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ABSTRACT The mechanical properties of tissues have profound impacts on a wide range of biological processes such
as embryo development (1, 2), wound healing (3—6), and disease progression (7). Specifically, the spatially varying moduli
of cells largely influence the local tissue deformation and intercellular interaction. Despite the importance of characterizing
such a heterogeneous mechanical property, it has remained difficult to measure the supracellular modulus field in live
cell layers with a high-throughput and minimal perturbation. In this work, we developed a monolayer effective modulus
measurement by integrating a custom cell stretcher, light microscopy, and Al-based inference. Our approach first quantifies
the heterogeneous deformation of a slightly stretched cell layer, and converts the measured strain fields into an effective
modulus field using an Al inference. This method allowed us to directly visualize the effective modulus distribution of
thousands of cells virtually instantly. We characterized the mean value, standard deviation, and correlation length of the
effective cell modulus for epithelial cells and fibroblasts, which are in agreement with previous results. We also observed a
mild correlation between cell area and stiffness in jammed epithelia, suggesting the influence of cell modulus on packing.
Overall, our reported experimental platform provides a valuable alternative cell mechanics measurement tool that can be
integrated with microscopy-based characterizations.

SIGNIFICANCE Investigating tissue stiffness is critical for understanding fundamental cell behavior such as cell
migration, development, and division (8). While many useful tools for characterizing tissue stiffness have recently been
developed, it remains challenging to measure the supracellular modulus field of live cell layers with a high-throughput
and minimal perturbation. In this work, we integrated a custom cell stretcher, light microscopy, and an Al-based
inference model to characterize a tissue’s supracellular modulus distribution by slightly deforming a cell layer cultured
on an ultra-thin and ultra-soft polymer membrane. In addition to measuring the mean effective modulus and modulus
fluctuation for both epithelial cell and fibroblast layers, we identified a modulus correlation length spanning a few cells,
and a mild correlation between cell area and stiffness.

INTRODUCTION

the tumoral tissue elasticity has been found to correlate with

) ) ) ) ) malignancy, metastatic potential, and drug resistance (10, 18).
The mechanical properties of tissues play an essential role in

regulating various biological processes and can be used as
a biomarker for label-free, low cost, and rapid disease diag-
nosis (1, 9-15). During embryogenesis, tissue viscoelasticity
instructs the differentiation, migration, and organization of
cells (12-15). In developed organs, tissue stiffness regulates
the cellular homeostasis and physiological functions (1, 9). In
diseased organs, tissue modulus has been shown to act as a
physical cue influencing the pathogenesis and progression of
fibrosis (9), asthma (16), and Crohn’s disease (17). Moreover,

To study these mechanically regulated processes, the
ability to characterize cell modulus heterogeneities at the
supracellular scale is critical. For example, cell migration
is largely impacted by local cell stiffness, which determines
the system’s response to the intercellular force (19-21). This
cell modulus variation has also been shown to induce cell
competition that functions as a quality control mechanism
by expelling “loser cells” (22, 23). Recently, it has been
demonstrated that this modulus-regulated cell competition
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can be harnessed as a defense against precancerous cells
(24, 25).

While many pioneering cell stiffness measurement meth-
ods have been developed in the past few decades, character-
izing the supracellular spatial distribution of cell modulus
remains challenging. One of the earliest methods for measur-
ing cell modulus is micropipette aspiration, a cost-effective
technique that can track a sample’s mechanical properties over
time in vivo (26, 27). Although micropipette aspiration can
achieve a cell-level resolution, it does so in a low-throughput
manner and requires cell detachment for characterizing ad-
herent cells (26, 28). Atomic force microscopy (AFM) is
currently the most widely used tool for studying adherent
cell stiffness at a subcellular resolution. When using a pyra-
midal tip, the measured modulus, however, may correspond
to a specific organelle which does not represent the overall
cell stiffness, introducing uncertainties in interpreting the
supracellular measurement (29-31). Moreover, depending on
the indentation used or region probed, it can be difficult to
distinguish the cellular contributions to the measurement from
that of the substrate for penetration depths greater than 10% of
the cell thickness (18). Lastly, AFM cannot directly probe the
in-plane modulus of the monolayer, which is more relevant to
physiological processes compared to the transverse modulus
typically acquired by AFM.

Another common technique is magnetic twisting cytome-
try (MTC), which is a high-throughput method able to char-
acterize hundreds of cells by twisting magnetic microbeads
that bind to membrane receptors (32). The binding of the
microbead to the cell surface, however, can induce formation
of focal adhesion complex, which reorganizes the cytoskeleton
and can alter cells’ rheological properties. Additionally, the
substrate can interfere with the MTC measurement, akin to
AFM (32). Similar to the working mechanism of MTC, a
recent experiment used magnetic droplets to probe the local
tissue stiffness. While this method addresses the cytoskele-
tal reorganization and substrate issues, it can be difficult
to generate cell-scale ferrofluid droplets, which determine
the spatial resolution of the measurement (33). Cell shape
based inference models are a non-perturbative approach for
extracting a monolayer’s mechanical property at the cellular
or tissue level using microscopy (34). In this method, only
stress is directly determined, thus requiring independent local
strain measurements to infer the modulus (35-37), in which
this approach, however, has remained untested. Alternatively,
cell stretchers are a versatile device that have been routinely
used to characterize in vitro cell monolayer mechanics. It
has been demonstrated that by either culturing cell layers
on thin elastomer substrates, or by detaching intact cell lay-
ers from the substrates, the overall monolayer stiffness can
be determined using a stretcher (11). Building upon these
studies, we developed a monolayer mechanics measurement
platform by integrating a custom-built stretcher, transmitted
light microscopy, and Al inference. This integration allows us
to directly visualize the heterogeneous effective modulus field
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in live cell monolayers. Additionally, we unmask the mechan-
ical contributions of cells from the substrate by growing the
cells on a soft (12.7 kPa) and thin (18.9 um) biocompatible
membrane (Figs. 1A and B). Our stretcher features an imag-
ing window that enables us to conduct high-magnification
transmitted light microscopy during experiments, which re-
solves the supracellular variation of cell deformation due to
the applied strain. The Al inference model then converts the
measured deformation field into an effective modulus field
(Fig. 1C). Using this measurement platform, we characterized
the effective modulus distribution in live epithelial (Fig. 1D)
and fibroblast cell layers. These results allowed us to identify
a mild correlation between cell moduli and morphological
features in jammed Madin-Darby canine kidney (MDCK)
cells.

MATERIALS AND METHODS

Cell culture

MDCK cells were cultured in 1X Dulbecco’s Modified Ea-
gle media (Gibco, 11885084) supplemented with 5% fetal
bovine serum (FBS) (Gibco, 16000044) and 1% penicillin—
streptomycin (P/S) (Gibco, 15140122), where media was
changed every 2 days. During weekly subculturing, ~80%
confluent cells were passaged using 0.05% trypsin-EDTA
(Gibco, 25300054). 3T3 cells were cultured using the same
base media but supplemented with 10% FBS and 1% P/S
with all other conditions identical to that of the MDCK cells.
MDCK and 3T3 cells were seeded using a density of 10,000
cells/cm?.

PDMS membrane fabrication

To fabricate the polydimethylsiloxane (PDMS) membrane, we
spin coated Sylgard 184 (base-curing agent ratio = 50:1) at
a 2,000 RPM speed for 5 minutes on a glass coverslip that
was previously coated with 10% (m/v%) polyvinyl alcohol
(PVA) at a speed of 1,000 RPM for 2 minutes. We found
that using concentrated 10% PVA for coating the sacrificial
layer ensures membrane thickness uniformity. After attaching
a cell stretcher jig to the PDMS surface, the composite was
then cured at 150°C for 35 minutes. The PDMS-jig setup was
autoclaved, treated with 25 pg/ml fibronectin (R&D Systems,
1030FNO5M), and incubated at 37°C for 30 minutes. The
sample was then washed with phosphate-buffered saline twice
before seeding cells at a 10,000 cells/cm? density. During
culture, the media dissolved the water-soluble PVA layer,
lifting-off the PDMS from the coverslip.

To measure the stiffness of the PDMS, we fabricated
and clamped 70 mm X 18 mm X 2 mm PDMS strips to
an Instron 5944 and stretched it at a rate of 10 mm/min.
The acquired stress-strain curves were used to calculate the
Young’s modulus by analyzing their slopes in the linear regime
(Fig. S1A). PDMS membrane thickness was characterized
by optically imaging (40X objective) the cross-section of a
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Figure 1: Visualization of mechanical heterogeneities in cell monolayers (A) By growing a cell monolayer (MDCK) on a
ultrasoft PDMS membrane, the cell mechanical heterogeneity, which is illustrated by distinct Hookean springs, can be revealed
by stretching the bilayer system. (B) 3D reconstruction of a cell-PDMS bilayer tested in our experiment. (C) An Al inference
model is used to convert experimentally measured strain fields into effective modulus distributions, in which the inference
model (cGAN U-Net) is trained using finite element analysis data. (D) Example DIC (left) and effective modulus (right) data of
MDCK cells. Dashed box indicates the zoom-in area. (E) Our cell stretcher applies a uniform tensile strain to a free-standing
cell-PDMS bilayer suspended by the jig legs, using piezomotors. The imaging window allows for microscopy while containing
the media during experiments. For B, scale bar = 50 pm. For D, scale bars = 200 um and 50 um for top and bottom images,

respectively. For E, scale bar = 2.5 cm.

PDMS layer on the coverslip (Fig. S1B) and measuring its
thickness using ImageJ (Figs. S1C-E).

Cell stretching data acquisition and analysis

To prepare the cell-PDMS bilayer sample for stretching (Fig.

S1F), the bilayer spanning the two jig legs was cut and then

mounted to the cell stretcher as shown in Fig. S1G and S2A.

Subsequently, media was added to the media chamber to

submerge the sample, and the supportive T-bar was removed.

The stretcher assembly (Fig. S2B) was placed on a microscope
(Nikon Ti) and stretched the sample at a rate of 25 pm/sec until
5% strain (0.5%strain/sec), corresponding to a 250 pm stretch
for a duration of 10 seconds. Simultaneously, differential
interference contrast (DIC) images were acquired using a 10X
objective (NA 0.45) at 20 fps. The acquired images were

registered using the ImageJ plugin StackReg (38), and used
for particle image velocimetry (PIV) analysis with PIVIab
(39) to determine the displacement of cells between the initial
unstretched image and the final stretched image. Strain-xx
(€xx = Auy/Ax), strain-xy (exy = 0.5(Au, /Ay + Av,/Ax)),
and strain-yy (e,, = Av,/Ay) values were calculated and
assigned to points in the image using MATLAB, where Au,
is x-displacement difference of x-adjacent elements, Au,
is x-displacement difference of y-adjacent elements, Av,
is y-displacement difference of x-adjacent elements, Av,, is
y-displacement difference of y-adjacent elements, Ax is x-
position difference of adjacent elements, and Ay is y-position
difference of adjacent elements.
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Figure 2: Heterogeneous strain responses in MDCK monolayers (A) After measuring the effective modulus of the cell-PDMS
sample, we used trypsin to detach the cells and measured the cell-free PDMS membrane modulus. (B) Stress-strain curves
for cell-PDMS (MDCK+PDMS) and PDMS samples. Shaded area denotes the standard deviation. (C) Using the Hookean
model illustrated in Fig. 1A, MDCK stiffness (4.0 + 1.5 kPa) was estimated using equation (1). n = 16. (D) DIC image of a
stretched MDCK sample annotated with displacement fields. (E) Heatmap of the xx component (€, ) of strain calculated from
the displacement field in (D). (E-H) Close up of (E) showing heatmaps of €,x, €y, and €, respectively. (I) Histograms for all
strain components fitted by Gaussian curves. Scale bar for D-E = 200 pm. Scale bar for F-H = 50 um.

Cell-PDMS bilayer mechanical measurement

To measure the overall sample stiffness, the cell-PDMS bilayer
was cyclically stretched to 5% strain using the cell stretcher
while force was recorded by a force transducer (FUTEK
LSB201 LSB205 Load Cell). Following this, the media in
the chamber was replaced with 0.5% trypsin-EDTA and the

sample was incubated at 37 °C for cell detachment (Fig. 2A).

After confirming cell detachment using light microscopy, the
cell-free PDMS membrane was then again cyclically stretched
to 5% strain while force was measured.

Al inference model training

To generate the datasets for training the strain-to-modulus Al
inference, we performed a series of finite element analyses
(FEA) that described the mechanical response of cell-PDMS
bilayers under tensile strain. The PDMS and cell layers were
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individually modeled in 3D using triangular shell elements in
Abaqus, in which the model parameters including cell mean
modulus (4.0 kPa for MDCK and 12.2 kPa for 3T3 cells),
cell height (9.2 pm for MDCK and 6.3 um for 3T3 cells
(40)), Poisson ratio (0.5 for both MDCK and 3T3 cells (41,
42)), PDMS modulus (12.7 kPa), and PDMS thickness (18.9
pum), were either taken from previous studies or determined
experimentally (Fig. S1). We discretize the finite element to
16,638 three-node elements, in which the size of the FE mesh
is controlled to be ~ 8.3 um. This fine mesh setting allows us
to vary the length scale of heterogeneities in FEA simulations
on supracellular scales, in which all data were included for
Al model training.

The cell layer and PDMS membrane were modeled as
incompressible elastic materials. We impose material continu-
ity in simulations, suggesting that the cell layer mechanically
interacts with its surroundings, where the interpretation of



such continuity may have different implications depending on
the size of the cell. Specifically, for small (10-15 pum) MDCK
cells, this continuity implies that cells are directly interacting
with neighboring cells, whereas in larger (~ 50pm) 3T3 cells,
this continuity implies continuity of cellular components
within a cell.

To simulate cell modulus heterogeneity, we generated
random cell modulus fields from normal or log-normal distri-
bution with a standard deviation ranging from 30% to 70% of
the mean modulus. In simulation, one side of the sample was
uniaxially stretched to 5% strain where a non-slip boundary
condition was applied at the cell-PDMS interface.

In other cell stretching experiments, cell-substrate adhe-
sions have been observed to remain intact and stable, especially
for short time and length scales (43—45). The displacement of
individual cells was recorded, and the corresponding strain
fields were calculated (Fig. S3A). The resulting strain (€,
€xy, and €,,) and modulus fields were loaded into the Al
model training framework, as summarized in Fig. S3B.

Statistical analysis

Data were reported as mean values + standard deviation.
Statistical analysis was performed using OriginLab. Statistical
significance was determined using paired t-tests. Significance
levels are indicated with asterisks in each figure. P-values less
than 0.05, 0.01, and 0.001 were denoted by *, **, and **%*,
respectively.

RESULTS

Visualizing monolayer mechanical
heterogeneities

To visualize the spatially varying mechanical properties of cell
monolayers, we cultured MDCK cells on a PDMS membrane
(Fig. 1B) and imaged its heterogeneous response to a tensile
strain. During stretching, the tested cell-PDMS bilayer behaves
analogously to a spring system, in which individual cells with
different moduli can be considered as springs with different
spring constants Fig. 1A). In this approach, it is critical
to use a thin, soft, and freestanding PDMS membrane to
prevent the substrate from masking the cell contribution to
the overall strain response. Stretched elastomeric membranes
such as PDMS have been routinely used to demonstrate
uniform displacement fields and have been widely used for
characterizing cell deformation (46—48).

The freestanding PDMS membrane was fabricated by
adapting a previous protocol (49, 50) in which a sacrificial
PVA layer was utilized to facilitate the membrane lift-off
process, as described in PDMS Membrane Fabrication. We
then mounted the sample on our custom-made cell stretcher,
which features an imaging window that is compatible with
inverted microscopy and functions as a cell culture media
reservoir (Fig. S2A). The piezomotors of our stretcher provide
stretching motion stability to ensure imaging focus during
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experiments. To prevent folding and tearing of the thin bilayer,
the two jig legs that suspend the sample are fixed by a
connecting T-bar during handling, which is then removed
after sample mounting (Fig. S1G).

To confirm that the mechanical contribution from the
cells can be observed in our bilayer system, we used a force
transducer to measure the stress response difference between
the cell-PDMS bilayer and PDMS-only samples. We first
measured the effective modulus of the bilayer and repeated
the measurement for the cell-free PDMS membrane by en-
zymatically detaching the cells (Fig. 2A). This procedure is
similar to the cell removal protocol routinely used in traction
force microscopy for characterizing the substrate deformation
(51, 52). As shown in Fig. 2B, we found that the cell-PDMS
bilayer stress-strain curve exhibited a slope greater than that
of the cell-free PDMS, which is attributed to the mechanical
contribution from the cell layer. Using the spring analogy as
depicted in Fig. 1A, we then calculated the cell monolayer
modulus (Fig. 2C) E.:

Eb(Am + Ac) - EmAm
Ac

Here, E, =16.7 = 1.5kPa, E,,, =12.7 £ 4.2kPa, A,,, =189 +
0.5 um, and A, =9.2 + 0.7 um is the bilayer effective modulus,
membrane modulus, membrane cross-sectional area, and
cell monolayer cross-sectional area, respectively for MDCK
samples. In MDCK FEA simulations, E. was used as the mean
modulus, and A, was determined using confocal microscopy
(Fig. S1F). The remaining parameters were determined as
described in Al inference model training. In addition, using
a similar measurement approach, MDCK cells treated with
25 uM blebbistatin for 24 hours exhibited a 3-fold lower
modulus compared to untreated MDCK cells (Figs. S4A-D).
This finding further validates that the PDMS membrane can
reveal the mechanical contribution arising from the cell layer.

After validating the mechanical contribution from cells in
our bilayer samples, we mounted the stretcher on a microscope
and applied a 5% tensile strain to a cell-PDMS sample while
simultaneously imaging cell deformation. With the acquired
image data, we performed PIV to determine the displacement
field (Fig. 2D) resulting from the stretch. Since our applied
tensile deformation is symmetric, the displacement field shows
minimal x-y translation which maximizes the analyzable field
of view.

We then calculated the corresponding strain fields, where
the components (€, €xy, and €,,) are shown in Figs. 2E-H.
Specifically, we found that €, has a mean of ~ 4.9%, which
was consistent to the applied global strain value. In agreement
with previous studies (53, 54), we observed spatial fluctua-
tions in all strain components which suggest the presence
of mechanical heterogeneity in the tested MDCK monolayer.
For example, € had a relative standard deviation of ~ 20%.
Additionally, we found that €y, and €y, have mean values
and fluctuations an order of magnitude less than that of €,
(Fig. 21), which was anticipated since the stretch was applied

E.

~40+15kPa (1)
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uniaxially in the x-direction. Importantly, all these values
are greater than the strain uncertainty associated with PIV
limitations (55). Furthermore, the high image resolution (1
pixel ~ 0.65 um) of our system allowed us to visualize strain
field heterogeneity at the cellular level. As shown in Fig. 2F,
we found that the strain fluctuation of €., spans a few cells.
This finding is consistent with the cell mechanical hetero-
geneity found in AFM measurements (560) and free-standing
epithelium stretching experiments (42).
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Figure 3: Strain-modulus Al inference (A) Comparison
of the modulus fields generated by FEA simulation (Target),
predicted by the Al inference model, and predicted from
only strain-xx values. (B) Pearson correlation between the
target modulus values and predictions made using the Al
inference, €y, €xy, and €y,. We found that €, exhibits
a higher correlation than xy and yy components, and Al-
predicted values are significantly more correlated than €yy.
Scale bars for A = 200 pum.

Converting strain responses to modulus
fields

The strain field of a deformed material is directly determined
by the moduli of its constituents and the globally applied
strain. Conversely, having access to the strain components
of cells within a stretched cell monolayer allows us to infer
the effective modulus field from the strain fields. However,
converting strain fields into a modulus distribution can be
challenging due to their complex relationship in structurally
disordered and mechanically heterogeneous systems. In our
approach, the deformation of a cell is influenced by both its
own stiffness and the surrounding modulus field. Thus, the
determination of local effective modulus values requires the
knowledge of the entire strain fields for all components, rather
than just the value at a local position. To capture such a high-
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dimensional strain-modulus relationship, we employed a U-net
based neural network architecture that analyzes both strain and
modulus fields across multiple length scales. Specifically, our
Al model utilized a generator and a discriminator, which are
both convolutional neural networks (Fig. 1C). The generator
network was based on a U-Net architecture (59, 60) and
learned the nonlinear relationship between the FEA simulated
€xx, Exy, and €, distributions and its corresponding FEA
simulated modulus distribution. During the training process,
the neural network minimizes the loss function by calculating
the pixel-to-pixel differences between the prediction and target.
Here, the target is the FEA simulated modulus distribution of a
cell layer. Our three strain inputs first propagated through the U-
Net, where the resulting generator output (predicted modulus)
was loaded into the discriminator network. The discriminator
network then used a conditional generative adversarial network
(cGAN) (61) to estimate the probability of similarity between
the predicted and target image. The discriminator output,
which is an adaptive loss function, is iterated over a set number
of cycles through the model to optimize the prediction. Once
this iteration process is completed, the resulting trained model
was used for predicting effective modulus distributions of
cell layers from experimental €y, €xy, and €, distributions.
Similar methods have been commonly utilized in a wide
range of 2D field conversion tasks including the translation,
segmentation, and classification of image data (62—64).

To train our Al model, we used FEA to numerically
model a stretched bilayer system that closely recapitulates
the heterogeneous modulus distribution in the cell monolayer.
Specifically, since our experiment operates on the time scale
of seconds, we model our cell and PDMS layer individually
as elastic materials (65-67). Here, we assume a non-slip
boundary condition between the cell and PDMS layers such
that the applied strain results in a direct mechanical defor-
mation of cell layer (Figs. SSA-C). This training framework
is synthetic data-based, which has been commonly used in
vision research, and shown to yield robust and traceable Al
prediction performance (68, 69). More importantly, the use
of FEA data grants us access to the strain inputs €y, €xy,
and €, and the corresponding modulus outputs (i.e., ground
truth), which is infeasible to obtain experimentally. The Al
model was trained by utilizing the generated FEA data to infer
the general strain-modulus relationship, which was used to
construct a conversion function capable of determining the
effective modulus field from experimental strain fields.

To characterize the Al prediction accuracy, we compared
the ground truth (i.e., modulus distribution assigned in FEA)
to the Al predicted effective modulus field (Fig. 3A and Fig.
S6A). Additionally, to test whether a single-component strain
measurement would be sufficient for inferring the effective
modulus field, we included an €, predicted modulus distri-
bution, which was obtained by using the best fit between FEA
simulated €,, and modulus values (Fig. S6B). We found that
while the effective modulus field can be roughly estimated
using solely the tensile strain component, €y, the most ac-
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Figure 4: Effective modulus fields in MDCK and 3T3 cell monolayers (A) Effective modulus heatmap of an MDCK
monolayer predicted by Al inference. (B) Histogram of (A) showing the Al-predicted MDCK effective modulus in comparison
to literature values. The cyan, gray, and pink lines denote the mean moduli reported in (56-58), respectively, with the standard
deviation illustrated by the shaded area. (C) Correlation function of the measured MDCK effective modulus field exhibits an
exponential decay ~ e~4/432 (dashed magenta line). (D) Effective modulus heatmap of a 3T3 cell layer predicted by the Al
inference. (E) Mean moduli for MDCK and 3T3 cells determined using the force measurement. The 3T3 cells are approximately
four times stiffer than MDCK cells. (F) 3T3 cells exhibit a greater effective modulus fluctuation (standard deviation ~ 27%)
than that of MDCK cells (standard deviation ~ 7%). (G) MDCK cells exhibited an effective modulus distribution that is more
spatially correlated (correlation length ~ 40 wm) than that of 3T3 cells (correlation length ~ 20 um). (H) Effective modulus and
area measurements for individual cells (n = 286). Blue points denote a resampled dataset (n = 36) that has an even probability
distribution across area values. The fit for resampled data (red line) shows a correlation between effective cell modulus and area.
(I) Pearson correlation between morphological features and effective modulus values. We observed weak correlation between
effective cell modulus, area, and aspect ratio. Scale bar for A and D = 200 pum.

curate effective modulus field is inferred by considering the
spatial distribution of all three strain components. As shown
in Fig. 3A, the Al prediction captures both the localization
and fluctuation level of the modulus ground truth significantly
better than the e, prediction, suggesting that some mechani-
cal heterogeneities are only reflected in the spatial distribution
of exy and €y,y.

To quantify the accuracy of different effective modulus
prediction methods, we calculated the Pearson correlation
coefficient between ground truth modulus values and the
values predicted using the AL €, €xy, and €y, inferences. Our
results, shown in Fig. 3B, suggest that the strain components

€xy, and €y, alone do not provide adequate information
for predicting modulus. Furthermore, we found that the Al
prediction accuracy (correlation ~ 0.91) is significantly higher
than that achieved by €, prediction (correlation ~ 0.66). This
finding confirms our hypothesis that the spatial distribution
of all strain components are required to accurately predict the
effective modulus field. We also found that the high accuracy of
Al prediction can be achieved by training the model within 400
FEA data sets (Fig. S6C). Lastly, compared to conventional
reverse problem approaches (70-72), our Al-based forward
method enables us to overcome technical solution limitations
such as existence, uniqueness, and continuity, which are
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requirements for solution stability (73).

Spatial distributions of cell moduli

We applied our Al model to convert the MDCK strain data
into an effective modulus field (Figs. 4A and S7A). The
resulting MDCK effective modulus was 4.0 kPa + 1.5 kPa
(~38% fluctuation), in which its probability distribution can
be approximated by a Gaussian function (Fig. 4B). Compared
to literature values obtained from AFM, our measured mean
effective modulus is of the same order of magnitude (Fig. 4B),
in which the differences may be attributed to different levels of
jamming and substrates used (56—58). The similarity between
our modulus and AFM measurement may suggest that the
in-plane elastic modulus (stretching) is comparable to the
transverse elastic modulus (AFM) in MDCK cells, implying
that the cellular and organelle structural anisotropies do not
necessarily lead to cell modulus anisotropy. We also charac-
terized the length scale of the effective modulus fluctuation
by calculating the spatial autocorrelation function:

(EG+d) - E)ER®) - E))z
Evar

Cd) = 2
Here, E(X) is the effective modulus value at position X,
whereas E and E,,, are the mean and variance of the ef-
fective modulus, respectively. For simplicity, we plot the
radial part of the correlation function (i.e., using the magni-
tude of d as the variable) in Fig. 4C. As shown, we observed
an exponential decay ~ e~4/432W" suggesting a correlation
length of 45.2pm ~ 3 cells. Our measurement is consistent
with the intercellular modulus correlation determined using
AFM, confirming the spontaneous modulus correlation in
jammed epithelial monolayers (56).

To demonstrate that our approach is compatible with other
adherent cell types, we implemented the same experimental
approach to characterize 3T3 fibroblast cell layers (Figs. 4D
and S7B). Consistent with previous studies (5658, 74-77),
we found that 3T3 cells exhibited a higher mean effective
modulus (12.2 kPa) compared to MDCK cells (4.0 kPa) (Fig.
4E) . Moreover, we observed that the 3T3 culture shows a
greater effective modulus fluctuation than that of MDCK (Fig.
4F). The large effective modulus fluctuation may be related to
the differences in underlying cytoskeletal activity observed in
3T3 cells (78) We also found the correlation length of 3T3 cell
effective modulus is approximately half that of MDCK cell
effective modulus (Fig. 4G). As suggested by previous studies,
the relatively long correlation length of MDCK effective
modulus might be associated with their intercellular adhesions
(56). We acknowledge that unlike MDCK monolayers, there
are no intercellular junctions present in 3T3 monolayers,
and thus the lack of such junctions may not be captured in
the continuity assumption imposed in our FEA simulations.
Nevertheless, the space between cell boundaries only occupied
roughly 5% of the analyzable field of view (Figs. S7A and
S7B), suggesting that a majority of the heterogeneity observed
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is within the cell, and can therefore be interpreted as cellular
mechanical heterogeneity.

Since our effective modulus measurement is microscopy-
based, we can additionally evaluate the morphological phe-
notype of cells under tensile strain. This capability enabled
us to investigate the relationship between effective modulus
and morphology in MDCK cells. We analyzed and plotted
cell moduli as a function of four morphological features: cell
area (Figs. 4H and S8A), aspect ratio (Figs. S8B and S8C),
circularity (Figs. S8D and S8E), and shape index (Figs. S8F
and S8G). Overall, the distribution of raw data did not show
a visually obvious correlation between cell effective modu-
lus and area. The difficulty to visualize such a correlation
is associated with the relatively narrow distribution of cell
size, in which most data points are between the area of 200
um? and 400 um?. To balance the contributions from the
data points outside this range, we resampled the data such
that cells across the range of area are randomly selected with
equal probability. Specifically, we resampled the data so that
there was an equal number of cells in bins of 50 um?. The
resampled dataset then revealed a mild effective modulus-area
correlation that was previously masked (Fig. S8A). Using
the same data sampling approach, we also analyzed the cell
aspect ratio, circularity, and shape index, in which we did not
observe a strong correlation with cell effective modulus (Fig.
41).

Our modulus-area result suggests that the cell modulus
may play a role in determining the size of large cells. This
finding is consistent with previous studies (57). Biological
stochasticity (e.g., gene expression fluctuation and asymmet-
ric cell division) and local geometric constraints have been
identified to largely influence cell morphology in jammed
epithelia. For example, cells that assemble more stress fibers
and spread out more have been shown to be stiffer (79-81).
Additionally, the local force balance in jammed systems is
often achieved by compressing the softer constituents and
reducing their size. Alternatively, it is also possible for the
converse of this hypothesis to be true, such that cell mor-
phology instead may play a role in regulating cell modulus,
although further studies such as micropatterning experiments
or inhibition of specific signaling pathways are required to
validate these hypotheses.

DISCUSSIONS AND CONCLUSIONS

We reported a microscopy-based cell mechanics characteriza-
tion platform that allows visualization of supracellular modu-
lus heterogeneities. Our method measures the heterogeneous
strain fields in a stretched cell-PDMS bilayer, and converts
them into an effective modulus field using an Al-based infer-
ence. Using this approach, we measured the effective modulus
distribution in MDCK (4.0 + 1.5 kPa) and 3T3 (12.2 + 3.1
kPa) cell layers. Our measured effective mean modulus values,
standard deviations, and correlation lengths are in agreement
with previous studies (57, 58, 78). Furthermore, we observed



a mild correlation (Pearson correlation coefficient ~ 0.24)
between MDCK cell modulus and area, implying that the
cellular stiffness may affect the size and packing of jammed ep-
ithelial cells. Collectively, our reported experimental platform
and results can provide useful cell mechanics information
for improving theoretical models of epithelial jamming (56),
collective migration (82), and homeostasis (83), all of which
can be influenced by cell stiffness heterogeneity (1).

In our method, we applied a 5% tensile strain to reveal the
cell modulus heterogeneity. While such a strain can potentially
induce changes in cell behavior, cell stretching experiments
are considered relatively non-perturbative (84—86) compared
to contact-based cell mechanics measurements (87). In future
studies, we aim to reduce the applied strain by improving the
imaging resolution and PIV accuracy. In addition, because our
stretching experiment operates on the time scale of seconds,
we consider the cell layer viscoelasticity, which typically
emerges on the time scales of minutes to hours (11,41, 42, 65—
67, 88, 89), relatively negligible. Furthermore, the timescale of
seconds prevents the cell-substrate contacts from rearranging
as this typically occurs on the timescale of minutes, and thus
ensures the imposed non-slip boundary condition. Overall,
our relatively short timescale of stretching primarily probes
the elastic response of cell monolayers, which was captured
by our FE model. A limitation of our current inference model
is that any experimental strain measurement error would lead
to Al prediction error, since the FEA strain fields used for
training the inference model do not contain any noise. In
the future, it would be useful to implement other Al training
frameworks including data augmentation and neural network
perturbations to improve the robustness of the inference model
(90-94).

Similar to other stretching experiments, our method re-
quires growing cells on soft substrates, which can potentially
alter cell properties (13, 80, 95). For example, it has been
shown that cells exhibit a lower modulus when cultured on a
soft substrate (10, 96). While our previous work has shown
that jammed epithelial cells with well established intercellular
adhesions are not strongly influenced by substrate stiffness
(97), it would be useful to conduct further cell mechanics
measurements in future experiments. We also acknowledge
that the PDMS substrate uniformity plays an important role
in our measurement. While it would be ideal to character-
ize the substrate uniformity of the specific substrate used in
experiments, doing so proved to be technically challenging
since introducing detectable particles to our substrate for PIV
to track significantly altered the local mechanical properties
of such a thin, soft substrate. Nevertheless, previous work
has demonstrated the mechanical homogeneity of similar
elastomeric substrates also used in stretching experiments by
calculating the strain resulting from the applied deformation
using traction force microscopy (47). The results of such an
experiment demonstrate a uniform strain distribution under
10% strain. In addition, other past works have shown that
PDMS produces equiaxial and uniform strain fields under
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stretching (43, 44), and that both stretched and unstretched
PDMS substrate homogeneity has been validated by mea-
suring the modulus of three distinct spatial locations on the
substrate, in which all were in statistical agreement with one
another (98).

Our effective modulus measurement approach is a useful
alternative tool for conducting supracellular-level mechanics
studies that require simultaneous access to microscopy. For
example, our system can be used for investigating the relation-
ship between cell signaling, gene expression, and mechanics
in developing or injured tissues. Moreover, our stretcher is
compatible with microscope on-stage incubators, enabling
the characterization of the effective modulus field evolution in
cell monolayers that undergo phenotypic changes. Such mea-
surements could be utilized to identify mechanical signatures
in the development of fibrotic diseases and solid tumors (1).
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