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Abstract—The security of Unmanned Aerial System (UAS)
networks is becoming crucial as their number and application
in several fields are increasing every day. For navigation and
positioning, the Global Navigation System (GPS) is essential as
it provides an accurate location for the UAS. However, since
the civilian GPS signals are open and unencrypted, attackers
target them in different ways such as spoofing attacks. To
address this security concern, we propose a comparison of several
tree-based machine learning models, namely Random Forest,
Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing
attacks. In this work, the dataset was built of real GPS signals
that were collected using a Software Defined Radio unit and
different types of simulated GPS spoofing attacks. The results
show that XGBoost has the best accuracy (95.52%) and fastest
detection time (2ms), which makes this model appropriate for
UAS applications.

Index Terms—UAS, GPS Spoofing Attacks, Detection Tech-
niques, Machine Learning.

I. INTRODUCTION

Nowadays, Unmanned Aerial Systems (UAS) are an essen-
tial technology that plays a crucial role in various military and
civilian applications. These systems can be fully autonomous
or remotely controlled. They are flexible, efficient, and af-
fordable. However, cyber threats targeting these systems are
drastically increasing in terms of severity and intensity. These
threats are becoming more harmful as attackers are using
artificial intelligence techniques to carry out various types
of cyberattacks. There are three main types of cyberattacks
on UAS: data interception, data manipulation, and denial of
service, [1].

UAS rely on the Global Navigation System (GPS) for
accurate positioning and velocity estimation. The civilian
applications of UAS use the GPS radio frequency link known
as the L1 channel and the new civilian signal known as L1C
[2]. Unlike military GPS signals, civilian GPS signals are
unencrypted, which makes them vulnerable to GPS spoofing
and jamming. GPS spoofing is considered the most dangerous
type of cyberattack targeting UAS because the attacker can
divert the trajectory of the UAS without being detected. A
successful GPS spoofing attack can be disastrous not only
on material damages or technology stealing but also causing
human injuries if the attacker crashes the UAS into populated
areas.

Artificial Intelligence (AI) has been used in the cyberse-
curity field to detect attacks; however, cyber attackers can
also use AI-based technologies offensively to implement smart

and complex cyber-attacks, called weaponization of AI. For
instance, some examples of the applications of AI techniques
in cyber-attacks implementation are highlighted in [3]. For
example, the IBM Research Laboratory demonstrated how AI
can be used in conducting cyberattacks. The research team
developed the Deep Locker malware, which is a form of the
WannaCry attack. This malware exploits the vulnerabilities of
the target system defined by the AI techniques. To the best
of the authors’ knowledge, no GPS spoofing attack is yet
AI-based, but it is very likely to happen soon. AI can be a
solution for attackers to bypass classical detection techniques
by implementing sophisticated attacks as shown in Fig. 1.

Fig. 1: GPS Spoofing Attacks.

A number of works proposed GPS spoofing detection tech-
niques using artificial intelligence. For example, in [4], the
authors proposed a GPS Spoofing detection based on the
Long Short-Term Memory algorithm. Using existing flight
patterns, the authors predicted several UAS flight trajectories
and compared them with the received GPS positioning signal.
If the GPS signal differs from the predicted data, the algorithm
subsequently confirms whether a UAS is under a GPS spoof-
ing attack. However, this is only applicable if the spoofed
location causes an error deviation greater than the accepted
threshold. In [5], the authors simulated the receiver’s clock
drift, time derivative of the clock offset, and integrated the
spoofed Global Navigation Satellite System (GNSS) dataset
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with C-Support Vector Machine (C-SVM). Afterward, real-
world spoofing data was used to verify and validate the
results. The model was trained with an unbalanced dataset,
which in most cases lead to misleading performance result of
the supervised learning model. The authors of [6] proposed
a computer architecture that uses neural network to detect
spoofing and meaconing attacks. Once an attack is detected
the computer evaluate the severity of the attack using Bayesian
inference subsystem.

In [7], the authors compared the performance of different
machine learning models, namely Support Vector Machine
(SVM), Random Forest (RF), decision trees, Naïve Bayesian
(NB), and Linear regression (LR), in detecting actuator-based
GPS Spoofing attacks. The authors extracted several features
from the GPS signal to create the dataset. They conducted a
K-fold analysis to select the best machine learning algorithm.
Based on their results, SVM (with the polynomial kernel)
outperforms the other methods. In [8], Secure Code Estimation
and Replay spoofing attacks were studied for end-user GPS
receivers. A comparison based primarily on the probability
of detection between five machine learning models was con-
ducted. The implemented machine learning algorithms were
Radial Basis Function and linear kernel SVM, Ada Boost,
decision trees, Nearest Neighbors, and RF. The obtained
results show that algorithms based on decision trees give
better detection rates. The authors in [9] proposed GPS-Probe,
a machine learning GPS spoofing detection algorithm, that
analyzes the Received Signal Strength Indicator and the Time
of Arrival of Air Traffic Control messages that are periodically
broadcasted by aerial vehicles. They adapted the K-Nearest
Neighbors (K-NN) classifier to estimate the location of the
vehicle and the Extreme Gradient Boost model (XGBoost) for
attack detection.

This paper proposes a systematic and detailed performance
evaluation of four learning tree-based supervised learning
models, namely, Gradient boost, XGBoost, and Light Gradient
Boosting Machine (LightGBM). These models are trained and
tested using a dataset described in section II. This dataset
contains 10,055 legitimate and simulated attacks samples.
Three different types of GPS spoofing attacks with different
complexity levels were simulated.

The remainder of this paper is organized as follows: Section
II discusses the methods implemented to generate the dataset
and the used machine learning models in this work. The
obtained results are presented and discussed in Section III.
Finally, the conclusion is stated in Section IV.

II. METHODOLOGY

In this section, we discuss the dataset generation steps along
with the feature extraction process. Afterward, we describe the
machine learning models used to detect GPS spoofing attacks.

A. Dataset Generation

The application of machine learning-based GPS spoofing
detection techniques in UAS requires an accurate, reliable, and
energy-efficient solution since the UAS is limited in terms

of computational resources and power consumption. For the
above reasons, the use of supervised learning models is more
suitable for such applications.

1) Authentic GPS Signal Collection: In this study, we
performed two dynamic scenarios for real-time authentic GPS
signal acquisition and feature extraction. The hardware used to
build the GPS receiver is a universal Software Defined Radio
(SDR) Peripheral (USRP) unit. The open-source GNSS-SDR
software is based on GNU radio blocks running in an I5-
4300U laptop with 8G RAM running with Ubuntu 16.04.7 LTS
version. The actual receiver is an 8-channel receiver capable
of parallel tracking of GPS signals.

2) Feature Extraction: We did a real-time features extrac-
tion from different receiver stages, starting from the acquisi-
tion, tracking to the observable block. During this process, 13
features were extracted as listed below:

Carrier to Noise Ratio (C/N◦): C/N◦ is the ratio of the
signal power to the noise. The actual fluctuation in the (C/N◦)
is due to the variation in the signal power. The signal-to-noise
ratio is estimated to be in the ± 2.8dB range [10].

Prompt Correlator (PC): PC is the operation used in syn-
chronizing with the incoming GPS signal. This operation is the
code-tracking process, which is done by multiplying the local
pseudorandom spreading code replica generated at the local
code phase generator with the complex digital signal outputs
[11].

Early Correlators (EC): EC is 1
2 chip spacing before the

PC [12].
Late Correlator (LC): LC is 1

2 chip spacing after the PC
[12].

Prompt In-Phase Component (PIP): PIP is the in-phase
component of the Prompt correlator amplitude.

Prompt Quadrature component (PQP): PQP is the quadra-
ture component of the prompt correlator amplitude. PC can be
expressed in terms of PIP and PQP components as shown in
(1).

PC =
√
PIP 2 + PQP 2 (1)

Carrier Phase Cycles (CP): It is given as the accumulated
number of cycles expressing the beat frequency difference
between the receiver’s generated carrier frequency and the
satellite’s received carrier frequency [13].

Time Of the Week (TOW): It is the decoded information from
the GPS signal; it provides the number of seconds elapsed
since the start of each week (from 0s to 604,799s) [14].

Receiver Time (RX): It is the receiver reference time, in our
receiver, we use the GPS DO-kit for time reference.

Pseudorange (PD): It is the signal transit time between
transmission and reception (satellite to the receiver) [15]. It
is expressed in terms of meter as shown in (2).

Ps = c(tr − ts) (2)

Where tr is the reception time and ts is the transmission time.
Carrier Doppler (DO): It is the result of relative motion

of the satellite with respect to the receive known as Doppler
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effect [16], as expressed in (3).

f = (
c+ vr
c+ vs

)× fi (3)

Tracking Carrier Doppler (TCD): It is the Doppler shift
measured during the correlation stage, in this work, it is used
for defining the upper and lower bounds of the accepted DO.

Pseudorandom Noise (PRN): The satellite identification
number.

3) GPS Spoofing Attack Simulation: The authors in [17] di-
vided spoofing attacks into three main categories depending on
the complexity and sophistication of the attack: simple attacks,
intermediate attacks, and sophisticated attacks. As mentioned
earlier, most detection techniques can only detect non-complex
spoofing attacks, while they cannot detect sophisticated or even
intermediate spoofing attacks. Based on the literature review,
we summarize all the attack signatures and simulate the above
attacks by modifying the authentic GPS signals.

a) Simplistic Spoofing Attacks: The spoofer generates a
fake GPS signal that is unsynchronized with the authentic
signal since the attacker is unaware of the receiver’s position.
This leads to a higher Doppler shift exceeding the normal
range of ±20 Hz thus a large deviation in the pseudo-range
measurement. In this type of attack, the attacker transmits the
spoofed signal at a high power level, resulting in a higher
C/N◦ value, which can easily be detected. Yet, many low-cost
commercial GPS spoofing devices are available to orchestrate
such an attack [18].

b) Intermediate Spoofing Attacks: In intermediate spoof-
ing attacks, the spoofing attacker knows the position of the
target receiver, resulting in code phase alignment between the
real and spoofed signals. Unlike a simple spoofing attack,
the intermediate attacker can take control of the UAS by
precisely controlling the GPS-generated signal. Moreover, a
detection system based on signal characteristics cannot detect
the temptation since the spoofer takes the detection system into
account. The Doppler shift and pseudorange are always kept
under control to avoid exceeding the normal ranges. However,
close monitoring of the TOW information, carrier phase shift,
and correlator amplitude can reveal the effects of the received
spoofing signal.

c) Sophisticated Spoofing Attacks: In sophisticated attack
scenarios, the attacker uses multiple synchronized antennas
to emulate the GPS constellation. This way, the attacker
can spoof different channels in parallel gaining complete
control over the system. The synchronization between multiple
antennas is challenging to achieve but can be easily overcome
with advanced SDR technologies. The authors in [19] showed
the distortions and the quadrature component shift effect in
the tracking correlators during a spoofing attack. However,
for such a critical type of attack, a correlator-based detection
system may be misleading due to the effect of multipath
signals and the motion of the satellite and receiver.

B. Data Preprocessing

Our dataset contains 10,055 samples, of which 55% are real
GPS signals and 45% are simulated GPS spoofing attacks.

Data preprocessing aims to clean and prepare the data before
feeding it into the learning models. In this work, we perform
feature correlation analysis using the Spearman technique to
remove correlated features and thus reduce the size of the
dataset resulting in a less complex and accurate learning
model.

1) Spearman Correlation Coefficient: The Spearman cor-
relation coefficient expresses how strong is the monotonic
relation between the features as shown in (4). The score is
given on a scale of [-1:1], where a score close to the limits (1
or -1) stands for strongly correlated features.

S(fi, fj) = 1− 6
∑
l

(fi − fj)
2

N(N2 − 1)
(4)

Where S is the Spearman rank correlation coefficient, N
represents the length of the vector, f represents the rank of
feature i.

2) Non-Stationary Data Modification: Machine-learning al-
gorithms cannot handle non-stationary data; a static relation-
ship is needed for a correct learning model. We look for
features that follow a non-stationary distribution and convert
the data into stationary data using differencing. This process
involves calculating the consecutive differences between sam-
ples, as it is expressed in (5).

R =
xi+1 − xi

ni+1 − ni
(5)

Where R is the instantaneous rate of change and ni+1 −ni is
the distance between two samples, which in our case is equal
to 1.

C. Machine Learning Classification Models

In this study, we compare the performance of four different
supervised tree-based machine-learning algorithms, namely,
Random Forest, Gradient Boost, XGBoost, and LightGBM.
Random Forest is based on the bagging method of ensemble
learning, which combines predictions from multiple decision
trees using a majority voting method to improve the predictive
accuracy and control over-fitting. On the other hand, Gradient
Boost is an ensemble model of boosting where trees are
constructed and trained sequentially to minimize the error from
the previous trees using the gradient descent algorithm.

XGBoost is an optimized Gradient Boosting algorithm that
utilizes parallelization, tree pruning, and regularization to
avoid overfitting and improve computational performance [20].
LightGBM is also based on the Gradient Boosting algorithm;
however, it uses Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB) to reduce its complex-
ity. GOSS reduces the size of data by removing instances with
small gradients, while EFB is used to decrease the number of
features. This process will yield a lower storage consumption
and a higher performance speed [21].

0651

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on September 05,2022 at 20:50:28 UTC from IEEE Xplore.  Restrictions apply. 



III. RESULTS AND DISCUSSION

In this study, the dataset was divided into 70% and 30% for
training and testing, respectively. The dataset contains 10,055
samples where 55% are authentic signals and 45% are spoofed
GPS signals. The results of the investigation are shown in Fig.
2 through Fig. 6.

The Spearman correlation results show that the pairs
([RX,TOW], [TCD,DO]) are highly correlated with a score
of 0.94 as shown in Fig. 2. Therefore, we removed the RX
and TCD features. This was quite expected since the RX is
the reference time of the receiver and the TCD is the doppler
measurement in the tracking blocks.

Fig. 2: Spearman’s Correlation Coefficient Heatmap.

Fig. 3 shows raw TOW information, which has a non-
stationary distribution, while first-order differencing results are
represented in Fig. 4.

Fig. 3: Example of Non-stationary Data.

Fig. 5, Fig. 6 and Table I show the results of the machine
learning models. As one can see in Fig. 5, XGBoost has
the best accuracy (95.52%) followed by LightGBM (95.23%),
Random Forest (94.07%), and Gradient Boost (91.45%). Fig. 6
shows the probability of misdetection, which is considered as
also an important parameter in the cybersecurity arena since it

Fig. 4: Example of Stationary Data.

defines the number of undetected attacks, Random Forest has
the best results followed by XGBoost and LightGBM then
Gradient Boost.

Fig. 5: Probability of Detection and Accuracy.

Fig. 6: Probabilities of Misdetection and False Alarm.

The detailed results of the evaluation metrics, probability
of detection, probability of misdetection, probability of false
alarm, and accuracy of the machine learning models are
represented in Table I.
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TABLE I: Evaluation Metrics Results.

RF GBM XGB LGBM
Probability of Detection 96.23% 92.52% 95.38% 95.38%
Probability of Misdetection 3.77% 7.48% 4.62% 4.62%
Probability of False Alarm 8.53% 9.84% 4.30% 4.96%
Accuracy 94.07% 91.45% 95.52% 95.23%

As shown in Table II, XGBoost is at least three times faster
and occupies two times less memory than the other models
in the detection stage. While Random Forest shows the worst
results in the processing time, but it maintains good memory
size in both the training and detection. Since UAS are limited
in computational power and memory, we are mostly interested
in a fast model that occupies less memory. To conclude, we
can say that XGBoost is the most suitable model for UAS
applications to detect GPS spoofing attacks.

TABLE II: Performance Metrics Results.

RF GBM XGB LGBM
Processing Training 617.01 265.01 395.98 269.00
Time (ms) detection 21.01 6.99 2.00 8.99
Memory Training 1.56 3.16 2.62 1.49

Size (MiB) detection 0.04 0.03 0.01 0.52

IV. CONCLUSION

This paper proposes a comparison between several tree-
based machine learning models to detect GPS spoofing attacks
in order to select a suitable model for UAS. The implemented
models are RF, Gradient Boost, XGBoost, and LightGBM. The
results show that all models can detect GPS spoofing attacks
effectively in less than 22 milliseconds. Yet, the performance
of XGBoost surpasses the other models in terms of accuracy,
detection time, and memory size. This model is three times
faster and occupies two times less memory than the other
models in the detection phase, which makes it ideal for UAS
considering the Size, Weight, and Power (SWaP) constraints.
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