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Kink propagation in the Artificial Axon
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Abstract – The Artificial Axon is a unique synthetic system, based on biomolecular components,
which supports action potentials. Here we consider, theoretically, the corresponding space ex-
tended system, and discuss the occurrence of solitary waves, or kinks. Such structures are indeed
observed in living systems. In contrast to action potentials, stationary kinks are possible. We
point out an analogy with the interface separating two condensed matter phases, though our kinks
are always non-equilibrium, dissipative structures, even when stationary.

Copyright c© 2022 EPLA

Introduction. – The Artificial Axon (AA) is a syn-
thetic structure designed to support action potentials,
thus generating these excitations for the first time outside
the living cell. The system is based on the same micro-
scopic mechanism as that operating in neurons, the basic
components being: a phospholipid bilayer with embedded
voltage gated ion channels, and an ionic gradient as the en-
ergy source, all in aqueous environment. Action potentials
in real neurons are generated by the action of two opposite
ionic gradients across the cell membrane, and two corre-
sponding species of voltage gated ion channels. The rising
edge of the action potential is produced by the opening of
one channel species, and the falling edge by the opening
of the other channel species. In the AA, there is only one
ionic gradient and one channel species. The rising edge
of the action potential is produced by the opening of the
channels, the falling edge by channel inactivation. A cur-
rent limited voltage clamp (CLVC) takes the role of the
second ionic gradient [1,2].

More in detail, the physical AA [2] consists of a ∼100 μm
size black lipid membrane with oriented, voltage gated
potassium ion channels (KvAP) embedded in it. The
membrane separates two compartments (“in” and “out”)
where different KCl concentrations are maintained, result-
ing in an equilibrium (Nernst) potential VN ∼ +40 mV,
referring voltages to the grounded “outside”. Connec-
tion to the electronics for sensing and control are through
AgCl electrodes. The specific ion channel used in [2] was
the KvAP, a bacterial channel from the thermophilic ar-
chaea Aeropyrum pernix [3]. KvAP was the first voltage
gated ion channel of which the structure was determined
to atomic resolution [4,5]. The channel opens at positive
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voltages, and is closed at voltages below ∼ − 50 mV; how-
ever its dynamics is complex, involving also an “inactive”
state [6].

In the experiments, the AA is held off equilibrium, at a
negative “resting potential” Vr ∼ −100 mV, by a Cur-
rent Limited Voltage Clamp (CLVC) connected to the
inside chamber. This device is a regular voltage clamp
(a “zero output impedence” voltage source) in series with
a large resistance Rc. Its effect is to inject a current
Ic = [Vc − V (t)]/Rc into the AA, where (1/Rc) is the
clamp conductance, Vc the clamp voltage, V (t) the mem-
brane potential (the axon voltage). Thus the CLVC has
the same effect as a second ionic gradient with correspond-
ing Nernst potential Vc and total leak conductance (1/Rc).
It allows to keep the system at an off-equilibrium “resting
potential”, without actually clamping the voltage, and
thus allowing voltage dynamics, specifically action poten-
tial firing.

As a dynamical system for the voltage, the AA operates
in zero space dimensions (similar to the “space clamp”
setup with real axons [7,8]). That is, each side of the
membrane is basically an equi-potential surface (the name
Artificial Axon, while a misnomer in this respect, is his-
torical [1] and we propose to keep it for the original and
future versions). Inspired by this system, here we con-
sider —theoretically— the corresponding space extended
dynamical system. We focus on the existence of solitary
wave solutions, or propagating kinks (we will use the two
terms interchangeably, to mean a front which propagates
keeping its shape).

Kinks appear in many areas of condensed matter
physics [9], from domain walls in magnetic materi-
als [10,11] to pattern forming chemical reactions [12].
We arrived at our particular nonlinear structures through
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the AA, however, these same fronts have been analyzed
theoretically and produced experimentally before. In a
neuroscience setting, Loewenstein and Sompolinsky [13]
discussed theoretically calcium wavefronts propagating in
single neurons, in the context of neuronal temporal inte-
gration. These wavefronts are our same kinks, as the un-
derlying reaction-diffusion equation is basically the same.
In their model, they show how a space pattern of resting
potentials may arise within a single neuron, due to the
existence of these fronts. The voltage pattern may in turn
generate graded, persistent firing. Thus in their study the
presence of kinks allows to generate memory within sin-
gle neurons, and the neuronal temporal integration nec-
essary for basic psychomotorial functions such as posture
control.

Calcium waves are indeed a general mechanism of
inter-cellular signaling, and have been studied accord-
ingly [14,15]. In particular, in the nervous system they
represent a form of non-synaptic communication for in-
stance between glial cells [14,16].

In the context of electrophysiological pattern formation
in confluent cell cultures, McNamara et al. [17] discuss the
emergence of spatial domains of different resting poten-
tial, separated by domain walls, which are again the same
kinks. Their analysis of domain walls is basically the same
as we present here; in their cell-based experimental system
they observe directly the spatial structure of the kinks and
their motion. Their study pinpoints the relevance of these
structures to pattern formation in tissue, not least during
embryogenesis.

The aforementioned examples signify that kinks are im-
portant structures both in living and inanimate matter.
With the Artificial Axon we wish to develop a cell-free sys-
tem where similar phenomena could be studied, perhaps
under more easily controlled conditions, and new pattern
forming systems envisaged.

We show the existence of travelling kinks in our sys-
tem, and study numerically their characteristics in rela-
tion to the control parameters, which are the command
voltage and the conductance of the CLVC. Then we dis-
cuss a “normal form” for this class of dynamical systems,
highlighting the relation with other kinks separating two
condensed matter phases, such as the nematic-isotropic
interface in liquid crystals. The nonlinearities which thus
arise retrace the development of simplified models of the
Hodgkin-Huxley axon [18], such as introduced 60 years
ago by Fitzhugh [19] and Nagumo et al. [20]. Looking at
kinks thus provides a somewhat different perspective on a
classic topic in the study of excitable media.

Results. – We consider the AA in one space dimension.
The physical system we have in mind is a ∼1 cm long,
∼100 μm wide supported strip of lipid bilayer with one
species of voltage gated ion channels embedded (fig. 1).
The bilayer might be anchored to the solid surface so as
to leave a sub-micron gap (the “inside” of the axon) in
between. At present, the stability of the bilayer stands in

Fig. 1: Schematic drawing of a possible experimental realiza-
tion of the space extended AA (not to scale). The phospholipid
bilayer with embedded K+ ion channels is chemically anchored,
in spots, to a patterned ∼5 nm thick Au layer. A continu-
ous AgCl electrode (not shown) is also deposited on the slide,
providing the connection to the CLVC. The “outside” com-
partment is grounded through an electrode “at infinity” (not
shown). The outside has a large concentration of KCl relative
to the inside.

the way of a practical realization, but this problem is not
unsurmountable.

The bilayer acting essentially like the dielectric in a par-
allel plates capacitance, the local charge density is related
to the voltage by (∂/∂t)ρ(x, t) = c (∂/∂t)V (x, t) where c
and ρ are capacitance and charge per unit length, respec-
tively. The current inside the axon follows Ohm’s law: j =
−(1/r)(∂V/∂x), where r is the resistance per unit length;
then charge conservation leads to the diffusion equation
for the potential: (∂V (x, t)/∂t) − (1/(rc))(∂2V (x, t)/∂x2)
= 0.

In the AA, the gradient of K+ ions across the mem-
brane results in an equilibrium (Nernst) potential VN =
(T/|e|) ln([K+]out/[K+]in); here T is the absolute tem-
perature in energy units, and e the electronic charge;
square brackets denote concentration. However, the “rest-
ing” system is held at an off-equilibrium voltage by the
current injected through a current limited voltage clamp
(CLVC) [1]. The active elements in the system are voltage
gated potassium channels inserted in the membrane: these
are molecular pores which, in the open state, selectively
conduct K+ ions. The KvAP channel used in [2,21] has
three functionally distinct states: open, closed, and inac-
tive; the presence of the inactive state allows the system
to generate action potentials. Here we consider the sim-
pler case of a “fast” channel with no inactivation. Then
the channels can be described by an equilibrium func-
tion PO(V ) which gives the probability that the chan-
nel is open if the local voltage is V . For the KvAP,
the function PO(V ) is well described by a Fermi-Dirac
distribution [22].

Introducing the current sources in the diffusion equation
above one arrives at the following (1 + 1)D dynamical
system:

∂V (x, t)

∂t
− 1

rc

∂2V

∂x2
=

χ

c
PO(V )[VN − V (x, t)]

+
χc

c
[Vc − V (x, t)].

(1)
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V is the voltage inside the axon (referred to the grounded
outside), and we assume a distributed “space clamp” for
the CLVC (this would be provided by an electrode along
the axon). Equation (1) is of the general form of a reaction-
diffusion system; these are usually studied in the context
of pattern forming chemical reactions. For us it represents
a continuum limit, i.e., we consider a uniform, distributed
channel conductance instead of discrete, point-like ion
channels. This is a mean field approximation which ne-
glects correlations between nearby channels. The first
term on the RHS of (1), when multiplied by c, is the chan-
nel current, proportional to the driving force (VN − V );
VN is the Nernst potential, χ the conductance (per unit
length) with channels open (i.e., χ = nχ0, χ0 single chan-
nel conductance, n number of channels per unit length).
The second term is the current injected by the clamp; Vc

is the clamp voltage (which is a control parameter in the
experiments), χc the clamp conductance (per unit length),
which is a second control parameter. The function PO(V )
is a Fermi-Dirac distribution:

PO(V ) =
1

exp[−q(V − V0)/T ] + 1
, (2)

where q is an effective (positive) gating charge and V0 the
midpoint voltage where PO(V0) = 1/2.

To fix ideas, we will use parameters consistent with the
AA in [21]: VN = 50 mV, χ/c = 100 s−1, χc/c = 5 s−1,
(1/rc) = 1 cm2/s, V0 = −10 mV, q/T = 0.08 (mV)−1. We
use Gaussian units except that we express voltages in mV:
this is more convenient to relate to experimental systems.
Also, the temperature in (2) and elsewhere is in energy
units; thus at room temperature T/|e| ≈ 25 mV, where e
is the charge of the electron.

The possibility of travelling kink solutions of (1) and (2)
arises because, with the clamp at a negative voltage, say
Vc = −100 mV, there exist two stable fixed points of (1)
(uniform, time-independent solutions). One fixed point,
call it V1, is close to the Nernst potential, with channels
essentially open (PO(V1) ≈ 1); it is given approximately
by V1 ≈ (χVN + χcVc)/(χ + χc). The other stable fixed
point (call it V3) is close to the clamp voltage (V3 ≈ Vc),
with channels essentially closed (PO(V3) ≈ 0). A stable
kink solution exists, asymptotically connecting these two
stable fixed points (a third fixed point is unstable and
will be discussed later). Exact values for V1 and V2 are
found by solving numerically the corresponding algebraic
equation.

The essential parameters in (1) are the diffusion con-
stant D ≡ 1/(rc) and χ/c; from these we can form a char-
acteristic length scale ∆ = 1/

√
rχ which gives the scale

of the width of the kink solution, and a characteristic ve-
locity v = D/∆ = (1/c)

√

χ/r which similarly gives the
scale for the kink velocity. With the parameters above,
∆ ≈ 1 mm and v ≈ 10 cm/s.

Figure 2 shows snapshots of a travelling kink obtained
by integrating (1), (2) using the parameters above and
Vc = −200 mV. The kink was launched with a hyperbolic

Fig. 2: The traveling kink solution V (x, t) for (1), (2). The
plot shows snapshots of the kink at different times; the initial
condition (t = 0) is a hyperbolic tangent. Parameter values are
those given in the text, with a clamp voltage Vc = −200 mV.
The dotted horizontal lines show the fixed points V1 and V3.
Notice that the shape of the kink shifts from the initial condi-
tion at t = 0.0 s to a stable shape afterwards.

Fig. 3: Plot of kink velocity vs. clamp voltage. Parameter
values are those given in the text. The velocity is determined
by tracking the minimum of the first derivative of V (x, t), which
corresponds to the inection point of the kink-shaped wavefront.
The leftmost and rightmost data points are close to the values
of Vc beyond which the kink solution disappears. The graph
is asymmetric with respect to right moving and left moving
kinks.

tangent initial condition (t = 0 trace in fig. 2); it is found
to quickly (on a time scale ∼ c/χ) attain a stable limiting
shape and thereafter travel at constant velocity. The ve-
locity depends on the clamp voltage Vc, as shown in fig. 3.
We measure it by tracking the inflection point of the so-
lution V (x, t). The solitary wave solution exists only for
Vc within certain bounds; correspondingly there is a max-
imum velocity of the kink, while the minimum velocity is
zero, as we show below.

Let us now analyze these solitary wave solutions (see,
e.g., [9]). Equation (1) is of the form

∂V (x, t)

∂t
− ∂2V

∂x2
= g(V ), (3)
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Fig. 4: The function F (ϕ) obtained from (4) vs. the (dimen-
sional) membrane voltage, for clamp voltages of −100 mV and
−200 mV. Parameters are as given in the text. The fixed points
V1, V2, V3 shown refer to the yellow (VC = −200 mV) curve. As
VC is decreased below −200 mV the global maximum becomes
the secondary maximum and vice-versa. Increasing Vc above
−100 mV, the secondary maximum eventually disappears, at
which point there is no kink solution.

where we have changed to non-dimensional variables using
∆ = 1/

√
rχ, τ = c/χ, VN as the units of length, time, and

potential, respectively. Then,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g(V ) = PO(V )[1 − V ] +
χc

χ

[

Vc

VN

− V

]

,

PO(V ) =

{

exp

[

−qVN

T

(

V − V0

VN

)]

+ 1

}

−1

.

(4)

From (3) and (4) we see that the control parameters of this
system are indeed the clamp conductance (more precisely,
the ratio χc/χ) and the clamp voltage (the ratio Vc/VN );
the parameters which describe the channels, i.e., q and
V0 in (4), are not easily varied experimentally, so we con-
sider them fixed. We look for a travelling wave solution:
V (x, t) = ϕ(x − ut) = ϕ(z), z ≡ x − ut; then from (3)

ϕ′′ + u ϕ′ = − d

dϕ
F (ϕ), (5)

where F is the primitive of g, i.e., g(ϕ) = dF/dϕ. We
may interpret (5) as the equation of motion of a unit mass
in a potential energy F , subject to a frictional force pro-
portional to the velocity. The dissipation parameter u is
the velocity of the kink. In fig. 4 we plot the function F
obtained from integrating g in (4); the analytic expression,
which involves the poly log function, is readily obtained
with Mathematica.

The kink solution displayed in fig. 2 corresponds, in
terms of eq. (5) and fig. 4, to the particle (of coordinate ϕ)
starting with zero velocity at the maximum ϕ = V1 and ar-
riving (after an infinite time) at the secondary maximum
ϕ = V3, also with zero velocity. The value of the dissi-
pation parameter u for which this is possible corresponds

to the propagation velocity of the kink. Different veloci-
ties are possible transiently, for example, a kink initially
steeper than the asymptotic shape will initially travel
faster, and slow down as it attains the stable shape and ve-
locity. This “shaping” of the signal expresses the existence
of a stable, unique solitary wave solution. It motivated the
electronic realization of an axon, and the corresponding in-
fluential dynamical system model, by Nagumo et al. [20].

Varying the clamp voltage Vc modifies the potential F ,
and the kink velocity u changes correspondingly, as shown
in fig. 3. For increasing Vc, the difference F (V1)−F (V3) in-
creases, while the secondary maximum at V = V3 becomes
less pronounced (fig. 4). Correspondingly, the kink veloc-
ity increases. At a critical clamp value Vc ≈ −92.8 mV the
secondary maximum disappears (the minimum at V2 be-
comes an inflection point, then reverses curvature), so no
kink solution exists for higher clamp voltages. Conversely,
as Vc is decreased, the difference F (V1)−F (V3) decreases,
goes through zero and becomes negative. Correspondingly
the kink velocity also goes through zero and then reverses
sign. In short, F (V1)−F (V3) increases monotonically with
increasing Vc, as does the kink velocity u. There is a max-
imum positive velocity and a maximum negative velocity
(the two are not the same). There is a particular clamp
voltage (Vc ≈ −244.0 mV with our parameters) such that
the kink is stationary (u = 0). Trivially, for each right-
moving kink there is an identical mirror-image left-moving
kink, if one inverts the boundary conditions at infinity.
The asymmetry of the curve of the velocity (u) vs. clamp
voltage (Vc) with respect to u = 0 (fig. 3) is a consequence
of the behavior of the function F (V ) as the parameter Vc is

varied (fig. 4). Namely, if V
(0)
c is the clamp value such that

u = 0, then the two functions F (V ) for parameter values

V
(0)
c ± ∆Vc are not related by the mirror symmetry that

would translate into the velocity curve being symmetric
around u = 0.

From fig. 4 we also see that two more kink solutions
exist, one connecting the maximum at V1 with the mini-
mum at V2 (evidently travelling at a faster speed compared
to the kink connecting V1 and V3), and a third one con-
necting V3 and V2. These solutions are linearly unstable,
because the fixed point at V2 is unstable; thus they would
not be observed experimentally. However, they can still
be “observed” numerically, as we see below.

It is interesting to put this problem in a “normal form”,
and see the connection to other kinks in condensed matter
physics. The simplest function F in (5) which supports a
kink solution of (3) has a maximum and a minimum, i.e.,
a cubic nonlinearity. A kink solution exists connecting the
maximum and the minimum, but it is unstable as the min-
imum is an unstable fixed point. The next simplest case is
that F has three extrema (two maxima and a minimum);
assuming a single control parameter, we may write

F (V ) = a

[

2(1 − α)V 2 +
4

3
αV 3 − V 4

]

, (6)
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Fig. 5: A 3D plot showing the collision of two different kinks.
They are obtained integrating (7) with a = 0.5, α = 0.5, and
appropriate initial conditions. Notice the velocity change after
the collision. However, these kinks are linearly unstable and so
would not be observed experimentally.

a > 0, α ≤ 1, where we put one stable fixed point at
V1 = 1 and the unstable fixed point (the minimum of F )
at V2 = 0. The third (stable) fixed point is at V3 = (α−1).
This is not the most general form: the choice V2 = 0 forces
F to be an even function at the “coexistence point” α = 0,
as we discuss below; however, this choice allows to discuss
unstable kink solutions also. Apart from this difference,
this situation corresponds to (4); the parameter α has the
role of Vc/VN , if χc/χ is fixed. Plots of F (V ) from (6)
evolve, varying α, in a similar way to the plots shown
in fig. 4 for varying Vc. For −1 < α ≤ 1 a stable kink
with V (x → −∞) = V1 and V (x → +∞) = V3 exists,
travelling with a speed u which increases monotonically
with increasing α. The stationary kink is obtained for
α = 0; for α > 0 the kink travels to the right and for
α < 0 to the left. The simplest stable kink is thus a
solution of

∂V (x, t)

∂t
− ∂2V

∂x2
= 4a[(1 − α)V + αV 2 − V 3]. (7)

The cubic nonlinearity in this equation is a feature of
several reduced parameters models of nerve excitability,
notably Fitzhugh’s “BVP model” [19], and indeed of the
original Van der Pol relaxation oscillator [23], in appropri-
ate coordinates. Two further kink solutions of (7) exist,
connecting V1 and V2, and V3 and V2. These are linearly
unstable, but they can still be obtained numerically, with
the trick of arranging for the unstable fixed point to be at
V = 0, as we did in (6). In this way, one can even dis-
cuss collisions between different kinks: the only non-trivial
example stemming from (6) is shown in fig. 5.

Namely, the kink connecting V1 and V2 collides with
the kink connecting V3 and V2 travelling in the opposite
direction, resulting in the stable kink connecting V1 and
V3 in the final state.

To recapitulate: the fixed points of (3) are uniform,
time-independent solutions which we might call “phases”.
Two different phases can be connected by a kink. The
fixed points are zeros of g, i.e., extrema of F , but the sta-
ble fixed points are maxima of F while the unstable ones
are minima. For the purpose of classifying, F is analo-
gous to minus the free energy of a Landau theory describ-
ing a corresponding phase transition. The stationary kink
(α = 0 in (6)) is the interface separating two coexisting
phases. For α 	= 0, one of the two phases is more sta-
ble and grows at the expense of the other (i.e., the kink
moves). However, we must remember that our system is
never in thermodynamic equilibrium. Even when the kink
is stationary, there are macroscopic currents in the system
(the clamp current and the channels current), and detailed
balance is violated.

The function F derived from (4), which is shown in
fig. 4, has the same general form as (minus) the mean field
free energy which describes the nematic-isotropic transi-
tion in liquid crystals [9], or also the liquid-gas transition.
For the former, and following the notation in [9], the free
energy f as a function of the order parameter S is

f =
1

2
a(T − T ∗)S2 − wS3 + uS4, (8)

where S = P2(cos θ), P2 is the Legendre Polynomial of
order 2 and θ the angle between the molecular axis and
the director vector. For fixed Vc, the evolution of −F for
varying χc/χ (where F is the primitive of (4)) mirrors the
evolution of (8) for varying temperature T . Namely, for
small values of χc/χ there is a global minimum at pos-
itive V (i.e., channels essentially open) and a secondary
minimum at negative V (channels essentially closed). In-
creasing χc/χ one reaches a coexistence point where −F
has the same value at the two minima, after which the
global minimum is at negative V and the secondary min-
imum at positive V (fig. 4), i.e., the stable phase is with
channels essentially closed. As in (8) there are limits of
meta-stability where the secondary minimum disappears.
If we allow Vc as a second control parameter, we find a
coexistence line in the Vc-χc/χ plane ending in a critical
point, i.e., the phenomenology of a liquid-gas transition.
For parameter values on the coexistence line, the kink is
stationary.

For the case of the stationary kink, one can write an
implicit formula for the shape: with u = 0, multiplying (5)
by ϕ′ and integrating from −∞ to x, with the boundary
conditions ϕ′ → 0, ϕ → ϕ1 for x → −∞ one finds

dϕ
√

−F (ϕ) + F (ϕ1)
= −

√
2dx. (9)

For the stationary kink of (7), which occurs for α = 0, we
have F (ϕ) = a(2ϕ2−ϕ4), the maxima of F are at ϕ = ±1,
and integrating (9) we find ϕ(x) = tanh(−

√
2ax). This is

the same kink as in the mean field theory of the Ising
ferromagnet, separating two domains of opposite magne-
tization [9]. It has a special symmetry (inversion about its
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center), stemming from the symmetry of this particular F ,
which is an even function at the coexistence point α = 0.
The function F derived for the Artificial Axon from (4)
has no such symmetry, and correspondingly the stationary
kink is not inversion symmetric about its center, as fig. 2
shows. For this kink too an analytic expression can be
obtained from (9) in terms of special functions.

Conclusions. – We have discussed the occurrence of
travelling kink solutions in a dynamical system which rep-
resents a space extended Artificial Axon. We considered
the simplest limit: “fast” channels described by an equi-
librium opening probability PO(V ), and no inactivation.
Even so, the velocity of the kink represents a non triv-
ial eigenvalue problem, expressed by (5). More generally,
introducing channel dynamics increases the dimensional-
ity of the dynamical system and leads to more structure
(oscillations, limit cycles, i.e., action potentials) as is well
known. We point out a connection to similar kinks in
other areas of condensed matter physics: some questions
which can be asked of these systems are similar, for in-
stance, effects beyond mean field [10,24]. For us, this
means replacing the uniform channel conductance with a
space distribution of point-like channels, eventually inter-
acting, eventually mobile. Introducing channel dynamics
(see, e.g., [25,26]), it may be interesting to extend this
study to pattern formation in 2 space dimensions. McNa-
mara et al. [17] indeed present an experimental realization
of such a system, with living cells. Their experimental sys-
tem consists of gap-junction coupled, cultured cells. They
use a cell line engineered to express a K+ channel and
channel rhodopsin, the latter providing a light-actuated
control parameter akin to the CLVC conductance in the
AA. Using a voltage sensitive dye for the measurements,
they observe bistability of their system in a region of pa-
rameter space, thus patches of tissue at different resting
potential, separated by domain walls (kinks) which can
be stationary or moving. They go on to show that differ-
entiating myoblasts exhibit collective domain wall migra-
tion during myogenesis (the formation of muscle tissue).
Their results reaffirm the importance of electrophysiolog-
ical pattern formation, mediated by domain wall drift, for
embryogenesis. An electrophysiologically equivalent, syn-
thetic system could in principle be constructed with the
present physical AAs. Namely, an array of (zero space di-
mension) AAs with nearest neighbor connections through
large resistors, would presumably support similar volt-
age patterns. In this way, systems built on AAs could
be developed into cell-free breadboards for electrophysiol-
ogy research. In general, this approach may inspire the
construction of new reaction-diffusion systems [27] with
interesting spatio-temporal dynamics.
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