more than ∼20 km (Buccino et al. 2020).
Moreover, the zonal flows on Saturn are symmetric enough to
be described by rotation along cylinders up to midlatitudes
(Militzer et al. 2019). In that case, equipotential theory still
applies. We do not suggest that dynamic effects play a major
role for the uncertainty in Saturn’s shape and gravity field.
For Jupiter, the uncertainty in rotation rate is tiny, so that it is

the influence of the winds of 2–4 km (Buccino et al. 2020)
against which further effects must be compared. Such are the
tidal bulges from the Galilean satellites. Nettelmann (2019)
estimated a maximum elongation of 28 km in the direction of
Io from static tidal response. The tidal flows around Jupiter are
a dynamic perturbation and subject to Coriolis force (Idini &
Stevenson 2021; Lai 2021). The flow and the Coriolis force
acting upon it lead to dynamic contributions to the Love
numbers knm. Juno measurements revealed a deviation by 1%–

7% from the static k2 value (Idini & Stevenson 2021).
Approximating the corresponding shape deformation h2 by
h2= 1+ k2 yields a tentative estimate of a (1%–

7%)× 28 km∼ (3–21) km additional shape deformation due
to dynamic tidal response, which exceeds the wind effect. The
possible importance of (periodic) perturbations on Jupiter’s
interior structure inference remains to be investigated.

7.5. A Cold Hot Spot?

Juno MWR data revealed that the ammonia abundance
below the cloud level shows strong vertical and latitudinal
variation (Guillot & Fletcher 2020). It is therefore possible that
Jupiter’s atmosphere is not everywhere well mixed where
observations were taken. Consequently, the abundances and
temperatures measured by the Galileo entry probe in a hot spot
may not be representative of Jupiter’s global atmosphere. On
the other hand, analysis of Voyager 1 and 2 radio occultation
data spanning a broad range of latitudes between 70° south and
the equator yielded a 1 bar temperature of 165 K +/−5 K
(Lindal et al. 1981), consistent with the Galileo measurement of
166.1 K in the hot spot. Present data therefore do not indicate
that hot spots, in which deeper layers are exposed that appear
brighter than surrounding regions at higher altitudes, were
particularly cool regions, allowing us to suppose warmer global
average temperatures. Rather, it is possible that the hot-spot
temperature gradient is steeper than the global one since it is
close to a dry adiabat (Seiff et al. 1998), whereas moist regions
above the water cloud level may follow a less steep P–T profile
(Kurosaki & Ikoma 2017), implying an even cooler interior
below the cloud base. A colder and thus denser interior would
strain the low-metallicity models even more.

8. Conclusions

We present the expansion of the ToF (Zharkov &
Trubitsyn 1978) from formerly fifth order (Zharkov &
Trubitsyn 1975) to seventh order. The coefficients are available
in the form of five read-in online tables and allow the
computation of the even gravitational harmonics J2–J14 and the
shape of a rotating fluid body in hydrostatic equilibrium.
We estimate the numerical accuracy of the ToF method

carried out to fourth (Nettelmann 2017), fifth (Zharkov &
Trubitsyn 1975), and seventh (this work) order by comparing
to the analytic Bessel solution of Wisdom & Hubbard (2016)
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for the rotating n= 1 polytrope and by using three different
codes. We find that the CEPAM code (Guillot & Morel 1995)
with ToF5 (Ni 2020) has a superior performance in regard to
the accuracy in J2, J4, and J6, while for J8 and J10 the MOGROP
code with ToF7 reaches a similar degree of accuracy for a
practical number of radial grid points of a few thousand,
although in J10 the error changes sign between both variants.
The accuracy in J8, J10, and J12 falls by, respectively, 1, 2, and
3 orders of magnitude below the current 3× 1σ formal
uncertainty of the observational gravity data “halfway through
the Juno mission” (Durante et al. 2020). We also apply the
CMS-2019 H/He EOS of Chabrier et al. (2019) to interior
models of Jupiter and Saturn.

For Jupiter, the high-order Jn of the Jupiter models fall along
the same line in Jn–Jn+2 space as in previous work, regardless
of detailed model assumptions and the H/He EOS used. We
find that J6 stands out in that it is neither adjusted, as J2 and J4
are, nor insensitive to model assumptions, as the Jn for n� 8
are. We match Jupiter’s observed J6 value by placing the
transition pressure between an outer, He-depleted envelope and
an inner, He-enriched envelope at P12= 2–2.5 Mbar. Trans-
ition pressures farther out lead to lower J6 values, while deeper
transitions result in higher J6 values. The same behavior but
with a weaker amplitude is seen for the transition pressure of
heavy elements, which we place between ∼5 and 20 Mbar.
Gaussian-Z profiles underneath can lead to high metallicities of
up to Z= 0.5 at the compact core–mantle boundary. However,
the atmospheric heavy-element abundance, represented by an
EOS of water, always stays negative (∼−1× solar) if the
adiabat is defined by the 1 bar temperature of 166.1 K as
measured by Galileo and extended downward. Alternatively,
we set Z1 to 1× solar, the 1σ lower limit of the equatorial water
abundance measured by Juno (Li et al. 2020), and perturb the
adiabat to fit J2 and J4. Such an optimized adiabat was found
for a perturbation between 26 and 150 GPa and has a maximum
density decrease of 12.6% at a midpoint of 63 GPa. Higher
internal temperatures help to decrease the internal density as
well. For T1bar= 180 K and deep transition pressure
Ptrans, He= 6 Mbar we obtain 1× solar metallicity without H/
He EOS modification.

Our Saturn models with CMS-19 H/He EOS are character-
ized by a few times solar envelope that extends deep down
to< 0.4 RSat and requires a compact core. Its density of ∼20 g
cm−3 is higher than the most likely central densities of Saturn
that match the gravity field (Movshovitz et al. 2020), which in
turn agree with density distributions of a largely stably
stratified deep interior with a dilute core (Mankovich &
Fuller 2021). By applying the Jupiter-optimized perturbation
along the adiabat to Saturn, we are able to obtain density
distributions with a dilute core of 30%–40% H/He that reaches
out to∼ 0.4RSat in the core. This moves the solution in the
direction of density distribution constrained by seismic data.
Our models suggest that an inhomogeneous central region out
to ∼0.6 RSat (Mankovich & Fuller 2021) is due to both a dilute
core and rained-down helium.

Overall, our Jupiter and Saturn models exhibit a strong trend
toward low envelope metallicities that extend deep into
Saturn’s interior to∼ 0.4 RS (Figure 7) or are negative in
Jupiter (Figure 3). We have attributed these model properties to
possible uncertainties in the H/He EOS. However, further
processes one may think of and that certainly are at play are
estimated to be too minor to solve that issue.

This work demonstrates that our understanding of the
internal heavy-element distribution of Jupiter and Saturn
strongly depends on the properties of H and He. We conclude
that part of the difficulties of obtaining Jupiter and Saturn
models that are consistent with all observational constraints still
lies in our imperfect understanding of the material properties.
We therefore suggest that further measurements and calcula-
tions of the behavior of materials at planetary conditions could
improve our understanding of the gas giants. This, in return,
will also reflect on the characterization of gaseous planets
orbiting other stars.

We thank the IWG members of the Juno Team for
discussions. N.N. and J.J.F. acknowledge support through
NASA’s Juno Participating Scientist Program under grant
80NSSC19K1286. We thank the two anonymous reviewers for
the constructive reports and insightful comments.

Appendix A
Technical Notes on ToF Coefficient Computations

In the following, we abbreviate the term in brackets in
Equation (4) as (1+Σ) and write cosm J= . Since any point
r= (r, j, ϑ) in and near the planet can be associated with an
equipotential surface, we can replace any dependence f (r, ϑ) by
f (l, ϑ) using Equation (4).

A.1. Centrifugal Potential Q

The first step of the Legendre polynomial expansion of the
centrifugal potential Q r1 2 sin2 2 2w J= is to write
Q=− 1/3 ω2 r2(P0− P2(μ)). Its full expansion is obtained
by replacing r with rl(ϑ). Q(l, ϑ) can then be written in the form
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A.2. Gravitational Potential V

The gravitational potential V G d rr r r r3ò r= - ¢ ¢ ¢ -( ) ( ) ∣ ∣
can be separated into an external contribution D from the mass
density interior to a sphere of radius r, i.e., to which r is exterior
(r r> ¢), and an internal contribution D¢ from the mass density
exterior to a sphere of radius r, i.e., to which r is interior
(r r< ¢). V then reads
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Although this multipole expansion is valid only for spheres, in
ToF, the radial coordinate r in Equations (A2) and (A3) is
simply replaced by the nonspherical equipotential surface rl(ϑ)
and the interior/exterior criterion is transferred to l. In the CMS
method, this expansion is also used, but the expression for the
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external potential is only applied to spheroids of level surface
ri(μ) at or interior (i� j) to a point B of radial distance rB that
resides on a level surface rj(μ). Since all spheroids share the
same center but extend outward to different level surfaces ri(μ),
where i= 0 denotes the surface of the planet and i=N the
center, a point B on rj(μ) is also located exterior to the mass of
the spheroids of index i< j but only as far as the radius rB. This
is taken care of in the CMS method by adding the external
gravitational potential of the spheres of densities δi,i<j interior
to B from the spheroids i< j. This improvement of the CMS
method over the ToF method is still limited by the deformation
and spacing of the spheroids. Rapid rotation, or dense spacing,
could lead to an overlap of the sphere of radius rj with the
spheroid rj−1(μ). Kong et al. (2013) developed the full solution
to the Poisson equation and demonstrated that the CMS method
converges as long as the flattening (Req/Rpol− 1) remains
sufficiently small. Similarly, Hubbard et al. (2014) showed that
ToF converges for sufficiently small flattening and toward the
correct solution.

By replacing all powers of r by rl(ϑ) in Equation (A2), one
obtains
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A.3. ToF7 Tables for Public Usage

The ToF coefficients cink are of the form

c q s ,
j

O

j
p

ink ink
1

2
j2 ,ink=

=

where the qink are rational numbers and the exponents pj are
small natural numbers including 0.
Since the number of coefficients rises with the order of

expansion faster than quadratically, it becomes impractical to
write down all the coefficients. We present them in the form of
five online tables. Tables tab_Sn and tab_Snp contain the
coefficients cink and cink ¢ in front of the Sn and Sn¢ in the Ak

V( ),

Table 2
Example of One of the Five Online-only ASCII Tables

n k Nnk

Order p2 p4 p6 p8 p10 p12 p14 qink, i = 1—Nnk Comment

0 0 24 n = 0, k = 0, next 24 rows
0 0 0 0 0 0 0 0 1.000000000000000e+00 Order = 0, c1 0 0 = 1
2 2 0 0 0 0 0 0 4.000000000000000e-01 Order= 2, c s0.42 0 0 2

2=
M
7 2 1 1 0 0 0 0 2.157842157842158e-01 Order = 7, c q s s s24 0 0 24 0 0 2

2
4
1

6
1=

K
4 8 17 n = 4, k = 8, next 17 rows
4 2 0 0 0 0 0 0 2.937062937062937e+00 Order = 4, c q s1 4 8 1 4 8 2

2=
M

Note. This example is for Table tab_Sn, which contains the coefficients in front of the Sn in the Ak. Since the A k
Q

2
( ) have no dependence on index n, index n is set to 0

in Table tab_m. Since the fn, fn¢ have no dependence on index k, k is set to 0 in Tables tab_fn and tab_fn’.

(This table is available in its entirety in machine-readable form.)
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respectively, so that
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N
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1
14 14

1
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1
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1
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k k
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å å
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= =
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¢

=

¢

=

¢

( )

Table tab_m contains the summands in the Ak
Q( ) so that

A m c3k
Q

i i krot 1 0= å =
( ) with m R GMmrot

2 3w= . Tables
tab_fn and tab_fnp contain the summands of the functions
fn and fn¢ so that fn=∑icin, f cn i i n¢ = å ¢ , respectively. In
Table 2, we give an example of the read-in ASCII table
tab_Sn. All five tables have the same format.

The A2k in Equation (3) are of the form
0= A2k(l)=−s2k(l)S0(l)+ B if k≠ 0. We rewrite this as an
expression for direct, iterative computation of the figure
functions in the form s2k= B/S0, where the functions B depend
on the {s2k} from the previous iteration step. We omit the
summand− s2kS0 from Table tab_Sn.

To facilitate the application of our ToF7 tables by external
users for their own planetary models, we share routines for
read-in of the tables in Matlab, Python, and C++. For the latter
variant, we also provide functions that can be used to easily
access the coefficient values. The archived service routines and
descriptions can be found at https://doi.org/10.6084/m9.
figshare.16822252.

A.4. Powers of the Radius

In the binomial expansion of (1+ x)−m for m> 0,

x
m
i x1 , A10m

i

i

0
å+ = --

=

¥ ( )( ) ( )

it is sufficient to expand to i= 7 because x=Σ and the
minimum order of Σi is i. The binomial expansion of x1 m+( )
for m> 0,

x
m
i x1 , A11m

i

m
i

0
å+ =
=

( )( ) ( )

is carried out to m� 7. Products PnPm occurring in Σi and in
(1+Σ)iPj are expanded as b Pk

n m
k k0å =

+ . It becomes evident that
all terms can linearly be expanded in Legendre polynomials
and that numbers in the expansion coefficients are rational
numbers q= ne/nd. The natural numbers ne, nd can be
represented exactly on a computer, although size limitations
may apply. For ToF7, the vast majority of numbers could be
decomposed into prime numbers that individually do not
exceed 3 million. However, in rare cases this was not possible
and larger prime numbers would have been required, perhaps
indicating an error in the code used. In such a case, the given
number is not decomposed into prime numbers. In any case, the
enumerators and denominators are computed as exact numbers
in all coefficients. They are cast to real numbers of 15 digits
only for the purpose of printing the tables.

A.5. Figure Function s0

We calculate s0 to the seventh order with the help of the
defining integral Equation (2), which, with z= l/l1, can be
written as

l d dz z z
4

3
1 2 1 , . A121
3

1
3

1

1

0

1
2 3ò ò

p
p m m= + S

-
( ( )) ( )

Because of hemispheric symmetry and dz z1 3
0

1 2/ ò= , the
comparison of integrands yields

d1 1 , A13
0

1
3ò m= + S( ) ( )

where z s z P, i i0
7

2 2m mS = å( ) ( ) ( ) and (1+Σ)3= 1+ 3Σ+
3Σ2+Σ3. We calculate Σ3 and safely remove all terms
containing P0PnPm with n≠m or P Pn0

2 , since they would
contribute nothing to the evaluated integral in Equation (A13),

s P s P s P

s s P P s s P P s s P P

s s P P s s P P

s s P P s s P P

s s P P s s P P
s s s P P P s s s P P P

3 3 3

3 3

3 3

3 3
6 6 . A14

3
0
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0
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2
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2
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4
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0 2
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0 2
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4 2
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S = + +
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+ +

+ +
+ + ( )

Terms containing P Pn0
2 yield a factor 1/(2n+ 1) for the

integral in Equation (A13). By P Pn m k( ) we denote the
summand bkPk in the expansion of Pn× Pm. The other terms
contribute

P

P P P P P

P P P P P

P P P P P P

P P P P P

P P P P P
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Similarly in Σ2, terms PnPm yield a factor 1/(2n+ 1) if n=m
and 0 otherwise, so that

s s s s
1

5

1

3

1

13
.2

0
2

2
2

2 4
2

6
2S = + + +
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Out of Σ1 in the integral in Equation (A13), only s0P0 survives.
Now, s0 can be expressed in terms of the sn,n�2, so that

s s s s ,0 0
1

0
2

0
7+ +¼+≔ ( ) ( ) ( )

where O denotes the order of expansion. Sorting terms
according to their order, we obtain (note the − sign)
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