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Is the Orbital-Selective Mott Phase Stable against Interorbital Hopping?
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The localization-delocalization transition is at the heart of strong correlation physics. Recently, there is
great interest in multiorbital systems where this transition can be restricted to certain orbitals, leading to an
orbital-selective Mott phase (OSMP). Theoretically, the OSMP is widely studied for kinetically decoupled
orbitals, but the effect of interorbital hopping remains unclear. Here, we show how nonlocal interorbital
hopping leads to local hybridization in single-site dynamical mean-field theory (DMFT). Under fairly
general circumstances, this implies that, at zero temperature, the OSMP, involving the Mott-insulating state
of one orbital, is unstable against interorbital hopping to a different, metallic orbital. We further show that
the coherence scale below which all electrons are itinerant is very small and gets exponentially suppressed
even if the interorbital hopping is not overly small. Within this framework, the OSMP with interorbital
hopping may thus reach down to extremely low temperatures 7', but not to 7" = 0. Accordingly, it is part of
a coherence-incoherence crossover and not a quantum critical point. We present analytical arguments
supported by numerical results using the numerical renormalization group as a DMFT impurity solver. We

also compare our findings with previous slave-spin studies.
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The evolution of the electronic structure from localized
to itinerant is a fundamental problem in condensed-matter
physics and relevant to many interesting materials. It
continues to receive much experimental attention, as the
transition region between localized and delocalized behav-
ior hosts remarkable phenomena, like high-temperature
superconductivity [1-3].

Recently, there has been a focus on multiorbital systems,
triggered by the observation of orbital selectivity whereby a
subset of orbitals (denoted “heavy”) has a much larger
effective mass than another group (denoted “light”). An
illustrative example under current study is FeTe;_,Se,
[4-7]. There, among the fhy orbitals, the dxy is the heaviest.
A central idea in this field is the orbital-selective Mott
phase (OSMP) [8], where heavy electrons are Mott-local-
ized and coexist with itinerant light electrons. This idea is
relevant to numerous model systems and materials [9—19].
Often, a small difference among the orbitals at the one-
particle level is drastically amplified by many-body corre-
lations. Importantly, a sharp localization-delocalization
boundary can only be defined at zero temperature,
T = 0, via the participation of charge carriers in the volume
of the Fermi surface.

The OSMP has been investigated intensively using
dynamical mean-field theory (DMFT) [20,21] and slave-
spin methods [22-24]. There is consensus that the OSMP is
realized within these methods in the absence of hopping
matrix elements between different orbitals [25-30]. This
assumption is natural for local matrix elements (which are
zero in high-symmetry situations [31]) but not for nonlocal
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ones (which are allowed by symmetry) [35]. In realistic
materials estimations, the interorbital nonlocal hopping
amplitudes are often comparable to those of the light
electrons [36].

Earlier attempts to study the OSMP in the presence of
interorbital hopping #;, resulted in different pictures. Using
slave spins, Refs. [34,39] concluded that the OSMP
survives finite #;, at T = 0, while LDA + DMFT calcu-
lations of FeTe using a Monte Carlo impurity solver [40,41]
argued for a smooth crossover, where localization occurs
only at sufficiently high 7 [44]. These two pictures are
sketched in Fig. 1 as qualitative 7 = 0 phase diagrams.
They also lead to different behavior at finite temperature. In
the first case, one expects definite scaling behavior tied to a
coherence scale T, which vanishes when a control
parameter x (e.g., interaction strength or doping) reaches
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FIG. 1. Two possible scenarios, (a) and (b), for the zero-
temperature (7 = 0) phase diagram of multiorbital systems as a
function of Coulomb repulsion U and interorbital hopping t;,.
Here, we provide evidence for scenario (b) in which any finite #;,
replaces the OSMP with a Fermi liquid (FL). The coherence scale
T .on» below which all electrons are itinerant, is very low close to
the OSMP and Mott phase.
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a critical value x,.. But the second scenario predicts a
coherence-incoherence crossover where there is no such x,.
and T, stays finite.

Here, we settle this issue within the paramagnetic single-
sitt DMFT in favor of the second scenario. We provide
analytic arguments why any finite #, destabilizes the
OSMP, based on the DMFT equations. The underlying
mechanism has a simple physical interpretation, and we
show that the same mechanism is obstructed within the
more approximate slave-spin methods (thus explaining
the results of Refs. [34,39]). We obtain an exact numerical
solution of the DMFT equations for a multiorbital model
with interorbital hopping using the numerical renormaliza-
tion group (NRG) [47]. This method is necessary to reach
arbitrarily low T and to show that 7', while always finite,
can be extremely small.

The basic argument is that the DMFT views correlated
systems as a collection of atoms, each of which hybridizes
with the environment given by the rest of the lattice. The
low-energy hybridization plays a key role: it is generically
finite for Fermi liquids and vanishes for Mott insulators. We
will show that the low-energy hybridization of an electron
in any orbital is finite as long as it can hop to another,
delocalized orbital and back. This process is described by
the momentum-dependent interorbital hopping €l and the
momentum- and frequency-dependent density of states A}(ty
of a light orbital, as > ,(el°)2 Al . It is this low-energy
hybridization which destabilizes the Mott state in favor of a
Fermi-liquid ground state. Below, we derive the hybridi-
zation formula for a two-orbital model, discuss the coher-
ence scale, and illustrate the consequences with numerical
results.

Model.—We consider a multiorbital Hubbard Hamiltonian

i:l = Z dlfno—h?jmdjmrf + Z I:]inl[dimr}v (1)

ijnmo i
where d} _ creates an electron at site 7, in orbital 1, and with
spin . The hopping matrix h;" features nonlocal (i # j)
interorbital (n # m) hopping; its Fourier transform is h;™.

I:Iint denotes the local interaction. In single-site DMFT,
correlations are assumed to be local [20]. The propagator
reads Gy, = [v + u — hy — £,]7!, with the chemical poten-
tial 4 and the retarded, matrix-valued self-energy X,.
In sufficiently symmetric situations, one can choose the
orbitals to be orthogonal, such that local one-particle objects
are diagonal in orbital space [21,48]. This includes G, , =
> % Gr» X, and the on-site energies €, =Y ; by — u.
Momentum sums are normalized: > , 1 = 1.

A minimal model for the OSMP has two (orthogonal)
orbitals, a light (It) and a heavy (hv) orbital. We write the
general hopping matrix, including the interorbital hopping
€y, as

elt €io
hk—ﬂ=:<F g). (2)

10
€ €k

The local propagator follows from a 2 x 2 matrix in-
version as

1
o3 »
o k Hn:lt,hv [V - 61? - 2;}] - (6;60)2
<1/ — v —3hv —elo > )
—elo v—ep -t ’

For our numerical results, we use the simplistic expressions

e = —2t,[cos(k,) + cos(k,) + cos(k.)| — u,
€ = =21, [cos(k,) — cos(k,)], (4)

for which the diagonality of €, and Gy, is obvious.
However, our general arguments are independent of the
choice of Eq. (4).

DMFT equations.—In DMFT, the lattice model is
mapped onto an impurity model. We call the (orbital-
diagonal) impurity propagator g, = [v—€;— A, — X |7,
where A, is the retarded hybridization function. The
appropriate A, is found by iteration until self-consistency
between the local lattice propagator and its impurity
counterpart, Gy, = g, is reached.

The diagonal elements of the local propagator are

(m # n)

(€8)?

m m’
v—el =Xy

(5)

1

Gﬁ)c,v:zrn s Tey =V—¢€;—
k kv v

taken from Eq. (3). The hybridization in the bare impurity

propagator is then determined according to Gy, = g.

With 1/g5, = v — €}, — A}, the value Aj can be found from

r;cll/
Ly 1 2w (©6)
v .
g(r;,u Gfloc.u Zk r;yl_zg

This intermediate result is key for the following discussion.
It gives the hybridization components for a general two-
orbital system [Eq. (2)] according to the DMFT self-
consistency condition. We reshuffled the self-energy from
the numerator into the denominator, but no approximation
was made thus far.

While Eq. (6) holds at self-consistency, during the
DMEFT iteration, it is used to update A} from a given
solution of the impurity model (yielding X)) to the next. We
can briefly check the noninteracting case, X =0, for
which DMFT self-consistency is trivial. There, Eq. (6)
correctly yields g, = > 4 (1/r3,). Next, we use Eq. (6) to
investigate whether the OSMP is stable against interorbital
hopping. To this end, we start from a converged DMFT
solution with #,, = 0, realizing the OSMP. Then, we turn on
t;, to check if the Mott insulator persists.
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Indeed, starting at t;, = 0 and setting, e.g., #;,, < f;; at
large interaction and half filling, the heavy orbital is Mott
insulating while the light orbital remains metallic. The Mott
insulator is signaled by a gap in the local density of states
A where —n Al = ImGj,. , = Imgj, and a divergent
effective mass—i.e., lim,_( |ZIV| = co. The impurity solu-
tion yielding g, and X, is determined by the hybridization
A, with spectral weights A} , = —ImAJ}/z. In most cases
[11,49-52], a Fermi-liquid ground state is found if all A% ,
are finite around v = 0, while a Mott-insulating orbital
requires a gapped A% ,.

Now, we perform the first DMFT update, starting from
the OSMP solution but setting t;,, # 0. It is clear from
Eq. (5) that lim,_(|=l"| = co makes GI_,_, for both n
independent of €, so that, in particular, A" remains
gapped. However, the result of the next iteration is
determined by A}, not A". The divergent self-energy also
simplifies the updated hybridization function. In the limit
v — 0 within the OSMP, Eq. (6) yields

=] = oo:

1 .
=D e AY =) (@)G. (7)
gO,y k k

For the second relation, v — €5 in 1/g5", and » (v — €f¥)
from IV cancel, and GY =1/(v—¢€} —=!') when Z[V
diverges. Equation (7) is our main result. Assuming a
divergent IV at low frequencies, A" retains a finite value,
independent of XIV. Since a finite hybridization yields a
Fermi-liquid ground state in fairly general impurity models
[11,49-52], we find that, with AR, = > (el°)2 AL > 0,
the Mott-insulating state of the heavy orbital is unstable
against interorbital hopping. In further DMFT iterations, a
quasiparticle peak in the heavy orbital will form, and Zh
will no longer diverge. In the Supplemental Material [53],
we show that Eq. (7) holds analogously for any number of
orbitals, and we provide a free-energy functional to
illustrate the universal nature of the effect described above.

We next include a temperature/energy coherence scale
below which the Fermi-liquid properties are found. In the
single-impurity Anderson model with large interaction U
and (nonsingular) hybridization .4,, this scale is the Kondo
temperature T « exp(—alU/Ax ,—g) [66]. Similar behav-
ior is expected for our model, albeit with an effective U
encoding further microscopic parameters (like Hund’s
coupling J) [67]. For the first DMFT iteration after
switching from £, =0 to #, #0, we have AY,
2/t from Eq. (7), and thus Tg) o exp|—aln /1] =
cl/%)’ | with ¢  exp[—al/t,] reminiscent of a single-
orbital Kondo scale. This shows that the coherence scale for
the first DMFT iteration after the OSMP can be extremely
small. In the next iterations, ' no longer diverges, and
AL, _, cannot be deduced as easily. However, it is clear
that delocalization of the heavy orbital will open more
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FIG. 2. Spectral functions A" for the light and heavy orbitals.
At t,, =0, we find an OSMP with A" gapped. Finite 7,
destabilizes the OSMP as A" develops a thin quasiparticle
peak. Inset: In the OSMP, lim,_, A" converges only asymp-
totically [30,69].

hybridization channels, so that T%l ) becomes a lower bound
for the actual coherence scale after DMFT convergence,
Tcoh > ngl)

Numerical results.—We now turn to numerical results
for the model of Egs. (1), (2), and (4). We denote the half-
bandwidth of €} by D, = 6t, and consider two half-filled
orbitals with Dy/Dy, = 2. Dy, = 1 is our energy unit,
T = 107%, and H,,, is given by the Kanamori Hamiltonian
[53] with parameters U = 2.4 and J = 0.4 [11]. We use
NRG as a real-frequency impurity solver for DMFT [53]
and assume paramagnetism.

To set the stage, Fig. 2 shows two sets of spectral
functions A" for different interorbital hopping. Our inter-
action parameters are such that #,, = 0 realizes an OSMP,
where A™ has a gap, while A" has a peak at v = 0.
Coupled to unscreened magnetic moments, the metallic
orbital at 7 = 0 behaves as a singular Fermi liquid [30,69],
where lim,_, Al converges only asymptotically (see inset)
and formally Z;, = 0. For finite #,,, A" develops a narrow
quasiparticle peak, replacing the OSMP by a Fermi-liquid
ground state. Nevertheless, at larger energies |v| > 1072,
the two sets of spectral functions for t;,, = 0 and #;, # 0 are
very similar. Particularly, pronounced Hubbard bands in
AV exist in both phases [70].

Figure 3 illustrates our instability argument. It shows ALY
for several DMFT iterations with finite f,,, starting from the
OSMP solution at f;, = 0. In the first iteration, A}, o
(tio/t)? according to Eq. (7). The resulting metallic state
leads to an increased hybridization for the next iteration. Its
coherence scale (below which, e.g., the A”’s converge)

roughly follows Tg) « c/t)® For t,, /1, = 0.2, Tg) <T,
so that A}&YD for the next iteration converges below 7" only.
In the subsequent DMFT iterations, the hybridization
further builds up until the actual coherence scale 7., >
TE(U is established. For f;,/t, = 0.2, T, 2 T is very low,
and OSMP-like behavior persists for |v]| > Top.
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FIG. 3. Hybridization function A, in the heavy orbital for several DMFT iterations with finite 7, starting from the OSMP solution at

ti, = 0. Circles on the vertical axis give values (£,/#,)> x const according to Eq. (7). Dashed vertical lines indicate the coherence scale

after the first DMFT iteration, T% ), and after the last DMFT iteration, T',. For ,/f;, = 0.2, T§<1 ) <« T and Teon = T this opens a
window of intermediate energies |v| > T, with OSMP-like features (cf. Fig. 4).

Indeed, Fig. 4 shows the spectral functions and self-
energies after DMFT convergence. For all #;, > 0, a Fermi-
liquid ground state is obtained, with a finite quasiparticle
peak obeying Luttinger pinning [72] A!_, = p?_, and self-
energies having a linear real part. At the lowest #;,, > 0,
however, both properties are fulfilled only at very low
energies |v| < Teop ~4 % 1077 (even though A" increases
most strongly around |v| ~107"). For |v| > Ty, the
system is hardly distinguishable from the OSMP: in an
intermediate regime of around 4 orders of magnitude, A
almost vanishes and X! follows the logarithmic behavior of
the OSMP [30,69]. While the quasiparticle weights Z, =
1/(1 —o,ReX!|,_,) are already on the percent level for
tio/ty = 0.3, they reach values as low as 1073 for the light
and 107 for the heavy orbital at #,,/#;, = 0.2. Decreasing
t,, further, an OSMP is recovered as T, < T = 1078,

Comparison with slave spins.—We finally compare our
results to previous slave-spin studies, which found the
OSMP to be stable against interorbital hopping [39]. Slave-
spin approaches decompose the physical fermions d into a
bosonic slave-spin operator b and a slave fermion f,

Zijma = IA),»mgfleU. It was shown that minimizing the mean-
field decoupled free energy in slave-spin approaches is
equivalent to a DMFT-like treatment, where the slave-spin
impurity solver yields the quasiparticle weight and DMFT
self-consistency is imposed on the slave fermions (see
Eq. (30) in Ref. [34]).

Expressions for the f fermions follow from those of the d
fermions by expanding the self-energy to linear order,
¥ wxa,+ (1-1/Z,)v, and dividing out Z,. For the local

propagator [Eq. (5)], G*" = Z,G/" | this yields (m # n)

loc,v loc,v?

6l =3 |v-el" -

k

(et)? 7!
prrrl I (8)

(el7°)2 = Zy Zny (e8°)2. (9)

Due to the factor Z,,Zy,, the interorbital hopping has no
effect here if Z,, = 0. This agrees with our previous point
that a dominant |Z!V| makes Gﬁ;:’y independent of €.
More insight is obtained from the impurity propagator,

gl = Z,,g,’j‘", with

to/t = 0.4 0.3 0.2 0
light orb.
heavy orb.

0.9g—

-4 2
v/ Dy 10 10

FIG. 4. Spectral functions A, and self-energies £, = X, — %,
after DMFT convergence. For f,/f, € {0.4,0.3,0.2}, Fermi-
liquid behavior with A,_, obeying Luttinger pinning (circles)
and linear ReZ is seen below coherence scales of roughly 1073,
107, and 4 x 1077, respectively (cf. Fig. 3). For ,,/f;, = 0.2 and
10~ < v/Dy, < 107!, A™ almost vanishes, and ReZ!" perfectly
follows the logarithmic behavior [30,69] of the t,, = 0 OSMP.
The three dotted lines indicate kv, with ¥ = 10,5 x 103, 10°
from bottom to top.
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er=Z,(eh+a,). A"=Z,AL"

(10)

One finds that the f-fermion self-consistency condition

(GI2, = gl leads to the same result for the d-fermion

hybridization as in Eq. (7), now in the form A{™ =
S k(€22 G, This s still finite if the light orbital is
metallic (here Z;;, > 0). However, the crucial difference is
that the impurity model for the slave spins is not charac-
terized by A¢ but by AJ. Here, each component is tied to the
quasiparticle weight, Al = Z, A" Hence, if Z,, =0,
the slave-spin impurity solver has no chance of seeing
A,‘ffg # 0 and, thereby, no chance of generating Z;, > 0
and leaving the OSMP. In other words, the inseparable

connection of Z, and A%" in slave-spin studies leads to
additional stationary points of the free energy, not present
in DMFT.

Conclusion.—Using single-site DMFT, we showed that
interorbital hopping t;,, is a relevant perturbation to the
OSMP and destabilizes it at 7 = 0 in favor of a Fermi-
liquid ground state. The reason is that the low-energy
hybridization in a given orbital has a finite contribution
which stems from hopping to another orbital and back.
Crucially, this term depends only on the availability of
states in the intermediate orbital and not on the effective
mass of the electron hopping. While an arbitrarily large
imbalance in effective masses can still exist, within single-
site DMFT, there is generically no OSMP with £, > 0 at
T = 0, and more generally below the coherence scale. Its
finite-temperature properties may thus be viewed as a
coherence-incoherence crossover, where selected orbitals
are localized for T > T, but itinerant for 7 < Tg,. This
crossover can either be tuned by increasing 7 in a given
system [4] or by decreasing T, at fixed (nonzero) T (as
in Ref. [7]).

Our analytic arguments are supported by numerical
results using NRG as a DMFT impurity solver, capable
of accessing real frequencies and arbitrarily low temper-
atures. This allowed us to demonstrate that 7., below
which the Fermi-liquid properties are found, is very
sensitive to system parameters and can be extremely small,
even for moderate values of f,,/t,. We showed that many
properties of the 1;, # O state for energies above T, are
almost indistinguishable from the f#, =0 OSMP that
reaches down to 7 = (. Future theoretical work should
aim to go beyond single-sitt  DMFT to address the
influence of nonlocal, interorbital self-energy components
in renormalizing f,, [73]. Experimentally, our results can be
tested by measuring the normal-state Fermi-surface volume
at very low T and by analyzing the scaling behavior in
the OSMP at T > 0.
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Note added.—After completion of this work, we became
aware of Ref. [77], which analyzes magnetic fluctuations
for the model we used to illustrate our findings.
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