Interleaving Monte Carlo Tree Search and Self-Supervised Learning for Object

Retrieval in Clutter

Baichuan Huang Teng Guo Abdeslam Boularias

Abstract—1In this study, working with the task of object re-
trieval in clutter, we have developed a robot learning framework
in which Monte Carlo Tree Search (MCTS) is first applied to
enable a Deep Neural Network (DNN) to learn the intricate in-
teractions between a robot arm and a complex scene containing
many objects, allowing the DNN to partially clone the behavior
of MCTS. In turn, the trained DNN is integrated into MCTS
to help guide its search effort. We call this approach learning-
guided Monte Carlo tree search for Object REtrieval (MORE),
which delivers significant computational efficiency gains and
added solution optimality. MORE is a self-supervised robotics
framework/pipeline capable of working in the real world that
successfully embodies the System 2 — System 1 learning
philosophy proposed by Kahneman, where learned knowledge,
used properly, can help greatly speed up a time-consuming
decision process over time. Videos and supplementary material
can be found at https://github.com/arc-1/more.

I. INTRODUCTION

Kahneman [1] proposed a thought-provoking hypothesis of
human intelligence: in solving real-world problems, humans
engage fast or “System 1” (S1) type of thinking for making
split-second decisions, e.g., speech, driving, and so on. For
other decision-making processes, e.g., playing chess, a slow
or “System 2” (S2) approach is taken, where the brain would
perform a search over some structured domain for the best
actions to take. After repeatedly using S2 thinking to solve
a given problem, patterns can be distilled over time and
burned into S1 to speed up the overall process. In playing
chess, for example, good chess players can instinctively
identify good candidate moves. First-time or beginner drivers
rely heavily on S2 and gradually converge to S1 as they
gain more experience. This S2—S1 thinking has gained
significant attention and has been explored in many directions
in machine learning, including attempts at building machines
with consciousness [2]. But, perhaps the most prominent
line of work in reinforcement learning [3] that closely aligns
with this paradigm is the application of Monte Carlo Tree
Search (MCTS) for carrying out self-supervised learning in
games [4], [5], where an “understanding” of a game emerges
from a lifelong self-play and is gradually distilled so that it
significantly reduces the search effort. Gradually, the overall
system learns enough useful information that allows it to play
perfect games with much less time and computing resources.

B. Huang, G. Teng, A. Boularias, and J. Yu are with the Department
of Computer Science, Rutgers, the State University of New Jersey,
Piscataway, NJ, USA. Emails: {baichuan.huang, teng.guo,
abdeslam.boularias, jingjin. yu}@rutgers .edu.
This work is supported by NSF awards IIS-1734492 and IIS-1846043,
IIS-1845888, CCF-1934924 and 1IS-2132972.

Jingjin Yu

4
Grasp Prediction

Push Prediction Physics
Network Network Simulator

@

Fig. 1: (a) The hardware setup for object-retrieval-from-clutter includes a
Universal Robots UR5e manipulator with a Robotiq 2F-85 two-finger gripper,
and an Intel RealSense D455 RGB-D camera. The objects are placed in
a square workspace and the target object is masked in purple. (b)(c) Two
push actions (shown with green arrows) are used to enable the grasping of
the target (purple) object. (d) The target object is successfully grasped and
retrieved. (e) The overview of our overall system.

Inspired by [4], [5] that show a search-and-learn approach
for realizing S2—S1 applies well to game-like settings with
relatively well-defined rules, we set out to find out whether
we could build a similar framework that enables real robots to
interact with real-world physics and uncertainties to perform
physical tasks, somewhat akin to [6]. Specifically, we focus
on the task of retrieving an object enclosed in clutter using
non-prehensile actions, such as pushing and poking, followed
by prehensile two-finger grasping. The goal is to obtain a
computationally efficient system and produce high-quality
solutions (i.e., using the minimum number of actions).

As pointed out by Valpola [7], due to the difficulty in
exploring the landscape of the state space of real-world
problems, in addition to uncertainty, naive applications of
the S2—S1 paradigm often lead to undesirable behavior.
Non-trivial design as well as engineering efforts are needed
to build such S2—S1 systems. In the object-retrieval-from-
clutter setting, the challenge lies in the difficulty of predicting

the outcome of push actions, with the tip of the gripper, when
many objects are involved. This is due to discontinuities
inherent in object interactions; while a certain pushing action
will move a given object, a slightly different direction can
miss that same object entirely.

The main contribution of this work is proving the feasibility
of applying the S2—S1 philosophy to build a self-supervised
robotic object retrieval system capable of continuously
improving its computational efficiency, through cloning the
behavior of the time-consuming initial MCTS phase. Through
the careful design and integration of two Deep Neural
Networks (DNNs) with MCTS, our proposed self-supervised
method, named Monte Carlo tree search and learning for
Object REtrieval (MORE), enables a DNN to learn from the
manipulation strategies discovered by MCTS. Then, learned
DNNs are fed back to the MCTS process to guide the search.
MORE significantly reduces MCTS computation load and
achieves identical or better outcomes, i.e., retrieving the object
using very few strategic push actions. In other words, our
method “closes the loop”. This contrasts with [6], which only
learns to replace the rollout function of MCTS.

II. RELATED WORK

Grasping. Grasping approaches can be classified as being
analytical or data-driven [8]. Analytical methods examine
precise object models to predict the stability of a grasp based
on force-closure or form-closure [9]-[11]. However, high
precision 3D models of objects, e.g., YCB objects [12],
are hard to come by. In addition, other material properties,
such as friction and inertia, are challenging to measure.
These challenges have given rise to data-driven methods
that learn from data, where many works focus on isolated
objects [13]-[16]. Recently, grasping in clutter has received
more attention [17]-[21]. Convolutional Neural Networks are
widely used to construct grasp proposal networks such as
Dex-net 4.0 [22], which are trained to detect 6D grasp poses
in point clouds [23]. In this paper, we use a self-supervised
Deep Q-Network similar to [24] for grasping in clutter.
Singulation. Singulation, i.e., isolating specific object(s) from
the rest [25], is necessary for object retrieval. Usually, a
sequence of pushing and grasping actions is used to clear the
clutter that surrounds the target object. In [26], a model-free
method was used to learn a reactive pushing policy without
long-horizon reasoning. Later, other model-free reinforcement
learning algorithms [24], [27] used learned push policies to
improve grasping. In contrast to existing work on singulation,
we explicitly seek to minimize the number of actions needed
to isolate a target object for grasping sufficiently.

Object Retrieval. Object retrieval from clutter, the focus
of this study, can be viewed as a form of rearrangement
planning [6], [28], [29]. Online planning for object search with
partial observations has been discussed in [30]. Retrieving
objects under occlusion was also recently considered in [31]
where parallel-jaw and suction grasping were used along
with pushing to de-clutter surroundings of target objects. A
model-free reinforcement learning technique has also been
used for searching for objects in [32]. In [33], an agent

was trained to find a continuous trajectory of a gripper that
pushes away clutter or pushes the target object to free space,
mimicking human-like behavior. A human in-the-loop solution
was proposed in [34] help with searching for objects in
clutter. A deep Q-Learning method [35] considers a similar
task and setup but uses additional primitives such as sliding
objects from the top. Our work partially builds on [36],
which explores the use of MCTS for the same object retrieval
problem. In contrast to existing object retrieval works, we
focus on developing the machinery that enables the S2—S1
philosophy to reduce the computational burden of the related
search problem while using real robots and objects.

III. PRELIMINARIES

The object-retrieval-from-clutter task consists in using a
robot manipulator to retrieve a hard-to-reach target object
(Fig. 1). Objects are rigid bodies with various shapes, sizes,
and colors; the target object is assigned a unique color. Similar
to [36], a top-down fixed camera is installed to observe
the workspace. The camera takes an RGB-D image of the
workspace (e.g., the top-left image of Fig. 1), which serves
as the only input to our system.

Pushing and grasping actions are allowed, the execution
of each is considered as one atomic action. A grasp action is
defined as a top-down overhead grasp motion a? = (z,y,),
corresponding to the gripper’s target location and orientation,
based on a coordinate system defined over the input image.
A push action is defined as a quasi-static planar motion
a? = (zg,y0,21,y1) Where (zg,y0) and (z1,y1) are the
start and the end locations of the gripper tip. The horizontal
push distance is fixed and it is 10cm in our experiments. Each
primitive action is transformed to the real-world coordinates
for execution, but all the planning and reasoning are in image
coordinates. The robotic arm keeps pushing objects until the
target object can be grasped or until the target object is pushed
outside of the workspace, in which case the task is considered
a failure. The problem is to find a policy that maximizes the
frequency of successfully grasping the target object, while
also minimizing the number of pre-grasp pushing actions.

IV. METHODOLOGY

The MORE framework consists of three components: a
Grasp Prediction Network (GPN), a Monte Carlo Tree Search
(MCTS) routine, and a Push Prediction Network (PPN). GPN
is a neural network that predicts the success probabilities of
grasp actions. It is trained online similarly to [36]. The success
probabilities can be interpreted as immediate rewards. MCTS
uses a physics engine as a transition function to simulate
long sequences of consecutive push actions that end with a
terminal grasp action. Each branch in MCTS is composed
of push actions as internal nodes, and a grasp action as a
leaf. Grasp actions are evaluated with GPN, and the returned
rewards are back-propagated to evaluate their corresponding
branches. The branch with the highest discounted reward, or
Q-value, is selected for execution by the robot.

While highly effective in finding near-optimal paths, MCTS
suffers from a high computation time that makes it impractical.

To solve this, MORE employs a second neural network, PPN,
to prioritize the action selection in the rollout policy. The robot
starts by relying entirely on MCTS (S2 type of thinking) to
solve various instances of the object-retrieval problem. Instead
of throwing away the computation performed by MCTS for
solving the various instances, we use the computed Q-values
as ground-truth to train PPN. Note that this computation data
is free, since it is generated by the simulations performed by
MCTS as a byproduct of solving the actual problem. PPN
is a neural network that learns to imitate MCTS and clone
its behavior, while avoiding heavy computation and physics
simulations by MCTS. As PPN becomes more accurate in
predicting the outcome of MCTS, the robot starts relying
on both MCTS and PPN for action selection. In a nutshell,
PPN is used for orienting the search in MCTS toward more
promising push actions that rearranges the scene and renders
the target object graspable. After a long experience, PPN’s
accuracy in predicting the Q-values of push actions matches
that of MCTS, and the robot switches entirely to PPN to
make decisions in a few milliseconds (S1 type of thinking).

A. Grasp Prediction Network (GPN)

GPN is a deep neural network based on the model proposed
in [24] and further customized to estimate the expected grasp
reward [36]. We used the pre-trained model from [36]. with
a ResNet-18 FPN [37], [38] backbone [39]. For training,
only successful grasps are given fixed non-zero rewards. The
Grasp Network takes a single RGB-D image s; as input and
outputs a pixel-wise reward map R,(s;) € [0, 1]7*W with
the same size (H and W are height and width of s;). To
enable GPN to account for gripper orientation, s; is rotated
16 times in the range of [0, 2|, adding another dimension to
the reward map and making it Rym(s;) € [0, 1]7*W >k with
k = 16. Because the goal is to retrieve a specific object, a
mask is imposed on the target object using Mask R-CNN [40],
effectively truncating the reward map. If the largest reward
from the map max; ;g Rgm(s¢)[i, j, 0] is larger than some
preset threshold, 7., GPN suggests grasping as the next
action to execute. The location [i, j] and rotation 6 of the
best grasp is retrieved from the reward map R, .

B. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [41] is used in MORE
for both decision-making and training PPN. A typical MCTS
routine has four steps: selection, expansion, simulation, and
back-propagation. In our case, the goal of the search is to
find the shortest action sequence; we can stop the search as
soon as the best solution is found without exploring the rest.
The search stops in two cases: 1) the number of iterations
n exceeds a pre-set budget N,,,,., or 2) the expanded node
with state that the target object can be grasped, and all nodes
in parent level are expanded. A node is considered as a leaf if
max; j,0 Rgm(5¢)[4, J, 0] > Rg. where Ry, (s¢) is obtained
from GPN and R, is a pre-defined high probability. The
maximum depth of the tree is limited to d, where d is set to
4 in our experiments.

In the selection phase, we find an expandable node starting
from the root according to the search policy

Tn(s) = arg max(Q(s, a”) + C InN(s)

ap N(s,a?’))7 b

where N(s) is the number of visits to node (state) s and
N (s,aP) is the number of times push action a? has been
selected at node (state) s. The Q-value is calculated as

271'11 ri(sv ap)

Qs,a") = min{N (n;),m}’

2)
where (s, aP) is the returned long-term reward and m is a
pre-set maximum. Only the best m terms r;(s, a?) are used
to compute the Q-value in the equation above. m is set to 10
when expanding nodes and 1 when selecting the best solution.
C is the coefficient of the exploration term, and it is set to 2
when expanding nodes and 0 when selecting the best solution.
In the expansion phase, we use a physics simulator to execute
the chosen push action a? at state s; and predict new state
Si+1. Then, a random policy is used to sample actions to
simulate until a grasp is possible or a failure is encountered.
The reward r is predicted by GPN at a terminal state s;.
Reward r is set to 1 if max; ;9 Rgm(s¢)[i, j, 0] > Ry, and
0 otherwise. One additional term ¢ max (R, (s¢)) is added
to 7, to distinguish between good and bad push actions. We
set 0 to be 0.2. In the last step, reward r is propagated back
to its parent nodes to update their ()-values with a discount
factor v = 0.5.

As the push action space is enormous
even after discretization, we further
sample a subset of actions such that all
push actions start around the contour
of an object and point to the center of
the object (Fig. 2). This action sampling
method has been discussed in [36] and
was empirically proven efficient for a
similar setup of object retrieval.

Fig. 2: Sampled push
actions.

In our implementation, NV,,,, is set to 300 when MCTS
is used to collect data to train PPN. The second and the third
conditions for stopping the search are only activated after at
least 50 roll-outs, so that the number of visits to a state is
statistically significant and to reduce the variance of PPN.

C. Push Prediction Network (PPN)

As previously mentioned, PPN learns to imitate MCTS.
PPN is a deep neural network with ResNet-34 FPN [37],
[38] as the backbone, where the P2 level of the FPN connects
to the head. It takes a two-channel input and outputs a single
channel pixel-wise push Q-value map, similar to the reward
map produced by GPN. An example input is shown in Fig. 3,
where the first channel is a segmented image of all objects
and the second channel is a binary image of the target object.
The output is the image on the right of Fig. 3, where the arrow
shows a push action with the highest Q-value. PPN estimates
the Q-value (discounted rewards) @, (s;) of executing push
actions at the corresponding pixel, where the action is assumed

to push 10cm to the right. max(Q,(s)) is limited to the range
[0, 1], where 7 is the maximum reward of a terminal state.

Push

I::> Prediction l::>

Network

Fig. 3: The left two figures are the input to PPN. The first is a segmentation
of objects; the second is the mask of the target object. The image on the
right is the output from the PPN. We use Jet colormap to represent the
reward value, where the value ranges from red (high) to blue (low). The
pixel with the highest Q-value is plotted with a circle and attached with an
arrow on the right image, representing pushing action starting at the circle
and moving to the right with a distance of 10cm.

When MCTS is used to generate training cases, it builds a
tree and saves the transitions for each case: the state (image)
s, the push action a?, the Q-value Q(s, aP), and the visited
number N (s, a?). As such, PPN is trained in a self-supervised
manner. The input image is rotated based on a push action so
that the corresponding push action points to the right. Because
a single action is generated by MCTS (i.e., a signal over
the entire input), which is not conducive to training PPN,
we “expand” the Q-value over a 3 X 3 patch centered around
MCTS action but set invalid pushes (e.g., if part of the patch
is inside an object) to be zero. Now, the label is relatively
dense compared to a one-hot pixel, so we can use Smooth
L1 loss from Pytorch [42] with § equals to 0.8 to regress.
Only gradients on the labeled pixels are used. Loss weighting
is also applied: label values from the MCTS are weighted
based on N(s,aP), label values (zero Q-value) from void
push actions are weighted with a small number, 0.001 for
collision and 0.0001 for pushing thin air. We observe that
PPN has difficulty learning to create clearance around the
target object. Data augmentation is applied here so that for
each training case, we also randomly choose the target object
for the MCTS to solve; so each arrangement becomes many
training cases. It mitigates over-fitting; given similar visual
information, it could learn different strategies, as the target
object could be anywhere.

The head model is an FCN with four layers, where the
first two layers have a kernel size of 3, the last two 1, and
the strides of four layers are all 1. Batch normalization is
used at each layer of the head model except the last. Bilinear
interpolation (x2) is applied interleaved between the last
three layers of the head model to scale up the hidden state
to the same size as the input image. The training process
has two stages, one to train the network with a batch size
of 8, learning rate starts at le—4, epoch of 50. The learning
rate decays with cosine annealing [43], where the maximum
number of iterations is set to be the same as the epoch number
50 and the minimum learning rate is le—8. The second is a
fine-tuning stage; we increase the batch size to 28 and the
learning rate to le—5 with an epoch of 20.

D. Guided Monte-Carlo Tree Search

With the trained GPN and PPN, a guided MCTS is
implemented to accelerate the search process, cutting cost

from time-consuming expansion and simulation phases. GPN
is again used to determine the terminal state and if so,
calculate its estimated reward, as discussed in IV-B. PPN,
trained with data from MCTS, can estimate how much reward
can be gained from taking a push action at a certain state.

For this combination of MCTS with PPN, some additional
updates are made (compared to IV-B) to incorporate the
guidance from PPN. The exploration term is removed from
the search policy, so C' in equation (1) is set to 0. Similar
to [44], we use the estimated reward from PPN as a prior,
so the Q-value is calculated as follows

max(Qp(s)) + 3_i%, ri(s, aP)
N(s,ar) ’

quide(57 ap) = (3)
where m is set to 3 when expanding nodes and N (s, a?) is
initialized to 1 for all state-action pairs. Instead of computing
an average as standard MCTS, only best m of @, are
considered, this is due to the number of rollout is small,
a good action could be averaged out. To select the best action
as the next step solution, the Q-value is calculated without
the denominator

Qpest(s, aP) = max(Gp(s)) + max(r;(s,a?)), (4)

where only the best explored solution is considered.

The push action space of the guided MCTS is limited to a
subset (like Fig. 2) so that the estimated reward from PPN
is more accurate and the branching factor of the tree is of
a reasonable size. To make the selection mimic the training
data, we rotate the image for each sampled push action such
that the push action in the rotated image is always pointing
to the right. Then, we only use the estimated Q-value at
the corresponding pixel (push action) of the output Q-value
map. An example of guided MCTS is given in Fig. 4. The
expansion of the tree is prioritized by PPN, where the push
action with higher Q-value is sampled earlier, and the rollout
policy is also prioritized. The maximum depth of the tree
is limited to 3 instead of 4 as used in the earlier version of
MCTS for collecting data to train PPN.

Search sequence

0.57

0.45 <0.45

Fig. 4: An example of the guided MCTS with a budget of 10 iterations.
State with larger image have higher estimated Q-values. All expanded nodes
are plotted. The numbers in the first levels represent the estimated Q-value
returned by PPN for corresponding push action. These values, together with
the reward returned from simulation, guide the tree search.

V. EXPERIMENTAL EVALUATION

We evaluated the proposed technique both in simulation
(PyBullet [45]) and on adversarial test cases on a UR5e robot
with a Robotiq 2F-85 gripper using real objects. The robot,
workspace, objects, and camera are the same in simulation
and real-world experiments, so that we can seamlessly transfer
from simulation to the real setup. The workspace is limited
to a square with a side length of 0.448m; it is discretized
as a grid of 224 x 224 cells during the image processing
step. The friction of objects and table cannot be accurately
measured; nevertheless, high-fidelity physical properties do
not seem to be needed for this particular application. The
results demonstrate that the proposed method significantly
outperforms MCTS [36] in terms of time efficiency while
returning plans of equal quality. The plans returned by the
proposed technique contain fewer actions and yield higher
success rates than those returned by the purely learning-
based solution presented in [35]. Training and evaluation are
completed on a machine with an Intel i7-9700K CPU and
an Nvidia GeForce RTX 2080 Ti.

A. Simulation experiments

Tasks. Given an arrangement of heterogeneous and tightly
packed objects, a target object is to be retrieved using push
and grasp actions from a two-finger gripper. In simulation,
we benchmark on 22 adversarial test cases from [36] (Fig. 5)
and 10 from [24], [35]. Here “adversarial” means that at
least one push action has to be executed for a grasp action to
be feasible (insert gripper without collision). Random cases,
which are too easy [36], [39], are not discussed here.
Metrics. We use four metrics: 1) the number of actions
used to retrieve the target object, 2) the total time used for
retrieving the target object, which includes both planning time
and execution time for simulation results, 3) the completion
rate, failures occur when the target object is pushed out of
the workspace, and 4), the grasp success rate, which is the
number of successful grasps divided by the total number of
grasping attempts. The number of re-arrangement actions that
are needed to make the target object graspable and time are
the two main metrics. The completion and grasp success rates
are also reported but are not the main focus as they are often
close to 100%.

Baseline Methods. We compare with three methods: 1) A
self-supervised reinforcement learning method denoted as
go-PGN [35], which trains a grasp DQN and a push DQN
then selects an action with the highest Q-value out of
the two networks to execute. 2) MCTS as described in
Section IV-B. This is adapted from [36], but we use here a
simulator to predict the next state instead of the originally
used learned model, for fair comparisons. 3) PPN as described
in Section IV-C. PPN proposes push actions based on their
predicted Q-values and the robot executes those actions until
the target object can be grasped according to GPN.
Simulation Studies. We ran our method and the three
alternative methods on 22 cases [36] and 10 cases [24],
[35], in simulation first. Tables I and II show the overall
performance of the four methods, where MCTS based

methods are limited to a budget of 50 iterations per test
case. In this paper, we denote the tree search methods with
different budgets of search iterations as MCTS-10/20/50 and
MORE-10/20/50, where the suffix denotes the iterations limit.
The 22 cases are generally harder to solve than the 10 cases,
where the target object can be retrieved after one push action.
The time metric records the average time (out of 5 trials) for
retrieving the object, including planning and execution times.

case 1 case 2 case 3 case 4 case 5 case 6 case 7

€ -
Vg A

Fig. 5: 22 cases [36] used in simulation experiments, where the target
object is masked in blue at the center.

For the baseline go-PGN, results on 10 cases are directly
quoted from the paper (at the time of our submission, we could
not obtain the trained model or the information necessary for
fully reproducing go-PGN). MORE uses the fewest number
of actions to solve the task. Performance details on 22 cases
can be found in Fig. 6 for the number of actions and 7 for
the running time. PPN is fast as it is a one-stage DNNs
solution. It learned a policy that creates free spaces around
the target object, but it is less consistent and less stable than
the tree search solutions. From our observation, PPN can
propose non-prevailing pushing actions. MCTS provides a
consistent and good quality solution, but requires a much
longer planning time. MORE, combining the benefits of both,
reduces the planning time and delivers high-quality solutions.

Num. of Actions | Time | Completion | Grasp Success
MORE-50 2.61 82s 100% 99.2%
MCTS-50 [36] 2.69 208s 100% 99.1%
PPN 3.68 8s 100% 97.7%

TABLE I: Simulate experiment results for 22 cases [36]. Budgets of MCTS
and MORE are limited up to 50 iterations.

Num. of Actions | Time | Completion | Grasp Success
MORE-50 2.10 16s 100% 100%
MCTS-50 [36] 2.20 32s 100% 93.4%
PPN 2.70 4s 100% 95.0%
go-PGN [35] 2.77 99.0% 90.0%

TABLE II: Simulate experiment results for 10 cases [35]. Budgets of MCTS
and MORE are limited up to 50 iterations.

Ablation Studies Although the data generated by MCTS for
training PPN is free because it is collected fully automatically
in simulation, we set to explore data efficiency in training,
which can be important for building larger models in practice.
For this purpose, we collected 243 training cases (65384
transitions in 30 hours with PyBullet) with MCTS as

6
== MORE-50

mmm MCTS-50
PPN

o

4

15

16 17 18 19 20 21 22

Numbu' of actions

Indux ol'cascs

Fig. 6: The average number (out of 5 trials) of action used to solve one
case for 22 cases.

800 mmmm MORE-50
mmm MCTS-50

600 PPN

400
I I‘ ‘l 1]
ol | | Wl .

1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Index of cases

Time (s)

Fig. 7: The average time (of 5 trials) used to solve one case for 22 cases.

described in Section IV-B. Training on PPN on all data
used around 22 hours. As shown in Fig. 8, we tested MCTS
and MORE with different budgets. Also, MORE is trained
on different numbers of training data. Clearly, the problem
can be solved by all tested methods with fewer actions when
the search iteration limits are increased. But the time for
solving the problem also increases as a consequence. The
proposed MORE technique can retrieve target objects with
only 2.8 executed actions and using only 10 iterations of
MCTS that last 36 seconds on average. This is close to the
best that MCTS without PPN can achieve, 2.69 actions, after
50 iterations that last 208 seconds. When we limit the number
of iterations of MCTS (without MORE) to 10, the number
of executed actions increases to 3.19, and the search time
remains relatively high (127 seconds). This clearly shows the
out-performance of the proposed approach in terms of both
time and action efficiency.

MORE with 100.0% of data
© MORE with 50.0% of data

MORE with 25.0% of data
e MORE with 12.5% of data

200
» 150
£

— ==

10 20 50 10 20 50
Tteration Tteration

B MCTS

N W
o o i

Number of actions

I
=N

Fig. 8: Different amounts of training data are used to train PPN, which are
evaluated on MORE with different budgets (iteration). This is the evaluation
of the 22 cases.

B. Robot Experiments

We evaluated the four methods on six real test cases
(four from [35] and two from [36]). These six test cases
are representative in that they contain more objects and often
require at least two push actions to solve. For these real

experiments, the results are shown in Table. III and Fig. 10.
The budget of MCTS and MORE is limited to 10 iterations.
We note that the results for go-PGN are taken from [35].

The execution time of PPN is not listed in Table. III as it
is a near-constant small value as we had in the simulation

experiments. From the result, we observe only negligible
performance degradation in comparison to simulation, which
may be due to differences in friction, slight differences in the
dimensions of the objects between simulation and real world,
statistical error, or a combination of these. Overall, the sim-
to-real transfer was very successful and showed that MORE
can learn in simulation and directly apply the learned skill
to real-world tasks. We assume models of objects are known,
such that simple pose estimation can be used to locate objects
in the real world and placed in simulation for planning. We
could also use sophisticated tracking systems [46]-[48] for
general purpose.

Bl ofe Uo7

Fig. 9: Manually generated cases similar to [35], [36]. The target object is
masked in purple. These cases are used also in simulation experiments as
shown in Fig. 5.

Num. of Actions | Time | Completion | Grasp Success
MORE-10 2.83 36s 100% 100%
MCTS-10 [36] 3.67 190s 100% 95.8%
PPN 3.72 3s 94.5% 95.8%
go-PGN [35] 4.62 95.0% 86.6%

TABLE III: Real experiment results for six cases as shown in Fig. 9. The
budget of MCTS and MORE is limited to 10 iterations. For go-PGN,
only the first four cases apply, and results are from [35]. Only planning
time is recorded (robot execution was intentionally slowed down for safety).
The computation time for PPN to solve a task is 3 seconds on average
(estimated).

s MORE-10

0 10F sl ||

Index of cases

s MCTS-10 PPN

I.- Jd0 I
0 13 19 21

Index of cases

BN go-PGN

£ (=)

Number of actions
(3]

Fig. 10: The number of action and time used on solving six cases. The
budget is up to 10 iterations for MCTS and MORE.

VI. DISCUSSION AND CONCLUSION

The main limitation of this work is that we need to know the
models of the objects to do the planning. One possible solution
is instead of using an explicit simulator, we can use a learned
model [39] to simulate the push results. Generalization to
novel objects could then be possible. We can further utilize the
Push Prediction Network to estimate the simulation (rollout)
result instead of using a physics engine. However, this can
introduce additional uncertainties that typically result from
using DNNs, which can cause unexpected behaviors such as
pushing objects out of the workspace. Building on the know-
hows gains from developing MORE, we are exploring other
real-world robotic manipulation tasks that would benefit from
the S2—S1 search-and-learn philosophy. We point out that
MORE can be further sped up by implementing a parallel
version of MCTS, as we only utilized a single CPU thread
in our implementation and PPN (on GPU) is not being used
most of the time.

[1]
[2]

[4

=

[5

[t}

[6]

[7]

[8

[t}

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

Y. Bengio, “The consciousness prior,” arXiv preprint arXiv:1709.08568,
2017.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140-1144, 2018.
J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604-609, 2020.

H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang,
D. Kragic, and J. A. Stork, “Multi-object rearrangement with
monte carlo tree search: A case study on planar nonprehensile
sorting,” CoRR, vol. abs/1912.07024, 2019. [Online]. Available:
http://arxiv.org/abs/1912.07024

R. Boney, N. Di Palo, M. Berglund, A. Ilin, J. Kannala, A. Rasmus,
and H. Valpola, “Regularizing trajectory optimization with denoising
autoencoders,” Advances in Neural Information Processing Systems,
vol. 32, pp. 2859-2869, 2019.

J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” Trans. Rob., vol. 30, no. 2, p. 289-309, Apr.
2014.

A. Bicchi and V. Kumar, “Robotic grasping and contact: A review.”
Proceedings - IEEE International Conference on Robotics and Automa-
tion 1, 2000.

H. Liang, X. Ma, S. Li, M. Gorner, S. Tang, B. Fang, F. Sun, and
J. Zhang, “PointNetGPD: Detecting grasp configurations from point
sets,” in IEEE International Conference on Robotics and Automation
(ICRA), 2019.

A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”
The International Journal of Robotics Research, vol. 31, no. 7, pp.
886-900, 2012.

B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa,
P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for robotic
manipulation research,” The International Journal of Robotics Research,
vol. 36, no. 3, pp. 261-268, 2017.

A. Boularias, O. Kroemer, and J. Peters, “Learning robot grasping
from 3-d images with markov random fields,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2011,
San Francisco, CA, USA, September 25-30, 2011, 2011, pp. 1548-1553.
[Online]. Available: http://dx.doi.org/10.1109/IROS.2011.6094888

A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019. 1EEE, 2019, pp. 2901-
2910. [Online]. Available: https://doi.org/10.1109/ICCV.2019.00299
C. Gabellieri, F. Angelini, V. Arapi, A. Palleschi, M. G. Catalano,
G. Grioli, L. Pallottino, A. Bicchi, M. Bianchi, and M. Garabini,
“Grasp it like a pro: Grasp of unknown objects with robotic hands
based on skilled human expertise,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2808-2815, 2020.

Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans,
“Multifingered grasp planning via inference in deep neural networks:
Outperforming sampling by learning differentiable models,” IEEE
Robotics & Automation Magazine, vol. 27, no. 2, pp. 55-65, 2020.
A. Boularias, J. A. Bagnell, and A. Stentz, “Efficient optimization for
autonomous robotic manipulation of natural objects,” in Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27 -31, 2014, Québec City, Québec, Canada., 2014, pp. 2520-2526.
[Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/AAAIL4/
paper/view/8414

J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” 2017.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” 2018.

H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-
scale benchmark for general object grasping,” in Proceedings of the

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11444-11453.

B. Wen, W. Lian, K. Bekris, and S. Schaal, “Catgrasp: Learning
category-level task-relevant grasping in clutter from simulation,” arXiv
preprint arXiv:2109.09163, 2021.

J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaaud4984, 2019.

A. ten Pas, M. Gualtieri, K. Saenko, and R. P. Jr., “Grasp pose
detection in point clouds,” CoRR, vol. abs/1706.09911, 2017. [Online].
Available: http://arxiv.org/abs/1706.09911

A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 1EEE, 2018, pp.
4238-4245.

L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” in 2012 IEEE International Conference on Robotics and
Automation, 2012, pp. 3875-3882.

A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects
using a push proposal network,” in Robotics Research, N. M. Amato,
G. Hager, S. Thomas, and M. Torres-Torriti, Eds. Cham: Springer
International Publishing, 2020, pp. 405-419.

M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push
policies to increase grasp access for robot bin picking,” in 20/8 IEEE
14th International Conference on Automation Science and Engineering
(CASE), 2018, pp. 1249-1256.

K. Gao, S. W. Feng, and J. Yu, “On minimizing the number of running
buffers for tabletop rearrangement,” in Robotics: Sciences and Systems,
2021.

J. Yu, “Rearrangement on lattices with swaps: Optimality structures
and efficient algorithms,” in Robotics: Sciences and Systems, 2021.
Y. Xiao, S. Katt, A. t. Pas, S. Chen, and C. Amato, “Online planning
for target object search in clutter under partial observability,” in
International Conference on Robotics and Automation, 2019.

M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang,
R. Martin-Martin, A. Garg, S. Savarese, and K. Goldberg,
“Mechanical search: Multi-step retrieval of a target object occluded
by clutter,” CoRR, vol. abs/1903.01588, 2019. [Online]. Available:
http://arxiv.org/abs/1903.01588

T. Novkovic, R. Pautrat, F. Furrer, M. Breyer, R. Siegwart, and
J. 1. Nieto, “Object finding in cluttered scenes using interactive
perception,” CoRR, vol. abs/1911.07482, 2019. [Online]. Available:
http://arxiv.org/abs/1911.07482

A. Kurenkov, J. Taglic, R. Kulkarni, M. Dominguez-Kuhne, R. Martin-
Martin, A. Garg, and S. Savarese, “Visuomotor mechanical search:
Learning to retrieve target objects in clutter,” in IEEE/RSJ Int.
Conference. on Intelligent Robots and Systems (IROS), 2020.

R. Papallas and M. R. Dogar, “Non-prehensile manipulation in clutter
with human-in-the-loop,” CoRR, vol. abs/1904.03748, 2019. [Online].
Available: http://arxiv.org/abs/1904.03748

K. Xu, H. Yu, Q. Lai, Y. Wang, and R. Xiong, “Efficient learning of
goal-oriented push-grasping synergy in clutter,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 6337-6344, 2021.

B. Huang, S. D. Han, J. Yu, and A. Boularias, “Visual foresight trees
for object retrieval from clutter with nonprehensile rearrangement,”
IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 231-238,
2021.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

T. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan,
and S. J. Belongie, “Feature pyramid networks for object
detection,” CoRR, vol. abs/1612.03144, 2016. [Online]. Available:
http://arxiv.org/abs/1612.03144

B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep interaction
prediction network with application to clutter removal,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021.
K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72-83.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp- 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style- high- performance-deep-learning-library.
pdf

[43] 1. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” in International Conference on Learning Representa-
tions ICLR, 2017.

[44] J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, T. Pfaff, T. Weber,
L. Buesing, and P. W. Battaglia, “Combining g-learning and search with
amortized value estimates,” in International Conference on Learning
Representations ICLR, 2019.

[45] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org, 2016-2021.

[46] B. Wen, C. Mitash, B. Ren, and K. E. Bekris, “se (3)-tracknet: Data-
driven 6d pose tracking by calibrating image residuals in synthetic
domains,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2020, pp. 10367-10373.

[47] B. Wen and K. Bekris, “Bundletrack: 6d pose tracking for novel objects
without instance or category-level 3d models,” in 202! IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 8067-8074.

[48] C. Mitash, B. Wen, K. Bekris, and A. Boularias, “Scene-level pose
estimation for multiple instances of densely packed objects,” in
Conference on Robot Learning. PMLR, 2020, pp. 1133-1145.

