
Source Coding with Unreliable Side Information in
the Finite Blocklength Regime

Siming Sun and Michelle Effros
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Email: {ssun5, effros}@caltech.edu

Abstract—This paper studies a special case of the problem
of source coding with side information. A single transmitter
describes a source to a receiver that has access to a side infor-
mation observation that is unavailable at the transmitter. While
the source and true side information sequences are dependent,
stationary, memoryless random processes, the side information
observation at the decoder is unreliable, which here means that it
may or may not equal the intended side information and therefore
may or may not be useful for decoding the source description.
The probability of side information observation failure, caused,
for example, by a faulty sensor or source decoding error, is non-
vanishing but is bounded by a fixed constant independent of
the blocklength. This paper proposes a coding system that uses
unreliable side information to get efficient source representation
subject to a fixed error probability bound. Results include
achievability and converse bounds under two different models of
the joint distribution of the source, the intended side information,
and the side information observation.

I. INTRODUCTION

In source coding, the availability of dependent side in-
formation at the decoder improves the efficiency of lossless
source sequence description. In this work, we consider the
impact of side information uncertainty caused by failures such
as faulty sensors or noisy data collection. Given unreliable
decoder side information, the generalized Slepian-Wolf code
should take advantage of the side information observation
when it is useful, ignore it when it is not, and in both cases
ensure a bound on the error probability – all with no access
to the side information at the encoder and no knowledge of
whether the side information observation is good beyond what
the decoder can learn from the side information itself.

In this paper, we introduce two models of unreliable side
information, the worst-case model and the unknown model. In
the worst-case model, a Bernoulli random variable indepen-
dent of the source and side information determines whether the
decoder sees the side information sequence or an independent
random sequence with the same marginal. We call this the
worst-case model because any source coding advantage must
arise from some sort of statistical dependence, and here there is
no dependence available. In the unknown model, the observed
side information again equals the intended side information
with the same probability; in this case, however, the depen-
dence between the decoder’s observation and the source-side
information sequence pair is unknown. To derive achievability
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bounds for both cases, we propose a source code based on the
classical random binning code design. Under the worst-case
model, the resulting achievability bound matches the converse
up to the second order. Under the unknown model, the code
achieves first order Slepian-Wolf optimal rate when the side
information observation equals the true side information and
first order optimal point-to-point rate when the side informa-
tion is faulty, despite the fact that neither the encoder nor the
decoder receives side information to distinguish between these
scenarios. We discuss the performance of the code under some
example joint distributions.

The body of this paper is organized as follows. Section II
provides notation and definitions, describes the two unreliable
side information models, and sets up the problem. Sections III
and IV show our main result for the worst-case and unknown
models, respectively. Section V contains concluding remarks,
including a discussion of how our proposed technique for
bounding output error probability in the wake of an unreliable
input is useful beyond this source coding problem, for example
for stopping errors from propagating in successive interference
cancellation [1]–[4].

II. PROBLEM STATEMENT

A. Notation and Definitions

For any positive integer k, we denote {1, 2, ..., k} by [k].
We denote any random process (U1, U2, . . .) by {U}.
Let discrete random variables X and Y be distributed

according to distribution PXY on alphabet X ⇥ Y; let PX

and PX|Y denote the marginal distribution of X and the
conditional distribution of X given Y , respectively. For any
(x, y) 2 X ⇥ Y , define the information density ı(x) and
conditional information density ı(x|y) as

ı(x) , log
1

PX(x)
ı(x|y) , log

1

PX|Y (x|y)
.

The non-conditional and conditional entropy, varentropy, and
third centered moment of information density are

H(X) , E[ı(X)]

H(X|Y ) , E[ı(X|Y )]

V (X) , Var[ı(X)]

V (X|Y ) , Var[ı(X|Y )]

T (X) , E[|ı(X)�H(X)|3]
T (X|Y ) , E[|ı(X|Y )�H(X|Y )|3].
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B. The Worst-Case Model

Consider a pair of stationary, memoryless, dependent ran-
dom processes {X} and {Y } with single-letter joint distri-
bution PXY on discrete alphabet X ⇥ Y . Random processes
{X} and {Y } represent the source and side information,
respectively. Since they are dependent by assumption,

H(X|Y ) < H(X).

For any ✏0 2 [0, 1], an ✏0-unreliable observation {Ŷ } of side
information process {Y } is defined by

Ŷi = W · Yi + (1�W ) · Zi, (1)

where W is a single Bernoulli random variable with P[W =
0] = ✏0, {Z} is a stationary, memoryless random process
with single-letter distribution PY on Y (making {Z}, on
its own, indistinguishable from {Y }), and random process
{(X,Y, Z,W )} has single-letter distribution

PXY ZW (x, y, z, w) = PXY (x, y)PY (z)PW (w)

for all (x, y, z, w) 2 X ⇥ Y2 ⇥ {0, 1}.

C. The Unknown Model

Under the unknown model, joint random process {(X,Y )}
is unchanged and (1) continues to hold with P[W = 0] = ✏0,
but we make no further assumptions about PXY ZW . Specif-
ically, neither the encoder, nor the decoder, nor the code
designer knows PZW |XY , and {Z} need not be memoryless.

While the worst-case model statistics are the worst possible
statistics that can occur under the unknown model, perfor-
mance may be inferior under the unknown model since not
knowing the true statistics complicates code design.

D. Problem Setup

For simplicity, we assume that the codeword symbol alpha-
bet is binary. Define 2-dimensional rate vector

R , [RD RI ]
0

with RD < RI , and 2-dimensional error vector

✏ , [✏D ✏I ]
0 2 (0, 1)2.

Definition 1: An (n,R, ✏) unreliable side-information
source code (USSC) for source random process {X}, true
side-information random process {Y } and observed side-
information random process {Ŷ } with discrete alphabets X , Y ,
and Y comprises an encoding function f : Xn �! {0, 1}nRI

and a pair of decoding functions, gD : {0, 1}nRD ⇥ Yn �!
Xn[{e} for some symbol e 62 Xn and gI : {0, 1}nRI �! Xn

satisfying error probability constraints

P[gD(bf(Xn)cnRD , Ŷ
n) 6= Xn|W = 1]  ✏D

and

P
h
{gD(bf(Xn)cnRD , Ŷ

n) 2 Xn\{Xn}}

[ {{gD(bf(Xn)cnRD , Ŷ
n) = e} \ {gI(f(Xn)) 6= Xn}}���W = 0

i
 ✏I .

Using the given code, the encoded source description is
sent in two phases. The first nRD bits of f(Xn), denoted
by bf(Xn)cnRD , constitute the first phase. The decoder gD
maps these bits either to a reconstruction from Xn or to a
symbol e 62 Xn indicating that it is not yet able to decode.
Following the tradition of [5] [6], a single bit of feedback
to the encoder specifies whether (gD(bf(Xn)cnRD , Ŷ

n) = e)
or not (gD(bf(Xn)cnRD , Ŷ

n) 6= e) the remaining RI � RD

bits of f(Xn) should be sent. An error occurs if either
decoder gD fails to decode correctly and promptly when the
side information observation is good (W = 1) or, when
the side information observation fails (W = 0), the source
reproduction differs from Xn.

Definition 2: Rate pair R = [RD RI ]0 is (n, ✏)-achievable
if there exists an (n,R, ✏) USSC. Rate region R⇤

US(n, ✏) is
the closure of the set of (n, ✏)-achievable rate pairs.

Remark 1: While the case ✏D = ✏I = ✏ may be most useful
for many applications, differing ✏D and ✏I may be useful,
for example, when an impending deadline changes the user’s
priorities regarding acceptable error probability.

III. MAIN RESULTS FOR THE WORST-CASE MODEL

Consider the third-order optimal point-to-point rate R⇤
I and

Slepian-Wolf rate R⇤
D from [7], [8]1, where

R⇤
D , H(X|Y ) +

r
V (X|Y )

n
Q�1(✏D)� log n

2n

R⇤
I , H(X) +

r
V (X)

n
Q�1(✏I)�

log n

2n
.

Define inner and outer bounding rate regions

Rin(n, ✏)

,
⇢
R : RD � R⇤

D +
log n

2n
+O

✓
1

n

◆
, RI � R⇤

I +O

✓
1

n

◆�

Rout(n, ✏)

,
⇢
R : RD � R⇤

D �O

✓
1

n

◆
, RI � R⇤

I �O

✓
1

n

◆�
.

Theorem 1: Under the worst-case model, if

V (X) > 0, V (X|Y ) > 0, T (X) < 1, T (X|Y ) < 1, (2)

then

Rin(n, ✏) ✓ R⇤
US(n, ✏) ✓ Rout(n, ✏).

1The second- and third-order optimal rate regions for the Slepian-Wolf
scenario where side information is available directly to the decoder are due
to [9, Eqn. 29a] and [8, Theorem 7, 8], respectively. The third-order gap
between the RD boundary in our result and the rate region for a code with true
side information by Gavalakis and Kontonyiannis [8] is due to the inability
of the decoder to distinguish Y n from Zn. The gap can be closed if the
marginals are different.
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A. Proof of Achievability

While it is possible, under the given framework, to first
send a subsequence of {X} losslessly and then use that
subsequence to learn W at the decoder, we here employ
instead a code design where the decoder determines W and
the encoded message Xn through a single decoding operation.
This approach is preferable when W can change across many
uses of the code.

1) Codebook Generation: For each xn 2 Xn, randomly
and independently draw encoder output f(xn) from the uni-
form distribution on [2nRI ]. Each index in [2nRI ] represents
a unique binary string of length nRI .

2) Decoder: The decoder gD performs threshold decoding
using a constant threshold log � defined below, giving

gD(cD, ŷn)

=

(
x̂n if bf(x̂n)cnRD = cD, ı(x̂n|ŷn)  log �

e otherwise.
(3)

When more than one source vector x̂n satisfies the threshold
test in (3), we choose one that minimizes ı(x̂n|ŷn). The
decoder gI performs maximum likelihood decoding, giving

gI(cI) = arg min
xn2Xn:f(xn)=cI

ı(xn).

Ties are broken uniformly at random.
3) Error Analysis: When W = 1, the dependence of the

side information makes it useful for source coding. Since
delayed reconstruction implies high rate, we define error event

ED , {gD(bf(Xn)cnRD , Ŷ
n) 6= Xn}.

Since Y n, Zn, and W are independent under the worst-case
model studied in this section and W = 1 implies Ŷ n = Y n,

P[ED|W = 1]

 P[{9x̄n 2 Xn\{Xn} : bf(x̄n)cnRD = bf(Xn)cnRD ,

ı(x̄n|Y n)  log �} [ {ı(Xn|Y n) > log �}]
 P[ı(Xn|Y n) > log �]

+
1

2nRD

X

x̄n2Xn, yn2Yn

Pn
Y (y

n)1{ı(x̄n|yn)  log �}

= P[ı(Xn|Y n) > log �]

+
1

2nRD
E
"

1

Pn
X|Y (X

n|Y n)
1{ı(Xn|Y n)  log �}

#
.

Let

� = 2nRD

nRD = nH(X|Y ) + ⌧
p
nV (X|Y )

⌧ = Q�1

✓
✏D � B + Cp

n

◆
.

Given (2), we can apply [10, Lemma 47] to show

1

2nRD
E
"

1

Pn
X|Y (X

n|Y n)
1{ı(Xn|Y n)  log �}

#
 Cp

n

for some constant C and the Berry Esseen bound to show

P[ı(Xn|Y n) > log �]  Q(⌧) +
Bp
n

for some constant B, giving P[ED|W = 1]  ✏D when

RD = H(X|Y ) +

r
V (X|Y )

n
Q�1(✏D) +O

✓
1

n

◆
, (4)

which relies on the differentiability and Taylor expansion of
Q�1(·).

We bound P[EI |W = 0] as

P[EI |W = 0]  P[EI1|W = 0] + P[EI2|W = 0],

where

EI1 , {gD(bf(Xn)cnRD , Ŷ
n) 2 Xn\{Xn}}

EI2 , {gI(f(Xn)) 6= Xn}.
The probability of decoding to an incorrect source vector

x̄n after nRD bits is identical when W = 0 and when W = 1
since in both cases the incorrect codeword is independent of
the observed side information. Therefore,

P[EI1|W = 0]

 P[9x̄n 2 Xn\{Xn} :

bf(x̄n)cnRD = bf(Xn)cnRD , ı(x̄
n|Zn)  log �]

 1

2nRD

X

x̄n2Xn,zn2Yn

Pn
Y (z

n)1{ı(x̄n|zn)  log �}

=
1

2nRD
E
"

1

Pn
X|Y (X

n|Y n)
1{ı(Xn|Y n)  log �}

#

 Cp
n

under the same parameter choices. Meanwhile, P[EI2|W = 0]
is analogous to a maximum likelihood decoder for a source
code without side information. From [6, Proof of Theorem 5],

P[EI2|W = 0]  P[ı(Xn) > nRI +
1

2
log n� logC 0] +

C 0
p
n
.

We choose

RI =H(X) +

r
V (X)

n
Q�1

✓
✏I �

B0 + C 0 + Cp
n

◆

� log n

2n
+

logC 0

n
(for large enough n) to keep the total error probability bounded
as P[EI |W = 0]  ✏I . By the differentiability of Q�1(·),

RI = H(X) +

r
V (X)

n
Q�1(✏I)�

log n

2n
+O

✓
1

n

◆
. (5)

Combining (4) and (5) shows that

Rin(n, ✏) ✓ R⇤
US(n, ✏).

Remark 2: This code design can be extended to more than
two possible joint distributions P (1)

XY , P
(2)
XY , ... by increasing

the number of stages, allowing R(1), R(2), ... in place of RD

and RI . The result is a universal Slepian-Wolf code for a
family of possible side information distributions.
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B. Proof of Converse

When W = 1, the decoder output counts as an error if
it employs a rate exceeding RD. Therefore, when W = 1,
the decoder must decode at a fixed rate RD, before the
encoder receives any feedback. Applying earlier bounds on
fixed-rate lossless source coding with side information and
without feedback from [9], [8] (as in footnote 1) gives

RD � H(X|Y ) +

r
V (X|Y )

n
Q�1(✏D)� log n

2n
�O

✓
1

n

◆
.

(6)
In contrast, when W = 0, feedback plays an active role.
Since the channel in this source coding problem is noiseless

and the decoder is deterministic by assumption,2 the stop feed-
back is a deterministic function of the encoder’s output and the
side information sequence observed at the decoder. Therefore,
when W = 0, the system can perform no better than a 2-
rate system without feedback for which an independent side
information sequence is available at both the encoder and the
decoder. Since the presence of independent side information
does not increase the source coding rate region, and since we
here constrain the source code to operate at the same rates
RD and RI as the source code under investigation, applying
Han’s converse [11, Lemma 1.3.2] with � = logn

2 gives

log(2nRD + 2nRI )

� nH(X) +
p
nV (X)Q�1(✏I)�

1

2
log n�O(1). (7)

Since RI � RD, the left-hand side of (7) is no larger than
nRI + 1. Therefore,

RI � H(X) +

r
V (X)

n
Q�1(✏I)�

log n

2n
�O

✓
1

n

◆
. (8)

Combining (6) with (8) yields

R⇤
US(n, ✏) ✓ Rout(n, ✏).

IV. MAIN RESULTS FOR THE UNKNOWN MODEL

Under the unknown model, both the encoder and the
decoder know P[W = 0] = ✏0, but neither knows the
conditional distribution of Ŷ n given Xn and Y n. In the proof
of the theorem that follows, we re-use the 2-stage code from
Theorem 1 with a modified value of � to bound the achievable
rate in this scenario.

Theorem 2: Under an unknown model that satisfies (2), for
any 0 < ✏D < 1 and 0 < ✏I < 1, the (n, ✏)-rate region
R⇤

USW (n, ✏) satisfies

R0
in(n, ✏) ✓ R⇤

USW (n, ✏),

2Allowing a random decoder complicates the argument but does not change
the outcome. Every random decoder can be expressed as a deterministic
decoder with an additional random input that is independent of the source.
Making this random input available to the encoder does not enhance its
performance.

where

R0
in(n, ✏) ,

⇢
R :RD � R⇤

DW +
log n

n
+O

✓
1

n

◆
,

RI � R⇤
IW +O

✓
1

n

◆�

R⇤
DW , H(X|Y ) +

r
V (X|Y )

n
Q�1(✏D(1� ✏0))�

log n

2n

R⇤
IW , H(X) +

r
V (X)

n
Q�1(✏I✏0)�

log n

2n
.

The theorem implies that, up to the first order, there exists
a code that can perform as well as a code with true side
information when the observation is correct, and as well as
a point-to-point code when the observation is incorrect.

A. Proof of Theorem 2

We use the encoder and decoder from Theorem 1 but modify
threshold parameter �. The error definitions for ED, EI , EI1
and EI2 remain unchanged. The conditional error probability
P[ED|W = 1] is a function of the joint probability P[ED,W =
1] as

P[ED|W = 1] =
1

1� ✏0
P[ED,W = 1].

Since W = 1 implies that Ŷ n = Y n,

P[ED,W = 1]

= P[g(bf(Xn)cnRD , Y
n) 6= Xn,W = 1]

 P[g(bf(Xn)cnRD , Y
n) 6= Xn]

 P[ı(Xn|Y n) > log �]

+
1

2nRD

X

x̄n2Xn, yn2Yn

Pn
Y (y

n)1{ı(x̄n|yn)  log �}

 P[ı(Xn|Y n) > log �] +
1

2nRD
U[ı(X̄n|Y n)  log �],

where U is a finite measure on Xn ⇥ Yn for which
UXnY n(xn, yn) = Pn

Y (y
n) for all (xn, yn) 2 Xn ⇥ Yn.

Extending the Chernoff Bound from probability measures to
a finite measure Q by applying Markov’s Inequality for finite
measures gives

Q[X � a] 
P

x2X Q[X = x] exp{x}
exp{a} .

Therefore,

U[ı(X̄n|Y n)  log �]

= U[�ı(X̄n|Y n) � � log �]



X

x̄n,yn

�Pn
Y (y

n) exp{�ı(x̄n|yn)}

exp{� log �}
= �

X

x̄n,yn

Pn
Y (y

n)Pn
X|Y (x̄

n|yn)

= �.
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Setting � = 2nRDp
n

gives

1

2nRD
U[ı(X̄n|Y n)  log �]  1p

n
,

and setting

RD = H(X|Y ) + ⌧

r
V (X|Y )

n
+

log n

2n
gives

log � = nH(X|Y ) + ⌧
p
nV (X|Y ).

Again recalling that PXY satisfies (2), we apply the Berry
Esseen bound to give

P[ı(Xn|Y n) > log �]  Q(⌧) +
Bp
n

for some constant B. Setting

⌧ = Q�1

✓
✏D(1� ✏0)�

B + 1p
n

◆
, (9)

we find that P[ED,W = 1]  ✏D(1 � ✏0), which implies
P[ED|W = 1]  ✏D. Again employing the Taylor’s series
expansion of Q�1(·), this argument proves the achievability
of rate

RD = H(X|Y )+

r
V (X|Y )

n
Q�1(✏D(1�✏0))+

log n

2n
+O

✓
1

n

◆

with conditional error probability ✏D given W = 1. Similarly,
expanding the conditional error probability P[EI |W = 0] as

P[EI |W = 0] =
1

✏0
P[EI ,W = 0]

 1

✏0
(P[EI1,W = 0] + P[EI2,W = 0])

and defining finite measure V on Xn ⇥ Yn by
VXnY n(xn, yn) = PŶ n(yn), we find

P[EI1,W = 0]

 P[9x̄n 2 X\{Xn}, bf(x̄n)cnRD = bf(Xn)cnRD ,

ı(x̄n|Ŷ n)  log �]

 1

2nRD
V[ı(X̄n|Ŷ n)  log �]

and

V[ı(X̄n|Ŷ n)  log �]

= �
X

x̄n,ŷn

PŶ n(ŷ
n)Pn

X|Y (x̄
n|ŷn)

= �,

where the last equality follows since Pn
X|Y PŶ n is some pmf on

Xn⇥Yn. Note that measure V is unknown to the encoder and
decoder and is used only for the purpose of analysis. Hence
� = 2nRDp

n
implies P[EI1,W = 0]  1p

n
. Using the same

analysis for the maximum likelihood decoder and choosing

RI =H(X) +

r
V (X)

n
Q�1

✓
✏I✏0 �

B0 + C 0 + 1p
n

◆

� log n

2n
+

logC 0

n

gives P[EI ,W = 0]  ✏I✏0, which implies P[EI |W = 0]  ✏I .
Therefore, R0

in(n, ✏) ✓ R⇤
USW (n, ✏).

Remark 3: If the decoder for the unknown model is used
when the distribution of the source and observation follows the
worst-case model, the code does as well as the achievability
part of Theorem 1 up to the first order. If the decoder for
the unknown model is used when the true side information is
available at the decoder, with probability (1� ✏D), the source
sequence is reconstructed correctly at a rate that asymptotically
equals H(X|Y ).

Remark 4: Due to the unknown nature of PZW |XY , to date,
R⇤

USW (n, ✏) ✓ R0
out(n, ✏) can only be guaranteed for an

uninteresting outer region

R0
out(n, ✏)

,
⇢
R : RD � R⇤

D �O

✓
1

n

◆
, RI � R⇤

D �O

✓
1

n

◆�
.

B. Discussion

The achievability result of Theorem 2 only matches that of
Theorem 1 up to the first order. The second order gap and
the dependence of the dispersion term on ✏0 come from the
possible but unknown dependence of W and Zn on the source
and the side information. The converse of Theorem 2 does not
match the converse in Theorem 1 due to the unknown true joint
distribution of the source and the side information. The main
contribution of our code under the unknown model is that
it allows us to take advantage of dependent side information
roughly fraction 1�✏0 of the time without allowing flaws in the
side information (e.g., a sensor that is faulty fraction ✏0 of the
time) to cause propagating errors in the source reconstruction.

V. CONCLUSION

This work introduces the problem of source coding with
asymptotically unreliable side information at the decoder and
analyzes the performance of a two-stage code under the cases
of known and unknown joint distributions of the unreliable
side information.

The strategy employed to avoid error propagation in this
work may also be useful in systems that rely on successive
interference cancellation. There, as here, error propagation is
an important problem since errors can accumulate even when
the error probability conditioned on correct cancellation is
small. Success in avoiding error propagation due to unreliable
side information suggests that it may also be possible to design
codes that prevent errors from propagating while reaping the
benefit from cancellations.

An important problem for future work is to optimize the
strategy used to stop such error propagation when more is
known about the unreliable side information. For example, we
would like to bound the performance if the unreliable nature
of the side information results from its representation using a
code with bounded error probability and a given decoder.
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