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The localization-delocalization transition is at the heart of strong correlation physics. Recently, there is
great interest in multiorbital systems where this transition can be restricted to certain orbitals, leading to an
orbital-selective Mott phase (OSMP). Theoretically, the OSMP is widely studied for kinetically decoupled
orbitals, but the effect of interorbital hopping remains unclear. Here, we show how nonlocal interorbital
hopping leads to local hybridization in single-site dynamical mean-field theory (DMFT). Under fairly
general circumstances, this implies that, at zero temperature, the OSMP, involving the Mott-insulating state
of one orbital, is unstable against interorbital hopping to a different, metallic orbital. We further show that
the coherence scale below which all electrons are itinerant is very small and gets exponentially suppressed
even if the interorbital hopping is not overly small. Within this framework, the OSMP with interorbital
hopping may thus reach down to extremely low temperatures T, but not to T ¼ 0. Accordingly, it is part of
a coherence-incoherence crossover and not a quantum critical point. We present analytical arguments
supported by numerical results using the numerical renormalization group as a DMFT impurity solver. We
also compare our findings with previous slave-spin studies.
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The evolution of the electronic structure from localized
to itinerant is a fundamental problem in condensed-matter
physics and relevant to many interesting materials. It
continues to receive much experimental attention, as the
transition region between localized and delocalized behav-
ior hosts remarkable phenomena, like high-temperature
superconductivity [1–3].

Recently, there has been a focus on multiorbital systems,
triggered by the observation of orbital selectivity whereby a
subset of orbitals (denoted “heavy”) has a much larger
effective mass than another group (denoted “light”). An
illustrative example under current study is FeTe1−xSex
[4–7]. There, among the t2g orbitals, the dxy is the heaviest.
A central idea in this field is the orbital-selective Mott
phase (OSMP) [8], where heavy electrons are Mott-local-
ized and coexist with itinerant light electrons. This idea is
relevant to numerous model systems and materials [9–19].
Often, a small difference among the orbitals at the one-
particle level is drastically amplified by many-body corre-
lations. Importantly, a sharp localization-delocalization
boundary can only be defined at zero temperature,
T ¼ 0, via the participation of charge carriers in the volume
of the Fermi surface.
The OSMP has been investigated intensively using

dynamical mean-field theory (DMFT) [20,21] and slave-
spin methods [22–24]. There is consensus that the OSMP is
realized within these methods in the absence of hopping
matrix elements between different orbitals [25–30]. This
assumption is natural for local matrix elements (which are
zero in high-symmetry situations [31]) but not for nonlocal

ones (which are allowed by symmetry) [35]. In realistic
materials estimations, the interorbital nonlocal hopping
amplitudes are often comparable to those of the light
electrons [36].
Earlier attempts to study the OSMP in the presence of

interorbital hopping tio resulted in different pictures. Using
slave spins, Refs. [34,39] concluded that the OSMP
survives finite tio at T ¼ 0, while LDAþ DMFT calcu-
lations of FeTe using a Monte Carlo impurity solver [40,41]
argued for a smooth crossover, where localization occurs
only at sufficiently high T [44]. These two pictures are
sketched in Fig. 1 as qualitative T ¼ 0 phase diagrams.
They also lead to different behavior at finite temperature. In
the first case, one expects definite scaling behavior tied to a
coherence scale Tcoh which vanishes when a control
parameter x (e.g., interaction strength or doping) reaches

FIG. 1. Two possible scenarios, (a) and (b), for the zero-
temperature (T ¼ 0) phase diagram of multiorbital systems as a
function of Coulomb repulsion U and interorbital hopping tio.
Here, we provide evidence for scenario (b) in which any finite tio
replaces the OSMP with a Fermi liquid (FL). The coherence scale
Tcoh, below which all electrons are itinerant, is very low close to
the OSMP and Mott phase.
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a critical value xc. But the second scenario predicts a
coherence-incoherence crossover where there is no such xc
and Tcoh stays finite.
Here, we settle this issue within the paramagnetic single-

site DMFT in favor of the second scenario. We provide
analytic arguments why any finite tio destabilizes the
OSMP, based on the DMFT equations. The underlying
mechanism has a simple physical interpretation, and we
show that the same mechanism is obstructed within the
more approximate slave-spin methods (thus explaining
the results of Refs. [34,39]). We obtain an exact numerical
solution of the DMFT equations for a multiorbital model
with interorbital hopping using the numerical renormaliza-
tion group (NRG) [47]. This method is necessary to reach
arbitrarily low T and to show that Tcoh, while always finite,
can be extremely small.
The basic argument is that the DMFT views correlated

systems as a collection of atoms, each of which hybridizes
with the environment given by the rest of the lattice. The
low-energy hybridization plays a key role: it is generically
finite for Fermi liquids and vanishes for Mott insulators. We
will show that the low-energy hybridization of an electron
in any orbital is finite as long as it can hop to another,
delocalized orbital and back. This process is described by
the momentum-dependent interorbital hopping ϵiok and the
momentum- and frequency-dependent density of statesAlt

kν
of a light orbital, as

P
kðϵiok Þ2Alt

kν. It is this low-energy
hybridization which destabilizes the Mott state in favor of a
Fermi-liquid ground state. Below, we derive the hybridi-
zation formula for a two-orbital model, discuss the coher-
ence scale, and illustrate the consequences with numerical
results.
Model.—Weconsider amultiorbitalHubbardHamiltonian

Ĥ ¼
X
ijnmσ

d̂†inσh
nm
ij d̂jmσ þ

X
i

Ĥint½d̂inσ�; ð1Þ

where d̂†inσ creates an electron at site i, in orbital n, and with
spin σ. The hopping matrix hnmij features nonlocal (i ≠ j)
interorbital (n ≠ m) hopping; its Fourier transform is hnmk .
Ĥint denotes the local interaction. In single-site DMFT,
correlations are assumed to be local [20]. The propagator
reads Gkν ¼ ½νþ μ − hk − Σν�−1, with the chemical poten-
tial μ and the retarded, matrix-valued self-energy Σν.
In sufficiently symmetric situations, one can choose the
orbitals to be orthogonal, such that local one-particle objects
are diagonal in orbital space [21,48]. This includes Gloc;ν ¼P

k Gkν, Σν, and the on-site energies ϵd ¼
P

k hk − μ.
Momentum sums are normalized:

P
k 1 ¼ 1.

A minimal model for the OSMP has two (orthogonal)
orbitals, a light (lt) and a heavy (hv) orbital. We write the
general hopping matrix, including the interorbital hopping
ϵiok , as

hk − μ ¼
�
ϵltk ϵiok
ϵiok ϵhvk

�
: ð2Þ

The local propagator follows from a 2 × 2 matrix in-
version as

Gloc;ν ¼
X
k

1Q
n¼lt;hv½ν − ϵnk − Σn

ν � − ðϵiok Þ2

×

�
ν − ϵhvk − Σhv

ν −ϵiok
−ϵiok ν − ϵltk − Σlt

ν

�
: ð3Þ

For our numerical results, we use the simplistic expressions

ϵnk ¼ −2tn½cosðkxÞ þ cosðkyÞ þ cosðkzÞ� − μ;

ϵiok ¼ −2tio½cosðkxÞ − cosðkyÞ�; ð4Þ

for which the diagonality of ϵd and Gloc;ν is obvious.
However, our general arguments are independent of the
choice of Eq. (4).
DMFT equations.—In DMFT, the lattice model is

mapped onto an impurity model. We call the (orbital-
diagonal) impurity propagator gν ¼ ½ν − ϵd − Δν − Σν�−1,
where Δν is the retarded hybridization function. The
appropriate Δν is found by iteration until self-consistency
between the local lattice propagator and its impurity
counterpart, Gloc;ν ¼ gν, is reached.
The diagonal elements of the local propagator are

(m ≠ n)

Gn
loc;ν ¼

X
k

1

rnkν −Σn
ν
; rnkν ¼ ν− ϵnk −

ðϵiok Þ2
ν− ϵmk −Σm

ν
; ð5Þ

taken from Eq. (3). The hybridization in the bare impurity
propagator is then determined according to Gn

loc;ν ¼ gnν .
With 1=gn0;ν ¼ ν − ϵnd − Δn

ν , the value Δn
ν can be found from

1

gn0;ν
¼ Σn

ν þ
1

Gn
loc;ν

¼
P

k
rnkν

rnkν−Σ
n
νP

k
1

rnkν−Σ
n
ν

: ð6Þ

This intermediate result is key for the following discussion.
It gives the hybridization components for a general two-
orbital system [Eq. (2)] according to the DMFT self-
consistency condition. We reshuffled the self-energy from
the numerator into the denominator, but no approximation
was made thus far.
While Eq. (6) holds at self-consistency, during the

DMFT iteration, it is used to update Δn
ν from a given

solution of the impurity model (yielding Σn
ν ) to the next. We

can briefly check the noninteracting case, Σn
ν ¼ 0, for

which DMFT self-consistency is trivial. There, Eq. (6)
correctly yields gn0;ν ¼

P
kð1=rnkνÞ. Next, we use Eq. (6) to

investigate whether the OSMP is stable against interorbital
hopping. To this end, we start from a converged DMFT
solution with tio ¼ 0, realizing the OSMP. Then, we turn on
tio to check if the Mott insulator persists.
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Indeed, starting at tio ¼ 0 and setting, e.g., thv ≪ tlt at
large interaction and half filling, the heavy orbital is Mott
insulating while the light orbital remains metallic. The Mott
insulator is signaled by a gap in the local density of states
Ahv

ν , where −πAn
ν ¼ ImGn

loc;ν ¼ Imgnν , and a divergent
effective mass—i.e., limν→0 jΣhv

ν j ¼ ∞. The impurity solu-
tion yielding gν and Σν is determined by the hybridization
Δν with spectral weights An

Δ;ν ¼ −ImΔn
ν=π. In most cases

[11,49–52], a Fermi-liquid ground state is found if all An
Δ;ν

are finite around ν ¼ 0, while a Mott-insulating orbital
requires a gapped An

Δ;ν.
Now, we perform the first DMFT update, starting from

the OSMP solution but setting tio ≠ 0. It is clear from
Eq. (5) that limν→0jΣhv

ν j ¼ ∞ makes Gn
loc;ν¼0 for both n

independent of ϵiok , so that, in particular, Ahv
ν remains

gapped. However, the result of the next iteration is
determined by An

Δ, not A
n. The divergent self-energy also

simplifies the updated hybridization function. In the limit
ν → 0 within the OSMP, Eq. (6) yields

jΣhv
ν j → ∞∶

1

ghv0;ν
¼

X
k

rhvkν; Δhv
ν ¼

X
k

ðϵiok Þ2Glt
kν: ð7Þ

For the second relation, ν − ϵhvd in 1=ghv0;ν and
P

kðν − ϵhvk Þ
from rhvk cancel, and Glt

kν ¼ 1=ðν − ϵltk − Σlt
νÞ when Σhv

ν

diverges. Equation (7) is our main result. Assuming a
divergent Σhv

ν at low frequencies, Δhv
ν retains a finite value,

independent of Σhv
ν . Since a finite hybridization yields a

Fermi-liquid ground state in fairly general impurity models
[11,49–52], we find that, with Ahv

Δ;ν ¼
P

kðϵiok Þ2Alt
kν > 0,

the Mott-insulating state of the heavy orbital is unstable
against interorbital hopping. In further DMFT iterations, a
quasiparticle peak in the heavy orbital will form, and Σhv

ν

will no longer diverge. In the Supplemental Material [53],
we show that Eq. (7) holds analogously for any number of
orbitals, and we provide a free-energy functional to
illustrate the universal nature of the effect described above.
We next include a temperature/energy coherence scale

below which the Fermi-liquid properties are found. In the
single-impurity Anderson model with large interaction U
and (nonsingular) hybridizationAΔ, this scale is the Kondo
temperature TK ∝ expð−αU=AΔ;ν¼0Þ [66]. Similar behav-
ior is expected for our model, albeit with an effective Ũ
encoding further microscopic parameters (like Hund’s
coupling J) [67]. For the first DMFT iteration after
switching from tio ¼ 0 to tio ≠ 0, we have Ahv

Δ;ν¼0 ∝
t2io=tlt from Eq. (7), and thus Tð1Þ

K ∝ exp½−αŨtlt=t2io� ¼
cðtlt=tioÞ2 , with c ∝ exp½−αŨ=tlt� reminiscent of a single-
orbital Kondo scale. This shows that the coherence scale for
the first DMFT iteration after the OSMP can be extremely
small. In the next iterations, Σhv

ν no longer diverges, and
Ahv

Δ;ν¼0 cannot be deduced as easily. However, it is clear
that delocalization of the heavy orbital will open more

hybridization channels, so that Tð1Þ
K becomes a lower bound

for the actual coherence scale after DMFT convergence,

Tcoh ≥ Tð1Þ
K .

Numerical results.—We now turn to numerical results
for the model of Eqs. (1), (2), and (4). We denote the half-
bandwidth of ϵnk by Dn ¼ 6tn and consider two half-filled
orbitals with Dlt=Dhv ¼ 2. Dhv ¼ 1 is our energy unit,
T ¼ 10−8, and Ĥint is given by the Kanamori Hamiltonian
[53] with parameters U ¼ 2.4 and J ¼ 0.4 [11]. We use
NRG as a real-frequency impurity solver for DMFT [53]
and assume paramagnetism.
To set the stage, Fig. 2 shows two sets of spectral

functions An for different interorbital hopping. Our inter-
action parameters are such that tio ¼ 0 realizes an OSMP,
where Ahv has a gap, while Alt has a peak at ν ¼ 0.
Coupled to unscreened magnetic moments, the metallic
orbital at T ¼ 0 behaves as a singular Fermi liquid [30,69],
where limν→0 Alt

ν converges only asymptotically (see inset)
and formally Zlt ¼ 0. For finite tio, Ahv develops a narrow
quasiparticle peak, replacing the OSMP by a Fermi-liquid
ground state. Nevertheless, at larger energies jνj≳ 10−2,
the two sets of spectral functions for tio ¼ 0 and tio ≠ 0 are
very similar. Particularly, pronounced Hubbard bands in
Ahv exist in both phases [70].
Figure 3 illustrates our instability argument. It showsAhv

Δ
for several DMFT iterations with finite tio, starting from the
OSMP solution at tio ¼ 0. In the first iteration, Ahv

Δ;ν ∝
ðtio=tltÞ2 according to Eq. (7). The resulting metallic state
leads to an increased hybridization for the next iteration. Its
coherence scale (below which, e.g., the An

ν ’s converge)
roughly follows Tð1Þ

K ∝ cðtlt=tioÞ2 . For tio=tlt ¼ 0.2, Tð1Þ
K ≪ T,

so that Ahv
Δ;ν for the next iteration converges below T only.

In the subsequent DMFT iterations, the hybridization
further builds up until the actual coherence scale Tcoh ≥
Tð1Þ
K is established. For tio=tlt ¼ 0.2, Tcoh ≳ T is very low,

and OSMP-like behavior persists for jνj > Tcoh.

FIG. 2. Spectral functions An for the light and heavy orbitals.
At tio ¼ 0, we find an OSMP with Ahv gapped. Finite tio
destabilizes the OSMP as Ahv develops a thin quasiparticle
peak. Inset: In the OSMP, limν→0 Alt

ν converges only asymp-
totically [30,69].
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Indeed, Fig. 4 shows the spectral functions and self-
energies after DMFT convergence. For all tio > 0, a Fermi-
liquid ground state is obtained, with a finite quasiparticle
peak obeying Luttinger pinning [72]An

ν¼0 ¼ ρnν¼0 and self-
energies having a linear real part. At the lowest tio > 0,
however, both properties are fulfilled only at very low
energies jνj < Tcoh ∼ 4 × 10−7 (even though Alt increases
most strongly around jνj ∼ 10−1). For jνj > Tcoh, the
system is hardly distinguishable from the OSMP: in an
intermediate regime of around 4 orders of magnitude, Ahv

ν

almost vanishes and Σlt
ν follows the logarithmic behavior of

the OSMP [30,69]. While the quasiparticle weights Zn ¼
1=ð1 − ∂νReΣn

ν jν¼0Þ are already on the percent level for
tio=tlt ¼ 0.3, they reach values as low as 10−3 for the light
and 10−5 for the heavy orbital at tio=tlt ¼ 0.2. Decreasing
tio further, an OSMP is recovered as Tcoh < T ¼ 10−8.
Comparison with slave spins.—We finally compare our

results to previous slave-spin studies, which found the
OSMP to be stable against interorbital hopping [39]. Slave-
spin approaches decompose the physical fermions d̂ into a
bosonic slave-spin operator b̂ and a slave fermion f̂†,
d̂†imσ ¼ b̂imσf̂

†
imσ. It was shown that minimizing the mean-

field decoupled free energy in slave-spin approaches is
equivalent to a DMFT-like treatment, where the slave-spin
impurity solver yields the quasiparticle weight and DMFT
self-consistency is imposed on the slave fermions (see
Eq. (30) in Ref. [34]).
Expressions for the f fermions follow from those of the d

fermions by expanding the self-energy to linear order,
Σn
ν ≈ an þ ð1 − 1=ZnÞν, and dividing out Zn. For the local

propagator [Eq. (5)], Gd;n
loc;ν ¼ ZnG

f;n
loc;ν, this yields (m ≠ n)

Gf;n
loc;ν ¼

X
k

�
ν − ϵf;nk −

ðϵf;iok Þ2
ν − ϵf;mk

�
−1
; ð8Þ

ϵf;nk ¼ Znðϵd;nk þ anÞ; ðϵf;iok Þ2 ¼ ZltZhvðϵd;iok Þ2: ð9Þ

Due to the factor ZltZhv, the interorbital hopping has no
effect here if Zhv ¼ 0. This agrees with our previous point
that a dominant jΣhv

ν j makes Gd;n
loc;ν independent of ϵd;iok .

More insight is obtained from the impurity propagator,

gd;nν ¼ Zng
f;n
ν , with

FIG. 3. Hybridization function AΔ in the heavy orbital for several DMFT iterations with finite tio, starting from the OSMP solution at
tio ¼ 0. Circles on the vertical axis give values ðtio=tltÞ2 × const according to Eq. (7). Dashed vertical lines indicate the coherence scale

after the first DMFT iteration, Tð1Þ
K , and after the last DMFT iteration, Tcoh. For tio=tlt ¼ 0.2, Tð1Þ

K ≪ T and Tcoh ≳ T; this opens a
window of intermediate energies jνj > Tcoh with OSMP-like features (cf. Fig. 4).

FIG. 4. Spectral functionsAν and self-energies Σ̃ν ¼ Σν − Σν¼0

after DMFT convergence. For tio=tlt ∈ f0.4; 0.3; 0.2g, Fermi-
liquid behavior with Aν¼0 obeying Luttinger pinning (circles)
and linear ReΣ̃ is seen below coherence scales of roughly 10−3,
10−4, and 4 × 10−7, respectively (cf. Fig. 3). For tio=tlt ¼ 0.2 and
10−5 < ν=Dhv < 10−1, Ahv almost vanishes, and ReΣ̃lt perfectly
follows the logarithmic behavior [30,69] of the tio ¼ 0 OSMP.
The three dotted lines indicate κν, with κ ¼ 102; 5 × 103; 105

from bottom to top.
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gf;nν ¼ 1

ν− ϵnf−Δf;n
ν

; ϵnf ¼ZnðϵndþanÞ; Δf;n
ν ¼ZnΔd;n

ν :

ð10Þ

One finds that the f-fermion self-consistency condition

(Gf;n
loc;ν ¼ gf;nν ) leads to the same result for the d-fermion

hybridization as in Eq. (7), now in the form Δd;hv
ν ¼P

kðϵd;iok Þ2ZltG
f;lt
kν . This is still finite if the light orbital is

metallic (here Zlt > 0). However, the crucial difference is
that the impurity model for the slave spins is not charac-

terized byΔd
ν but byΔ

f
ν. Here, each component is tied to the

quasiparticle weight, Δf;n
ν ¼ ZnΔd;n

ν . Hence, if Zhv ¼ 0,
the slave-spin impurity solver has no chance of seeing
Δd;hv

ν¼0 ≠ 0 and, thereby, no chance of generating Zhv > 0

and leaving the OSMP. In other words, the inseparable
connection of Zn and Δd;n

ν in slave-spin studies leads to
additional stationary points of the free energy, not present
in DMFT.
Conclusion.—Using single-site DMFT, we showed that

interorbital hopping tio is a relevant perturbation to the
OSMP and destabilizes it at T ¼ 0 in favor of a Fermi-
liquid ground state. The reason is that the low-energy
hybridization in a given orbital has a finite contribution
which stems from hopping to another orbital and back.
Crucially, this term depends only on the availability of
states in the intermediate orbital and not on the effective
mass of the electron hopping. While an arbitrarily large
imbalance in effective masses can still exist, within single-
site DMFT, there is generically no OSMP with tio > 0 at
T ¼ 0, and more generally below the coherence scale. Its
finite-temperature properties may thus be viewed as a
coherence-incoherence crossover, where selected orbitals
are localized for T > Tcoh but itinerant for T < Tcoh. This
crossover can either be tuned by increasing T in a given
system [4] or by decreasing Tcoh at fixed (nonzero) T (as
in Ref. [7]).
Our analytic arguments are supported by numerical

results using NRG as a DMFT impurity solver, capable
of accessing real frequencies and arbitrarily low temper-
atures. This allowed us to demonstrate that Tcoh, below
which the Fermi-liquid properties are found, is very
sensitive to system parameters and can be extremely small,
even for moderate values of tio=tlt. We showed that many
properties of the tio ≠ 0 state for energies above Tcoh are
almost indistinguishable from the tio ¼ 0 OSMP that
reaches down to T ¼ 0. Future theoretical work should
aim to go beyond single-site DMFT to address the
influence of nonlocal, interorbital self-energy components
in renormalizing tio [73]. Experimentally, our results can be
tested by measuring the normal-state Fermi-surface volume
at very low T and by analyzing the scaling behavior in
the OSMP at T > 0.
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Note added.—After completion of this work, we became
aware of Ref. [77], which analyzes magnetic fluctuations
for the model we used to illustrate our findings.
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