
1

LDPC Codes for Random Access Channel
Yuxin Liu, Student Member, IEEE, and Michelle Effros, Fellow, IEEE

Abstract—This paper derives finite-blocklength achievability
bounds for low-density parity-check (LDPC) codes for the
random access channel (RAC), in which neither the encoders
nor the decoder perceive which and how many of the total K
transmitters are active. The LDPC code design is comprised of
K stages, corresponding to each of the k 2 {1, . . . ,K} potential
decoding times nk. The results demonstrate that the proposed
RAC LDPC codes achieve first- and second-order performance
that is identical to the best-prior results for the corresponding
MAC.

I. INTRODUCTION

THIS paper extends the error-exponent and finite-
blocklength analyses of low-density parity-check (LDPC)

code from Point-to-Point Channels (PPC) and Multiple Access
Channels (MAC) in [1] to Random Access Channels (RAC),
in which neither the transmitters nor the decoder have access
to the information about the set of active transmitter(s).

Random access techniques have a pivotal role in modern
communication systems, as the set of transmitters may be
unknown or time-varying in many applications like Internet of
Things (IoT) and sensor networks. Whilst network information
theory, which aims to establish the fundamental limits of infor-
mation flow and corresponding coding schemes in networks,
has been attracting increasingly interests in the past decades,
majority of the studies assume the set of transmitters is fixed
and known.

Current random access techniques focus on collision avoid-
ance or orthogonalization, which facilitate many users to share
the network medium without interference. Slotted-ALOHA (S-
ALOHA) introduces discrete time slots to synchronize the
start of transmission. A transmission is acknowledged to be
successful if only one transmitter is active for that slot, other-
wise a collision is declared. Collided packets are re-transmitted
after a random delay to avoid repeated collision. Under a
set of assumptions, S-ALOHA is shown to achieve 36.8% of
the single-transmitter capacity [2]. Past improvements on S-
ALOHA include adaptive S-ALOHA [3], [4], which addresses
the instability issue of S-ALOHA, and fast adaptive S-ALOHA
[5], which seeks to accelerate and algorithm and decrease the
access delay. Orthogonalization methods partition available
resources and allocate a fixed fraction to each user, typical
orthogonalization protocols include time-division multiple ac-
cess (TDMA), frequency-division multiple access (FDMA),
and code-division multiple access (CDMA). The cost associ-
ated with simplifying coding using orthogonalization protocols
is significant, as the best sum-rate (throughput) achievable
is equal to the single-transmitter capacity of the channel,

Yuxin Liu and Michelle Effros are with the Department of Electrical
Engineering, California Institute of Technology, Pasadena, CA 91125 USA
(e-mail: yuxinl@caltech.edu; effros@caltech.edu).

which could be considerably smaller than the maximum
multi-transmitter sum-rate of the channel. Some prominent
non-orthogonal multiple access (NOMA) advancements are
reviewed and discussed in [6].

This paper investigates the coding schemes for communica-
tion scenarios in which no one knows the set of active trans-
mitters. With the intention of matching the varying capacity
region of a MAC with different transmitters, the designed code
must be able to tailor its codebook size to modify the code
rate. With the enlightenment of the definition of the code rate,
R = logM

n , we are able to adjust the code rate by tuning the
decoding time, which effectively changes the blocklength of
the codewords in, but not the size of, the codebook.

Rateless codes, first analyzed by Burnashev in 1976 [7],
are codes that enable various decoding times. Traditionally,
all transmitters in a rateless code listen for a single feedback
bit from the receiver that indicates whether to continue or
stop their transmissions at every time step. Error exponents of
independent and identically distributed (i.i.d.) rateless codes
over binary symmetric channels are analyzed in [8]. Draper et
al. generalize the strategy in [8] to arbitrary discrete memory-
less (DM) PPCs (DM-PPC) [9]. The dispersion-style analysis
of i.i.d. rateless codes over DM-PPC is derived in [10]. The
results of this study reveal that feedback can dramatically
improve the maximal achievable rate in the finite-blocklength
regime. Instead of allowing arbitrary decoding times and thus
requiring constant feedback, recent developments in rateless
codes have lifted the heavy burden on all users by employing
a limited set of decoding times [11]–[13]. The set of decoding
times {n1, n2, . . . , nK} is finite and predetermined, where
ni, i 2 {1, . . . ,K} refers to the decoding time at which the
decoder believes there are i active transmitters and it is able
to decode.

Despite the challenge that the set of active transmitters is un-
known and the feedback rate is asymptotically vanishing, Ef-
fros et al. [11] prove that their proposed RAC code can achieve
the first- (capacity) and second-order (dispersion) terms of the
corresponding MAC. For Gaussian RAC model, Yavas et al.
[12] design Gaussian RAC code by concatenating K partial
codewords, each of blocklength n1, n2�n1, . . . , nK �nK�1,
and demonstrate the proposed code is able to attain the
same first- (capacity), second- (dispersion), and third-order
performance as the best known result for the Gaussian MAC.

While i.i.d. random codes enjoy the property of indepen-
dence between symbols within and across codewords, making
them theoretically simple to analyze, the mutual independence
also induces difficulties in practical implementations. In con-
trast, linear codes, such as LDPC codes, are more structured
and thus more realistic to implement.

LDPC codes, introduced by Gallager in 1962 [14], are
equipped with sparse parity-check matrices for the purpose

2

TABLE I
SUMMARY OF NOTATIONS

K maximum number of active transmitters
ni blocklength/number of LDPC variable nodes after stage

i, i 2 [K] design
ri number of LDPC check nodes after stage i, i 2 [K] design
n�i increment blocklength/number of LDPC variable nodes for

stage i, i 2 [K] design
r�i increment number of LDPC check nodes for stage i, i 2 [K]

design
�i variable node degree of stage i, i 2 [K] regular LDPC code
⇢i check node degree of stage i, i 2 [K] regular LDPC code
Q GF(q)
G bipartite LDPC graph
V vertex set of a graph G
E edge set of a graph G
i(x; y) information density
C channel capacity
V channel dispersion
T third-order centered moment of information density
Q complementary Gaussian CDF
T n
Q set of all possible types for n elements from Q

v LDPC coset vector
� LDPC quantizer
S
n
(t) ensemble-average number of type-t codewords/codematrices

S
n ensemble-average spectrum

B(n, t) multinomial coefficient
Ep(R) Gallager’s error exponent for distribution p

of enabling low complexity decoding strategies. There has
been renewed interest in LDPC codes since the introduction
of turbo codes in 1990s. LDPC codes are now in widespread
use, playing a role in commercial standards like 10 Gb/s
Ethernet (IEEE 803.3an), WiFi (IEEE 802.11n), WiMAX
(IEEE 802.16e), and the 5G standard.

This paper proposes a new rateless RAC LDPC code
and analyzes its performance using both the error-exponent
approach and the dispersion-style approach.

The paper is organized as follows. In Section II, we define
notations, followed by the channel models and code construc-
tion in Section III.

II. NOTATIONS

For non-negative integers a and b, let [a] 4
= {1, 2, . . . , a},

and [a : b]
4
= {a, a+ 1, . . . , b}, where [a : b] = ; when a > b.

We employ uppercase letters (e.g., X and Y) to denote random
variables, lowercase letters to denote their realizations (e.g., x
and y), and calligraphic uppercase letters (e.g., X nad Y) to
indicate their sample spaces. To represent vectors, we use both
superscripts (e.g., Xn) and bold fonts (e.g., X , 1 and 0) when
the length of the vector is clear in the context. The subscript i
in Xi indicates the ith element of the vector X . The inequality
symbols (e.g., > and ) operate element-wise when used for
comparing vectors (e.g., Xn

> Y
n if Xi > Yi for all i 2 [n]).

Likewise, applying a scalar function f(·) to a vector X 2 Rn

gives the vector of function values f(X)
4
= (f(Xi), i 2 [n]).

Given a scalar a 2 R, a vector v 2 Rn, and a set S ✓ Rn,
the set aS + v is defined as aS + v

4
= {as+ v, s 2 S}.

Throughout the paper, unless otherwise indicated, all log-
arithms are evaluated with base q, where the prime power q

specifies the alphabet size of our proposed LDPC code. We

apply standard asymptotic notations O(·) and o(·) to describe
the limiting behavior of functions, writing f(n) = O(g(n)) if
there exists constants a and n

0 such that |f(n)|  a|g(n)| for
all n > n

0 and f(n) = o(g(n)) if limn!1

��� f(n)g(n)

��� = 0.
For a joint distribution PXY on discrete alphabet X ⇥ Y

and any x 2 X and y 2 Y , we denote the information density
by

i(x; y)
4
= log

PY |X(y|x)
PY (y)

. (1)

Given a set of alphabets Xi, i 2 [n], a joint distribution
PXkY for some integer k, and ordered sets A,B ✓ [k] such
that A \ B = ;, we define XA

4
=
Q

i2A Xi and information
density and conditional information density as

i(xA; y)
4
= log

PY |XA(y|xA)

PY (y)
(2)

i(xA; y|xB)
4
= log

PY |XA,XB(y|xA, xB)

PY |XB(y|xB)
, (3)

for any xA 2 XA, xB 2 XB, and y 2 Y .
The corresponding mutual informations, dispersions, condi-

tional dispersions, third centered moments, conditional third
centered moments of the information density (2) and condi-
tional information density (3) are

I(PXA)
4
= E[i(XA;Y)] (4)

I(PXA |PXB)
4
= E[i(XA;Y |XB))] (5)

V (PXA)
4
= Var[i(XA;Y)] (6)

V (PXA |PXB)
4
= Var[i(XA;Y |XB)] (7)

V
Y (PXA)

4
= Var[i(XA;Y)|Y] (8)

V
Y (PXA |PXB)

4
= Var[i(XA;Y |XB)|Y] (9)

T (PXA)
4
= E[|i(XA;Y)� I(PXA)|3] (10)

T (PXA |PXB)
4
= E[|i(XA;Y |XB)� I(PXA |PXB)]|3] (11)

T
Y (PXA)

4
= E[|i(XA;Y)� I(PXA)|3|Y] (12)

T
Y (PXA |PXB)

4
= E[|i(XA;Y |XB)� I(PXA |PXB)]|3|Y].

(13)

The (probability density function) PDF and cumulative
distribution function (CDF) for standard Gaussian distribution
N (0, 1) are denoted by

�(x)
4
=

1p
2⇡

e
� x2

2 (14)

�(x)
4
=

1p
2⇡

Z x

�1
e
�u2

2 du, (15)

respectively. The function Q(·) denotes the standard Gaussian
complementary CDF

Q(x)
4
= 1� �(x) =

1p
2⇡

Z 1

x
e
�u2

2 du, (16)

and Q
�1(·) is the inverse function of Q(·).

The generalization of inverse Gaussian complementary CDF
Q

�1(·) to higher dimension is denoted by Qinv(·, ·). Let Z

3

be a Gaussian random vector in Rd with mean zero and
covariance matrix K, the set Qinv(K, ✏) is given by

Qinv(K, ✏)
4
= {z 2 Rd : Pr[Z  z] � 1� ✏}. (17)

Given a positive integer n, a prime power q, and a PDF
✓ = (✓0, ✓1, . . . , ✓q�1) such that n✓i 2 Z, 8i 2 {0} [[q � 1],
the multinomial coefficient B(n, n✓) is defined as

B(n, n✓)
4
=

n!Q
i = 0q�1(n✓i)!

. (18)

III. SYSTEM MODEL AND DESIGN

A. Random Access Channel Model

We begin with the definition of a K-user DM-MAC, de-
noted by DM-K-MAC.

Definition 1. (DM-K-MAC) A DM-K-MAC is defined by

KY

i=1

Xi, PY |X ,Y
!

where Xi, i 2 [K], and Y are the discrete channel input and

output alphabets, respectively, and PY |X = PY |X1,X2,...,XK

is the channel transition probability..

Note that a DM-K-MAC is called symmetric if all trans-
mitters share the same input alphabet Xi = X for all i 2 [K]
and

PY |X(y|x) = PY |X(y|⇡(x))

for all y 2 Y , x 2 XK , and permutations ⇡ on [K].
All the MAC models in this study, unless otherwise speci-

fied, are symmetric. We regard the RAC model as a family of
all possible MACs resulting from different transmitter patterns.

Definition 2. A DM-RAC is described by a collection of

symmetric DM-MACs

��
X k

, PY |Xk ,Yk

� K

k=0
, (19)

where X k
, PY |Xk , and Yk are the channel input alphabet,

channel transition probability, and channel output alphabet

when there are k active transmitters, respectively.

B. Quantized Coset RAC LDPC Code Design

The RAC LDPC code design is an extension of the MAC
design from our previous work. For any prime power q and
finite field GF(q), a quantized coset RAC GF(q)-LDPC code
consists of five components: a RAC LDPC encoder, a random
codeword selector (fixing operational rate to design rate), an
expurgator (removing codes with small minimum distances) a
coset vector v, and a quantizer �, defined below and illustrated
in Figure 1.

Definition 3. (RAC GF(q)-LDPC code) For a K-user RAC,

a RAC GF(q)-LDPC code is defined on a bipartite Tanner

graph G = (V, E) with nK variable nodes, rK check nodes,

and edge set E ✓ [nK]⇥ [rK] using a K-stage design.

For each stage i 2 [K], the code is constructed as follows:

• When i = 1, the LDPC code is a length-n1 regular LDPC

code with variable node degree (left degree) �1 and check

node degree (right degree) ⇢1. The number of check nodes

r1 satisfies n1�1 = r1⇢1.

• When i = 2, there are n�2
4
= n2�n1 additional variable

nodes and r�2
4
= r2 � r1 additional check nodes. All the

n2 variable nodes are added ⇢2 sockets each, which are

connected to the additional r�2 check nodes of degree �2.

The number of check nodes r�2 satisfies n2�2 = r�2⇢2.

• When 3  i < K, n�i
4
= ni � ni�1 additional variable

nodes and r�i
4
= ri � ri�1 are added. �i additional

sockets are added to each of the ni variable node, which

are connected with a random permutation to the r�i

check nodes of degree ⇢i.The number of check nodes r�i

satisfies ni�i = r�i⇢i.

For each (i, j) 2 E , (i, j) represents an undirected edge

connecting the ith variable node and the jth check node; each

edge value gi,j is chosen uniformly at random from GF(q) \
{0}. The notation

N (j)
4
= {i : (i, j) 2 E},

captures the neighborhood of check node j 2 [r] resulting

from edge set E .

The nK variable nodes hold a length-nK vector u from

GF(q)nK . Vector u is a codeword if it satisfies all the rK

check nodes, giving

X

i2N (j)

gi,jui = 0 8j 2 [rK]; (20)

the linear equation operates in GF(q). The set of all M = |c|
codewords constitute the codebook

c = {c1, . . . , cM} ✓ GF(q)nK

for the given Tanner graph G = (V, E). All the K transmitters

employ the same RAC LDPC codebook.

We consider a random ensemble of RAC GF(q)-LDPC
codes, where each code in the ensemble is chosen uniformly
at random from all possible permutations of connecting the
�ini, i 2 [K] sockets, and all possible edge values from
GF(q) \ {0} for each socket during the stage-i design.

The design is illustrated in Figure[reference] below
We have the following relationships for the design parame-

ters:

nk =
kX

i=1

n�i (21)

rk =
kX

i=1

r�i (22)

Note that after we choose parameters nk,�k, ⇢k, that will
automatically determine the corresponding number of check
nodes rk. For example, r1 = n1�1

⇢1
, r�2 = n2�2

⇢2
, and in general

r�k =
nk�k

⇢k
. (23)

Therefore, the design rates, in q-ary symbols per channel
use, for each blocklength ni, i 2 [K] is

R1 =
n1 � r1

n1
= 1� �1

⇢1
(24)

4

Message
RAC
LDPC
Encoder

Random
Codeword
Selector

Expurgator +

Coset
Vector v

Quantizer
�(·)

Channel
Codeword

Fig. 1. Encoding of Quantized Coset LDPC Code

Fig. 2. Place holder for RAC LDPC design

R2 =
n2 � r2

n2
= 1� r2

n2
= 1� �

⇢
= 1�

n1�1+n2�2
n2

r1⇢1+r�2⇢2

r2

(25)

= 1�
n1
n2

�1 + �2

r1
r2
⇢1 +

r�2
r2

⇢2
(26)

...

RK =
nK � rK

nK
= 1� rK

nK
(27)

= 1�
PK

i=1
ni
nK

�i
PK

i=1
r�i
rK

⇢i

. (28)

Remark 1. The fact that Ri, i 2 [K] are named “design

rates” is deliberate, as each of the first ri, i 2 [K] check

node equations in (20) might be linearly dependent, making

the actual rate larger. The vast majority of LDPC literature

assumes that the operational rate is equal to the design rate,

which may not be precise for short blocklengths. Measson et

al. proved in [15, Lemma 7] that the probability of the actual

rate of an irregular PPC LDPC code deviating from the design

rate decays exponentially in the blocklength, and this proof

was generalized to regular MAC LDPC codes in [1, Theorem

3].

To fix the operational rate to the design rate, we apply the
random codeword selector.

Definition 4. (Random Codeword Selector) Given the en-

semble of RAC GF(q)-LDPC codes with design rates vector

R = (R1, . . . , RK) from the RAC LDPC encoder, the random

codeword selector generates an ensemble by dividing the

probability of each code in the original ensemble equally

among all code(s) corresponding to a distinct combination of

q
nRi codewords of length-ni for all i 2 [K] from the original

code.

Since the performance of an ensemble of LDPC codes is
negatively affected by a small number of codes with small
minimum distance [16, Observation below (7)], removing (ex-
purgating) these codes produces an ensemble with improved
properties [16, Lemma 1], [1, Appendix C]. Therefore an
expurgator is employed to remove codes with small minimum
distances in the ensemble from the random codeword selector.

Definition 5. (Expurgator) Let PL(C) denotes the probabil-

ity of a randomly chosen code from the ensemble resulting

from the random codeword selector. The expurgator gener-

ates an ensemble, by placing probability zero on all codes

whose minimum distances for the first ni, i 2 [K] symbols

(denoted by d
ni
min(C) is less than or equal to �ini, and

probability PL(C|dni
min(C) > �ini, 8i 2 [K]). The values of

� = (�1, . . . ,�K) can be chosen such that Pr[dni
min(C)] =

O(n�̄i/2�1
i), where �̄i

4
=

Pi
j=1

nj

ni
�j for all i 2 [K] [1,

Appendix C].

Similar to the MAC LDPC codes in [1], we apply quantized
coset coding [17] before transmitting the codewords over the
channel.

Definition 6. (Coset GF(q)-LDPC Code) Given the Tanner

graph G = (V, E) of a RAC LDPC encoder and the corre-

sponding LDPC codebook c from the expurgator, the coset

LDPC code is constructed by adding a constant vector v
chosen uniformly at random from GF(q)nK , called the coset
vector, to each codeword ci 2 c. The addition

ci + v, i 2 [M]

is performed component-wise in GF(q). The set {ci + v, i 2
[M]} is the codebook for the coset GF(q)-LDPC code. Each

of the K transmitters is given an independently generated

coset vector vi, i 2 [K].

Definition 7. (Quantized Coset GF(q)-LDPC Code) Given a

coset LDPC codebook {ci+v, i 2 [M]}, we map each symbol

from each codeword ci+v to a symbol from the channel input

alphabet X using a quantizer �:

� : GF(q) ! X . (29)

Mapping � is applied component-wise; we therefore employ

notation

�(ci + v)
4
= [�((ci + v)j)]j2[n]

for coset codeword ci+v. The set {�(ci+v), i 2 [M]} is the

codebook for the quantized coset GF(q)-LDPC code. All the

K transmitters adopt the same quantizer �(·).

Remark 2. Even all the k-MAC, k 2 [K], in the RAC

model (Def. 2) are assumed to be symmetric, the capacity-

achieving distribution P
⇤
X might vary with the number of active

transmitters [11, Example 2]. In such scenarios, [11, Sec.

V.B] discusses how to choose the optimal distributions using

dominant rate points, which in turn guides the design of the

quantizer �(·).

We label the random ensemble resulting from the appli-
cation of random RAC LDPC encoder, random codeword
selector, and expurgator as LDPC� {(�i, ⇢i;ni)}Ki=1. Before

5

transmission starts, the chosen RAC LDPC codebook, coset
vector, and quantizer are disclosed to all parties.

C. Decoder Design

Follow the RAC communication protocol proposed in [11,
Sec. II.B], transmissions happen in epochs, where each new
epoch starts after a positive acknowledgement bit sent from
the decoder at some time ni, i 2 [K] [{0} of the previous
epoch.

The decoder is a two-stage process and it sends a positive
feedback bit (acknowledgement) to all transmitters if there is
no active transmitter or after the second stage at the end of
each epoch:

1) The first stage is a hypothesis test with K + 1 testing
functions hi(·) with K + 1 thresholds �i, i 2 [K] [{0}
that determines whether there are any active transmitters
at time n0, and if so, how many active transmitters are
there at time ni, i 2 [K]. If the hypothesis test threshold
if fulfilled at time n0, then the decoder declares there
are no active transmitters for the current epoch and a
positive acknowledgement is sent to signal the start of
next epoch. Otherwise, the decoder enters the second
stage upon passing the first testing function hk(·) at time
nk for some k 2 [K].

2) The second stage is a maximum likelihood (ML) de-
coder with K decoding functions gk(·), k 2 [K] that
maps the received symbols y

nk 2 Ynk
k to (X k)nk . A

positive feedback bit is sent at time nk to conclude the
current epoch, and a new epoch starts at the next time
step. Each transmitter then decides whether to start a
new transmission or remain silent for the new epoch,
until the next positive feedback bit is received.

IV. ERROR ANALYSES

We present two types of analyses, error-exponent analysis
and dispersion-style analysis, for the proposed Quantized
Coset RAC LDPC code in this section. As discussed in [1,
Sec. III-C], a comparison of both approaches reveals that the
error-exponent analysis achieves a sub-optimal bound at small
blocklength n but a superior performance when target error
probability ✏ is small.

Before presenting the analyses, we define an important
quantity, ensemble-average number of codewords, that is es-
sential in both approaches.

Denote the type of a vector u 2 GF(q)n as T n
Q (u). The set

of all possible types of a length-ni vector from GF(q)ni , i 2
[K] is denoted by

T ni
Q

4
= {T ni

Q (u) : u 2 GF(q)ni} ⇢ Z|Q|
+ .

For a given codebook c from the LDPC�{(�i, ⇢i;ni)}Ki=1

ensemble, the number of type-ni✓i, ni✓i 2 T ni
Q codewords in

c is denoted by S
ni
c (✓i)

S
ni
c (✓i) =

qniRiX

m=1

1{T ni
Q (cm) = ni✓i} (30)

We represent the ensemble-average spectrum of the LDPC�
{(�i, ⇢i;ni)}Ki=1 ensemble at each blocklength ni (for which
the total number of check nodes is ri) by

S
ni

L,ri

4
= EC [Sni

C] = {Sni

L,ri(✓i) : ni✓i 2 T ni
Q }, 8i 2 [K].

(31)

A. Error-Exponent Analysis

Given a RAC model
��

X k
, PY |Xk ,Yk

� K

k=0
, where a sin-

gle distribution P
⇤
X achieves the capacity for different number

of active transmitters (see Remark 2 for discussions on when
such distribution does not exist), Theorem 1 bounds the
ensemble-average probability of the proposed RAC LDPC
ensemble.

Theorem 1. Consider
��

X k
, PY |Xk ,Yk

� K

k=0
. Let the RAC’s

maximal symmetrical rate vector be the K-vector (C, . . . , C),
and fix any R = (R, . . . , R) with R < C. Let PU be a pmf

on U for which PU (u) = Nu/q for some integer Nu for each

u 2 U , and let � : GF(q) ! U be a quantization matched to

PU . The ensemble-average error probability of the quantized

coset-shifted of the LDPC� {(�i, ⇢i;ni)}Ki=1 satisfies

Similar to the error analysis presented in [1, Thm. 1], we
obtain

log↵i

ni
= max✓i : ✓ini 2 T ni

Q
S
ni

L (✓)

(Mi � 1)B(ni, ni✓)q�ni
, i 2 [K],

(32)

where S
ni

L (✓) is the expected number of codematrices of
length ni and type ni✓, Mi = q

nRi is the number of
codewords for each transmitter at length ni, Ri is the design
rate at length ni, and B(ni, ni✓) is the multinomial coefficient.

B. Calculation of S
ni

L

To calculate S
ni

L for each type ni✓

S
ni

L (✓) = B(ni, ni✓) Pr[dni✓ 2 D], (33)

where Pr[dni✓ 2 D] is the probability that a matrices of type
ni✓ is in the codebook of a randomly chosen code D. We
then use symmetry of code design and generating functions to
evaluate Pr[dni✓ 2 D],

Pr[dni✓ 2 D] =
b((A<i>(x))ri)cni�<i>✓

B(ni�<i>, ni�<i>✓)(q � 1)ni�<i>
, (34)

where ni�<i>
4
=

Pi
j=1 nj�j is the total number of

sockets at length ni, (A<i>(x))ri is the generating func-
tion of number of codematrices after stage-i design, and
b((A<i>(x))ri)cn<i>�<i>✓ denotes the coefficient of the term
xni�<i>✓ in the generating function.

To illustrate how to find the expression of the generating
function, we take i = 2 for notational simplicity. A generic
expression for arbitrary i 2 [K] is also provided below.

A<2>(x)
r2 4

= A1(x1)
r1A2(x2,1,x2,2)

r�2 ,

(35)

b((A<i>(x))
ri)cn<i>�<i>✓

4
= bA1(x1)

r1A2(x2,1,x2,2)
r�2cn1�1✓1|n1�2✓1,n�2�2✓�2

(36)

6

where A1(x1) is the generating function for each of the first
r1 check nodes, A2(x1,x2) is the generating function for each
of r�2 check nodes in the second group, ✓1 is the sub-type
of the first n1 variable nodes, ✓�2 is the sub-type of the n�2

variable nodes in the second group, n1�1✓1 refers to the term
xn1�1✓1
1 in A1(x1), and finally n1�2✓1, n�2�2✓�2 denotes

the term xn1�2✓1
2,1 xn�2�2✓�2

2,2 in A2(x2,1,x2,2).
The calculation of A1(x1) is as follows:

A1(x1) =
X

g1,...,g⇢12Qn
1

X

e1,...,e⇢12Qn
1

1

(
⇢1X

i=1

giei = 0

)nY
x1,gi

o
,

(37)

where gi and ei correspond to the variable node value and
socket value, respectively.

However, the calculation of A2(x2,1,x2,2) might be difficult
as we need to separate it into different cases, depending on
how many of the ⇢2 sockets are from the first n1 variables
nodes (corresponding to x2,1 term) and how many of them
are from the n�2 variable nodes (corresponding to x2,2 term).
That is, in the last term {

Q
x1,gi} for A1(x1), gi may

correspond to x2,1 or x2,2.
To solve this problem, we make two claims.

Claim 1. The joint generating function

bA1(x1)r1A2(x2,1,x2,2)r�2cn1�1✓1|n1�2✓1,n�2�2✓�2
can

be broken into two independent generating functions as

bA1(x1)
r1A2(x2,1,x2,2)

r�2cn1�1✓1|n1�2✓1,n�2�2✓�2

= bA1(x1)
r1cn1�1✓1bA2(x2,1,x2,2)

r�2cn1�2✓1,n�2�2✓�2 .

(38)

The intuition behind Claim 1 is that the sockets for the
first group of r�1 check nodes are independently drawn
of the sockets for the second group of r�2 check nods.
In other words, for any given sockets configuration that
are satisfied with the first group of check nodes, we can
choose A2(x2,1,x2,2)r�2cn1�2✓1,n�2�2✓�2 different socket
connections for the second group of check nodes, and all
of them are satisfied with both group of check nodes and
thus give valid codematrices.

Claim 2. Given a sub-type pair (✓1,✓�2), let ✓2 = n1✓�1+
n�2✓�2, then

bA2(x2,1,x2,2)
r�2cn1�2✓1,n�2�2✓�2

= bA2(x2)
r�2cn2�2✓2 ·

� n1

n1✓1

�� n�2

n�2✓�2

�
� n2

n2✓2

� , (39)

where A2(x2) is the generating function for one check node

in a regular LDPCcode with parameter (�2, ⇢2), and we are

taking the coefficient of the term xn2�2✓2
2 in the generating

function A2(x2)r�2 .

The above claims can be generalized to arbitrary k � 2, as
shown in the following corollaries.

Corollary 1. The combined generating function

bA1(x1)r1 . . . Ak(xk,1, . . . ,xk,k)r�kcn1�1✓1|...|n1�k✓1,...,n�k�k✓�k

can be broken into k independent generating functions as

bA1(x1)
r1 . . . Ak(xk,1, . . . ,xk,k)

r�kcn1�1✓1|...|n1�k✓1,...,n�k�k✓�k

= bA1(x1)
r1cn1�1✓1 ·

kY

i=2

bAk(xi,1, . . . ,xi,i)
r�icn1�i✓1,...,n�i�i✓�i .

(40)

Corollary 2. Given a sub-type pair (✓1,✓�2, . . . ,✓�k), let

✓k =
Pk

i=1 n�i✓�i

nk
, then

bAk(xk,1, . . . ,xk,k)
r�kcn1�k✓1,...,n�k�k✓�k

= bAk(xk)
r�kcnk�k✓k ·

Qk
i=1

� n�i

n�i✓�i

�
� nk

nk✓k

� , (41)

where Ak(xk) is the generating function for one check node

in a regular LDPCcode with parameter (�k, ⇢k), and we are

taking the coefficient of the term xnk�k✓k
k in the generating

function Ak(x2)r�k .

For the ease of further analysis, the following analysis
assumes there are number of K = 2 active transmitters.
Given a type ✓2 = (✓1,✓�2), denote the number of ensemble
average codewords for the first group of r1 and second group
of r�2 check nodes as:

S
n1

L,r�1
(✓1) = B(n1, n1✓1)

bA1(x1)r1cn1�1✓1

B(n1�1, n1�1✓1)(q � 1)n1�1

(42)

S
n2

L,r�2
(✓1,✓�2) = B(n2, n2✓2)·

bA2(x2,1,x2,2)r�2cn1�1✓1,n�2�2✓�2

B(n2�2, n2�2✓2)(q � 1)n2�2
. (43)

Denote the number of codematrices for the combined r1 +
r�2 check nodes as S

n2

L,r2(✓2), then

S
n2

L,r2(✓2) =
X

✓12C(✓1(✓2,n1))

S
n1

L,r�1
(✓1) · S

n2

L,r�2
(✓1,✓�2) ·

� n1

n1✓1

�� n�2

n�2✓�2

�
� n2

n2✓2

� ,

(44)

where C(✓1(✓2, n1)) denotes the set of “compatible” ✓1 of
length n1 that can rise from the given ✓2.

Some attempts to evaluate S
n2

L,r2(✓2) in (44):
1) Since S

n2

L,r�2
(✓1,✓�2) is independent of ✓1 (note that

✓1 is in the ✓2-compatible set C(✓1(✓2, n1))), we can
factor it out. (44) becomes

S
n2

L,r2(✓2) = S
n2

L,r�2
(✓1,✓�2) ·

0

BBBB@

X

✓12C(✓1(✓2,n1))

S
n1

L,r�1
(✓1) ·

� n1

n1✓1

�� n�2

n�2✓�2

�
� n2

n2✓2

�
| {z }

w(✓1)

1

CCCCA
.

(45)

Here w(✓1) can be considered as the weight for that
sub-type ✓1. Using the property that the maximum is
no less than the weighted average, we obtain

S
n2

L,r2(✓2)  S
n2

L,r�2
(✓1,✓�2) · max

✓1:✓12C(✓1(✓2,n1))
S
n1

L,r�1
(✓1).

(46)

7

Since the maximization is over a subset of Q1 (all
possible types of length n1 variable nodes), we have

max
✓1:✓12C(✓1(✓2,n1))

S
n1

L,r�1
(✓1)  S

n1

L,r�1
(✓⇤

1), (47)

where ✓⇤
1 is the type ✓1 that maximizes log↵1

n1
(and thus

maximizes S
n1

?).
2) How to find the set of “compatible” ✓1 of length n1

for a given ✓2, C(✓1(✓2, n1)). We know that without
the limits of each element from 0 to q

2 � 1, then the
number of ways (combinations) to choose n1 objects is

✓
n1 + q

2 � 1

n1

◆
. (48)

However, what if we limit the number of each element to
n2✓2,0, n2✓2,1, n2✓2,2, . . ., n2✓2,q2�1, then the problem
becomes non-trivial.
After some searches, it seems that there are only for-
mulas for unlimited repetitions. Problems with limited
(but symmetric) repetitions may be solved case by case,
but the calculation can get very messy. Our problem is
even more complicated, as the repetition is irregular, i.e.,
different elements have different maximum repetitions.
One solution is to use generating function as follows

f2!�1(x) = (1 + x+ . . .+ x
n2✓2,0)·

(1 + x+ . . .+ x
n2✓2,1) · . . . · (1 + x+ . . .+ x

n2✓2,q2�1),
(49)

and then find the coefficient of the term x
n1 .

The generating function in (49) can be evaluated as
follows (recall Q2 = {0, 1, . . . , q2 � 1}):

f2!�1(x) =
Y

i2Q2

(1 + x+ . . .+ x
n2,✓2,i) (50)

=
Y

i2Q2

(1� x
n2✓2,i+1)

1� x
(51)

=

Q
i2Q2

(1� x
n2✓2,i+1)

(1� x)q2
. (52)

To obtain the coefficient of the term x
n1 in f2!�1(x),

bf2!�1(x)cn1 , we use the standard coefficient extrac-
tion technique and note

1

(1� x)t
=

1X

i=0

✓
n+ t� 1

t� 1

◆
x
n
. (53)

However, the calculation can still be tedious with gen-
erating function, as the number of ways to obtain x

n1 is
enormous (or NOT?). First note that the numerator has
q
2 terms, and therefore there are a total of

✓
q
2

0

◆
+

✓
q
2

1

◆
+ . . .+

✓
q
2

q2

◆
= 2q

2

. (54)

Hence, we can subtract the total power (ranging from 0
to n1, call it m) from the chosen terms in the numerator
from n1, then multiply by

� �q2

n1�m

�
.

3) If it is already difficult to find the number of compatible
✓1, then evaluating (45) will be more difficult. However,
is there any trick that we can use to find the exact
value of S

n2

L,r2? For example, do some of the terms
sum to a nice number? or can we modify our code
design parameters to make the sum nice? (which might
be unlikely.) Finally

4) Plots of the weights for ✓1

5) Size of the compatible ✓1 can be considered a high-
dimensional cube cut by a (diagonal) hyper-plane. Since
all the 0  ai  bi, i 2 Q2 (or Qk) are parallel con-
straints. The number of vertices lie on the intersection
is the size of the compatible set.

Follow attempt #1, we obtain

log↵2

n2
= argmax

✓22Q2

S
n2

L,r2(✓2)

(M2
2 � 1)B(n2, n2✓2)q�2n2

, (55)

where M2 = q
n2R2 and R2 is defined in (26). S

n2

L,r2(✓2) can
be calculated from (45)

S
n2

L,r2(✓2) = S
n2

L,r�2
(✓1,✓�2) ·

0

@
X

✓12C(✓1(✓2,n1))

S
n1

L,r�1
(✓1) ·

� n1

n1✓1

�� n�2

n�2✓�2

�
� n2

n2✓2

�

1

A .

(56)

C. Dispersion-style Analysis

Use the generalized RCU bound

V. CONCLUSION

The conclusion goes here.

APPENDIX A
APPENDIX I

Appendix one text goes here.

APPENDIX B

Appendix two text goes here.

ACKNOWLEDGMENT

The authors would like to thank...

APPENDIX C
PREVIOUS (MAY BE INCORRECT) WORK

The expressions of the two generating functions are as
follows:

For A2(x1,x2), if we want to use the same approach from
A1(x1), then we need to separate a total of 2⇢2 different cases,
as each socket in a group-2 check node might be connected
to group-1 variable node (corresponds to x2,1) or group-2
variable node (correspond to x2,2). This will make calculation
extremely difficult after we take A2(x1,x2) to the power of
r�2.

8

To solve this problem, we take a detour and calculate
A2(x2) and calculate the coefficient b(A2(x2))r�2cn2�2✓2 ,
and then we claim that

bA2(x2,1,x2,2)
r�2cn1�2✓1,n�2�2✓�2 =

b(A2(x2))r�2cn2�2✓2�n2

n1

� ,

(57)

due to two reasons: 1. there are
�n2

n1

�
different ways to decom-

pose a type ✓2 of length n2 into a pair of sub-types (✓1,✓�2)
of lengths (n1, n�2); 2. The number of codematrices for each
pair is identical.

REFERENCES

[1] Y. Liu and M. Effros, “Finite-blocklength and error-exponent analyses
for ldpc codes in point-to-point and multiple access communication,” in
Proc. IEEE Int. Symp. on Information Theory (ISIT), 2020, pp. 361–366.

[2] L. G. Roberts, “Aloha packet system with and without slots and capture,”
ACM SIGCOMM Computer Communication Review, vol. 5, no. 2, pp.
28–42, 1975.

[3] B. Hajek and T. van Loon, “Decentralized dynamic control of a
multiaccess broadcast channel,” IEEE Trans. Aut. Control, vol. 27, no. 3,
pp. 559–569, 1982.

[4] J. Tsitsiklis, “Analysis of a multiaccess control scheme,” IEEE Trans.

Aut. Control, vol. 32, no. 11, pp. 1017–1020, 1987.
[5] H. Wu, C. Zhu, R. J. La, X. Liu, and Y. Zhang, “Fasa: Accelerated

s-aloha using access history for event-driven m2m communications,”
IEEE/ACM Trans. Net., vol. 21, no. 6, pp. 1904–1917, 2013.

[6] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson,
“Grant-free non-orthogonal multiple access for iot: A survey,” IEEE

Comm. Surveys & Tutorials, vol. 22, no. 3, pp. 1805–1838, 2020.
[7] M. V. Burnashev, “Data transmission over a discrete channel with feed-

back. random transmission time,” Problems of Information Transmission,
vol. 12, no. 4, pp. 10–30, 1976.

[8] A. Tchamkerten and E. Telatar, “A feedback strategy for binary symmet-
ric channels,” in Proc. IEEE Int. Symp. on Information Theory (ISIT),
2002, pp. 362–.

[9] S. C. Draper, B. J. Frey, and F. R. Kschischang, “Efficient variable
length channel coding for unknown dmcs,” in Proc. IEEE Int. Symp. on

Information Theory (ISIT), 2004, pp. 379–379.
[10] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Feedback in the non-

asymptotic regime,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4903–
4925, 2011.

[11] M. Effros, V. Kostina, and R. C. Yavas, “Random access channel
coding in the finite blocklength regime,” in Proc. IEEE Int. Symp. on

Information Theory (ISIT), 2018, pp. 1261–1265.
[12] R. C. Yavas, V. Kostina, and M. Effros, “Gaussian multiple and random

access in the finite blocklength regime,” in Proc. IEEE Int. Symp. on

Information Theory (ISIT), 2020, pp. 3013–3018.
[13] S. Chen, M. Effros, and V. Kostina, “Lossless source coding in the point-

to-point, multiple access, and random access scenarios,” IEEE Trans. Inf.

Theory, vol. 66, no. 11, pp. 6688–6722, 2020.
[14] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory,

vol. 8, no. 1, pp. 21–28, 1962.
[15] C. Measson, A. Montanari, and R. Urbanke, “Maxwell’s construction:

the hidden bridge between maximum-likelihood and iterative decoding,”
IEEE Trans. Inf. Theory, pp. 225–, June 2004.

[16] A. Bennatan and D. Burshtein, “On the application of LDPC codes
to arbitrary discrete-memoryless channels,” IEEE Trans. Inf. Theory,
vol. 50, no. 3, pp. 417–438, March 2004.

[17] ——, “Design and analysis of nonbinary LDPC codes for arbitrary
discrete-memoryless channels,” IEEE Trans. Inf. Theory, vol. 52, no. 2,
pp. 549–583, Feb 2006.

