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Abstract. For optimization problems with linear equality constraints, we prove that the (1,1)
block of the inverse KKT matrix remains unchanged when projected onto the nullspace of the
constraint matrix. We develop reduced compact representations of the limited-memory inverse BFGS
Hessian to compute search directions e�ciently when the constraint Jacobian is sparse. Orthogonal
projections are implemented by a sparse QR factorization or a preconditioned LSQR iteration. In
numerical experiments two proposed trust-region algorithms improve in computation times, often
significantly, compared to previous implementations of related algorithms and compared to IPOPT.
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1. Introduction. Linear equality constrained minimization problems are formu-
lated as

(1.1) minimize
x2Rn

f(x) subject to Ax = b,

where f : Rn
! R and A 2 Rm⇥n. We assume that the number of variables n

is large, g(x) = rf(x) is available, A is sparse, and that the initial guess x0 is
feasible: Ax0 = b. If A has low rank, one can obtain a full-rank matrix by deleting
rows in A that correspond to small diagonals of the triangular matrix in a sparse
QR factorization of A>. Our methods here use the rank information contained in
sparse QR factors, and thus we assume that A has full rank until implementation
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details are described in Appendix B. For large problems, computing the Hessian
r

2
f(x) 2 Rn⇥n is often not practical, and we approximate this matrix using a

limited-memory BFGS (Broyden–Fletcher–Goldfarb–Shanno [2, 16, 20, 29]) quasi-
Newton matrix Bk ⇡ r

2
f(xk). Starting from x0, we update iterates according to

xk+1 = xk + sk. The step sk is computed as the solution of a quadratic trust-region
subproblem, in which the quadratic objective is defined as q(s) ⌘ s

>
gk +

1
2s

>
Bks with

gk ⌘ g(xk). For a given trust-region radius � > 0 and norm k · k, the trust-region
subproblem is

(1.2) minimize
ksk�

q(s) subject to As = 0,

which ensures that each search direction is in the nullspace of A, and thus each iterate
xk is feasible.

1.1. Background. Large problems of the form (1.1) are the focus of recent
research because large statistical- and machine-learning problems can be cast in this
way. As such, (1.1) constitutes the backbone of the alternating direction method of
multipliers [1], with applications to optimal exchange problems, consensus and sharing
problems, support-vector machines, and more. Recent work [18] emphasizes methods
that use gradients of f and suggest accelerations via quasi-Newton approximations.
Quasi-Newton methods estimate Hessian matrices using low-rank updates at each
iteration (typically rank-1 or rank-2). Starting from an initial matrix, the so-called
compact representation of quasi-Newton matrices [8] is a matrix representation of
the recursive low-rank updates. Because the compact representation enables e↵ective
limited-memory implementations, which update a small number of previously stored
vectors, these methods are well suited to large problems. Trust-region and line-search
methods are standard for determining search directions for smooth problems, and each
approach has its own merits. Combinations of trust-region methods and quasi-Newton
compact representations have been developed in [3, 4, 5, 7]. Widely used quasi-Newton
line-search methods are [9, 24, 31, 32]. The main ideas in this article are applicable to
both trust-region and line-search methods.

1.2. Compact representation. A storage-e�cient approach to quasi-Newton
matrices is the compact representation of Byrd, Nocedal, and Schnabel [8], which
represents the BFGS matrices in the form

(1.3) Bk = �kI + JkMkJ
>
k

with scalar �k > 0. The history of vectors {sk} = {xk+1�xk} and {yk} = {gk+1� gk}

is stored in rectangular Sk ⌘
⇥
s0, . . . , sk�1

⇤
2 Rn⇥k and Yk ⌘

⇥
y0, . . . , yk�1

⇤
2 Rn⇥k.

The matrices

Jk ⌘
⇥
Sk Yk

⇤
,(1.4)

S
>
k Yk ⌘ Lk +Dk + T̄k,(1.5)

Mk ⌘ �


�kS

>
k Sk �kLk

�kL
>
k �Dk

��1

(1.6)

are defined with �k = 1/�k, where Lk and T̄k are the strictly lower and upper triangular
parts of S>

k Yk and Dk is the diagonal. For large problems, limited-memory versions
store only a small subset of recent pairs {si, yi}

k�1
i=k�l, resulting in storage-e�cient
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matrices Jk 2 Rn⇥2l and Mk 2 R2l⇥2l where l ⌧ n. Following Byrd, Nocedal, and
Schnabel [8, Theorem 2.2], the inverse BFGS matrix has the form

(1.7) B
�1
k = �kI + JkWkJ

>
k ,

where Wk 2 R2l⇥2l is given by

(1.8) Wk =


T

�>
k (Dk + �kY

>
k Yk)T

�1
k ��kT

�>
k

��kT
�1
k 0l⇥l

�
.

The diagonal matrix Dk (and hence the upper triangular matrix Tk ⌘ Dk + T̄k) are
nonsingular as long as Bk is also.

1.3. Outline. Section 2 describes our contributions in the context of large
problems, while section 3 motivates our proposed representations. Section 4 develops
the reduced compact representation and updating techniques that enable e�cient
implementations. Section 5 describes computations of orthogonal projections and
the trust-region strategy for optimization. Section 6 gives an e�cient method when
an `2-norm trust-region subproblem is used. Sections 7 and 8 develop an e↵ective
factorization and a method that uses a shape-changing norm in the trust-region
subproblem. Numerical experiments are reported in section 9, and conclusions are
drawn in section 10.

2. Contributions. The first-order necessary conditions for the solution of prob-
lem (1.2) without the norm constraint are characterized by the linear system

(2.1)


Bk A

>

A 0m⇥m

� 
sE

�E

�
=


�gk

0m

�
,

where �E 2 Rm is a vector of Lagrange multipliers and sE denotes the “equality”
constrained minimizer of (1.2). Adopting the naming convention of [27, section 16.1,
page 451], we refer to (2.1) as the KKT system (a slight misnomer, as use of the
system for the equality constrained setting predates the work of Karush, Kuhn, and
Tucker). For large n, compact representations of the (1,1) block in the inverse KKT
matrix were recently proposed by Brust, Marcia, and Petra [6]. Two limited-memory
trust-region algorithms, LTRL2-LEC and LTRSC-LEC (which we refer to as TR1 and
TR2 in the numerical experiments in section 9), use these representations to compute
search directions e�ciently when A has relatively few rows. This article develops
e�cient algorithms when the number of equality constraints is large and the constraint
matrix is sparse. In particular, by exploiting the property that part of the solution
to the KKT system is unaltered when it is projected onto the nullspace of A, we
develop reduced compact representations, which need a small amount of memory and
lead to e�cient methods for solving problems with many constraints (large m and n)
and possibly many degrees of freedom (large n�m). In numerical experiments when
solving large problems, the proposed methods are often significantly more e�cient
than both our previous implementations and IPOPT [30].

3. Motivation. The solution sE in (2.1) can be computed from only the (1,1)
block of the inverse KKT matrix, as opposed to both the (1,1) and (1,2) blocks,
because of the zeros in the right-hand side. Let Vk be the (1,1) block of the inverse
KKT matrix (obtained, for example, from a block LDU factorization). It is given by

(3.1) Vk ⌘ (B�1
k �B

�1
k A

>(AB
�1
k A

>)�1
AB

�1
k )

D
ow

nl
oa

de
d 

09
/0

7/
22

 to
 1

69
.2

36
.2

36
.7

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 U.S. Government

A106 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

and then sE = �Vkgk. At first sight the expression in (3.1) appears to be expensive
to compute because of the multiple inverse operations and matrix-vector products.
However, as B�1

k = �kI + JkWkJ
>
k , we can exploit computationally useful structures.

Specifically, with Gk ⌘ (AB
�1
k A

>)�1 and Ck ⌘ AJkWk, [6, Lemma 1] describes the
expression

(3.2) Vk = �kI +
⇥
A

>
Jk

⇤  ��2kGk ��kGkCk

��kC
>
k Gk Wk � C

>
k GkCk

� 
A

J
>
k

�
.

For large n, once the components of the middle matrix in (3.2) are available, this
compact representation of Vk enables e�cient computation of a matrix-vector product
Vkgk, hence the solution of (2.1), and an economical eigendecomposition Vk = U⇤U>.
However, unless m is small (there are few rows in A), multiplying with the (m+ 2l)⇥
(m+ 2l) middle matrix is not practical.

With large n and m in mind, we note that the solution sE is unchanged if
instead of gk a projection of this vector onto the nullspace of A is used, or if sE
is projected onto the nullspace of A. This is a consequence of the properties of Vk.
To formalize these statements, let the orthogonal projection matrix onto null(A) be
P = In �A

>(AA
>)�1

A. Since the columns of the (1,1) block of the inverse from (2.1)
(namely, columns of Vk) are in the nullspace of A, the orthogonal projection onto
null(A) acts as an identity operator on the vector space spanned by Vk:

(3.3) Vk = VkP = P
>
Vk = P

>
VkP.

Relation (3.3) can equivalently be derived from (3.1), the expression for P , and the
equality VkA

> = 0. The methods in this article are based on representations of
projected matrices P

>
VkP 2 Rn⇥n, whose properties enable desirable numerical

advantages for large n and m. Instead of multiplying with the possibly large Gk 2

Rm⇥m and Ck 2 Rm⇥2l in (3.2), we store the matrices Sk 2 Rn⇥l and Zk ⌘ PYk 2

Rn⇥l and small square matrices that depend on the memory parameter l but not on m.
The columns of Zk are defined as zk = Pyk = P (gk+1 � gk), and they are contained
in the nullspace of A.

With (3.1) and (3.2) we motivated the solution of (1.2) without the norm con-
straint (giving the equality constrained step sE). Computing sE is important for
the implementation of practical algorithms, but it is even more important to solve
(1.2) e�ciently with the norm constraint. In section 6, using the `2-norm, we develop
a modified version of Vk as a function of a scalar parameter � > 0, i.e., Vk(�). In
sections 7 and 8, we describe how the structure of Vk can be exploited to compute an
inexpensive eigendecomposition that, when combined with a judiciously chosen norm
(the shape-changing infinity norm from [7, section 4.2.1]), provides a search direction
by an analytic formula. Note that the representation of Vk is not specific to the
limited-memory BFGS (L-BFGS) matrix, and other compact quasi-Newton matrices
could be used (Byrd, Nocedal, and Schnabel [8], DeGuchy, Erway, and Marcia [14]).

4. Reduced compact representation. This section describes a computationally
e↵ective representation of (3.3), which we call the reduced compact representation

(RCR). In section 4.1, the RCR is placed into historical context with reduced Hessian
methods. Subsequently, sections 4.2–4.4 develop the specific formulas that enable
e↵ective computations.

4.1. Reduced Hessian. The name reduced compact representation is related to
the term reduced Hessian [19], where Ẑ 2 Rn⇥(n�m) denotes a basis for the nullspace

D
ow

nl
oa

de
d 

09
/0

7/
22

 to
 1

69
.2

36
.2

36
.7

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 U.S. Government

RCR: REDUCED COMPACT REPRESENTATION A107

of A (satisfying AẐ = 0). In turn, Ẑ defines the so-called reduced Hessian matrix as
Ẑ

>
r

2
fkẐ or Ẑ>

BkẐ. In order to compute an equality constrained step sE , a reduced
Hessian method solves (Ẑ>

BkẐ)ŝE = �Ẑ>
gk and computes sE = ẐŝE . Known

computational challenges with reduced Hessian methods are that a desirable basis Ẑ
may be expensive to compute, the condition number of the reduced linear system may
be larger than the original one, and the product Ẑ>

BkẐ is not necessarily sparse even
if the matrices themselves are. For large-scale problems, these challenges can result
in significant computational bottlenecks. In what follows we refer to P

>
VkP as an

RCR because it has a reduced memory footprint compared to Vk in (3.2) (although
the matrices have the same dimensions). We also note that Vk and P

>
VkP have the

same condition, and P
>
VkP has structure that enables e�cient implementations.

4.2. RCR. To simplify (3.2), we note that Vk = P
>
VkP , that P>

A
> = 0, and

that P>
Jk =

⇥
Sk Zk

⇤
(where P

>
Yk ⌘ Zk by definition), so that

P
>
VkP = �kP +

⇥
Sk Zk

⇤
(Wk � C

>
k GkCk)

⇥
Sk Zk

⇤>
.

In Appendix A we show that C>
k GkCk simplifies to C

>
k GkCk =

⇥
(C>

k GkCk)11 0
0 0

⇤
with

(C>
k GkCk)11 = �kT

�>
k Y

>
k A

>(AA
>)�1

AYkT
�1
k . Based on this, we derive an RCR of

Vk.

Lemma 1. The RCR of Vk in (3.2) for the L-BFGS matrix is given by

(4.1) Vk = �kI +
⇥
A

>
Sk Zk

⇤ ��k(AA
>)�1

Nk

�2

4
A

S
>
k

Z
>
k

3

5 ,

where

Nk =


T

�>
k (Dk + �kZ

>
k Zk)T

�1
k ��kT

�>
k

��kT
�1
k 0k⇥k

�
.

Proof. Multiplying Vk in (3.2) from the left and right by P
> and P yields Vk =

�kP +
⇥
Sk Zk

⇤
(Wk � C

>
k GkCk)

⇥
Sk Zk

⇤>
. Since only the (1,1) block in C

>
k GkCk

is nonzero, we consider only the (1,1) blocks, namely,

(Wk)11 � (C>
k GkCk)11 = T

�>
k (Dk + �k(Y

>
k Yk � Y

>
k A

>(AA
>)�1

AYk))T
�1
k .

Since Y
>
k P

>
Yk = Y

>
k P

>
PYk = Z

>
k Zk, we obtain the (1,1) block in Nk. Subsequently,

by factoring P as

P = I �
⇥
A

>
Sk Zk

⇤ ��k(AA
>)�1

02k⇥2k

�2

4
A

S
>
k

Z
>
k

3

5 ,

we see that

P
>
VkP = �kI +

⇥
A

>
Sk Zk

⇤ ��k(AA
>)�1

Wk � C
>
k GkCk

�2

4
A

S
>
k

Z
>
k

3

5 .

Because all blocks of Wk � C
>
k GkCk except for the (1,1) block are equal to those in

Wk, all blocks in Nk are fully specified and representation (4.1) is complete.
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Note that S>
k Yk = Dk+Lk+ T̄k = S

>
k Zk, which means that Dk and Tk = Dk+ T̄k

can be computed from Sk and Zk alone and that Gk and Ck need not be explicitly
computed. Therefore, for the RCR, only Sk, Zk, Tk, and Dk are stored. An addition
is the scalar �k, which is typically set to be �k = s

>
k yk

�
y
>
k yk = s

>
k zk

�
y
>
k yk and may

depend on the most recent yk. As PJk =
⇥
Sk Zk

⇤
, we note a key advantage of the

RCR: that (4.1) can be written as

(4.2) Vk = �kP + PJkNkJ
>
k P

> = �kP +
⇥
Sk Zk

⇤
Nk

"
S
>
k

Z
>
k

#
.

By storing a few columns of
⇥
Sk Zk

⇤
2 Rn⇥2l (as described in section 4.4), which in

turn define a small matrix Nk 2 R2l⇥2l (cf. Lemma 1), we can separate the solves with
AA

> from other calculations. Concretely, note that solves with AA
> only occur as part

of the orthogonal projection P , which can be represented as a linear operator and does
not need to be explicitly formed. Also note that (1.7) and (4.2) are related, with the
di↵erence being that Yk and �kI in (1.7) are replaced by Zk and �kP in (4.2). Hence for
large n and m, computation with (4.2) is e�cient and requires little memory, provided
orthogonal projections with P are handled e↵ectively (as described in section 5). On
the other hand, the compact representation in (3.2) does not neatly decouple solves
with AA

> and results in perhaps prohibitively expensive computations for large m. In
particular, Gk in the middle matrix of (3.2) is defined by Gk ⌘ (AB

�1
k A

>)�1
2 Rm⇥m,

which interleaves solves with AA
> and other terms. Therefore, the RCR in (4.1)–(4.2)

is recognizably more practical for large n and m than (3.2). We apply Vk from (4.2)
to a vector g as

(4.3) h =

"
S
>
k

Z
>
k

#
g, Vkg =

⇥
Sk Zk

⇤
Nkh+ �kPg.

4.3. Computational complexity. With adequate precomputation and storage,
the cost of the matrix-vector product (4.3) is often inexpensive. If the columns of Zk

are stored, updating the small 2l⇥ 2l matrix Nk does not depend on solves with AA
>.

Moreover, factors of P can be precomputed once at k = 0 and reused. In particular,
suppose that a (sparse) QR factorization A

> =
⇥
Q1 Q2

⇤⇥
R
0

⇤
is obtained once, with

Q =
⇥
Q1 Q2

⇤
being sparse, such that the product Q

>
g takes O(rn) multiplications,

where r is constant. Subsequently, the projection Pg = g �Q1Q
>
1 g can be computed

in O(n+ 2rn) multiplications (or Pg = Q2Q
>
2 g in O(2rn) multiplications). Thus, we

summarize the multiplications in (4.3) as follows: h with 2nl, Nkh with negligible
(2l)2,

⇥
Sk Zk

⇤
Nkh with 2nl, and Pg with, say, 2nr. The total, without negligible

terms, is O(2n(2l + r)). The multiplications scale linearly with n, are related to the
sparsity in A, and are thus suited for large problems.

4.4. Updating. We store and update the columns of Zk =
⇥
zk�l · · · zk�1

⇤

one at a time and recall that zk = Pgk+1 � Pgk. Based on this, no additional solves
with AA

> are required to represent the matrix Vk+1. Specifically, suppose that we
computed and stored Pgk at the end of the previous iteration and that we compute
Pgk+1 at the end of the current iteration. We can use this vector in two places:
first to represent Zk+1 with zk = Pgk+1 � Pgk and hence Vk+1, and secondly in the
computation of Vk+1gk+1. Thus only one solve with AA

> per iteration is necessary to
update Vk+1 and to compute a step of the form s = �Vk+1gk+1.

For large problems, the limited-memory representation in (4.1) is obtained by
storing only the last l columns of Sk and Zk. With 1  l ⌧ n, limited-memory
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strategies enable computational e�ciencies and lower storage requirements [26]. Up-
dating Sk and Zk requires replacing or inserting one column at each iteration. Let an
underline below a matrix represent the matrix with its first column removed. That is,
Zk represents Zk without its first column. With this notation, a column update of a
matrix Zk by a vector zk is defined as

colUpdate (Zk, zk) ⌘

(
[ Zk zk ] if k < l,

[ Zk zk ] if k � l.

Such a column update either directly appends a column to a matrix or first removes a
column and then appends one. This column update will be used, for instance, to obtain
Zk+1 from Zk and zk, i.e., Zk+1 = colUpdate(Zk, zk). Next, let an overline above a

matrix represent the matrix with its first row removed. That is, S>
k Zk represents

S
>
k Zk without its first row. With this notation, a product update of S>

k Zk by matrices
Sk and Zk and vectors sk and zk is defined as

prodUpdate
�
S
>
k Zk, Sk, Zk, sk, zk

�
⌘

8
>>>>><

>>>>>:

"
S
>
k Zk S

>
k zk

s
>
k Zk s

>
k zk

#
if k < l,

" ⇣
S
>
k Zk

⌘
S
>
k zk

s
>
k Zk s

>
k zk

#
if k � l.

This product update is used to compute matrix products such as S
>
k+1Zk+1 with

O(2ln) multiplications, instead of O(l2n) when the product S
>
k Zk is stored and

the vectors sk and zk have been computed. Note that a diagonal matrix can be
updated in this way by setting the rectangular matrices Sk and Zk to zero and
Dk+1 = prodUpdate(Dk, 0, 0, sk, zk). An upper triangular matrix can be updated in a
similar way, e.g., Tk+1 = prodUpdate(Tk, Sk, 0, sk, zk). To save computation, products
with zero matrices are never formed explicitly.

5. Computing projections. With P = In�A
>(AA

>)�1
A, projections z = Py

can be computed by direct or iterative methods. Their e�ciency depends on the
sparsity of A.

5.1. QR factorization. When A has full row rank and the QR factorization

(5.1) A
> = Q


R

0

�
=

⇥
Q1 Q2

⇤ R
0

�
= Q1R

is available, the projection operator becomes P = I �Q1Q
>
1 = Q2Q

>
2 . Thus, z = Py

can be computed stably as z = Q2(Q>
2 y). With m < n, the QR factors are best

obtained using a product of Householder transformations [21]:

(5.2) Q
>
A

> = Hm . . . H3H2H1A
> =


R

0

�
=


Q

>
1

Q
>
2

�
A

>
.

Thus Q = H1H2H3 . . . Hm, and the operators Q1 and Q2 are available from

Q1 = Q


I

0

�
and Q2 = Q


0
I

�
.(5.3)

When A is sparse, the SuiteSparseQR software [11] permutes the columns of A> in
(5.2) to retain sparsity in Hk and R. The projection z = Py = Q2(Q>

2 y) can then be
computed e�ciently.
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One can avoid storage of Q1 by noting that Q1 = A
>
R

�1. The projection can
be computed as z = (I �Q1Q

>
1 )y = y �A

>
R

�1
R

�>
Ay, though with lower precision

than z = Q2(Q>
2 y).

5.2. Iterative computation of z. Computing QR factors is sometimes not
practical because A contains one or more relatively dense columns. (In the numerical
experiments of section 9, this occurred with only 2 out of 142 sparse constrained
problems.) The multifrontal QR solver SuiteSparseQR [11] then has to handle dense
factors, slowing computing times. For problems with thousands of constraints we
regard column j as relatively dense if nnz(A:j)/m > 0.1. When one expects the
QR factorization to be slow because of dense columns, an alternative is to solve the
least-squares problem

(5.4) min
w
kA

>
w � yk

and compute the residual z = Py = y �A
>
w. Suitable iterative solvers for (5.4) are

CGLS [23], LSQR [28], and LSMR [17]. If Ã is the same as A with any relatively
dense columns deleted, the factor R̃ from a sparse QR factorization of Ã> (again with
suitable column permutation) should be a good right-preconditioner to accelerate the
iterative solvers. If Ã does not have full row rank, the zero or small diagonals of R̃
can be changed to 1 before R̃ is used as a preconditioner.

5.3. Implementation. Appendix B describes the implementation of the two
preceding projections (Tables 1 and 2). We refer to these operations through the
definition

z ⌘ compProj(A, y, P) ⌘

(
Householder QR if P = 1,

Preconditioned LSQR if P = 2.

Note that the implementations do not require A to have full row rank.

5.4. Trust-region algorithm. To solve (1.1) we use the trust-region strategy,
which is regarded as a robust minimization method [10]. At each iteration, the method
measures progress using the ratio of actual over predicted reductions:

⇢k =
f(xk)� f(xk + sk)

q(0)� q(sk)
,

Table 1
MATLAB commands to use SparseSuite functions for computing projections z = Py using a

Householder QR factorization.

% Options
opts.Q = ‘Householder’;
opts.permutation = ‘vector’;

% QR factorization using SPQR
[Q,~,~,info] = spqr(A’,opts);
rankA = info.rank A estimate;

% Projection
ztmp = spqr qmult(Q,y,0);
zrkA = zeros(rankA,1);
z = [zrkA;ztmp(rankA+1:end)];
z = spqr qmult(Q,z,1);
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Table 2
MATLAB commands for computing projections z = Py using preconditioned LSQR (where P =

I �A>(AA>)�1A). If A has full row rank (rankA = m), LSQR should need only 1 iteration. Notes:
SPQR uses all of A> in the QR factorization A>Pmsk = QR, where Pmsk is a column permutation of
A> and R is upper trapezoidal. We store the permutation in the vector maskA. If A> does not have
full row rank, we use the first rankA columns of A>Pmsk (the command A(maskA( 1:rankA),:)’). If
A contains some relatively dense columns, we should partition APprt = [ AS AD ] into sparse and
dense columns, then use AS in place of A in the call to spqr.

% Options
opts.econ = 0;
opts.Q = ‘Householder’;
opts.permutation = ‘vector’;
tol = 1e-15;
maxit = m;

% Preconditioner using a triangular
% factor from SPQR
[~,R,maskA,info] = spqr(A’,opts);
rankA = info.rank A estimate;

% Projection
x = lsqr(A(maskA(1:rankA),:)’,y,...

tol,maxit,R(1:rankA,1:rankA));
z = y - A(maskA(1:rankA),:)’*x(1:rankA,1);

where sk is an intermediate search direction, in the sense that sk will ultimately be
used as an update only if ⇢k is greater than a threshold. By accepting steps that
fulfill the so-called su�cient decrease condition ⇢ > c1 (suppressing the subscript k on
⇢k) for a constant c1 > 0, the method successively moves towards a local minimizer
(though there is no guarantee that a minimizer will be reached). The trust-region
radius � > 0 controls the norm of the search direction by means of the constraint
ksk2  �. There are two possible cases for the solution of the trust-region subproblem:
either the search direction is in the interior of the constraint (ksk < �), or it is on the
boundary (ksk = �). Since the L-BFGS matrix Bk is positive definite, the solution
of (1.2) is given by the unconstrained minimizer s = sE from (2.1) if ksEk  �.
Otherwise, if ksEk > 0, then (1.2) is solved with the active norm constraint ksk = �.
Note that even if ksEk  �, the condition ⇢ > c1 might not hold. In this situation,
or in any case when ⇢  c1, the radius � is reduced and a new problem (1.2) (with
smaller �) and constraint ksk = � is solved. The overall trust-region strategy for one
iteration is given next, with radius � > 0 and c1 > 0 and iteration counter suppressed.

Trust-Region Strategy:
1. Compute the unconstrained step s sE from (2.1) (using (4.3)) XXXX
2. While (ksk2 > � or ⇢  c1)

2.1. Solve (1.2) with ksk = �
2.2. Reduce �

end
3. Increase (or at least do not decrease) �
4. Update iterate x x+ s

Practical aspects of an implementation include the setting of constants and starting
the method. Detailed procedures are described in sections 6, 7, 8, and 9.
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6. `2-norm trust-region constraint. With an `2-norm trust-region constraint
in (1.2), the search direction is given by

sL2 = arg min
ksk2�k

q(s) subject to As = 0.

With � � 0 denoting a scalar Lagrange multiplier, the search direction is a feasible
solution to a shifted KKT system including the norm constraint:

(6.1)


Bk + �I A

>

A 0

� 
sL2

�L2

�
=


�gk

0

�
, ksL2k2  �k.

By computing the (1,1) block of the shifted inverse KKT matrix, we note that a
necessary condition for the solution is sL2(�) = �Vk(�)gk, where

Vk(�) = (Bk + �I)�1
� (Bk + �I)�1

A
>(A(Bk + �I)�1

A
>)�1

A(Bk + �I)�1
.

For the L-BFGS matrix, with ⌧k = ⌧k(�) = (1/�k + �) we have (Bk + �I)�1 =
⌧
�1
k I + JkWk(�)J>

k , where the small 2l ⇥ 2l matrix is

Wk(�) = �


✓kS

>
k Sk ✓kLk + ⌧kTk

✓kL
>
k + ⌧kT

>
k ⌧k(⌧kDk + Y

>
k Yk)

��1

with ✓k = ⌧k(1 � �k⌧k). In terms of Ck(�) ⌘ AJkWk(�) and Gk(�) ⌘ (A(Bk +
�I)�1

A
>)�1, the compact representation of Vk(�) [6, Corollary 1] is

Vk(�) =(6.2)

1

⌧k
I +

⇥
A

>
Jk

⇤
"

�
1
⌧2

k
Gk(�) �

1
⌧k
Gk(�)Ck(�)

�
1
⌧k
Ck(�)>Gk(�) Wk(�)� Ck(�)>Gk(�)Ck(�)

#"
A

J
>
k

#
.

Once the middle matrix in (6.2) is formed, the compact representation can be used
to compute matrix-vector products e�ciently. However, when m is large (many
equality constraints), computing terms such as Gk(�) become expensive. Therefore,
we describe a reduced representation similar to (4.1), based on the property that
P

>
Vk(�)P = Vk(�) and by storing Sk and Zk. Lemma 2 summarizes the outcome.

Lemma 2. The RCR of Vk(�) in (6.2) for the L-BFGS matrix is given by

(6.3) Vk(�) =
1

⌧k
I +

⇥
A

>
Sk Zk

⇤ � 1
⌧k
(AA

>)�1

Nk(�)

�
2

64
A

S
>
k

Z
>
k

3

75 ,

where ⌧k = ⌧k(�) = (1/�k + �), ✓k = ✓k(�) = ⌧k(�)(1� �k⌧k(�)), and

Nk(�) = �


✓k(�)S>

k Sk ✓k(�)Lk + ⌧k(�)Tk

✓k(�)L>
k + ⌧k(�)T>

k ⌧k(�)(⌧k(�)Dk + Z
>
k Zk)

��1

.

Proof. To simplify notation, we suppress the explicit dependence on � in this
proof, so that Vk ⌘ Vk(�), Ck ⌘ Ck(�), and Wk ⌘ Wk(�). Multiplying Vk in (6.2)
from the left and right by P

> and P yields

Vk =
1

⌧k
P +

⇥
Sk Zk

⇤
(Wk � C

>
k GkCk)

⇥
Sk Zk

⇤>
.
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Observe that Ck = AJkWk =
⇥
0 AYk

⇤
Wk is block-rectangular and that Gk =

(A( 1
⌧k
I + JkWkJ

>
k )A>)�1 depends on Wk. Defining Fk ⌘ ⌧k(AA

>)�1, we show that
the Sherman–Morrison–Woodbury (SMW) inverse gives the simplification

Wk � C
>
k GkCk

= Wk �Wk


0

Y
>
k A

>

�
Gk

⇥
0 AYk

⇤
Wk

= Wk �Wk


0

Y
>
k A

>

� �
I +

⇥
0 FkAYk

⇤
Wk


0

Y
>
k A

>

� ��1 ⇥
0 FkAYk

⇤
Wk

=

✓
W

�1
k +


0

Y
>
k A

>

� ⇥
0 FkAYk

⇤◆�1

,

where the third equality is obtained by applying the SMW formula in reverse. Since
only the (2,2) block in the low-rank matrix of the third equality is nonzero, and since
Fk = ⌧k(AA>)�1, note that

(W�1
k )22 + Y

>
k A

>
FkAYk = �(⌧k(⌧kDk + Y

>
k Yk � Y

>
k A

>(AA
>)�1

AYk)),

which corresponds to the (2, 2) block Nk(�) in (6.3). Because all other blocks are
una↵ected, it holds that Wk � C

>
k GkCk = Nk(�). Subsequently, by factoring P =

I �A
>(AA>)�1

A we deduce the compact representation (6.3).

Note that S
>
k Zk = S

>
k Yk = Lk +Dk + T̄k, with Tk = Dk + T̄k, means that the

RCR for Vk(�) is fully specified by storing Sk and Zk. An exception is the scalar �k,
which may depend on the most recent yk. Also when � = 0, the representations (4.1)
and (6.3) coincide. We apply Vk(�) to a vector g as

h =


S
>
k

Z
>
k

�
g, Vk(�)g =

⇥
Sk Zk

⇤
Nk(�)h+

1

⌧k
Pg.

6.1. `2-norm search direction. To compute the `2 trust-region minimizer we
first set � = 0 and sL2(0) = �Vk(0)gk. If ksL2(0)k2  �k, the minimizer with the
`2-norm is given by sL2(0). Otherwise (ksL2(0)k2 > �k) we define the so-called secular
equation [10] as

�(�) ⌘
1

ksL2(�)k2
�

1

�k
.

To solve the secular equation we apply the 1D Newton iteration

�j+1 = �j �
�(�j)

�0(�j)
,

where �0(�j) = �(sL2(�j)>sL2(�j)0)/ksL2(�j)k32 and sL2(�j)0 = �Vk(�j)sL2(�j) (with
prime “ 0 ” denoting the derivative). Note that sL2(�j)0 can be derived from the shifted
system (6.1) by di↵erentiation with respect to �. Applying the product rule in (6.1)
and regarding the solutions as functions of �, i.e., s0L2 ⌘ sL2(�)0 and �

0
L2 ⌘ �L2(�)0,

one obtains the di↵erentiated system

Bk + �I A

>

A 0

� 
s
0
L2

�
0
L2

�
=


�sL2

0

�
.

Since the system matrix is the same as in (6.1) (only the right-hand side di↵ers),
sL2(�j)0 is fully determined by Vk(�j) and sL2(�j). Starting from �0 = 0, we terminate
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the Newton iteration if |�(�j+1)|  " or an iteration limit is reached. The search
direction is then computed as sL2(�j+1) = �Vk(�j+1)gk.

Our approach with the `2-norm is summarized in Algorithm 6.1. This algorithm is
based on storing and updating Sk, Zk, and the small blocks of Nk(�) in (6.3). Suppose
that s0 and z0 are obtained by an initialization procedure (for instance, Init. 1 from
section 9). With k = 0, the initial matrices that define Vk(�) are given as

Sk =
⇥
sk

⇤
, Zk =

⇥
zk

⇤
,(6.4)

Dk =
⇥
s
>
k zk

⇤
, Tk =

⇥
s
>
k zk

⇤
, Z

>
k Zk =

⇥
z
>
k zk

⇤
, Lk =

⇥
0
⇤
.(6.5)

Once the iteration starts, we update

(6.6) Sk+1 = colUpdate(Sk, sk), Zk+1 = colUpdate(Zk, zk),

Dk+1 = prodUpdate(Dk, 0, 0, sk, zk),(6.7)

Tk+1 = prodUpdate(Tk, Sk, 0, sk, zk),

Z
>
k+1Zk+1 = prodUpdate(Z>

k Zk, Zk, Zk, zk, zk), and

Lk+1 = prodUpdate(Lk, 0, Zk, sk, 0).

Note that we store and update matrices like Z
>
k Zk 2 Rl⇥l instead of recomputing

them. Because of the limited-memory technique (typically 3  l  7 [8]), such matrices
are very small relative to large n. Subsequently, Nk(�) 2 R2l⇥2l, defined by the blocks
in (6.7), remains very small compared to n.

7. Eigendecomposition of Vk. We describe how to exploit the structure of the
RCR (4.1) to compute an implicit eigendecomposition of Vk and how to combine this
with a shape-changing norm. The e↵ect is that the trust-region subproblem solution
is given by an analytic formula. Since the RCR is equivalent to representation (3.2),
we can apply previous results. However, using representation (4.1) is computationally
more e�cient. First, note that Nk 2 R2l⇥2l is a small symmetric square matrix.
Therefore, computing the nonzero eigenvalues and corresponding eigenvectors of

the matrix
⇥
Sk Zk

⇤
Nk

⇥
Sk Zk

⇤>
= U2⇤2U

>
2 is inexpensive. In particular, we

compute the thin QR factorization
⇥
Sk Zk

⇤
= bQ2

bR2 and the small eigendecomposition
bR2Nk

bR>
2 = bP2⇤2

bP>
2 . The small factorization is then

⇥
Sk Zk

⇤
Nk

⇥
Sk Zk

⇤>
= bQ2( bR2Nk

bR>
2 ) bQ>

2 = bQ2( bP2⇤2
bP>
2 ) bQ>

2 ⌘ U2⇤2U
>
2 ,

where the orthonormal matrix on the right-hand side is defined as U2 ⌘
bQ2

bP2. Since
A

>(AA>)�1
A = Q1Q

>
1 from (5.1), we express Vk as

Vk = �kI +
⇥
Q1 U2

⇤ ��kIm
⇤2

� 
Q

>
1

U
>
2

�
,

where Q1 2 Rn⇥m and U2 2 Rn⇥2l are orthonormal, while ⇤2 2 R2l⇥2l is diago-
nal. Defining the orthogonal matrix U ⌘

⇥
Q1 U2 U3

⇤
, where U3 2 Rn⇥n�(m+2l)

represents the orthogonal complement of
⇥
Q1 U2

⇤
, we obtain the implicit eigen-

decomposition of Vk as

(7.1) Vk =
⇥
Q1 U2 U3

⇤
2

4
0m

�kI2l + ⇤2

�kIn�(m+2l)

3

5

2

4
Q

>
1

U
>
2

U
>
3

3

5 ⌘ U⇤U>
.
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Algorithm 6.1. LTRL2-SLEC (limited-memory trust-region 2-norm for sparse linear
equality constraints).

Ensure: 0 < c1, 0 < c2, c3, c4, c5, c6 < 1 < c7, 0 < "1, "2, 0 < imax, k = 0, 0 < l, �k =
kxkk2, gk = rf(xk), P 2 [0, 1], gPk = compProj(A, gk, P), gPk+1, sk, zk, yk (from
initialization), Sk, Zk, Dk, Tk, Lk, Z

>
k Zk from (6.4) and (6.5), �k = s

>
k zk/y

>
k yk,

� = 0, ⌧k = (1/�k + �), ✓k = ⌧k(1� �k⌧k), Nk(�) from (6.3), k = k + 1
1: while ("1  kgPk k1) do

2: h = �
⇥
Sk Zk

⇤>
gk

3: sk =
⇥
Sk Zk

⇤
Nk(0)h� �kg

P
k ; ⇢k = 0 {Equality constrained step}

4: if kskk2  �k then
5: ⇢k = (f(xk)� f(xk + sk))/(q(0)� q(sk))
6: end if
7: while ⇢k  c1 do
8: � = 0, i = 0; ⌧k = (1/�k + �), ✓k = ⌧k(1� �k⌧k)

9: h
0 = �

⇥
Sk Zk

⇤>
sk

10: s
0
k =

⇥
Sk Zk

⇤
Nk(�)h0

� �ksk;
11: while "2 < |�(�)| and i < imax do
12: � = � � �(�)/�0(�)
13: ⌧k = (1/�k + �), ✓k = ⌧k(1� �k⌧k)

14: h = �
⇥
Sk Zk

⇤>
gk; sk =

⇥
Sk Zk

⇤
Nk(�)h�

1
⌧k
g
P
k

15: h
0 = �

⇥
Sk Zk

⇤>
sk; s0k =

⇥
Sk Zk

⇤
Nk(�)h0

�
1
⌧k
sk;

16: i = i+ 1
17: end while{Newton’s method}
18: ⇢k = 0
19: if 0 < (f(xk)� f(xk + sk)) then
20: ⇢k = (f(xk)� f(xk + sk))/(q(0)� q(sk))
21: end if
22: if ⇢k  c2 then
23: �k = min(c3kskk2, c4�k)
24: end if
25: end while
26: xk+1 = xk + sk {Accept step}
27: if c5�k  kskk2 and c6  ⇢k then
28: �k = c7�k

29: end if
30: gk+1 = rf(xk+1), g

P
k+1 = compProj(A, gk+1, P), zk = g

P
k+1 � g

P
k , yk =

gk+1� gk, Sk+1, Zk+1, Dk+1, Tk+1, Lk+1, Z
>
k+1Zk+1 from (6.6) and (6.7) �k+1 =

z
>
k sk/y

>
k yk, � = 0, ⌧k = (1/�k + �), ✓k = ⌧k(1� �k⌧k)

31: Update Nk(�) from (6.3), k = k + 1
32: end while

Note that we do not explicitly form the potentially expensive to compute orthonor-
mal matrix U3, as only scaled projections �kU3U

>
3 are needed. We therefore refer to

factorization (7.1) as being implicit. In particular, from the identity UU
> = I, we

obtain that U3U
>
3 = I �Q1Q

>
1 �U2U

>
2 = P �U2U

>
2 . Note here and above that U2 is

a thin rectangular matrix with only 2l columns.
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8. Shape-changing-norm trust-region constraint. To make use of the im-
plicit eigensystem (7.1), we apply the so-called shape-changing infinity norm introduced
in [7]:

kskU ⌘ max
n���

⇥
Q1 U2

⇤>
s

���
1

,
��U>

3 s
��
2

o
.

With this norm, the trust-region subproblem has a computationally e�cient solution
that can be obtained from

sSC = arg min
kskU�k

q(s) subject to As = 0.

Since the RCR is equivalent to (3.2), we invoke [6, section 5.5] to obtain an direct
formula for the search direction:

sSC = U2(v2 � �U
>
2 gk) + �Pgk,

where with U
>
2 gk = bP>

2
bR�>
2

⇥
Sk Zk

⇤>
gk ⌘ uk, and µi = (�k + (⇤2)ii)�1,

(v2)i =

(�(uk)i
µi

if
��� (uk)i

µi

���  �k,

��k(uk)i
|(uk)i| otherwise,

(8.1)

� =

(
��k if k�kU>

3 gkk2  �k,

��k

kU>
3
gkk2

otherwise,
(8.2)

for 1  i  2l. More details for the computation of sSC are in Appendix C. Note that
the norm kU>

3 gkk2 can be computed without explicitly forming U3, since kU>
3 gkk

2
2 =

g
>
k (P � U2U

>
2 )gk = kPgkk

2
2 � kU

>
2 gkk

2
2. The trust-region algorithm using the RCR

and the shape-changing norm is summarized in Algorithm 8.1 below. Like Algorithm
6.1, this algorithm is based on storing and updating Sk, Zk, and the small blocks of
Nk in (4.1). Therefore, the initializations (6.4)–(6.5) and updates (6.6)–(6.7) can be
used. In addition, since in the thin QR factorization

⇥
Sk Zk

⇤
= Q̂2R̂2 the triangular

R̂2 is computed from a Cholesky factorization of
⇥
Sk Zk

⇤> ⇥
Sk Zk

⇤
, we initialize

the matrices

(8.3) S
>
k Sk =

⇥
s
>
k sk

⇤
, S

>
k Zk =

⇥
s
>
k zk

⇤

with corresponding updates

S
>
k+1Sk+1 = prodUpdate(S>

k Sk, Sk, Sk, sk, sk) and(8.4)

S
>
k+1Zk+1 = prodUpdate(S>

k Zk, Sk, Zk, sk, zk).

As before, with a small memory parameter l, these matrices are very small compared
to large n, and computations with them are inexpensive.

9. Numerical experiments. The numerical experiments are carried out in
MATLAB 2016a on a MacBook Pro @2.6 GHz Intel Core i7 with 32 GB of memory.
For comparisons, we use the implementations of Algorithms 1 and 2 from [6], which
we label TR1 and TR2. All codes are available in the public domain:

https://github.com/johannesbrust/LTR LECx
For TR1, TR2 we use the modified stopping criterion kPgkk1  ✏ in place of
kPgkk2/max(1, xk)  ✏ in order to compare consistently across solvers. Unless other-
wise specified, the default parameters of these two algorithms are used. We use the
following names for our proposed algorithms:
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Algorithm 8.1. LTRSC-SLEC (limited-memory trust-region shape-changing norm for
sparse linear equality constraints).

Ensure: 0 < c1, 0 < c2, c3, c4, c5, c6 < 1 < c7, 0 < "1, 0 < l, k = 0, �k = kxkk2, gk =
rf(xk), P 2 [0, 1], gPk = compProj(A, gk, P), gPk+1, sk, zk, yk (from initialization),
Sk, Zk, Dk, Tk, Z

>
k Zk, S

>
k Sk, S

>
k Zk from (6.4), (6.5), and (8.3), �k = s

>
k zk/y

>
k yk,

Nk from (4.1), k = k + 1
1: while ("1  kgPk k1) do

2: h = �
⇥
Sk Zk

⇤>
gk

3: sk =
⇥
Sk Zk

⇤
Nkh� �kg

P
k ; ⇢k = 0 ; {Equality constrained step}

4: if kskk2  �k then
5: ⇢k = (f(xk)� f(xk + sk))/(q(0)� q(sk)); kskk = kskk2
6: end if
7: if ⇢k  c1 then

8: R̂
>
2 R̂2 =


S>
k Sk S>

k Zk

Z>
k Sk Z>

k Zk

�
{Cholesky factorization}

9: P̂2⇤2P̂
>
2 = R̂2NkR̂

>
2 {Eigendecomposition}

10: uk = P̂
>
2 R̂

�>
2

⇥
Sk Zk

⇤>
gk

11: ⇠k = (kgPk k
2
2 � kukk

2
2)

1

2

12: while ⇢k  c1 do
13: Set v2 from (8.1) using uk, ⇤2

14: Set � from (8.2) using ⇠k = kU>
3 gkk2

15: sk =
⇥
Sk Zk

⇤
R̂

�1
2 P̂2(v2 � �uk) + �g

P
k ; ⇢k = 0

16: if 0 < (f(xk)� f(xk + sk)) then
17: ⇢k = (f(xk)� f(xk + sk))/(q(0)� q(sk))
18: end if
19: if ⇢k  c2 then
20: �k = min(c3kskkU , c4�k)
21: end if
22: end while
23: kskk = kskkU
24: end if
25: xk+1 = xk + sk{Accept step}
26: if c5�k  kskk and c6  ⇢k then
27: �k = c7�k

28: end if
29: gk+1 = rf(xk+1), gPk+1 = compProj(A, gk+1, P), zk = g

P
k+1�g

P
k , yk = gk+1�gk,

Sk+1, Zk+1, Dk+1, Tk+1, Z
>
k+1Zk+1, S

>
k+1Sk+1, S

>
k+1Zk+1 from (6.6), (6.7) and

(8.4); �k+1 = z
>
k sk/y

>
k yk

30: Update Nk from (4.1); k = k + 1
31: end while

TR1H: Algorithm 6.1 with representation (6.3) and Householder QR
TR1L: Algorithm 6.1 with representation (6.3) and preconditioned LSQR
TR2H: Algorithm 8.1 with representation (4.1) and Householder QR
TR2L: Algorithm 8.1 with representation (4.1) and preconditioned LSQR
Note that TR1 and TR2 were developed for low-dimensional linear equality con-

straints. In addition, we include IPOPT [30] with an L-BFGS quasi-Newton matrix
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(we use a precompiled Mex file with IPOPT 3.12.12 that includes MUMPS and MA57
libraries). We note that a commercial state-of-the-art quasi-Newton trust-region
solver that uses a projected conjugate gradient solver is implemented in the KNITRO-

INTERIOR/CG [9, Algorithm 3.2]. For the freely available IPOPT we specify the
L-BFGS option using the option hessian approximation=‘limited memory’ with
tol=1e-5. (The parameter tol is used by IPOPT to ensure that the (scaled) projected
gradient in the infinity norm and the constraint violation are below the specified
threshold. The default value is tol=1e-8.) All other parameters in IPOPT are at their
default values unless otherwise specified. The parameters in TR1{H,L} and TR2{H,L}
are set to c1 (as machine epsilon), c2 = 0.75, c3 = 0.5, c4 = 0.25, c5 = 0.8, c6 = 0.25,
c7 = 2, and imax = 10. The limited-memory parameter of all compared TR solvers is
set to l = 5 (IPOPT’s default is l = 6). Because the proposed methods are applicable
to problems with a large number of constraints, problems with large dimensions such
as m � 104, n � 105 are included. Throughout the experiments, A 2 Rm⇥n with
m < n.

To initialize the algorithm, we distinguish two main cases. If x0 is not available,
it is computed as the minimum-norm solution x0 = argminxkxk2 subject to Ax = b

(e.g., x0 = A
>(AA

>)�1
b when A is full rank.) If x̂0 is provided but is infeasible, the

initial vector can be computed from p0 = argminpkpk2 subject to Ap = b�Ax̂0 and
x0 = x̂0 + p0. To compute the initial vectors s0 = x1 � x0, z0 = Pg1 � Pg0, and
y0 = g1 � g0 we determine an initial x1 value also. Suppose that at k = 0, all of xk,
gk = rf(xk), and g

P
k = Pgk are known. An initialization for sk, zk, and yk at k = 0

is the following:
Init. 1:
1. Backtracking line-search: xk+1 = xk � ↵g

P
k /kg

P
k k2 (cf. [27, Algorithm 3.1])

2. gk+1 = rf(xk+1), gPk+1 = compProj(A, gk+1, P)
3. sk = xk+1 � xk,

3. zk = g
P
k+1 � g

P
k ,

3. yk = gk+1 � gk

Once s0, z0, and y0 have been initialized (with initial radius �0 = ks0k2), all other
updates are done automatically within the trust-region strategy.

The outcomes from the subsequent Experiments I–III are summarized in Figures
1–3 as performance profiles (Dolan and Moré [15], extended in [25], and often used to
compare the e↵ectiveness of various solvers). Detailed information for each problem
instance is in Tables 3–5. Relative performances are displayed in terms of iterations
and computation times. The performance metric ⇢s(⌧) on np test problems is given by

⇢s(⌧) =
card {p : ⇡p,s  ⌧}

np
and ⇡p,s =

tp,s

min tp,i
1iS, i 6=s

,

where tp,s is the “output” (i.e., iterations or time) of “solver” s on problem p, and S

denotes the total number of solvers for a given comparison. This metric measures the
proportion of how close a given solver is to the best result. Extended performance
profiles are the same as the classical ones but include the part of the domain where
⌧  1. In the profiles we include a dashed vertical grey line to indicate ⌧ = 1. We
note that although the iteration numbers are recorded di↵erently for each solver, they
correspond approximately to the number of KKT systems solved.

Overall, we observe that the number of iterations used by the respective solvers
is relatively similar across di↵erent problems. However, the di↵erences in computa-
tion times are large. In particular, the RCR implementations use the least time
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2-1 1 2 22 23 24 25

=
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0.2

0.4

0.6

0.8

1

;
s(=
)

ITER

TR1

TR1H

TR1L

TR2

TR2H

TR2L

IPOPT

2-1 1 2 22 23 24 25

=

0

0.2

0.4

0.6

0.8

1

;
s(=
)

TIME

TR1

TR1H

TR1L

TR2

TR2H

TR2L

IPOPT

Fig. 1. Comparison of the 7 solvers from Experiment I using performance profiles [15] on
50 test problems from [12]. TR2H and TR1H converge on all problem instances (100%). TR2L,
TR1L, and IPOPT converge on 47 problems (94%). TR2 and TR1 are not applied to 9 large
problems. In the right plot, TR2L and TR1L are the fastest (as seen from their curves being above
others), while TR2H and TR1H are the most robust (as seen from their curves ultimately reaching
the top of the plot). Overall, TR2{H,L} and TR1{H,L} are faster than the other solvers.

2-1 1 2 22 23 24 25

=

0

0.2

0.4

0.6

0.8

1

;
s(=
)

ITER

TR1

TR1H

TR1L

TR2

TR2H

TR2L

IPOPT

2-1 1 2 22 23 24 25

=

0

0.2

0.4

0.6

0.8

1

;
s(=
)

TIME

TR1

TR1H

TR1L

TR2

TR2H

TR2L

IPOPT

Fig. 2. Comparison of the 7 solvers from Experiment II using performance profiles on 62 test
problems from [22]. TR1L converged on 58 problems. All other solvers except IPOPT converged on
57 problems. In the left plot, the iteration numbers for TR1, TR1{H,L}, TR2, and TR2{H,L} are
similar, as seen by the tight clustering of the lines. However, the computational times of TR1 and
TR2 are markedly higher than those of TR1{H,L} and TR2{H,L}, as seen from the widening gap
in the right plot.

in almost all problem instances. This is possible because RCR enables an e�-
cient decoupling of computations with the constraint matrix A and remaining small
terms.

9.1. Experiment I. This experiment uses problems with sparse and possibly
low-rank A 2 Rm⇥n. The objective is the Rosenbrock function

f(x) =

n/2X

i=1

(x2i � x2i�1)
2 + (1� x2i�1)

2
,

where n is an even integer. The matrices A 2 Rm⇥n are obtained from the SuiteSparse
Matrix Collection [13]. Because TR1 and TR2 were not developed for problems with
a large number of constraints, these solvers are only applied to problems for which
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;
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s(=
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TR1
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TR2
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Fig. 3. Comparison of the 7 solvers from Experiment III using performance profiles on 31 large
linear equality constrained test problems from [22]. TR1 and TR2 are applied to 6 problems (they
are not practical on the remaining problems because of their size). TR2H (also TR1H) converged
on all 31 instances. TR1L, TR2L, and IPOPT converged on 30 problems. In the ITER plot the
number of iterations is relatively similar across the solvers that converged. In the TIME plot there is
a gap between TR1{H,L},TR2{H,L}, and IPOPT. TR2L can have computational advantages but
appears slightly less robust than TR2H, as seen from the final staircase in the TIME plot.

m  2500. All other solvers were run on all test problems. Convergence of an algorithm
is determined when two conditions are satisfied:

(9.1) kPgkk1 < 10�5 and kAxk � bk2 < 10�7
.

We summarize the outcomes in Figure 1 and Table 3.
In this experiment we observe that our proposed algorithms (any of TR1{H,L},

TR2{H,L}) perform well in terms of computing time. Both “H” versions of the proposed
algorithms converged to the prescribed tolerances on all problems. On the other hand,
the “L” versions are often the overall fastest, yet they did not converge on 3 problem
instances (beacxc, lp cre d, fit2d).

After rerunning the 3 problems for which IPOPT did not converge, we note that
IPOPT did converge to its own (scaled) tolerances on one of these problems (beacxc),
yet the computed solution did not satisfy (9.1). On the other two problems (lp cre d,
fit2d), IPOPT returned a message such as info.status=�2, which is caused by an
abort when the “restoration phase” is called at an almost feasible point.

9.2. Experiment II. In a second experiment, we compare the 7 solvers on
large problems from the CUTEst collection [22]. The dimension n is determined by
the size of the corresponding CUTEst problem, while we set m to be about 25%
of n, i.e., m=ceil(0.25n). The matrices A are formed as A=sprand(m,n,0.1) with
rng(090317). Convergence is determined by each algorithm internally. For TR1, TR1H,
TR1L, TR2, TR2H, TR2L the conditions kPgkk1 < 1⇥10�5 and kAxk�bk2 < 5⇥10�8

are explicitly enforced, while for IPOPT we set options ipopt.ipopt.tol=1e-5. We
use the iteration limit of 100, 000 for all solvers. The limited-memory parameter is
l = 5 for all TR solvers and l = 6 (default) for IPOPT. We summarize the outcomes in
Figure 2 and Table 4.

9.3. Experiment III. In a third experiment we compare the 7 solvers on 31
linear equality constrained problems from CUTEst. Four of these problems (AUG2D,
AUG2DC, AUG3D, AUG3DC) directly correspond to the problem formulation (1.1). The
remaining problems have additional bound constraints, which are relaxed in this
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Table 3
Experiment I compares 7 solvers on problems from the SuiteSparse Matrix Collection [13].

Entries with N/A⇤ denote problems to which TR1 and TR2 were not applied because they are too
large. NC† means the solver did not converge to tolerances. TR2H and TR1H converged on all
problem instances. Overall, the computational times of TR2{H,L} and TR1{H,L} were lower by a
significant factor compared to the times of TR1, TR2, and IPOPT. The number of iterations for
each solver is similar across all problems.

Problem m/n rank(A)
TR2 TR2H TR2L TR1 TR1H TR1L IPOPT

It Sec It Sec It Sec It Sec It Sec It Sec It Sec
beacxc 497/506 449/0.2 73 0.52 25 0.044 25 0.15 419 3.8 25 0.041 25 0.15 NC† NC
lp 25fv47 821/1876 820/0.007 60 0.82 60 0.21 60 0.14 62 0.85 62 0.22 62 0.14 61 0.73
lp agg2 516/758 516/0.01 40 0.21 40 0.054 40 0.052 42 0.21 42 0.056 42 0.055 41 0.22
lp agg3 516/758 516/0.01 39 0.21 39 0.051 39 0.051 39 0.2 39 0.052 39 0.051 44 0.24
lp bnl1 643/1586 642/0.005 70 0.57 70 0.14 70 0.079 67 0.6 67 0.14 67 0.078 62 0.59
lp bnl2 2324/4486 2324/0.001 69 11 69 0.62 69 0.28 69 11 69 0.52 69 0.27 67 2.2
lp cre a 3516/7248 3428/0.0007 N/A⇤ N/A 83 0.65 83 0.37 N/A⇤ N/A 88 0.71 88 0.38 87 3.3
lp cre d 8926/73948 6476/0.0004 N/A⇤ N/A 556 1.2e+02 510 24 N/A⇤ N/A 503 1e+02 552 25 NC† NC
lp czprob 929/3562 929/0.003 17 0.27 17 0.059 17 0.032 17 0.25 17 0.049 17 0.028 18 0.34
lp d6cube 415/6184 404/0.01 35 0.22 35 0.4 35 0.17 36 0.21 36 0.44 36 0.18 38 1.1
lp degen3 1503/2604 1503/0.006 39 2.2 39 0.25 39 0.25 39 2.3 39 0.27 39 0.24 40 1.5
lp dfl001 6071/12230 6071/0.0005 N/A⇤ N/A 226 16 231 19 N/A⇤ N/A 226 16 238 20 207 1.2e+02
lp etamacro 400/816 400/0.008 78 0.27 78 0.12 78 0.085 86 0.29 86 0.13 86 0.09 68 0.44
lp fffff800 524/1028 524/0.01 NC† NC 61 0.095 NC† NC NC† NC 59 0.097 NC† NC 57 0.45
lp finnis 497/1064 497/0.005 150 0.72 151 0.2 156 0.13 159 0.69 155 0.2 155 0.14 167 1.2
lp fit2d 25/10524 25/0.5 266 1.3 266 0.9 258 0.88 247 1.4 261 0.91 279 0.99 NC† NC
lp ganges 1309/1706 1309/0.003 41 1.3 41 0.11 41 0.067 41 1.4 41 0.12 41 0.073 37 0.43
lp gfrd pnc 616/1160 616/0.003 NC† NC 54 0.054 54 0.043 NC† NC 54 0.052 54 0.042 48 0.36
lp greenbea 2392/5598 2389/0.002 149 47 149 1.2 149 0.63 157 33 153 1.3 150 0.72 181 6.8
lp greenbeb 2392/5598 2389/0.002 149 45 149 1.2 149 0.65 157 31 153 1.3 150 0.65 181 6.5
lp grow22 440/946 440/0.02 79 0.24 79 0.079 79 0.071 79 0.24 79 0.08 79 0.069 65 0.36
lp ken 07 2426/3602 2426/0.001 34 12 34 0.091 34 0.067 34 7.4 34 0.093 34 0.07 31 0.85
lp maros 846/1966 846/0.006 74 0.87 74 0.21 NC† NC 74 0.86 74 0.21 NC† NC 71 0.92
lp maros r7 3136/9408 3136/0.005 N/A⇤ N/A 57 2.1 57 2.2 N/A⇤ N/A 57 2.1 57 2.3 51 25
lp modszk1 687/1620 686/0.003 71 0.51 71 0.13 71 0.07 71 0.51 71 0.14 71 0.071 70 0.53
lp osa 30 4350/104374 4350/0.001 N/A⇤ N/A 46 8.5 46 1.9 N/A⇤ N/A 45 8.8 45 2 43 30
lp osa 60 10280/243246 10280/0.0006 N/A⇤ N/A 47 24 47 5.9 N/A⇤ N/A 44 23 44 5.9 42 1.1e+02
lp pds 02 2953/7716 2953/0.0007 N/A⇤ N/A 25 0.25 25 0.14 N/A⇤ N/A 25 0.24 25 0.099 26 1.3
lp pds 10 16558/49932 16558/0.0001 N/A⇤ N/A 61 13 61 8.1 N/A⇤ N/A 60 13 60 7.9 59 62
lp perold 625/1506 625/0.007 58 0.39 58 0.16 58 0.084 58 0.38 58 0.16 58 0.087 57 0.59
lp pilot 1441/4860 1441/0.006 105 13 105 1.3 105 0.83 109 6.2 109 1.3 109 0.97 117 5.8
lp pilot87 2030/6680 2030/0.006 102 17 102 2.6 102 1.9 104 15 104 2.7 104 1.9 110 15
lp pilot we 722/2928 722/0.004 73 0.69 73 0.24 73 0.11 73 0.65 73 0.21 73 0.11 81 1.4
lp pilotnov 975/2446 975/0.006 77 1.3 77 0.35 NC† NC 77 1.3 77 0.35 NC† NC 78 1.3
lp qap12 3192/8856 3192/0.001 N/A⇤ N/A 27 3.3 27 3.7 N/A⇤ N/A 26 3.1 26 3.6 25 1.4e+02
lp qap8 912/1632 912/0.005 20 0.42 20 0.15 20 0.11 22 0.31 22 0.15 22 0.1 21 1.9
lp scfxm1 330/600 330/0.01 45 0.1 45 0.042 45 0.036 44 0.098 44 0.041 44 0.036 44 0.19
lp scfxm2 660/1200 660/0.007 52 0.42 52 0.079 52 0.056 57 0.43 57 0.094 57 0.06 55 0.46
lp scfxm3 990/1800 990/0.005 45 0.8 45 0.096 45 0.061 45 0.76 45 0.097 45 0.062 48 0.54
lp scsd1 77/760 77/0.04 74 0.035 74 0.035 74 0.044 74 0.033 74 0.034 74 0.043 NC† NC
lp scsd6 147/1350 147/0.02 84 0.077 84 0.054 84 0.06 92 0.084 92 0.06 92 0.065 75 0.34
lp scsd8 397/2750 397/0.008 66 0.21 66 0.07 66 0.066 65 0.21 65 0.069 65 0.066 66 0.54
lp sctap1 300/660 300/0.009 107 0.25 107 0.088 107 0.075 102 0.24 102 0.081 102 0.07 100 0.45
lp sctap2 1090/2500 1090/0.003 145 5.5 146 0.43 146 0.18 145 3.6 143 0.46 146 0.19 157 2.3
lp sctap3 1480/3340 1480/0.002 204 27 205 0.75 201 0.39 199 13 197 0.74 202 0.39 220 4.3
lp ship04l 402/2166 360/0.007 84 0.25 84 0.12 84 0.077 84 0.27 84 0.12 84 0.08 92 0.84
lp ship04s 402/1506 360/0.007 74 0.17 74 0.063 74 0.053 74 0.16 74 0.065 74 0.055 71 0.48
lp stair 356/614 356/0.02 47 0.11 47 0.047 47 0.046 47 0.11 47 0.047 47 0.045 47 0.23
lp standata 359/1274 359/0.007 78 0.22 78 0.072 78 0.058 79 0.21 79 0.067 79 0.057 80 0.65
lp standmps 467/1274 467/0.007 52 0.21 52 0.06 52 0.042 52 0.21 52 0.065 52 0.043 58 0.48

experiment. Problems 1–19 in Table 5 are convex and can immediately be attempted
by the solvers (with bounds released). Problems 20–31 are not convex when the bounds
are relaxed, but adding the term �

2kxk
2
2 with � = 10 to the objective functions produced

finite solutions for these problems. As in the previous experiment, convergence is
determined by each algorithm internally. For TR1, TR1H, TR1L, TR2, TR2H, TR2L

the conditions kPgkk1 < 1⇥ 10�5 and kAxk � bk2 < 5⇥ 10�8 are explicitly enforced,
while for IPOPT we set options ipopt.ipopt.tol=1e-5. We use the iteration limit
of 100, 000 for all solvers. The limited-memory parameter is l = 5 for all TR solvers
and l = 6 (default) for IPOPT. Since TR1 and TR2 are not designed for large m,
they are applied to problems with m < 2500, with the exception of 3 problems
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Table 4
Experiment II compares 7 solvers on 61 large problems from the CUTEst collection [22]. NC†

means the solver did not converge to tolerances. MX† means the iteration limit was reached. TR1L
converged on 58 problems, the largest number of problems among the solvers. TR2H was faster than
TR2 on 51 problems, and TR2L was faster than TR2 on 46 problems (the di↵erences are often
significant). TR1H was faster than TR1 on 49 problems, and TR1L was faster than TR1 on 41
problems (often significantly). All of TR1{H,L} and TR2{H,L} were faster than IPOPT.

Problem m/n
TR2 TR2H TR2L TR1 TR1H TR1L IPOPT

It Sec It Sec It Sec It Sec It Sec It Sec It Sec
ARWHEAD 1250/5000 343 1.7e+02 349 19 372 19 264 72 304 16 315 16 NC† NC
BDQRTIC 1250/5000 181 50 174 8.1 187 9.9 174 31 186 8.9 160 8.4 78 1.2e+02
BOX 2500/10000 240 1.5e+03 280 63 281 79 218 2.1e+02 258 54 208 58 NC† NC
BROYDN7D 1250/5000 355 20 370 18 367 18 355 20 370 17 381 19 432 6.5e+02
BRYBND 1250/5000 897 1.5e+02 883 45 1273 64 1396 1.2e+02 1177 60 1421 70 1027 1.7e+03
COSINE 2500/10000 NC† NC 5028 1e+03 4527 1.2e+03 4755 2e+03 7318 1.6e+03 3292 910 NC† NC
CRAGGLVY 1250/5000 373 63 371 18 369 19 400 45 390 20 397 21 205 3.4e+02
CURLY10 2500/10000 1563 7.2e+02 2498 5.3e+02 1496 429 1512 4.5e+02 1549 347 1759 4.9e+02 1775 3e+04
CURLY20 2500/10000 1951 9.5e+02 2015 455 1993 552 3149 9.5e+02 4110 8.7e+02 3836 1.1e+03 NC† NC
CURLY30 2500/10000 4457 2.8e+03 4210 952 3669 1e+03 2744 783 6940 1.6e+03 6145 1.7e+03 NC† NC
DIXMAANA 750/3000 10 0.53 10 0.43 10 0.51 10 0.5 10 0.47 10 0.46 13 8.3
DIXMAANB 750/3000 9 0.55 9 0.5 9 0.5 9 0.59 9 0.5 9 0.55 11 8.1
DIXMAANC 750/3000 12 0.73 12 0.67 12 0.72 12 0.65 12 0.63 12 0.69 14 10
DIXMAAND 750/3000 23 1.7 23 1.1 23 1.2 22 0.93 22 0.83 22 1 27 16
DIXMAANE 750/3000 35 1.1 35 1 35 1.1 35 0.83 35 0.88 35 1.1 41 18
DIXMAANF 750/3000 183 5.2 194 3.9 194 5.7 194 6.6 195 4.9 203 6.7 297 1.3e+02
DIXMAANG 750/3000 434 19 397 8.3 439 12 435 13 408 9.8 404 11 NC† NC
DIXMAANH 750/3000 433 14 470 11 454 13 459 11 421 9.3 443 12 422 1.8e+02
DIXMAANI 750/3000 82 2 82 1.8 82 2.4 82 1.6 82 1.8 82 2.5 103 46
DIXMAANJ 750/3000 1054 41 1506 35 1023 27 1415 42 1490 34 944 24 NC† NC
DIXMAANK 750/3000 2971 1e+02 3026 65 3082 71 2831 80 2870 61 2691 62 NC† NC
DIXMAANL 750/3000 1461 38 3198 69 2609 60 2690 66 2728 58 2597 59 NC† NC
DIXON3DQ 2500/10000 51 17 51 12 51 17 51 17 51 12 51 16 56 6.7e+02
DQDRTIC 1250/5000 13 1.7 7 0.85 7 0.77 13 1.5 7 0.75 7 0.75 7 13
DQRTIC 1250/5000 63 4.6 107 6.7 107 7 63 4.5 107 5.7 107 6.1 93 1.5e+02
EDENSCH 500/2000 32 0.33 32 0.4 32 0.38 32 0.32 32 0.39 32 0.36 34 5
EG2 250/1000 423 2.2 504 1.3 439 1.3 514 5.2 624 2 502 1.9 908 23
ENGVAL1 1250/5000 31 2.7 31 1.8 31 2 31 2.6 31 1.9 31 2 38 61
EXTROSNB 250/1000 148 0.44 148 0.45 148 0.49 145 0.53 145 0.46 145 0.39 129 3
FLETCHCR 250/1000 150 0.4 150 0.46 150 0.51 150 0.37 150 0.42 150 0.41 137 3.1
FMINSRF2 1407/5625 122 10 122 9.3 122 10 122 10 122 7.8 122 9.6 167 4e+02
FREUROTH 1250/5000 287 1e+02 247 12 235 13 274 37 255 13 234 13 202 3.2e+02
GENHUMPS 1250/5000 2215 1.2e+02 1762 99 1829 93 2215 1.3e+02 1762 98 1829 95 NC† NC
LIARWHD 1250/5000 3854 1.6e+03 3998 4.4e+02 2726 196 2638 1.2e+03 2408 2.6e+02 1591 128 NC† NC
MOREBV 1250/5000 151 23 151 22 151 20 151 19 151 16 151 16 NC† NC
MSQRTALS 256/1024 MX† MX MX† MX MX† MX MX† MX 78461 6.6e+02 99724 620 NC† NC
MSQRTBLS 256/1024 MX† MX MX† MX MX† MX MX† MX MX† MX MX† MX NC† NC
NCB20 1253/5010 345 47 348 18 349 18 314 33 317 16 307 16 252 3.9e+02
NONCVXU2 1250/5000 185 20 185 9 185 9.5 186 14 187 9.2 186 9.4 120 1.9e+02
NONCVXUN 1250/5000 282 33 283 14 282 14 360 31 354 17 370 19 199 3.1e+02
NONDIA 1250/5000 1612 6.9e+02 1600 88 1734 88 2764 7.3e+02 1407 78 1907 98 NC† NC
NONDQUAR 1250/5000 897 4.3e+02 865 47 811 42 816 2.1e+02 876 47 857 44 332 8.1e+02
PENALTY1 250/1000 8 0.051 2 0.018 2 0.017 8 0.056 2 0.019 2 0.016 1 0.043
POWELLSG 1250/5000 88 6.1 88 4.4 88 4.6 88 5.6 88 4.4 88 4.6 99 1.5e+02
POWER 2500/10000 51 17 MX† MX MX† MX 51 17 MX† MX MX† MX 62 6.9e+02
QUARTC 1250/5000 70 4.9 104 5.3 104 5.4 70 4.5 104 5.1 104 5.6 89 1.4e+02
SCHMVETT 1250/5000 MX† MX 70882 3.9e+03 MX† MX NC† NC MX† MX 96572 5.1e+03 NC† NC
SINQUAD 1250/5000 236 56 282 15 214 11 247 32 216 12 277 14 116 1.8e+02
SPARSQUR 2500/10000 35 13 43 10 43 14 35 13 43 9.9 43 14 31 3.5e+02
SPMSRTLS 1250/4999 2222 2.7e+02 1791 95 2377 1.2e+02 2792 2e+02 2475 1.3e+02 1834 98 NC† NC
SROSENBR 1250/5000 5561 4.1e+02 8211 4.3e+02 4814 235 6400 4.3e+02 6747 3.6e+02 5280 270 NC† NC
TOINTGSS 1250/5000 39 3.1 39 2.2 39 2.3 39 3 39 2.3 39 2.3 49 76
TQUARTIC 1250/5000 2069 8.7e+02 1155 64 1508 78 1494 3.7e+02 1867 1e+02 1871 98 NC† NC
TRIDIA 1250/5000 147 9 82 4.2 82 4.3 147 9.1 82 4.2 82 4.4 66 1e+02
WOODS 1000/4000 1192 45 1157 38 1077 27 1236 44 1167 37 1132 29 971 1.3e+03
SPARSINE 1250/5000 1504 1.7e+02 1476 79 1464 74 2188 1.6e+02 1407 74 3999 2e+02 2294 5.6e+03
TESTQUAD 1250/5000 10988 623 14186 7.3e+02 13357 6.5e+02 10988 643 14186 7.3e+02 13357 6.6e+02 NC† NC
JIMACK 888/3549 NC† NC NC† NC NC† NC NC† NC NC† NC NC† NC NC† NC
NCB20B 1250/5000 57 4.1 56 3.2 56 3.2 57 4.2 56 3.1 56 3.2 47 73
EIGENALS 638/2550 202 3.2 204 3.7 203 4.1 202 3 204 3.6 203 4 161 43
EIGENBLS 638/2550 28 0.59 28 0.65 28 0.6 28 0.51 28 0.52 28 0.62 28 7.7

(BLOWEYA, BLOWEYB, BLOWEYC) that did not terminate within hours using TR1 and
TR2. All other solvers are applied to all problems. The results are in Figure 3 and
Table 5.
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Table 5
Experiment III compares 7 solvers on 31 linear equality constrained problems from the CUTEst

collection [22]. NC† means the solver did not converge to tolerances. N/A means that TR1 and
TR2 were not applied because the problem size rendered them not practical. TR2H and TR1H
converged on all 31 problems. TR2L, TR1L, and IPOPT converged on 30 problems (the exception
is CVXQP 2). The fastest and second fastest solvers for each problem are highlighted in bold and italic
fonts, respectively. Overall, TR2H was fastest on 12 problems (the best outcome on this experiment),
while TR1L was fastest on 11 problems (the second best outcome). Problems A 0ESDNDL and A 0ESINDL
contain dense columns in A, and the sparse QR factorization takes additional time as seen from
the entries of TR2H and TR1H. However, preconditioned LSQR can overcome this di�culty, as
observed in the entries for TR2L and TR1L for these problem instances.

Problem m/n
TR2 TR2H TR2L TR1 TR1H TR1L IPOPT

It Sec It Sec It Sec It Sec It Sec It Sec It Sec
AUG2D 10000/20200 N/A⇤ N/A 7 0.26 7 0.15 N/A⇤ N/A 7 0.24 7 0.13 12 1.4
AUG2DC 10000/20200 N/A⇤ N/A 2 0.11 2 0.067 N/A⇤ N/A 2 0.1 2 0.067 1 0.15
AUG2DCQP 10000/20200 N/A⇤ N/A 2 0.11 2 0.072 N/A⇤ N/A 2 0.11 2 0.07 1 0.16
AUG2DQP 10000/20200 N/A⇤ N/A 7 0.23 7 0.13 N/A⇤ N/A 7 0.24 7 0.13 12 1.4
AUG3D 8000/27543 N/A⇤ N/A 10 0.68 10 0.52 N/A⇤ N/A 10 0.6 10 0.51 11 2.6
AUG3DC 8000/27543 N/A⇤ N/A 2 0.3 2 0.28 N/A⇤ N/A 2 0.3 2 0.26 1 0.31
AUG3DCQP 8000/27543 N/A⇤ N/A 2 0.3 2 0.27 N/A⇤ N/A 2 0.33 2 0.26 1 0.33
AUG3DQP 8000/27543 N/A⇤ N/A 10 0.74 10 0.55 N/A⇤ N/A 10 0.64 10 0.5 11 2.6
CVXQP1 5000/10000 N/A⇤ N/A 827 7.8 805 3.8 N/A⇤ N/A 827 7.3 805 3.8 740 51
CVXQP2 2500/10000 N/A⇤ N/A 39596 1.5e+02 NC† NC N/A⇤ N/A 47572 1.8e+02 NC† NC NC† NC
CVXQP3 7500/10000 N/A⇤ N/A 169 2.8 169 1.4 N/A⇤ N/A 169 2.4 169 1.4 118 8.9
STCQP1 4095/8193 N/A⇤ N/A 88 0.15 88 0.42 N/A⇤ N/A 88 0.18 88 0.36 75 6.8e+02
STCQP2 4095/8193 N/A⇤ N/A 142 0.25 142 0.8 N/A⇤ N/A 144 0.28 144 0.72 136 4.8
DTOC1L 3996/5998 N/A⇤ N/A 13 0.073 13 0.13 N/A⇤ N/A 13 0.075 13 0.14 16 0.41
DTOC3 2998/4499 N/A⇤ N/A 5 0.025 5 0.059 N/A⇤ N/A 5 0.03 5 0.033 4 0.09
PORTSQP 1/100000 2 0.09 2 0.064 2 0.067 2 0.062 2 0.059 2 0.062 1 0.42
HUES-MOD 2/5000 1 0.0028 1 0.0018 1 0.0027 1 0.0026 1 0.0018 1 0.0026 1 0.024
HUESTIS 2/5000 2 0.0073 2 0.0042 2 0.011 2 0.0061 2 0.0047 2 0.0094 2 0.072
A0ESDNDL 15002/45006 N/A⇤ N/A 5 69 5 0.13 N/A⇤ N/A 5 71 5 0.12 6 1.8
A0ESINDL 15002/45006 N/A⇤ N/A 5 73 5 0.12 N/A⇤ N/A 5 70 5 0.11 6 1.8
PORTSNQP 2/100000 NC† NC 2 0.092 2 0.11 14 0.47 2 0.095 2 0.1 2 0.88
BLOWEYA 2002/4002 N/A⇤ N/A 2 0.011 2 0.031 N/A⇤ N/A 2 0.015 2 0.021 2 0.082
BLOWEYB 2002/4002 N/A⇤ N/A 2 0.015 2 0.019 N/A⇤ N/A 2 0.016 2 0.019 2 0.082
BLOWEYC 2002/4002 N/A⇤ N/A 2 0.015 2 0.017 N/A⇤ N/A 2 0.015 2 0.021 2 0.15
CONT5-QP 40200/40601 N/A⇤ N/A 2 0.51 2 0.79 N/A⇤ N/A 2 0.49 2 0.8 2 1.3
DTOC1L 3996/5998 N/A⇤ N/A 5 0.03 5 0.09 N/A⇤ N/A 5 0.043 5 0.045 4 0.12
FERRISDC 210/2200 2 0.084 2 0.083 2 0.077 2 0.076 2 0.078 2 0.079 0 0.021

GOULDQP2 9999/19999 N/A⇤ N/A 2 0.038 2 0.025 N/A⇤ N/A 2 0.038 2 0.026 2 0.2
GOULDQP3 9999/19999 N/A⇤ N/A 6 0.076 6 0.054 N/A⇤ N/A 6 0.077 6 0.053 7 0.69
LINCONT 419/1257 5 0.058 5 0.02 5 0.031 5 0.05 5 0.019 5 0.03 5 0.055
SOSQP2 2501/5000 N/A⇤ N/A 3 0.017 3 0.04 N/A⇤ N/A 3 0.022 3 0.019 4 0.11

10. Conclusion. For subproblem (1.2), this article develops the RCR of the (1,1)
block in the inverse KKT matrix, when the objective Hessian is approximated by a
compact quasi-Newton matrix. The representation is based on the fact that part of
the solution to the KKT system is una↵ected when it is projected onto the nullspace
of the constraints. An advantage of the RCR is that it enables a decoupling of solves
with the constraint matrix and remaining small terms. Moreover, a projected gradient
can be used in two places: once as part of the matrix update and second as part of
the new step. By e↵ectively handling orthogonal projections, in combination with
limited-memory techniques, we can compute search directions e�ciently. We apply
the orthogonal projections with a sparse QR factorization or a preconditioned LSQR
iteration, including large and potentially rank-deficient constraints. The RCRs are
implemented in two trust-region algorithms, one of which exploits the underlying
matrix structures in order to compute the search direction by an analytic formula.
The other is based on an `2-norm and uses the RCR within a 1D Newton iteration to
determine the optimal scalar shift. In numerical experiments on large problems, our
implementations of the RCR yield often significant improvements in the computation
time as a result of the advantageous structure of the proposed matrices.
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Applications of problem (1.1) often include bounds `  x  u. When second
derivatives of the objective function are available, the problem is best handled by
an interior method. Otherwise, a barrier function could be added to the objective,
and the methods here may sometimes be e↵ective on a sequence of large equality
constrained subproblems.

Appendix A. Here we describe a simplified expression for the matrix C
>
k GkCk

from section 4.2. Recall that the L-BFGS inverse B
�1
k = �kI + JkWkJ

>
k is defined by

Jk =
⇥
Sk Yk

⇤
, Wk =


T

�>
k (Dk + �kY

>
k Yk)T

�1
k ��kT

�>
k

��kT
�1
k 0l⇥l

�
.

First, note that

Ck ⌘ AJkWk =
⇥
0 AYk

⇤
Wk =

⇥
��kAYkT

�1
k 0

⇤
.

Second, it holds that

G
�1
k ⌘ AB

�1
k A

> = �kAA
> +AJkWkJ

>
k A

> = �kAA
> + Ck


0

(AYk)>

�
,

so that G�1
k = �kAA

>, because the last term in the above expression for G�1
k vanishes.

Multiplying C
>
k , Gk, and Ck we see that

C
>
k GkCk =


�kT

�>
k Y

>
k A

>(AA
>)�1

AYkT
�1
k 0l⇥l

0l⇥l 0l⇥l

�
.

Appendix B. This appendix describes how we apply the functions from the
SuiteSparse library [12] in our implementations. We use SuiteSparse version 5.8.1 from
https://github.com/DrTimothyAldenDavis/SuiteSparse/releases.

B.1. Householder QR projection. The MATLAB commands to compute the
projection Pgk using a Householder QR factorization are listed in Table 1.

B.2. Preconditioned LSQR projection. The MATLAB commands to com-
pute the projection Pgk using preconditioned LSQR [28] are listed in Table 2.

Appendix C. This appendix overviews the subproblem solution with the shape-
changing norm. Note that U =

⇥
Q1 U2 U3

⇤
2 Rn⇥n (from section 7) represents an

orthogonal matrix and that the quadratic function is

q(s) = s
>
gk +

1

2
s
>
Bks = s

>
UU

>
gk +

1

2
s
>
UU

>
BkUU

>
s.

We introduce the change of variables v> =
⇥
v
>
1 v

>
2 v

>
3

⇤
⌘ s

>
U . Moreover, it holds

that

U
>
BkU =

2

4
Q

>
1 BkQ1 Q

>
1 BkU2 Q

>
1 BkU3

U
>
2 BkQ1 (�kI + ⇤2)�1

U
>
3 BkQ1 �

�1
k I

3

5

(cf. [6, Lemma 2]) and that

AUU
>
s = AUv =

⇥
R 0 0

⇤
2

4
v1

v2

v3

3

5 = Rv1.
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With the constraint As = 0 = AUv, this implies v1 = 0 (for R nonsingular). Therefore,
the trust-region subproblem defined by the shape-changing norm decouples into a
problem with v2 and v3 only (once v1 = 0 is fixed):

minimize
kskU  �k

As = 0

q(s) =

⇢
minimize
kv2k1�k

v
>
2 U

>
2 gk +

1

2
v
>
2 (�kI + ⇤2)

�1
v2

+ minimize
kv3k2�k

v
>
3 U

>
3 gk +

kv3k
2
2

2�k

�
.

This reformulated subproblem can be solved analytically, and the componentwise
solution of v2 is in (8.1). The analytic solution of v3 is v3 = �U

>
3 gk with � from (8.2).

Subsequently, s is obtained by transforming variables as s = Uv = U2v2 + U3v3. The
orthonormal matrix U2 is computed as U2 =

⇥
Sk Zk

⇤
R̂

�1
2 P̂2, and since U3U

>
3 =

P � U2U
>
2 , the optimal step with the shape-changing norm is as in (8):

sSC = U2(v2 � �U
>
2 gk) + �Pgk.

With uk ⌘ U
>
2 gk, the step is then computed as in Algorithm 8.1 (line 15):

sSC =
⇥
Sk Zk

⇤
R̂

�1
2 P̂2(v2 � �uk) + �Pgk.

Appendix D.

D.1. Detailed table for Experiment I. In this experiment the degree of
di�culty in solving a problem depends largely on handling A because the structure
of the objective function is the same for all instances. We observe that our proposed
algorithms (any of TR1{H,L}, TR2{H,L}) always use less computation time (often
significantly), except for two problem instances. On problem lp d6cube, TR2 used
less time than TR2H, as did TR1 over TR1H. However, the “L” versions were fastest
overall on this problem. On problem lp scsd1, TR1 used the least time. In these two
problems the number of constraints is not large, and one can expect that TR1, TR2

do comparatively well. However, for all other 48 problems the new methods used the
least time. We observe that both “H” versions converged to the prescribed tolerances
on all problems. On the other hand, the “L” versions are often the overall fastest, yet
they did not converge on 3 problem instances (beacxc, lp cre d, fit2d).

D.2. Detailed table for Experiment II. In Experiment II, the objective
functions for each problem are defined by a large CUTEst problem, whereas the
corresponding A matrices are not meant to be overly challenging. We observe that the
proposed algorithms (the ones including “{H,L}”) improve the computation times on
the majority of problems. For the 10 instances in which TR2 used less time than TR2H,
the di↵erences are relatively small. An exception is DIXMAANL, where the di↵erence
amounts to 31s. However, for the other 51 problems, TR2H resulted in often significant
improvements in computation time. For instance, in LIARWHD this di↵erence amounts
to 1182s (more than 19 minutes). These observations carry over when comparing TR1

with TR1H. The “L” versions exhibit similar outcomes as the “H” ones, with occasional
increases in computation times. Overall, TR1L converged to the specified tolerances on
the largest number of problems. The problems reported as “NC” in IPOPT’s column
correspond to status flags other than “0, 1, 2” ⌘ “solved, solved to acceptable level,
infeasible problem detected.”
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D.3. Detailed table for Experiment III. In Experiment III, TR2H and TR1H

converged on all 31 problems, while all other solvers (besides TR1 and TR2) converged
on all problems except one: CVXQP2. TR2H was the fastest on 10 problems (the
best outcome among the solvers), while TR1L was the fastest on 9 problems (the
second best outcome). Problems A0ESDNDL and A0ESINDL appear noteworthy: they
contain dense columns (satisfying the condition nnz(A:,j)

�
m > 0.1). Sparse QR

factorization is expensive because of fill-in. However, the iterative method LSQR (with
the preconditioning technique from section 5.2) can overcome these di�culties.
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