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Abstract— Smart weeding systems to perform plant-specific
operations can contribute to the sustainability of agriculture
and the environment. Despite monumental advances in au-
tonomous robotic technologies for precision weed management
in recent years, work on under-canopy weeding in fields is yet to
be realized. A prerequisite of such systems is reliable detection
and classification of weeds to avoid mistakenly spraying and,
thus, damaging the surrounding plants. Real-time multi-class
weed identification enables species-specific treatment of weeds
and significantly reduces the amount of herbicide use. Here,
our first contribution is the first adequately large realistic
image dataset AIWeeds (one/multiple kinds of weeds in one
image), a library of about 10,000 annotated images of flax
and the 14 most common weeds in fields and gardens taken
from 20 different locations in North Dakota, California, and
Central China. Second, we provide a full pipeline from model
training with maximum efficiency to deploying the TensorRT-
optimized model onto a single board computer. Based on
AlIWeeds and the pipeline, we present a baseline for classifica-
tion performance using five benchmark CNN models. Among
them, MobileNetV2, with both the shortest inference time and
lowest memory consumption, is the qualified candidate for
real-time applications. Finally, we deploy MobileNetV2 onto
our own compact autonomous robot SAMBot for real-time
weed detection. The 90% test accuracy realized in previously
unseen scenes in flax fields (with a row spacing of 0.2-0.3
m), with crops and weeds, distortion, blur, and shadows, is
a milestone towards precision weed control in the real world.
We have publicly released the dataset and code to generate
the results at https://github.com/StructuresComp/
Multi-class—Weed-Classification.

I. INTRODUCTION

Herbicides can have negative side-effects on the ecosys-
tem, biodiversity, and human health [1]. Conventional weed
control methods indiscriminately spray the entire field, in-
cluding soil, crops, and weeds, with a single herbicide.
This strategy is widely applied as it does not require the
users to know the spatial distribution or the type of the
weeds. However, overuse of chemicals has led to hundreds
of herbicide-resistant species of weed across the world [2].
Reducing the amount of herbicides is a crucial step towards
sustainable agriculture. Site-specific weed control can result
in 90% savings in herbicide expenditures [3]. Since the
worldwide annual sales of pesticides are on the order of a
hundred billion dollars [4], the economic impact — in addition
to environmental benefits — of precision weed management
is overwhelming.

The past decade has seen revolutionary advances in mo-
bile robotic platforms for precision agriculture and several
commercial entities (Blue River Technology, ecoRobotix,
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Hitch Robotics, EarthSense, and Naio Technologies) have
commercialized various robotic vehicles. Real-time weed
control is the primary objective of several of these vehicles,
e.g. “See and Spray Machines” of Blue River Technology and
TerraSentia of EarthSense. In the context of these ongoing
activities in commercial as well as academic [5] sectors, real-
time weed detection and classification is a truly enabling
technology for robotics. However, three critical challenges —
(1) data, (2) training, and (3) real-world deployment — have
to be overcome for fully autonomous weed management.
While many weed libraries have been released [6], [7], [8],
[9], [10], what is lacking is a large enough image dataset
of realistic fields, including crops and weeds, distortion,
shadows, and motion blur. The onboard computing power of
agricultural robots can often be limited, especially for row
crops (e.g. flaxseed and canola) where the inter-row spacing
is small as 0.2-0.3 m. This spacing limits the size of the
robot. Existing platforms except for robots from ecoRobotix
are suitable only for fields with wide row spacing (> 0.4
m) as they use GPS (limited accuracy with crop blocking
and size-incompatible with small robots) for navigation and
guidance. Moreover, the robot should be able to travel under-
canopy once the crop canopy has been established for truly
precise weed management. This further restricts the size of
the robot as well as the computing capability. Small vehicles
to travel under-canopy have been introduced by EarthSense.
However, owing to the challenges above, autonomous weed
management with small vehicles is yet to be achieved.

To address these issues, we employ our own low-cost
(around $500) compact robot, SAMBot, as shown in Fig.
1(al), to which two cameras are attached 0.2 — 0.4m above
the ground. The customized three-degree-of-freedom gimbal
enables the camera to scan an angle between 0° to 150°.
We employ a mobile Convolutional Neural Network (CNN)
for weed classification. We chose this CNN because it is
the next-generation of on-device computer vision networks,
can predict much faster than other networks, and maintain
competitive performance. The network utilizes a modified
MobileNetV2 [11] architecture (i.e. dropping last two fully-
connected layers and adding one global average pooling
layer) and its inference is optimized by NVIDIA TensorRT.
Using the same pipeline, we also train and run another 4
models with acceptable training speed and accuracy. The
contributions of this system paper are as follows:

o We release a realistic dataset — AIWeeds — containing
10,000 labeled images with multiple weeds/crops in
view, including flax and 14 most common weeds in
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Fig. 1: (al) The cameras on our SAMBot robot performing multi-weed classification to recognize the weed(s) in the view
of camera I (shown as the dashed red rectangle) in the flax fields by exploiting the light-weight MobileNetV2 CNN model
and executing spraying (continuous white lines); (a2) The predicted weed — Venus mallow (in the small red rectangle) in the
view of camera I out of the 16-class AIWeeds (in the blue rectangle) by onboard Jetson Nano (denoted as the filled red dot
in (al)); Snapshots showing the statuses of weeds (bl) before and (b2) after robotic herbicide spraying. Continuous lines in
both (bl) and (b2) represent the flax croplines. Note that weed classification is for point spray but not for this dense weed
scenario, so (bl) and (b2) are here to validate our robotic spraying system.

North Dakota, the middle of China, and California [12].
The images are taken at several stages of weed from 20
different sites in the fields and gardens with variations
in illumination, shadows, weather conditions, view per-
spective and distance, and plant growth stages.

e We demonstrate a multi-class weed classification
pipeline for model deployment on GPU boards, even
low-end boards such as Jetson Nano/Xavier Nx. Using
this pipeline, we study weed classification using 5
modified models: CNN-MobileNetV2 and 4 other more
complicated models and compare their performance
through various metrics. Researchers can use this study
to evaluate their unique situational needs, such as train-
ing time and accuracy, and select the appropriate model
for their needs.

e We run CNN-MobileNetV2, the only qualified candi-
date for onboard under-canopy weed classification, on
SAMBot (with Jetson Nano) in flax fields and achieve
satisfactory experimental results, i.e. accurately detect
and spray weeds. This is a milestone for real-time
autonomous weeding in realistic fields.

The remainder of this study is arranged as follows. Section
IT presents the state-of-the-art on weed classification. Section
IIT describes how the dataset is built while Section IV gives
details of our multi-class weed classification pipeline. We
then show our experimental results of models trained on our
dataset and deployed onto the real-time robot system. Finally,
the conclusion is drawn in Section VI.

II. RELATED WORK
A. Vision-Based Weed Control & Datasets

Image-based [13], [14], [6], spectrum-based [15], [16] and
spectral image-based [17], [18] methods have been success-
fully applied to identify weeds from both ground and aerial
photography. Spectrum and spectral image-based approaches

are ideally suited for highly controlled site-specific environ-
ments where spectrometers can be tailored for consistent
acquisition and detection. Nonetheless, it is challenging to
incorporate them in harsh field environment and deploy
them onto compact vehicles. Vision-based methods, on the
other hand, benefit from cheaper and simpler image acqui-
sition under varying illumination conditions. Weed datasets
in realistic fields are indispensable for vision-based weed
control, but the existing ones [6], [7], [8], [9] only embrace
ideal weed images without background, none of which is
apt for real field applications. The most realistic one [10]
consists of static clear (without motion blur and shadows)
images shot from a straight downwards view. Nonetheless,
distortion, shadows, and motion blur that always appear
during applications increasing technical difficulty are not
reflected in [10].

B. Multi-class Classification Using Deep Neural Network

Classical vision-based weed classification methods rely on
different features of crop plants and weeds, such as color,
leaf shape [19] and size, vein patterns, and so forth [20].
However, in complex natural scenarios with high weed den-
sities where weeds and crop plants overlap and occlude, they
cannot perform the task correctly and robustly. In addition,
further investigation is needed as to whether they are appli-
cable to actual field conditions. This problem is addressed by
recent deep learning models, such as Convolutional Neural
Networks (CNNs). CNNs [8], [21], [22], [23], [24] take
advantage of a deep hierarchical structure to extract global
features of the image and context information (background
such as soil), which significantly reduces the error rate of
image recognition than the classical algorithms mentioned
above. For early-stage wide weed control (around stem elon-
gation but before booting), many current methods for weed
detection and classification focus on segmenting images with
both RGB and excess green/red or near-infrared [5], [21],
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[25] recordings. However, they are powerless in fields with
canopies developed and visual occlusion. Performing early-
stage weed control will probably destroy or affect the growth
of crops and thus the crop yield. As such, under-canopy weed
control is a must. [21] and [7] tried semantic segmentation
of weeds and crops. Still, segmentation methods [21], [7],
[21], [25] require lots of effort and time because of hand-
crafted labeling and are challenging to be run on an em-
bedded computer. As a result, there is a timely need to do
under-canopy multi-class weed identification in real fields
with CNNs.

C. Under-canopy Weeding with Low-cost Robots

As mentioned above, CNN models have been widely
explored by researchers and run on expensive, powerful
PCs [21], [7], [25], [8]. However, none of the prior works
deployed their model onto a flexible mobile robot that works
for under-canopy weeding. Powerful PCs are usually not
an option for small economical platforms. Our prior work
verified that our low-cost robot platform SAMBot worked
autonomously in real fields with narrow row spacing, e.g.,
flax and canola fields. On SAMBot, NVIDIA Jetson Nano
is used as a cost effective ($99) solution that possesses
the performance and capabilities to run modern artificial
intelligence workloads.

In summary, to the best of our knowledge, this work
is the first trial applying lightweight multi-class models to
agricultural robots for under-canopy weed control and testing
the performance in real flax fields.

III. DATASET COLLECTION

Our first goal is to create a variable and realistic dataset
that allows us to step towards the further objective,i.e. to
realize and enhance the baseline accuracy of the off-the-
shelf CNNs and make it easy to be trained and deployed
to facilitate wider use of the dataset. Finally, the deployed
model enables SAMBot to detect, identify, and precisely
spray weeds during field marching, even when the visual
appearance of the plants and background has changed. In
this section, we provide details of how we collected images
to reflect varying scenes and target variability in realistic
fields.

Unlike the aforementioned libraries [6], [7], [8], [9], [10],
we build a dataset named AIWeeds containing flax and 14
most common weeds in the fields in North Dakota, Califor-
nia, and central China. The image resolution is 1920x 1080
or 1280720 pixels. Table I shows the weed species and their
corresponding quantity in AIWeeds. Full and corresponding
abbreviated names of the weeds are: Amaranthus spinosus
(AS.), Brachypodium sylvaticum (BS.), Cirsium arvense
(CA.), Cynodon dactylon (CD.), Dandelion (D.), Lamb-
squarters (L.), Nutsedge (N.), Plantago Major (PM.), Se-
taria faberi (SF.), Sonchus arvensis(SA.), Verdolagas Pirslane
(VP.), Venus mallow (VM.), Canada thistle (CT.), Flax, and
Negatives (Neg.). A total of more than 10,000 images were
taken under different sunlight (from 7 a.m. to 6 p.m.),
weather conditions (super bright, sunny, cloudy, and rainy),
growth stages (from sprouting to ripening), and varying

health conditions (under drought, plant disease, and insect
pest infection). On average, 600 images of each target species
were taken from at least three different locations. Rotation
and scale of the target weed species in the images also vary
as they are photographed in situ with unknown orientation.
Fig. 2 displays some image samples from our dataset and
gives a sense of the variations. These variations in conditions
were deliberate in order to significantly increase the gener-
ality of AIWeeds. They can, however, influence the foliage
color, strength of features, and other noticeable anomalies.
This includes the intra-species variation of the data. As
shown in Fig. 2, another variability in our dataset arises
from the complex and dynamic target backgrounds. Although
our dataset is large, over-fitting might still appear, the main
concern of deep neural networks. Later in Section IV, we will
describe the image augmentation skills implemented to avoid
over-fitting. We also kept this in mind while constructing
AlWeeds. We rotated the camera and rendered motion blur
during the shot. These confounding factors of heterogeneity
in AIWeeds will jointly lead to deeper and more complex
models to attain acceptable performance.

In addition, locations subject to dense weed infestations
are also populated by other native plants. Since we are
unable to process a dataset including all plants, all other non-
target species in view must be labeled as negative samples,
along with all non-target background images. Unfortunately,
this introduces a highly variable class in the dataset that
will be difficult to classify consistently. In order to prevent
over-fitting, increase the accuracy and robustness of weed
classification models despite the disturbance of non-target
plants, we include the negative class in AIWeeds (abbreviated
as Neg.) in Table L.

The strictness of the collection process will ensure the
accuracy and robustness of all classification learning models.
Fig. 2 displays a subset of A/Weeds to demonstrate its variety
and generality within classes, from which the complexity of
the learning problem is evident.

IV. MULTI-CLASS WEED CLASSIFICATION PIPELINE

In this section, we illustrate the pipeline for a multi-class
weed classification scheme. To implement and realize our
models, we utilized the popular machine learning frame-
work, Tensorflow, and high-level API, Keras. This allowed
us to try out various models, such as VGGI19, Nasenet-
Mobile, ResNet50, InceptionV3, Xception, DenseNet, and
MobileNetV2. After testing different models, we concluded
that MobileNetV2 provided the best combination of low
memory usage and computational time but maintained a
respectable level of accuracy. It is, therefore, deployable onto
Jetson Nano with limited onboard computation resources.

All models were pretrained to recognize 1000 object
classes in ImageNet, and we slightly modified their archi-
tectures to classify 16 classes (14 types of weeds, flax, and
negatives) in AIWeeds. Modifications will be illustrated on
MobileNetV2 because they are identical for other models. As
shown in Fig. 3, the last fully connected layer consisting of
1,000 neurons of ImageNet-trained MobileNetV?2 is replaced
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Fig. 2: Sample images from some classes of the AIWeeds dataset to show the variation: (a) Amaranthus spinosus (AS.), (b)
Brachypodium sylvaticum (BS.), (c) Cirsium arvense (CA.), (d) Venus mallow (VM.), (e) Canada thistle (CT.), (f) Negatives

(NG.).

TABLE I: The weed species collected in our dataset and their corresponding quantity.

Weed AS. | BS. | CT. |CA. |CD. | D. |Flax | L. | Neg. | N. | PM. | SE. | SA. | VM. | VP.
# of Images | 659 | 655 | 560 | 990 | 631 | 428 | 625 | 549 | 1474 | 649 | 526 | 566 | 565 | 704 | 559
Breakdown.pdf Breakdown.pdf
Amaranthus Spinosus: 0.928
;‘:‘m\» = —pp _>@ ﬁ_»ﬁ — - / - Cirsium arvense: 0.145 _Ma»x R
=== : Probability SPinosus
B — ——7 total—
Input Image MobileNetV2 Feature Extractor Verdolagas: 0.019
(384 x 224) Output

[ convab | | Bottieneck | GAP

FC w/ Sigmoid

Label Prediction

Fig. 3: Detailed architecture of learning model for multi-weed classification with modifications on MobileNetV2.

by a 16-neuron fully connected layer. We used MobileNetV2
as a feature extractor and added two layers at the end: a
global average pooling (GAP) layer and a fully connected
layer that used sigmoid as the activation function. Sigmoid
is chosen because the probability of every class presenting
in the same view (image) in nature is the same. It allows the
output layer to identify the likelihood of an image belonging
to each class. The weed with the highest sigmoid-activated
neuron probability is thought to appear in the input image.

The preprocessing preparation for learning includes image
flipping, resizing, and augmentation. First, all images for
training, validation, and testing were rotated and resized
to 384 x 224, the size closest to the default 224 x 224 in
ImageNet while matching the normal output of the robot’s
camera and keeping the ratio of our photographs taken to
prevent excessive distortion. Next, image augmentation was
performed by rotating every image arbitrarily in the range of
[—360°, 360°] and then scaling it in the range of [0.5, 1] both
horizontally and vertically. After that, each color channel
and pixel intensity were both randomly shifted between -25
pixels to 25 pixels to account for the illumination variance.
We also randomly scaled pixel intensity within [0.75, 1.25]
range and did random perspective transformations on each
image to stimulate a wide range of viewing distances and
angles. In summary, our image augmentation implementa-
tions accounted for variations in rotation, scale, illumination,
color, and perspective. Otherwise, the deep neural network
models mentioned above, with trainable weights in the
order of millions, would dramatically over-fit the images by
memorizing the training subsets.

Then, we split the labeled images in AIWeeds into training,

validation, and testing sets; these sets contained 60-20-20
percent respectively for k-fold cross validation with k = 5.
Stratified random partitioning was executed to ensure even
distribution of different weed classes within each subset.
A random split of 60% formed the training dataset, while
20% constituted the validation dataset to monitor the training
process and minimize over-fitting. The remaining 20% were
reserved for testing and never allowed to join any training
procedure. Normally, training the models from scratch with
our custom dataset cannot guarantee acceptable performance
even after a long training time on a computationally powerful
platform. As a result, each model was loaded with its corre-
sponding pre-trained weights on ImageNet as initial weights
before training through Keras. The weights of the fully-
connected layer were initialized by uniform distribution.

Finally, we fine-tuned the layers using our custom built
dataset. The standard binary cross-entropy loss function and
Adam optimizer were used to train all models. Batches of 32
images were produced for training, which would be aborted
if the validation loss did not decrease after 32 epochs. Here,
the validation loss refers to the classification error calculated
on the validation subset of images. The training was restarted
after an abortion by loading the continuously saved model
with the smallest running validation loss. After exploration,
the initial learning rate was set as 0.0001 and was then
successively halved every time the validation loss did not
decrease after 16 epochs. The learning rate would be reduced
to 0.5 x 10~* when the training restarted after an abortion.
The validation and testing results of all models will be given
in Section V-B.

Experiments demonstrated that only MobileNetV2 could

2276

Authorized licensed use limited to: UCLA Library. Downloaded on September 07,2022 at 21:40:09 UTC from IEEE Xplore. Restrictions apply.



be deployed and run on hardware-limited SAMBot (with
Jetson Nano) with/without structure optimization by Ten-
sorRT, while other complicated models are not deployable
even with TensorRT speedup. We used TensorRT to optimize
the inference time that delivers low latency, memory usage,
and high throughput. The four key operation steps related to
TensorRT include creating frozen graphs for trained models,
converting frozen graph to the TensorRT engine, running
TensorRT engine, and benchmarking all models. Details are
given in our open-source repository.

(@) o (b)

Fig. 4: (a) SAMBot working in flax fields;(b) The side-view
of the hardware layout of SAMBot; (c) The back-view of the
adjustable “see and spray” system on SAMBot.

V. EXPERIMENTS & RESULTS

In this section, we illustrate our experimental setup,
followed by the quantitative assessment of five 16-class
classification approaches. Then, we deploy MobileNetV2,
onto our embedded board, Jetson Nano (the red dot in Fig.
1(al)). Finally, we run our robot, in flax fields in North
Dakota, with real-time video streaming. This is to verify the
capabilities of the deployed model, i.e. whether the robot
can successfully detect multiple types of weeds in flax fields
with a medium weed density and spray the corresponding
herbicide. The experimental results and supplementary video
validate the practicality of MobileNetV2 on SAMBot.

A. Experimental Setup

All experiments were conducted on our miniaturized, low-
cost, functional agricultural robot — SAMBot — in Fig. 1(al)
and Fig. 4. It is developed and tested for weed control in
flax (as shown in Fig. 4(al)) and canola fields of North
Dakota, the leading producer with 91% of the U.S. flax
production and 85% of canola production [26]. The robot is
generally applicable to row crops. The robot has a powerful
drive train (the rated torque of motors is 4.81N-m).
It successfully passed all the bumps/dents (the maximum
height/depth of which is the same as the height of chassis)
and finished the full exploration of the fields during field
tests during the Summer of 2021 in Fargo, North Dakota. It
continuously worked in the fields more than 14 hours with
12-cell 18400mAh onboard LiPo batteries @ Referring to

Fig. 1(al) and Fig. 4(b), two cameras @ are mounted at the
back of the robot, about 20-40 cm above the ground. The
images in AIWeeds were therefore taken from the robot’s

perspective. One camera and one pressure sprayer @ are
rigidly coupled and actuated together by a gimbal @ to
realize a yaw angle of 0° — 150°. Each sprayer is connected
to a herbicide tank ( 6 ). Not only the orientation of the gimbal
assemblies can be changed by servos, but also their positions
are adjustable left and right, up and down on the 3D-printed
pegboard based on the growth stage of crops/weeds and row
spacing, as indicated in the red arrows in Fig. 4(c).

B. Quantitative Results of Workstation Training

We use the Fj score for quantitative evaluation:

precision, - recallg

Fi(s)=2- (1

precision, + recall,’
where precision, recall, are the precision, recall for class s,
respectively. All models presented in this section are trained
and tested with the dataset in Table 1.

Fig. 5 shows the training loss and average validation class
accuracy of models over 64 epochs on our AIWeeds dataset.
On our GTX 1080 Ti platform, each epoch of DenseNet121,
InceptionV3, MobileNetV2, ResNet50, and Xception took
978s, 437s, 274s, 672s, and 672s on average, respectively.
Training loss and average validation class accuracy of
different models are plotted in Fig. 5 to eliminate over-
fitting during training. MobileNetV2 offers an accuracy of
94.50%, while being the fastest to finish training, far ahead of
other models. DenseNet121, on the other hand, gives the best
accuracy, 96.77%, and the smallest loss, 0.0027, after being
trained for 64 epochs. We continued to train MobileNetV2
for 128 epochs, which doubled the time needed for 64
epochs, and give a second-best accuracy of 96.15%. The
speed at which the algorithms above run is proportional to the
total number of parameters in the network that are available
via the Internet. We observe that MobileNetV2 takes 1/5-1/4
the time to train as other more complicated algorithms.

Fig. 6 displays the F}-score of the five trained models on
each kind of weed. All models perform well (above 90% for

\J';' DenseNet121--Loss
= = = +InceptionV3--Loss 0.97
CLl 5 S MobileNetv2--Loss .
——— ResNet50--Loss 0.96 7>
@ —+—— Xception--Loss 095 Q
Q DenseNet121--Accuracy e
— = = = *InceptionV3--Accuracy 0.94 O
oosk\s. [ MobileNetV2--Accuracy <
S ————— ResNet50--Accuracy 0.93
~——+—— Xception--Accuracy

Number of epochs

Fig. 5: Training loss and average validation class accuracy
of different models. The maximum number of epochs is set
to 64 for plotting but in reality, MobileNetV2 was trained
for 128 epochs.
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all classes) considering the complexity of A/Weeds as men-
tioned in Section III. The F}-score of Neg. (backgrounds)
class is relatively low. Looking carefully into the confusion
matrix of all models, we find that most mispredictions are
between Neg. and other weeds. This makes sense as the
number of Neg. in A/Weeds is double as other weeds, as
shown in Table I. The targeted plant takes a smaller area out
of the overall image. When we took pictures of it, we did not
avoid other native non-targeted plants in view, so it would
be more difficult to be identified from a noisy background.
One surprising finding is that BS. is narrow-leaf and looks
similar to SF. from human recognition, especially at an early
stage and in a noisy background, but were distinguished well
by CNN models. This verifies the ability of CNNs to use a
deep hierarchical structure to extract features.

C. Flax Field Experiments

All of the above well-trained models besides MobileNetV2
cannot be deployed onto SAMBot (with Jetson Nano). Con-
sidering the running speed of the robot, the resolution of the
two cameras as shown in Figs. 1(al) and 4 is set to 384 x 224,
the same as the input of CNN models. The frame rate is set
to 10 frames per second. Experimentally, with MobileNetV2
running, we ran SAMBot in flax fields in North Dakota with
medium weed density (with VM. and CT.) for 15m, and
the robot was able to classify each weed at an average
accuracy of 90%. Meanwhile, it consumed less herbicide
than commercial sprayers for the same spraying range (the
flux rate of our customized pressurized sprayer is 78ml/min
while 95.6ml/min for a commercial two-sprayer system). The
status of weeds before and after herbicide spraying is shown
in Figs. 1(bl) and (b2), respectively. Fig. 7 shows the field
test results. The robot successfully recognized and sprayed

0.9
0.8
0.7
0.6
0.5

F,- score

0.4
0.3
0.2
0.1

o

@ &K O'Q\@“ v SN K Ry

Name of weeds
Fig. 6: Fi-score of 5 models per weed class (horizontal
axis). The 5 models at each class from left to right are
DenseNet121 (blue, 64 epochs), InceptionV3 (brown, 64
epochs), MobileNetV2 (yellow, 128 epochs), ResNet50 (pur-
ple, 64 epochs), and Xception (green, 64 epochs), respec-
tively.

Fig. 7: Images extracted from the video streaming on the
robot. The prediction results of MobileNetV2 (128 epochs)
model are (a) VM. (correct), (b) VM. (correct), (c¢) flax
(correct), (d) CT. (correct), (e) Neg. (correct), and (f) CT.
(wrong; ground truth is VM.).

VM. in (a) and (b) though there was an apparent disturbance
from CT. (in rectangles). It also succeeded in detecting flax
in (c), spraying CT. in (d) under VM.’s appearance. The
10% failures mainly consist of cases where the leaves of
VM. looked similar to CT. under strong light exposure as
displayed in (f).
VI. CONCLUSIONS

In summary, we introduce the first large, realistic mul-
ticlass weed image dataset, AIWeeds, with considerable
variation (e.g. shadows, lighting and perspective change,
different plant growth stages, and so on), collected entirely
from in situ in flax fields or gardens. It consists of flax,
the 14 most common weeds, and backgrounds collected
from North Dakota and California (U.S.) and middle China.
Based on our dataset, we present baseline performance of
five benchmark CNN models — DenseNet121, InceptionV3,
MobileNetV2, ResNet50, and Xception — all of which per-
form well with an average F}-score above 90% on a highly
variable dataset. Our low-cost, compact SAMBot with a
computational resource-limited onboard Jetson Nano is then
run in flax fields with a medium density of Venus mallow
and Canada thistle after the lightest MobileNetV2 being
deployed. It realized a weed classification accuracy of 90%
with an inference time of 47.78ms. Evaluations on both
AlWeeds dataset and experiments in real fields demonstrate
that our system is (i) applicable to under-canopy weeding,
(ii) adaptable to unseen scenes, and (iii) able to robustly
classify weeds at varying growth stages and environments.
Our work (including a dataset, multi-class weed classification
pipeline, and experimental results) is a milestone towards
under-canopy weed control in fields. The data and tools
introduced in this paper enable various commercial mobile
robots to detect, classify, and manage weeds of multiple types
and thus reduce the amount of herbicide use by at least an
order of magnitude.
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build AIWeeds, and Dr. Naiyu Gao at the Chinese Academy
of Sciences for algorithm discussion.
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