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Abstract—Unmanned Aerial Vehicles have been widely used in
military and civilian areas. The positioning and return-to-home
tasks of UAVs deliberately depend on Global Positioning Systems
(GPS). However, the civilian GPS signals are not encrypted,
which can motivate numerous cyber-attacks on UAVs, including
Global Positioning System spoofing attacks. In these spoofing
attacks, a malicious user transmits counterfeit GPS signals. Nu-
merous studies have proposed techniques to detect these attacks.
However, these techniques have some limitations, including low
probability of detection, high probability of misdetection, and
high probability of false alarm. In this paper, we investigate
and compare the performances of three ensemble-based machine
learning techniques, namely bagging, stacking, and boosting, in
detecting GPS attacks. The evaluation metrics are the accuracy,
probability of detection, probability of misdetection, probability
of false alarm, memory size, processing time, and prediction time
per sample. The results show that the stacking model has the
best performance compared to the two other ensemble models
in terms of all the considered evaluation metrics.
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I. INTRODUCTION

There has been an increased interest in Unmanned Aerial
Vehicles (UAVs) for civil applications over the last decade [1].
Several tasks of UAVs, including navigation, positioning, and
return-to-home, are dependent on Global Positioning System
(GPS) devices. The civilian GPS signals are not encrypted,
and as a result, can be easily spoofed which is a problem for
UAV’s safe flight operations [1].

For this purpose, a number of techniques have been pro-
posed to detect and mitigate such attacks. Some of these
techniques are hardware-based [2 - 4]. For example, in [2],
the authors proposed a method using the off-the-shelf global
navigation satellite system (GNSS) antennas to detect GPS
spoofing attacks. This method is able to detect malicious
signals from diverse locations. In [3], the authors presented
a GPS spoofing detection algorithm using the Doppler fre-
quency difference of arrival in a dual-antenna receiver, that
exploits the regularity between the signal features and the nav-
igational information. In [4], the authors proposed a detection
technique and removal method which relies on the existing
Cooperative Adaptive Cruise Control system to provide inter-
vehicle ranging and data sharing.

978-1-6654-8303-2/22/$31.00 ©2022 |IEEE

Other studies proposed GPS spoofing attack detection tech-
niques using artificial intelligence (AI) methods, including
machine learning (ML) [5-8]. For instance, in [5], the au-
thors presented an ML technique based on Support Vector
Machines in detection of malicious signals on UAVs. In [6],
the authors proposed an anomaly detection technique based on
K-nearest Neighbors (KNN) to detect GPS spoofing on UAVs.
In [7], the authors provided a comparison performance of
tree-based Supervised machine learning models for detecting
GPS spoofing attacks on UAVs. In [8], the authors compared
the performance of two ML models, namely KNN and Naive
Bayesian (NB) classifiers, to detect attacks on UAVs.

All these hardware and Al-based techniques show good
accuracy. However, a performance comparison should be
made in terms of different performance metrics, such as
probabilities of misdetection and false alarm, which are
missing from several studies. In addition, most of the works
did not employ hyperparameter tuning techniques to improve
the performance of the algorithms. This study fills the existing
gap by enhancing the performance of ML models using
ensemble-based ML models with a particular hyperparameter
technique. These ensemble-learning techniques are bagging,
stacking, and boosting. Each of these models incorporates the
decisions of several machine learning models to increase the
detection performance. To identify the correlated features in
the dataset, we choose Pearson’s Correlation Coefficient. In
addition, to optimize the results, we use the hyperparameter
tuning technique, Grid search, to find the best hyperparame-
ters for each model. These ensemble models are compared
based on the evaluation metrics: accuracy, probability of
detection, probability of misdetection, probability of false
alarm, memory size, processing time, and prediction time per
sample.

The following summarizes the contribution of this study:

o Identification of the most important features by using
two feature selection methods.

o Comparative analysis of ensemble learning methods us-
ing seven evaluation metrics, namely accuracy, probabil-
ity of detection, probability of misdetection, probability
of false alarm, memory size, processing time, and pre-
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diction time per sample.

The remainder of this paper is organized as follows: Section
II outlines the materials and the methodology used in this
study. The results are described in Section III. Finally, the
conclusion and future work are drawn in Section IV.

II. MATERIALS AND METHODS

This section describes the dataset collection, features, and
data preprocessing techniques, including data cleaning and
normalization. We also briefly describe the feature selection
methods and classification models.

A. Data description

To collect GPS signals, a software-defined radio receiver
was employed to collect GPS signals at different speeds,
positions, and altitudes [7]. Three types of spoofing at-
tacks were simulated, namely simplistic, intermediate, and
sophisticated. In simplistic spoofing attacks, the broadcasted
signals are not synchronized with the authentic GPS signals;
therefore, these attacks can be easily detected. In intermediate
spoofing, attack estimate the target receiver antenna location
and velocity before broadcasting the fake GPS signals. So-
phisticated spoofing attacks are the most advanced type of
GPS spoofing attacks, in which multiple synchronized phase-
locked intermediate spoofers are used to avoid the detection
by the target receiver [7].

The dataset for training and testing is built by identifying
13 features. These features, along with their equations, and
descriptions are discussed in detail in Table I.

B. Data preprocessing

In this work, we used a dataset consisting of 10,056
samples. This dataset includes 4,764 attack samples and
5,382 authentic samples. Data corresponding to GPS spoofing
attacks are encoded as 1, and the remaining are encoded as
0. The final step is to normalize data into the compatible
form for modeling. Several techniques exist to normalize
raw data, including Mean and Standard Deviation Based
Normalization Methods, Decimal Scaling Normalization, and
Median and Median Absolute Deviation Normalization. In
this study, we used the min-max scalar to normalize data.
The min-max normalization inserts the data into a common
scale, which increases the performance of the classifiers [8,
9]. Each feature’s value is scaled to a number between 0 and
1. The min-max scalar is calculated as [9]:

x — Min(x)

X= Max(z) — Min(x)

)

where x is the initial value, Min(x) and Max(x) are the
minimum and maximum values of the feature vector.

C. Feature selection

Feature selection is a crucial step to identify the significant
features to obtain high-performance results. Correlated or
irrelevant features in the dataset can affect the performance
of the classification models. In this study, we employed a
correlation technique, Pearson Correlation, which is a filter-
based method that measures the correlation between two
variables and ascertain the strength of the linear connection
ranging from -1 to 1. When the result is close to 1 or -1,
the characteristics have a strong connection, either positive or
negative. A positive correlation coefficient indicates positive
linear correlations, while a negative correlation coefficient
indicates negative linear correlations [5]. The correlation
coefficient is given by:

PR v (€T i )
VoS e N SN (T

where n is a sample size, x and y are two variables, T
and y are the means of the two variables, and x; and y;
are the individual sample points indexed with i. In general,
a weak correlation corresponds to a value of R, less than or
equal to 0.39 and a moderate correlation is defined as an 2,
value between 0.40 and 0.89. In this study, we considered a
correlation coefficient threshold of 0.88 and -0.88 for highly
correlated features.

2

In addition to feature selection methods, a static relation-
ship is needed for a proper model since ML algorithms
cannot handle non-stationary data modification. We search
for characteristics that follow a non-stationary distribution
and use analysis to transform the raw data to stationary
data, includes determining the consecutive deviations between
samples. This method is equated below [7]:

Tit1 — T
RZM (3)
Ni+1 — Ny

where R is the rate of change and n;4; —n; is the distance
between two instances, which is equal to 1.

D. Classification models

Traditional machine learning techniques may not always
produce high performance results, particularly when the data
is composite or unbalanced [10]. One possible way is to
use an ensemble learning model, which is a set of training
models that work together to enhance the accuracy of a single
model’s predictions [11 - 13]. In general, these techniques can
be classified into three categories, namely bagging, stacking,
and boosting models. The stacking technique employs several
classification algorithms by using their outputs as inputs of
a final estimator to obtain high accuracy. This technique is
executed at two levels. In first level, the algorithm mainly
trains various models including their prediction results, while
in second level the model evaluates the best estimate of
previous level predictions [11]. In the bagging model, multiple
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TABLE I: LIST OF EXTRACTED FEATURES.

Extracted features. Abbreviations | Descriptions

Carrier to Noise Ratio C/NO Indicator of the signal that carries the GPS information.
Magnitude of the Early Correlator EC Magnitudes of the Early correlator are used for timing recovery.
Magnitude of the Late Correlator LC Magnitudes of the Late correlator are used for timing recovery.
Magnitude of the Prompt Correlator PC Estimation of phase and frequency differences.

Prompt in-phase correlator PIP In-phase signal of the prompt correlator.

Prompt Quadrature component PQP Quadrature signal of the prompt correlator.

Carrier Doppler in Tracking loop TCD Carrier Loop Doppler Measurements.

Carrier Doppler DO Change in frequency for a GPS receiver.

Pseudo-range PD Time difference between transmission and reception time.
Receiver Time RX Time of reception after the start of time of the week.

Time of the week TOW Time of the transmission of the navigation message.

Carrier Phase Cycles CP Frequency difference between the received carrier and a receiver-generated carrier phase.
Satellite vehicle number PRN Identification of different satellites orbiting the earth.

evaluations are calculated, and the average of them is used to
make the prediction. This model has several ML estimators
that use decision trees and individual learners to make a
prediction [12]. One advantage of such a method is to reduce
the base algorithm’s choice and increase the accuracy of the
model. In the boosting model, weak learners are converted
into strong ones by collecting algorithms. At each iteration,
the learning of this model is done according to the training
weights, which is updated based on the previous iteration’s
performance. To improve the classification results, the boost-
ing model uses a technique known as decision trees that
combines several models with varying levels of performance
[13].

In this study, we combine five different traditional clas-
sification methods, namely KNN, NB, decision tree (DT),
random forest, and logistic regression, in the stacking tech-
nique. In the bagging method, to achieve the best results, we
apply DT classification technique. Finally, we implement the
Gradient Tree Boost ensemble model in the boosting model.

ITI. RESULTS

To train and test the proposed algorithms, we employ a 10-
fold cross-validation method. With this technique, the models
are trained with 80% and tested with 20% of data in the given
dataset. A comparison between these algorithms is carried out
based on several evaluation metrics: the accuracy, probability
of detection P, the probability of misdetection P, 4, and the
probability of false alarm Py,. We calculate these metrics by
applying the following equations:

Accuracy = s +(§; i ?:)_’_ ) 4)
Pi= s )
Pt = G ©)
Pa— ﬁ )

where Tp is the number of correct predicted malicious
attacks, Ty is the number of correct predicted normal attacks,
Fp is the number of incorrect predicted malicious attacks, and
F') is the number of incorrect normal attacks.

Due to the size, weight, and power (SWaP) constraints,
subsidiary three metrics are employed: memory size of each
model, the processing time to perform all steps, and the aver-
age prediction time per instance. The memory size observes
the consumption of the memory for each model separately,
as well as line-by-line investigation of memory use. The
processing time refers to the prerequisite time to train and test
the models, and it highly depends on the used ML classifier.
The average prediction time for each instance is prerequisite
to predict whether the current sample is authentic.

The results of the investigation are presented in Figs.1 to
2 and Tables II to IV.

TABLE II: PARAMETERS FOR CLASSIFICATION MODELS.

Model Best parameters

Stacking | n_estimators = 42.

Bagging final_estimator_verbose= 1.

Boosting | max_depth= 10, min_impurity_decrease = 10.

After implementing the models and metrics, we applied the
Grid search as a hyperparameter tuning technique to obtain
the best results for each model. These hyperparameters are
described in Table II for each of the three ensemble models.

Fig. 1. illustrates the results of Pearson’s correlation co-
efficient for each pair of the features. As one can observe,
few features are highly correlated. We selected the threshold
0.9 to identify highly correlated features. As a result of this
method, RX and DO, are considered highly correlated with
TOW, and TCD, respectively.

Due to their lower importance than that of DO and TOW,
RX and TCD were discarded from the list of features. Finally,
eleven features, namely DO, TOW, PD, CP, CNO, PRN,
PC, PQP, PIP, LC, and EC are considered relevant and
uncorrelated features for classifying GPS spoofing attacks
on UAVs. Moreover, subsidiary data preprocessing step is
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Fig. 1: Pearson’s Correlation Coefficient Heatmap.

implemented to transform two features, namely TOW and CP,
into stationary distribution.

The results of the three selected algorithms are shown in
Fig. 2 in terms of accuracy, probability of detection, prob-
ability of misdetection, and probability of false alarm. Fig.
2a shows the accuracy of the bagging, stacking, and boosting
models. As one can see, the stacking model has the highest
accuracy (95.43%), followed by the bagging (95.28%), then
the boosting model (94.61%). Therefore, these results show
that the stacking model provides the best accuracy for de-
tecting GPS spoofing attacks. However, the accuracy is not
sufficient to compare the efficiency of ML models in detecting
GPS spoofing attacks. The number of falsely detected alarms,
and misdetected samples can degrade the performance of ML
models.

Fig. 2b shows the results of the selected models in terms
of the probability of detection. As one can see, the stacking
classifier has the highest detection probability of 99.56%, the
bagging classifier has a detection probability of 99.24%, and
the boosting model has a detection probability of 96.55%,
which is considered the lowest result compared to the two
other ensemble models.

Fig. 2c shows the probability of misdetection of the selected
ensemble models. As one can see, the stacking classifier
has a probability of misdetection of 0.36%, the bagging
model shows a probability of misdetection of 0.64%, and the
boosting model has a probability of misdetection of 2.95%.
Consequently, the stacking model has the lowest probability
of misdetection, whereas the boosting model has the highest
and worse probability of misdetection.

Fig. 2d illustrates the results of the probability of false
alarm of the selected models. As one can see, the stacking

TABLE III: EVALUATION METRICS.

. Accurac P P P
Classifiers (%) y ( ‘;lb ) ( &:)d ( ‘;D t;
Bagging 95.28 99.24 | 0.64 1.07
Stacking 95.43 99.56 | 0.36 0.03
Boosting 94.61 96.55 | 2.95 5.08

classifier has the best result in terms of the probability of
false alarm (0.43%), followed by the bagging model (1.07%)
and then boosting classifier (5.08%). The summary of the
performance results of the proposed models in terms of the
four evaluation metrics are given in Table III.

TABLE IV: SIZE AND METRICS OF COMPARED CLASSIFIERS.

ML Model size Processing time Average prediction

Classifier | 1 memory (Sec) time per sample
(Mb) (Sec)

Bagging 190.4 0.74 0.02

Stacking 191.3 13.06 0.24

Boosting 190.5 1.5 0.01

Table IV gives the results of the memory size of each
model, the processing time, and average prediction time of
each sample for each model. As one can see in this table,
the stacking classifier presents the worst outcomes in terms
of processing time and average prediction time compared
with the other ensemble techniques. In addition, the stacking
classifier employs the biggest proportion of memory size
(191.3 megabytes), followed by the bagging model (190.4
megabytes), then the boosting method (190.5 megabytes). The
stacking model has a processing time of 13.06 seconds, the
bagging model has 0.74 seconds, and boosting model has 1.5
seconds. As a result, the bagging classifier provides the best
results in terms of processing time, followed by bagging and
stacking models. Finally, the stacking classifier has the worst
average prediction time of 0.24 seconds per instance, followed
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Fig. 2: Evaluation Results for the GPS Spoofing Attacks.

by the bagging with a prediction time of 0.02 seconds and
the boosting model with 0.01 seconds.
In summary:

o The correlated features, namely RX and TCD are dis-
carded from the corresponding dataset.

o The Grid search hyperparameter tuning method is used
to find the best hyperparameters for each model.

« Among the ensemble models, the stacking model gives
the best results in terms of probabilities of detection,
misdetection, and false alarm. Whereas it has the highest
processing time and average prediction time for each
instance.

o The boosting classifier provides the lowest results com-
pared to the bagging and stacking models.

o The bagging model has good detection, misdetection,
and false alarm probabilities that are slightly below those
of the stacking algorithm. However, its memory size,
processing time and average prediction time per sample
are 1, 18, and 12 times smaller than those of the stacking
algorithm.

IV. CONCLUSION

GPS spoofing attacks are among the most important threats
that target UAVs. In this paper, we presented a performance
comparison of the bagging, stacking, and boosting algorithms
in detecting GPS spoofing attacks in terms of accuracy, prob-
ability of detection, probability of misdetection, probability
of false alarm, memory size, processing time, and predic-
tion time per sample. First, we identified the most relevant
and uncorrelated features using Pearson’s Correlation feature

selection technique. The results show that RX and TCD are
highly correlated and have lower importance scores, thus they
are discarded from the corresponding dataset. In addition, we
implemented the Grid search technique for hyperparameter
tuning to determine the optimal hyperparameters for each
model. The simulation results show that the stacking-based
ensemble learning model has the best results compared to
the bagging and boosting classifiers. In contrast, the boosting
classifier provides the lowest results among all ensemble mod-
els. For future work, we plan to investigate the performance
of deep learning models in detecting GPS spoofing attacks on
UAVs.
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