Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. Sc1. COMPUT. @ 2022 U.S. Government
Vol. 44, No. 1, pp. A103-A127

LARGE-SCALE OPTIMIZATION WITH LINEAR EQUALITY
CONSTRAINTS USING REDUCED COMPACT REPRESENTATION*

JOHANNES J. BRUSTT, ROUMMEL F. MARCIAf, COSMIN G. PETRA$, AND
MICHAEL A. SAUNDERSY

Dedicated to Dr. Oleg Burdakov, 1953-2021

Abstract. For optimization problems with linear equality constraints, we prove that the (1,1)
block of the inverse KKT matrix remains unchanged when projected onto the nullspace of the
constraint matrix. We develop reduced compact representations of the limited-memory inverse BFGS
Hessian to compute search directions efficiently when the constraint Jacobian is sparse. Orthogonal
projections are implemented by a sparse QR factorization or a preconditioned LSQR iteration. In
numerical experiments two proposed trust-region algorithms improve in computation times, often
significantly, compared to previous implementations of related algorithms and compared to IPOPT.

Key words. large-scale optimization, compact representation, trust-region method, limited
memory, LSQR, sparse QR

AMS subject classifications. 68Q25, 68R10, 68U05

DOI. 10.1137/21M1393819

1. Introduction. Linear equality constrained minimization problems are formu-
lated as

(1.1) minimize f(z) subject to Az =b,

z€R™

where f : R® — R and A € R™*". We assume that the number of variables n
is large, g(z) = Vf(z) is available, A is sparse, and that the initial guess z is
feasible: Axg = b. If A has low rank, one can obtain a full-rank matrix by deleting
rows in A that correspond to small diagonals of the triangular matrix in a sparse
QR factorization of AT. Our methods here use the rank information contained in
sparse QR factors, and thus we assume that A has full rank until implementation

*Submitted to the journal’s Methods and Algorithms for Scientific Computing section January 27,
2021; accepted for publication (in revised form) September 8, 2021; published electronically January
13, 2022. LLNL Release Number: LLNL-JRNL-818401. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. The Department of Energy will provide public access
to these results of federally sponsored research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-accessplan

https://doi.org/10.1137/21M1393819

Funding: This work was supported by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research, under contract DE-AC02-06CH11357 at Argonne National
Laboratory. This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-AC52-07TNA27344. The work of the
second author was partially supported by NSF grant IIS 1741490.

TDepartment of Mathematics, University of California San Diego, La Jolla, CA 92093 USA
(formerly Argonne National Laboratory) (jjbrust@ucsd.edu).

iDepartment of Applied Mathematics, University of California Merced, Merced, CA 95343 USA
(rmarcia@ucmerced.edu).

§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,
CA 94550 USA (petral@llnl.gov).

9TDepartment of Management Science and Engineering, Stanford University, Stanford, CA 94305-
4121 USA (saunders@stanford.edu).

A103

© 2022 U.S. Government

http://energy.gov/downloads/doe-public-accessplan
https://doi.org/10.1137/21M1393819
mailto:jjbrust@ucsd.edu
mailto:rmarcia@ucmerced.edu
mailto:petra1@llnl.gov
mailto:saunders@stanford.edu

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A104 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

details are described in Appendix B. For large problems, computing the Hessian
V2f(x) € R™™" is often not practical, and we approximate this matrix using a
limited-memory BFGS (Broyden—Fletcher—Goldfarb—Shanno [2, 16, 20, 29]) quasi-
Newton matrix By ~ V2f(x;). Starting from x(, we update iterates according to
Tk+1 = T + si. The step si is computed as the solution of a quadratic trust-region
subproblem, in which the quadratic objective is defined as q(s) = s gp + %STBkS with
gr = g(x). For a given trust-region radius A > 0 and norm || - ||, the trust-region
subproblem is

(1.2) m‘ilnﬁmgze q(s) subject to As =0,
sl|<

which ensures that each search direction is in the nullspace of A, and thus each iterate
xy, is feasible.

1.1. Background. Large problems of the form (1.1) are the focus of recent
research because large statistical- and machine-learning problems can be cast in this
way. As such, (1.1) constitutes the backbone of the alternating direction method of
multipliers [1], with applications to optimal exchange problems, consensus and sharing
problems, support-vector machines, and more. Recent work [18] emphasizes methods
that use gradients of f and suggest accelerations via quasi-Newton approximations.
Quasi-Newton methods estimate Hessian matrices using low-rank updates at each
iteration (typically rank-1 or rank-2). Starting from an initial matrix, the so-called
compact representation of quasi-Newton matrices [8] is a matrix representation of
the recursive low-rank updates. Because the compact representation enables effective
limited-memory implementations, which update a small number of previously stored
vectors, these methods are well suited to large problems. Trust-region and line-search
methods are standard for determining search directions for smooth problems, and each
approach has its own merits. Combinations of trust-region methods and quasi-Newton
compact representations have been developed in [3, 4, 5, 7]. Widely used quasi-Newton
line-search methods are [9, 24, 31, 32]. The main ideas in this article are applicable to
both trust-region and line-search methods.

1.2. Compact representation. A storage-efficient approach to quasi-Newton
matrices is the compact representation of Byrd, Nocedal, and Schnabel [8], which
represents the BFGS matrices in the form

(1.3) By, = i + Ju My J,|
with scalar 4, > 0. The history of vectors {si} = {®r+1 — =i} and {yr} = {gx+1 — g}

is stored in rectangular S, = [50, ce Sk—ﬂ eR™F and Y}, = [yo, e ,yk_l] € Rxk,
The matrices

(1.4) Je =[S Yil,
(1.5) S;Yk =L+ Dy + Tk,
o [6xSTSe SkLi]

are defined with d; = 1/vx, where Lj and T}, are the strictly lower and upper triangular
parts of S;' Y}, and Dy is the diagonal. For large problems, limited-memory versions
store only a small subset of recent pairs {si,yi}f:_,j_l, resulting in storage-efficient

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A105

matrices Jp € R"*2" and M), € R?*2! where | < n. Following Byrd, Nocedal, and
Schnabel [8, Theorem 2.2], the inverse BFGS matrix has the form

(1.7) Byt =6ul + Wiy
where W}, € R2*2! is given by

-7 -1 -T
(18) W, = Tk (Dk + 6k}j];Yk)Tk —5ka
—6r 1, Orx1
The diagonal matrix Dj, (and hence the upper triangular matrix T), = Dy, + T},) are
nonsingular as long as By, is also.

1.3. Outline. Section 2 describes our contributions in the context of large
problems, while section 3 motivates our proposed representations. Section 4 develops
the reduced compact representation and updating techniques that enable efficient
implementations. Section 5 describes computations of orthogonal projections and
the trust-region strategy for optimization. Section 6 gives an efficient method when
an fo-norm trust-region subproblem is used. Sections 7 and 8 develop an effective
factorization and a method that uses a shape-changing norm in the trust-region
subproblem. Numerical experiments are reported in section 9, and conclusions are
drawn in section 10.

2. Contributions. The first-order necessary conditions for the solution of prob-
lem (1.2) without the norm constraint are characterized by the linear system

o BT[] = [
0m><m)\E Om

where \p € R™ is a vector of Lagrange multipliers and sgp denotes the “equality
constrained minimizer of (1.2). Adopting the naming convention of [27, section 16.1,
page 451], we refer to (2.1) as the KKT system (a slight misnomer, as use of the
system for the equality constrained setting predates the work of Karush, Kuhn, and
Tucker). For large n, compact representations of the (1,1) block in the inverse KKT
matrix were recently proposed by Brust, Marcia, and Petra [6]. Two limited-memory
trust-region algorithms, LTRL2-LEC and LTRSC-LEC (which we refer to as TR1 and
TR2 in the numerical experiments in section 9), use these representations to compute
search directions efficiently when A has relatively few rows. This article develops
efficient algorithms when the number of equality constraints is large and the constraint
matrix is sparse. In particular, by exploiting the property that part of the solution
to the KKT system is unaltered when it is projected onto the nullspace of A, we
develop reduced compact representations, which need a small amount of memory and
lead to efficient methods for solving problems with many constraints (large m and n)
and possibly many degrees of freedom (large n — m). In numerical experiments when
solving large problems, the proposed methods are often significantly more efficient
than both our previous implementations and IPOPT [30].

9

3. Motivation. The solution sg in (2.1) can be computed from only the (1,1)
block of the inverse KKT matrix, as opposed to both the (1,1) and (1,2) blocks,
because of the zeros in the right-hand side. Let Vi be the (1,1) block of the inverse
KKT matrix (obtained, for example, from a block LDU factorization). It is given by

(3.1) Vi =(By' =B 'AT(AB'AT) ' AB)

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A106 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

and then sp = —Vjgx. At first sight the expression in (3.1) appears to be expensive
to compute because of the multiple inverse operations and matrix-vector products.
However, as B,;l =0l + JkaJ,;r , we can exploit computationally useful structures.
Specifically, with Gy, = (AB;'A")~! and Cj, = AJ, Wy, [6, Lemma 1] describes the

expression

_ T
B2 Ve=ad+ AT I s 6ra, w - ol aa] 1)

—62Gy, —0;GCy,] [A]
For large n, once the components of the middle matrix in (3.2) are available, this
compact representation of Vj enables efficient computation of a matrix-vector product
Vi.gk, hence the solution of (2.1), and an economical eigendecomposition Vi, = UAU .
However, unless m is small (there are few rows in A), multiplying with the (m + 2) x
(m + 21) middle matrix is not practical.

With large n and m in mind, we note that the solution sg is unchanged if
instead of g a projection of this vector onto the nullspace of A is used, or if sg
is projected onto the nullspace of A. This is a consequence of the properties of V.
To formalize these statements, let the orthogonal projection matrix onto null(A) be
P=1,—A"(AAT)"1A. Since the columns of the (1,1) block of the inverse from (2.1)
(namely, columns of V}) are in the nullspace of A, the orthogonal projection onto
null(A) acts as an identity operator on the vector space spanned by Vj:

(3.3) Ve =ViP =PV, = PTV,P.

Relation (3.3) can equivalently be derived from (3.1), the expression for P, and the
equality VzAT = 0. The methods in this article are based on representations of
projected matrices PTV,P € R™ ", whose properties enable desirable numerical
advantages for large n and m. Instead of multiplying with the possibly large Gy €
R™*™ and C}, € R™*? in (3.2), we store the matrices S € R"*! and Z = PY} €
R™*! and small square matrices that depend on the memory parameter I but not on m.
The columns of Zj are defined as z = Pyr = P(gr+1 — gk), and they are contained
in the nullspace of A.

With (3.1) and (3.2) we motivated the solution of (1.2) without the norm con-
straint (giving the equality constrained step sg). Computing sg is important for
the implementation of practical algorithms, but it is even more important to solve
(1.2) efficiently with the norm constraint. In section 6, using the ¢3-norm, we develop
a modified version of Vj as a function of a scalar parameter ¢ > 0, i.e., Vi(0). In
sections 7 and 8, we describe how the structure of Vi can be exploited to compute an
inexpensive eigendecomposition that, when combined with a judiciously chosen norm
(the shape-changing infinity norm from [7, section 4.2.1]), provides a search direction
by an analytic formula. Note that the representation of Vi is not specific to the
limited-memory BFGS (L-BFGS) matrix, and other compact quasi-Newton matrices
could be used (Byrd, Nocedal, and Schnabel [8], DeGuchy, Erway, and Marcia [14]).

4. Reduced compact representation. This section describes a computationally
effective representation of (3.3), which we call the reduced compact representation
(RCR). In section 4.1, the RCR is placed into historical context with reduced Hessian
methods. Subsequently, sections 4.2—4.4 develop the specific formulas that enable
effective computations.

4.1. Reduced Hessian. The name reduced compact representation is related to
the term reduced Hessian [19], where Z € R™* (=) denotes a basis for the nullspace

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A107

of A (satisfying AZ = 0). In turn, Z defines the so-called reduced Hessian matrix as
ZTv? ka or ZT By Z. In order to compute an equality constrained step sg, a reduced
Hessian method solves (ZTBkZ)éE = —ZTgk and computes sp = Z§E Known
computational challenges with reduced Hessian methods are that a desirable basis A
may be expensive to compute, the condition number of the reduced linear system may
be larger than the original one, and the product ZT B, Z is not necessarily sparse even
if the matrices themselves are. For large-scale problems, these challenges can result
in significant computational bottlenecks. In what follows we refer to PTV; P as an
RCR because it has a reduced memory footprint compared to V; in (3.2) (although
the matrices have the same dimensions). We also note that Vj; and PTV,, P have the
same condition, and P 'V} P has structure that enables efficient implementations.

4.2. RCR. To simplify (3.2), we note that V;, = PTV, P, that PTAT = 0, and
that P'J, =[Sk Zi] (where PTY, = Z; by definition), so that

PTVkP =0, P + [Sk Zk] (Wk — CJGka) [Sk Zk]T.

In Appendix A we show that C’,IG;CC;C simplifies to C’,IG;CC;C = [(C;GSC’“)U 8] with
(CF GrOW)1 = 8T, Y, AT(AAT)TAY, T, . Based on this, we derive an RCR of
Vi.

LEMMA 1. The RCR of Vi, in (3.2) for the L-BFGS matriz is given by
A
Si.
Zy

)

(41) Vk — 6kl+ [AT Sk Zk} |:_5k:(AAT)_1

)

where
Ty " (Dy, + 612, Z),) T —5kaT]

N = _
r [=5 Tt Ok xx

Proof. Multiplying V} in (3.2) from the left and right by P and P yields Vj, =
0P + [Sk Zk] (Wi, — C Gi.Cy) [Sk Zk]T. Since only the (1,1) block in C GCy
is nonzero, we consider only the (1,1) blocks, namely,

(Wi — (CF GxCi) = Ty, T (Dy, + 65 (Y, Vi — VT AT(AAT) 1 AY)) T

Since YV, PTY), = Y,] PTPY}, = Z[Z;., we obtain the (1,1) block in Nj. Subsequently,
by factoring P as

A
. Ty—1
02k %2k g7
k
we see that

_ Ty—1

Because all blocks of Wy, — C,] G1.C}, except for the (1,1) block are equal to those in
Wiy, all blocks in Ny are fully specified and representation (4.1) is complete. 0

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A108 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

Note that S];rYk = Di+ Lg —|—Tk = Sl;er’ which means that Dy and Ty, = Dy —|—Tk
can be computed from Si and Zj alone and that G and Cj need not be explicitly
computed. Therefore, for the RCR, only S, Zx, Tk, and D; are stored. An addition
is the scalar d;, which is typically set to be § = s,—';yk/y,;'—yk = s;—zk/yzyk and may
depend on the most recent yi. As PJ, = [Sk Zk], we note a key advantage of the
RCR: that (4.1) can be written as

S
Z

(4.2) Vi = 0k P + PJuNiJ PT = 6,P + [Sk Zi| Ny,

By storing a few columns of [S, Zj] € R™*?! (as described in section 4.4), which in
turn define a small matrix Nj, € R?*% (cf. Lemma 1), we can separate the solves with
AAT from other calculations. Concretely, note that solves with AAT only occur as part
of the orthogonal projection P, which can be represented as a linear operator and does
not need to be explicitly formed. Also note that (1.7) and (4.2) are related, with the
difference being that Y, and 01 in (1.7) are replaced by Zj and 6, P in (4.2). Hence for
large n and m, computation with (4.2) is efficient and requires little memory, provided
orthogonal projections with P are handled effectively (as described in section 5). On
the other hand, the compact representation in (3.2) does not neatly decouple solves
with AAT and results in perhaps prohibitively expensive computations for large m. In
particular, Gy, in the middle matrix of (3.2) is defined by G, = (AB; 'AT)~1 € Rm*™,
which interleaves solves with AAT and other terms. Therefore, the RCR in (4.1)—(4.2)
is recognizably more practical for large n and m than (3.2). We apply Vj from (4.2)
to a vector g as

Sy

4.3 h =
(1.3 o

9, Vig =[Sk Zi] Nxh+ 6, Pg.

4.3. Computational complexity. With adequate precomputation and storage,
the cost of the matrix-vector product (4.3) is often inexpensive. If the columns of Z,
are stored, updating the small 2{ x 2] matrix N} does not depend on solves with AAT.
Moreover, factors of P can be precomputed once at £k = 0 and reused. In particular,
suppose that a (sparse) QR factorization AT = [Ql Q2] [{ﬂ is obtained once, with
Q= [Q1 Q2] being sparse, such that the product Qg takes O(rn) multiplications,
where 7 is constant. Subsequently, the projection Pg = g — Q1Q{ g can be computed
in O(n + 2rn) multiplications (or Pg = Q2Q4 g in O(2rn) multiplications). Thus, we
summarize the multiplications in (4.3) as follows: h with 2nl, Niyh with negligible
(21)2, [Sk Zk] Nph with 2nl, and Pg with, say, 2nr. The total, without negligible
terms, is O(2n(2] + r)). The multiplications scale linearly with n, are related to the
sparsity in A, and are thus suited for large problems.

4.4. Updating. We store and update the columns of Z = [zk_l Zk—l]
one at a time and recall that zy = Pgiy+1 — Pgi. Based on this, no additional solves
with AAT are required to represent the matrix Vj ;. Specifically, suppose that we
computed and stored Pgy at the end of the previous iteration and that we compute
Pgj+1 at the end of the current iteration. We can use this vector in two places:
first to represent Zj,1 with zx = Pggr1 — Pgr and hence Vi1, and secondly in the
computation of Vj41gr4+1. Thus only one solve with AAT per iteration is necessary to
update Vi11 and to compute a step of the form s = —Vj119k41.

For large problems, the limited-memory representation in (4.1) is obtained by
storing only the last [columns of S; and Z;. With 1 < [<« n, limited-memory

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A109

strategies enable computational efficiencies and lower storage requirements [26]. Up-
dating Sy and Zj requires replacing or inserting one column at each iteration. Let an
underline below a matrix represent the matrix with its first column removed. That is,
Z,, represents Zj without its first column. With this notation, a column update of a
matrix Z; by a vector zj is defined as

[Zk.zk] if k<1,

colUpdate (Zy, z) = {[Z ol k>
Zy, 2k 2t

Such a column update either directly appends a column to a matrix or first removes a
column and then appends one. This column update will be used, for instance, to obtain
Zyy1 from Zy and zg, i.e., Zpy1 = colUpdate(Zy, z;). Next, let an overline above a

matrix represent the matrix with its first row removed. That is, S,;rZ . represents
S’,;'— Z, without its first row. With this notation, a product update of .S ,I Z. by matrices
Sk and Zj, and vectors s; and zj is defined as

S,;er S;Zk
ngk s,;'—zk
[(S;;r Zk) Sy 2

T T
S, 2, Sp %k

] if k<1,
prodUpdate (S,CTZ;C, Sky 21, Sk, zk) =
] ifk>1.

This product update is used to compute matrix products such as S,:HZ;CH with
O(2in) multiplications, instead of O(I>n) when the product S} Zj is stored and
the vectors s; and zp have been computed. Note that a diagonal matrix can be
updated in this way by setting the rectangular matrices S and Zj to zero and
Dy.11 = prodUpdate(Dy, 0,0, sk, zk). An upper triangular matrix can be updated in a
similar way, e.g., Tx+1 = prodUpdate(T}, Sk, 0, sk, z,). To save computation, products
with zero matrices are never formed explicitly.

5. Computing projections. With P = I,, — AT(AAT)~' A, projections z = Py
can be computed by direct or iterative methods. Their efficiency depends on the
sparsity of A.

5.1. QR factorization. When A has full row rank and the QR factorization
R R
(5.1) A =olf] -1 el[f]-an

is available, the projection operator becomes P = I — Q1Q{ = Q2Q4 . Thus, z = Py
can be computed stably as z = Q2(Qqy). With m < n, the QR factors are best
obtained using a product of Householder transformations [21]:

0] Qs
Thus Q = H1HsHs ... Hy,, and the operators ()1 and)2 are available from

(5.2) OTAT = H,, . HyHyH AT = [R} _ [Qq R

(5.3) Q1 =Q H and Qs =Q m .

When A is sparse, the SuiteSparseQR software [11] permutes the columns of AT in
(5.2) to retain sparsity in Hy and R. The projection z = Py = Q2(Qg %) can then be
computed efficiently.

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A110 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

One can avoid storage of Q1 by noting that Q; = AT R~!. The projection can
be computed as z = (I — Q1Q{)y =y — AT R'R™T Ay, though with lower precision
than z = Q2(Qq v).

5.2. Iterative computation of z. Computing QR factors is sometimes not
practical because A contains one or more relatively dense columns. (In the numerical
experiments of section 9, this occurred with only 2 out of 142 sparse constrained
problems.) The multifrontal QR solver SuiteSparseQR [11] then has to handle dense
factors, slowing computing times. For problems with thousands of constraints we
regard column j as relatively dense if nnz(A.;)/m > 0.1. When one expects the
QR factorization to be slow because of dense columns, an alternative is to solve the
least-squares problem

(5.4) min [|ATw — g

and compute the residual z = Py = y — AT w. Suitable iterative solvers for (5.4) are
CGLS [23], LSQR [28], and LSMR [17]. If A is the same as A with any relatively
dense columns deleted, the factor R from a sparse QR factorization of AT (again with
suitable column permutation) should be a good right-preconditioner to accelerate the
iterative solvers. If A does not have full row rank, the zero or small diagonals of R
can be changed to 1 before R is used as a preconditioner.

5.3. Implementation. Appendix B describes the implementation of the two
preceding projections (Tables 1 and 2). We refer to these operations through the
definition

) Householder QR ifP=1,
z = compProj(A,y,P) = o a
Preconditioned LSQR if P = 2.

Note that the implementations do not require A to have full row rank.

5.4. Trust-region algorithm. To solve (1.1) we use the trust-region strategy,
which is regarded as a robust minimization method [10]. At each iteration, the method
measures progress using the ratio of actual over predicted reductions:

o = 1@k) = @+ s)
q(0) — q(sk)

TABLE 1
MATLAB commands to use SparseSuite functions for computing projections z = Py using a
Householder QR factorization.

% Options
opts.Q = ‘Householder’;
opts.permutation = ‘vector’;

% QR factorization using SPQR
[Q,~,”,info] = spqr(A’,opts);
rankA = info.rank A _estimate;

% Projection

ztmp = spqr-qmult(Q,y,0);
zrkA = zeros(rankA,1);

z [zrkA;ztmp(rankA+1:end)];
z spqr_qmult(Q,z,1);

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION Al11

TABLE 2

MATLAB commands for computing projections z = Py using preconditioned LSQR (where P =
I—AT(AAT)=YA). If A has full row rank (rankd = m), LSQR should need only 1 iteration. Notes:
SPQR uses all of AT in the QR factorization AT Py, = QR, where Py, is a column permutation of
AT and R is upper trapezoidal. We store the permutation in the vector maskd. If AT does not have
full row rank, we use the first rankd columns of AT P, (the command A(maskA(1:rankA), :) ’). If
A contains some relatively dense columns, we should partition APp+ = [As Ap | into sparse and
dense columns, then use Ag in place of A in the call to spgr.

% Options

opts.econ = 0;

opts.Q = ‘Householder’;
opts.permutation = ‘vector’;
tol = le-15;

maxit = m;

% Preconditioner using a triangular
% factor from SPQR

[*,R,maskA,info] = spqr(A’,opts);
rankA = info.rank_A_estimate;

==

Projection

x = lsqr(A(maskA(1l:rankA),:)’,y,...
tol,maxit,R(1:rankA,1:rankA));

y - A(maskA(1l:rankA),:)’*x(l:rankA,1);

N
]

where s is an intermediate search direction, in the sense that s will ultimately be
used as an update only if py is greater than a threshold. By accepting steps that
fulfill the so-called sufficient decrease condition p > ¢; (suppressing the subscript k on
pi) for a constant ¢; > 0, the method successively moves towards a local minimizer
(though there is no guarantee that a minimizer will be reached). The trust-region
radius A > 0 controls the norm of the search direction by means of the constraint
[[sll2 < A. There are two possible cases for the solution of the trust-region subproblem:
either the search direction is in the interior of the constraint (||s|| < A), or it is on the
boundary (||s|| = A). Since the L-BFGS matrix By, is positive definite, the solution
of (1.2) is given by the unconstrained minimizer s = sg from (2.1) if ||sg| < A.
Otherwise, if ||sg|| > 0, then (1.2) is solved with the active norm constraint ||s|| = A.
Note that even if ||sg|| < A, the condition p > ¢; might not hold. In this situation,
or in any case when p < ¢y, the radius A is reduced and a new problem (1.2) (with
smaller A) and constraint ||s|| = A is solved. The overall trust-region strategy for one
iteration is given next, with radius A > 0 and ¢; > 0 and iteration counter suppressed.

Trust-Region Strategy:

1. Compute the unconstrained step s <+ sg from (2.1) (using (4.3))

2. While (||s|l2 > A or p < ¢1)

2.1. Solve (1.2) with ||s|| = A
2.2. Reduce A
end

3. Increase (or at least do not decrease) A

4. Update iterate x + x + s
Practical aspects of an implementation include the setting of constants and starting
the method. Detailed procedures are described in sections 6, 7, 8, and 9.

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A112 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

6. £2-norm trust-region constraint. With an /;-norm trust-region constraint
in (1.2), the search direction is given by

sp2 = arg min ¢(s) subject to As=0.
llsll2<Ak

With o > 0 denoting a scalar Lagrange multiplier, the search direction is a feasible
solution to a shifted KKT system including the norm constraint:

Br+ol AT [sp2| [—ok
(6.1) { A 0}{)\” =10 | srall2 < Ag.

By computing the (1,1) block of the shifted inverse KKT matrix, we note that a
necessary condition for the solution is sps(0) = —Vi(0)gk, where

Vi(o)= By +0oI)™' = (By + o) "AT(A(By + o) *AT) P A(By, +01) L.

For the L-BFGS matrix, with 7, = 74(c) = (1/6; + o) we have (B + ol)™ =
7+ JWi(0)J,], where the small 21 x 2] matrix is

Wi(o) = — 0S5 Sk 0L+ 7T, |
k o GkL; + TkT];r Tk(Tka + YkTYk)

with 6, = 7%(1 — dp7). In terms of Cy(o) = AJyWi(o) and Gi(o) = (A(Br +
ol)71AT)~1 the compact representation of Vi (o) [6, Corollary 1] is

(6.2) Vi(o) =
1 —%Gk(g) —2-Gr(0)Cx(0) A
al + [AT Jk] —%Ck(U)TGk(O') Wi (o) — Cr(0) T Gi(0)Cr(a) J,;r .

Once the middle matrix in (6.2) is formed, the compact representation can be used
to compute matrix-vector products efficiently. However, when m is large (many
equality constraints), computing terms such as G (o) become expensive. Therefore,
we describe a reduced representation similar to (4.1), based on the property that
PTVi(0)P = Vi(o) and by storing Sy and Zj. Lemma 2 summarizes the outcome.

LEMMA 2. The RCR of Vi (o) in (6.2) for the L-BFGS matriz is given by

| 1(aaT) -

(6.3) Vk(U) =—I1+ [AT Sk Zk] Tk :l Sk ,
Tk Nk(O') ZT
k

where T, = T(0) = (1/6x + 0), Op = O (0) = Tk (0)(1 = dp7k(0)), and
Ni(o) = — 01 (0) Sy Sk Or (o) Ly, + T (0) T,]_1
k Qk(U)L;— + Tk(O')TJ 71(0) (1 (0) Dy, + Z,:—Zk)

Proof. To simplify notation, we suppress the explicit dependence on ¢ in this
proof, so that Vi = Vi(0), Cx = Ci(0), and Wi, = Wi (o). Multiplying Vi in (6.2)
from the left and right by PT and P yields

1
Vi.=—P+ [Sk Zk] (Wk — O];erCk) [Sk 2y

T
Tk]

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A113

Observe that C, = AJyWj, = [0 AYj] Wy is block-rectangular and that G =
(A(%I + JeWiJT)AT)~1 depends on Wy Defining Fj, = 7,(AAT) ™!, we show that
the Sherman—Morrison—Woodbury (SMW) inverse gives the simplification

Wi — C GCy
0
0 0 _
=W — Wy |:YkTAT:| (I+ [0 FkAYk] Wi |:Yk—|—A-|—:|) ! [0 FkAYk] Wi

where the third equality is obtained by applying the SMW formula in reverse. Since
only the (2,2) block in the low-rank matrix of the third equality is nonzero, and since
Fy = 1,(AAT)™!, note that

(W Yae + Y, ATFLAY;, = —(me(me D + Y3, Vi — Vi AT(AAT) 71 AY)),

which corresponds to the (2,2) block Ni(o) in (6.3). Because all other blocks are
unaffected, it holds that Wy — C] GrC) = Ny (o). Subsequently, by factoring P =
I—AT(AAT)"1A we deduce the compact representation (6.3). d

Note that S Zy = S Yy = Ly + Dy + Ty, with Ty, = Dy, + T}, means that the
RCR for Vi (o) is fully specified by storing Sy and Zi. An exception is the scalar Jy,

which may depend on the most recent y. Also when o = 0, the representations (4.1)
and (6.3) coincide. We apply Vi(o) to a vector g as

S, 1
oo w5 Al M@+ L
k Tk

6.1. £2-norm search direction. To compute the ¢y trust-region minimizer we
first set o = 0 and sp2(0) = —V5(0)gk. If |sz2(0)|l2 < Ay, the minimizer with the
ly-norm is given by s12(0). Otherwise (||s£2(0)||2 > Ag) we define the so-called secular
equation [10] as

b(0) = — !

T lsz2(@)]l2 Ax

To solve the secular equation we apply the 1D Newton iteration

ot — o — ¢(0;)
J+ J ¢/(0'j),
where ¢/ (0;) = —(s2(05) "sL2(0;)')/|Isz2(0)|I3 and s12(05)" = =Vi(0;)sLa(0;) (with

prime “’” denoting the derivative). Note that sz2(0;)" can be derived from the shifted
system (6.1) by differentiation with respect to o. Applying the product rule in (6.1)
and regarding the solutions as functions of o, i.e., s75 = sz2(0) and N5 = Ara(0),
one obtains the differentiated system

By +ol AT SIL2 | —SL2
A 0 [MNs | 0O |
Since the system matrix is the same as in (6.1) (only the right-hand side differs),
sp2(0;) is fully determined by Vi (o) and sz2(o;). Starting from o = 0, we terminate

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Al14 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

the Newton iteration if |¢(o;41)] < € or an iteration limit is reached. The search
direction is then computed as spa(0j+1) = —Vi(0j+1) k-

Our approach with the ¢3-norm is summarized in Algorithm 6.1. This algorithm is
based on storing and updating Sy, Zj, and the small blocks of N (o) in (6.3). Suppose
that sgp and 2 are obtained by an initialization procedure (for instance, Init. 1 from
section 9). With k = 0, the initial matrices that define Vi (o) are given as

(6.4) Sk =[sk], Zr=[a],
(6.5) Dip=[siz], Te=I[s{z|, ZZx=[2{2], Lp=1]0].

Once the iteration starts, we update

(6.6) Sk+1 = colUpdate(Sk, sg), Zr+1 = colUpdate(Zy, i),

(6.7) Dy.11 = prodUpdate(Dy, 0,0, sk, 2x),
Ty+1 = prodUpdate(Ty, Sk, 0, sk, k),

Z,I_HZkH = prodUpdate(Z,IZk,Zk, Zyy 2k, 2k), and
Li+1 = prodUpdate(Lyg, 0, Zg, sk, 0).

Note that we store and update matrices like Z,] Z; € R'™*! instead of recomputing
them. Because of the limited-memory technique (typically 3 <[< 7 [8]), such matrices
are very small relative to large n. Subsequently, Ny (o) € R2*2 defined by the blocks
in (6.7), remains very small compared to n.

7. Eigendecomposition of V. We describe how to exploit the structure of the
RCR (4.1) to compute an implicit eigendecomposition of V}, and how to combine this
with a shape-changing norm. The effect is that the trust-region subproblem solution
is given by an analytic formula. Since the RCR is equivalent to representation (3.2),
we can apply previous results. However, using representation (4.1) is computationally
more efficient. First, note that Ny € R?*?! is a small symmetric square matrix.
Therefore, computing the nonzero eigenvalues and corresponding eigenvectors of
the matrix [Sk Zk] Ny, [Sk Zk}—r
compute the thin QR factorization [Sk Zk] = @2]/?:2 and the small eigendecomposition
ﬁgNk}ABQT = ﬁgAQﬁQT . The small factorization is then

= UQAQUQT is inexpensive. In particular, we

T o~ o~ o~ o~ o~ o~ o~ o~
[Sk Zk] Ni [Sk Zi] = Q2(RaNkRJ)Qy = Q2(PoA2P))Q) = U AUy

where the orthonormal matrix on the right-hand side is defined as Uy = @gﬁg. Since
AT(AAT) 1A = Q,Q] from (5.1), we express Vj as

B T
Vi =0ul + [Q1 U] [Ol AJ [(szﬂ ;

where Q; € R™™ and U, € R"*?" are orthonormal, while Ay € R**?! is diago-
nal. Defining the orthogonal matrix U = [Ql U,y Ug] , where Us € Rnxn—(m+20)

represents the orthogonal complement of [Ql UQ], we obtain the implicit eigen-
decomposition of Vj as

O Q7
(7.1) Vi=1[Q1 Uy Us] Orlor + Az Uy | =UAUT.
6kIn7(m+2l) Ug—r

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION Al15

Algorithm 6.1. LTRL2-SLEC (limited-memory trust-region 2-norm for sparse linear

equality constraints).

Ensure: 0 <cy,0 < ca,c3,¢4,05,c6 <1<c7,0<e1,69,0 <imax, k=0,0<1, A =
”kaQ’ 9k = Vf(xk)’ P e [Ov 1], gllcD = compProj(A,gk,P), 95+178k,2k7yk (from
initialization), Sk, Zk, Dk, Tk, Lk, Z; Zi, from (6.4) and (6.5), 0k = S, 2k/Ys Yk,
oc=0,1 = (1/5k +O’), 0, = Tk(l — (5ka), Nk(O') from (63), k=k+1

1: while (g1 < |g}||) do

2: h:—[Sk Zk]Tgk

3 S = [Sk Zk] N (0)h — 5kg,f; pr = 0 {Equality constrained step}
4: if H3k||2 < Ay then

5: pr = (f(zr) — f(zr + 51))/(q(0) — q(sk))

6: end if

7. while pr <c¢; do

8: oc=0,1=0; Tk=(1/5k+0'),ngTk(l—(ska)

9: h =— [Sk Zk]—r Sk

10: S; = [Sk Zk] Nk(O')h/ — 519519;

11: while &2 < |¢(0)] and i < ipax do

12: oc=0-¢(0)/¢(0)

13: Tk:(1/5k+0'), Gk:m(lfékm)

14: h=—[S Zk]Tgk; sk =[Sk Zi] Np(o)h — %kgf:
15: h =— [Sk Zk]—r Sk S;C = [Sk Zk] Nk(J)h/ — %ksk;
16: 1=1+1

17: end while{Newton’s method}

18: pr =0

19: if 0 < (f(xk) — f(zr + sg)) then

20: pr = (f(zr) = f(@r + 51))/(q(0) — q(sk))

21: end if

22: if Pr < c2 then

23: Ay = min(cs||sk||2, calk)

24: end if

25: end while

26: Tpy1 = T + S, {Accept step}

21: if s A < ||sg]l2 and ¢ < pi then

28: A = cr Ay

29: end if

300 grpr = Vf(@r41), 9f = compProj(A,grs1,P), 2 = gf 4 — 9k, Uk =
9k+1 — Gk, Sk+1, Zk+1, Dk+1,Tk+1, Lk+1, Z;—+1Zk+1 from (66) and (67) 6k+1 =
2 sk /YL Yk, 0 =0, 7 = (1/0) + 0), O = (1 — 0p7)

31: Update Ni(o) from (6.3), k =k +1

32: end while

Note that we do not explicitly form the potentially expensive to compute orthonor-
mal matrix Us, as only scaled projections 6,UsU, are needed. We therefore refer to
factorization (7.1) as being implicit. In particular, from the identity UU T = I, we
obtain that UsU3' = I — Q1Q{ — UyU, = P — UyU, . Note here and above that Us is
a thin rectangular matrix with only 2/ columns.

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A116 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

8. Shape-changing-norm trust-region constraint. To make use of the im-
plicit eigensystem (7.1), we apply the so-called shape-changing infinity norm introduced

in [7):
[sllo = max{” [Ql U |U3Ts||2}.

With this norm, the trust-region subproblem has a computationally efficient solution
that can be obtained from

]'s

’ |
o'}

ssc = arg min ¢(s) subject to As=0.
lIsllo <A

Since the RCR is equivalent to (3.2), we invoke [6, section 5.5] to obtain an direct
formula for the search direction:

ssc = Us(v2 — BU, gi) + BPgk,

where with U, gz, =]32T1§2_T [Sk Zk]T gk = ug, and p; = (0 + (A2)i) ™1,

(8.1) (v); = —Kik | if | 2r| < Ag,
W otherwise,
(8:2) g0 if 0kU3 grll2 < A,
. T U;TAg: , otherwise,

for 1 < i < 2l. More details for the computation of sgo are in Appendix C. Note that
the norm ||Uy gx||2 can be computed without explicitly forming Us, since ||U3 g3 =
gr (P — UU) gk = ||Pgl3 — ||US gx||3- The trust-region algorithm using the RCR,
and the shape-changing norm is summarized in Algorithm 8.1 below. Like Algorithm
6.1, this algorithm is based on storing and updating Sy, Zx, and the small blocks of
Ni in (4.1). Therefore, the initializations (6.4)—(6.5) and updates (6.6)—(6.7) can be
used. In addition, since in the thin QR factorization [Sk Zk} = QQRQ the triangular

Ry is computed from a Cholesky factorization of [Sk Zk] T [Sk Zk], we initialize
the matrices

(8.3) SyS, = [s4 5], Sy 7y, = (54 2]
with corresponding updates

(8.4) 51:+1Sk+1 = prodUpdate(S’,;rSk, Sk, Sk, Sk, Si) and
S,CTHZ;CH = prodUpdate(S,;er, Sk Zks Sk 2k)-

As before, with a small memory parameter [, these matrices are very small compared
to large n, and computations with them are inexpensive.

9. Numerical experiments. The numerical experiments are carried out in
MATLAB 2016a on a MacBook Pro @2.6 GHz Intel Core i7 with 32 GB of memory.
For comparisons, we use the implementations of Algorithms 1 and 2 from [6], which
we label TR1 and TR2. All codes are available in the public domain:

https://github.com/johannesbrust/LTR_-LECx
For TR1, TR2 we use the modified stopping criterion ||Pgxllc < € in place of
|1Pgk|l2/max(1, zx) < € in order to compare consistently across solvers. Unless other-
wise specified, the default parameters of these two algorithms are used. We use the
following names for our proposed algorithms:

© 2022 U.S. Government

https://github.com/johannesbrust/LTR_LECx

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A117

Algorithm 8.1. LTRSC-SLEC (limited-memory trust-region shape-changing norm for
sparse linear equality constraints).

Ensure: 0 < ¢y, 0 < ¢g,c3,¢4,¢5,06 <1 <e7,0<e1,0<l, k=0, Ag = ||zkl2, g =

Vf(zk), P €[0,1], gf = compProj(A, gk, P), gh 1, Sk, 2k, Yr (from initialization),
Sks Zi, Diy T, Z3§ Zig, Sy Sk, S Zy from (6.4), (6.5), and (8.3), 0 = i 21/yy Yks
Ni from (4.1), k=k+1

1: while (g1 < [|g||o) do

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

w

30:

h=—[S Zk]Tgk
Sk = [Sk Zk] Nigh = 6,gl; pr = 0 ; {Equality constrained step}
if ||sg|l2 < Ag then
pe = (f(zx) = f(@r + 1))/ (a(0) — q(s)); lIskll = lIskll2
end if
if pr <c; then
Ry Ry = [;’g?z 2’%2} {Cholesky factorization}
PyAy Py = RyNyRJ {Eigendecomposition}
up = PRy T[Sk Zk]Tgk
& = (IgF113 = lluxll3)?
while p;, <c¢; do
Set vo from (8.1) using ug, Ay
Set 8 from (8.2) using & = [|U3 g2
sk=[Sk Zp] Ry "Py(va — Buy) + Bgls pr =0
if 0 < (f(zr) — f(zx + si)) then
pe = (f(zx) = f(@r + sx))/(a(0) — q(sk))
end if
if pr < co then
Ak = min(03||sk||U,c4Ak)
end if
end while
[[skll = llskllu
end if
ZTpt1 = T + sp{Accept step}
if c5Ap < ||sg|l and ¢ < pi then
Ay = crAg
end if
grt1 = V(ky1), ghyy = compProj(A, grt1,P), 2k = Ghy1 — 95> Yr = Ghr1— Gk,
Sk+1, Zk'—i—l, Dk+1, Tk+1a Z;+1Zk+1, S,;FHS;CH, S,;rJrle_H from (66), (67) and
(84); Ors1 = 2 Sk/Yy Yk
Update Ny from (4.1); k =k +1

31: end while

TR1H: Algorithm 6.1 with representation (6.3) and Householder QR
TR1L: Algorithm 6.1 with representation (6.3) and preconditioned LSQR
TR2H: Algorithm 8.1 with representation (4.1) and Householder QR
TR2L: Algorithm 8.1 with representation (4.1) and preconditioned LSQR

Note that TR1 and TR2 were developed for low-dimensional linear equality con-

straints. In addition, we include IPOPT [30] with an L-BFGS quasi-Newton matrix

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A118 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

(we use a precompiled Mex file with IPOPT 3.12.12 that includes MUMPS and MA57
libraries). We note that a commercial state-of-the-art quasi-Newton trust-region
solver that uses a projected conjugate gradient solver is implemented in the KNITRO-
INTERIOR/CG [9, Algorithm 3.2]. For the freely available IPOPT we specify the
L-BFGS option using the option hessian_approximation=‘limited memory’ with
tol=1e-5. (The parameter tol is used by IPOPT to ensure that the (scaled) projected
gradient in the infinity norm and the constraint violation are below the specified
threshold. The default value is tol=1e-8.) All other parameters in IPOPT are at their
default values unless otherwise specified. The parameters in TR1{H,L} and TR2{H,L}
are set to ¢; (as machine epsilon), ¢ = 0.75, ¢5 = 0.5, ¢4 = 0.25, ¢5 = 0.8, ¢g = 0.25,
c7 = 2, and iyax = 10. The limited-memory parameter of all compared TR solvers is
set to | =5 (IPOPT’s default is I = 6). Because the proposed methods are applicable
to problems with a large number of constraints, problems with large dimensions such
as m > 10%, n > 10° are included. Throughout the experiments, A € R™*" with
m < n.
To initialize the algorithm, we distinguish two main cases. If xg is not available,

it is computed as the minimum-norm solution zg = argmin_||z||2 subject to Az = b
(e.g., 19 = AT(AAT)~1b when A is full rank.) If &, is provided but is infeasible, the
initial vector can be computed from py = argmin,[|p||2 subject to Ap = b — A%¢ and
ro = %o + po- To compute the initial vectors sg = 1 — zg, 20 = Pg1 — Pgo, and
Yo = g1 — go we determine an initial x; value also. Suppose that at &k = 0, all of zy,
gr = Vf(zr), and gf = Pgj are known. An initialization for s, zj, and yy at k =0
is the following:

Init. 1:

1. Backtracking line-search: xj41 = xx, — agl /||gf ||2 (cf. [27, Algorithm 3.1])

2. gry1 = Vf(xri1), 9oy, = compProj(A, giy1,P)

3. Sk = Tk+1 — Tk,

Zk =91 — 9
Y = Gk+1 — Gk
Once sg, 2o, and yo have been initialized (with initial radius Ay = ||so||2), all other
updates are done automatically within the trust-region strategy.
The outcomes from the subsequent Experiments I-1II are summarized in Figures

1-3 as performance profiles (Dolan and Moré [15], extended in [25], and often used to
compare the effectiveness of various solvers). Detailed information for each problem
instance is in Tables 3-5. Relative performances are displayed in terms of iterations
and computation times. The performance metric ps(7) on n, test problems is given by

card{p:mp s <7} tp.s
ps(T) = and Ty = ———"—,
Ny min &, ;
1<i<S, i#s

where ¢, s is the “output” (i.e., iterations or time) of “solver” s on problem p, and S
denotes the total number of solvers for a given comparison. This metric measures the
proportion of how close a given solver is to the best result. Extended performance
profiles are the same as the classical ones but include the part of the domain where
7 < 1. In the profiles we include a dashed vertical grey line to indicate 7 = 1. We
note that although the iteration numbers are recorded differently for each solver, they
correspond approximately to the number of KKT systems solved.

Overall, we observe that the number of iterations used by the respective solvers
is relatively similar across different problems. However, the differences in computa-
tion times are large. In particular, the RCR implementations use the least time

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A119

ITER TIME
1 T 1 F T T T
\ fj \ F e
0.8 |] 08} ¥
e — — T ———
\ f-’_ \ N
. 06]] . 06 ‘ =
& \l & | ot
Q:/) 1 e w TR1 Q(/) ‘ jj ====TR1
L TRIH = TR1H
0.4 ‘ TRIL 0.4 P TRIL
=== = TR2 i e = TR2
P 5
02 | TRIL 02 g TRL
‘ IPOPT —— IPOPT
L Ix
0) 0 L. @=¢ L
2! 1 2 22 2% ot 25 2! 1 2 22 2% ot 2°
T T

Fic. 1. Comparison of the 7 solvers from Ezperiment 1 using performance profiles [15] on
50 test problems from [12]. TR2H and TR1H converge on all problem instances (100%). TR2L,
TR1L, and IPOPT converge on 47 problems (94%). TR2 and TR1 are not applied to 9 large
problems. In the right plot, TR2L and TR1L are the fastest (as seen from their curves being above
others), while TR2H and TR1H are the most robust (as seen from their curves ultimately reaching
the top of the plot). Overall, TR2{H,L} and TR1{H,L} are faster than the other solvers.

ITER
1 F T T A A
| e T
0.8 | _—
\
06 ¥ —
[& J:/
r| — === TR1) —=—=TRI
| TRIH QU TRIH
0.4
TRIL TRIL
f e e = TR2 e = TR2
| TR2H TR2H
0.2 TROL TR2L
| IPOPT IPOPT
0 | ‘ ‘ ‘ ‘ . ‘ ‘ .
2" 1 2 22 28 ot 25 28 2t 28
T T

Fic. 2. Comparison of the 7 solvers from Experiment 11 using performance profiles on 62 test
problems from [22]. TR1L converged on 58 problems. All other solvers except IPOPT converged on
57 problems. In the left plot, the iteration numbers for TR1, TR1{H,L}, TR2, and TR2{H,L} are
similar, as seen by the tight clustering of the lines. However, the computational times of TR1 and
TR2 are markedly higher than those of TR1{H,L} and TR2{H,L}, as seen from the widening gap
in the right plot.

in almost all problem instances. This is possible because RCR enables an effi-
cient decoupling of computations with the constraint matrix A and remaining small
terms.

9.1. Experiment I. This experiment uses problems with sparse and possibly
low-rank A € R™*™. The objective is the Rosenbrock function

n/2
flz) = Z(Jcm —Z2i-1)" + (1 — 22i-1)%,
i=1

where n is an even integer. The matrices A € R™*" are obtained from the SuiteSparse

Matrix Collection [13]. Because TR1 and TR2 were not developed for problems with
a large number of constraints, these solvers are only applied to problems for which

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A120 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

ITER TIME
1 T , 1F ; ; ‘ ‘ ‘
I f \ — :
08} e 08 ‘
I} \
. 06 i . 06 ‘
£ | & |
Q(/) ‘ == TR1 Qw == TR1
L TR1H TR1H
04 | TRIL 0.4 TRIL
TR2 TR2
| TR2H | TR2H
0.2 bbb TR2L [0.2 gemm—————a TR2L [
\‘i IPOPT ‘ R IPOPT
H
0 & ‘ J o G ‘ ‘
52 1 22 o4 26 8 510 22 1 22 2% 26 8 510
T T

F1G. 3. Comparison of the 7 solvers from Experiment 111 using performance profiles on 31 large
linear equality constrained test problems from [22]. TR1 and TR2 are applied to 6 problems (they
are not practical on the remaining problems because of their size). TR2H (also TR1H) converged
on all 31 instances. TR1L, TR2L, and IPOPT converged on 30 problems. In the ITER plot the
number of iterations is relatively similar across the solvers that converged. In the TIME plot there is
a gap between TR1{H,L}, TR2{H,L}, and IPOPT. TR2L can have computational advantages but
appears slightly less robust than TR2H, as seen from the final staircase in the TIMFE plot.

m < 2500. All other solvers were run on all test problems. Convergence of an algorithm
is determined when two conditions are satisfied:

(9.1) |Pgrlloc <107 and ||Azy — bl < 107,

We summarize the outcomes in Figure 1 and Table 3.

In this experiment we observe that our proposed algorithms (any of TR1{H,L},
TR2{H,L}) perform well in terms of computing time. Both “H” versions of the proposed
algorithms converged to the prescribed tolerances on all problems. On the other hand,
the “L” versions are often the overall fastest, yet they did not converge on 3 problem
instances (beacxc, lp_cre_d, £it2d).

After rerunning the 3 problems for which IPOPT did not converge, we note that
IPOPT did converge to its own (scaled) tolerances on one of these problems (beacxc),
yet the computed solution did not satisfy (9.1). On the other two problems (1p_cre_d,
fit2d), IPOPT returned a message such as info.status=—2, which is caused by an
abort when the “restoration phase” is called at an almost feasible point.

9.2. Experiment II. In a second experiment, we compare the 7 solvers on
large problems from the CUTEst collection [22]. The dimension n is determined by
the size of the corresponding CUTEst problem, while we set m to be about 25%
of n, i.e., m=ceil(0.25n). The matrices A are formed as A=sprand(m,n,0.1) with
rng(090317). Convergence is determined by each algorithm internally. For TR1, TR1H,
TRIL, TR2, TR2H, TR2L the conditions || Pgk|le < 1x 1075 and || Az) —b||2 < 5x 1078
are explicitly enforced, while for IPOPT we set options_ipopt.ipopt.tol=1e-5. We
use the iteration limit of 100,000 for all solvers. The limited-memory parameter is
[=5 for all TR solvers and [= 6 (default) for IPOPT. We summarize the outcomes in
Figure 2 and Table 4.

9.3. Experiment III. In a third experiment we compare the 7 solvers on 31
linear equality constrained problems from CUTEst. Four of these problems (AUG2D,
AUG2DC, AUG3D, AUG3DC) directly correspond to the problem formulation (1.1). The
remaining problems have additional bound constraints, which are relaxed in this

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION Al121

TABLE 3
Experiment 1 compares T solvers on problems from the SuiteSparse Matriz Collection [13].
Entries with N/4* denote problems to which TR1 and TR2 were not applied because they are too
large. NC' means the solver did not converge to tolerances. TR2H and TR1H converged on all
problem instances. Overall, the computational times of TR2{H,L} and TR1{H,L} were lower by a
significant factor compared to the times of TR1, TR2, and IPOPT. The number of iterations for
each solver is similar across all problems.

Problem m/n rank(A) TR2 TR2H TR2L TRI1 TR1H TRI1L IPOPT

It Sec | It Sec It Sec It Sec | It Sec |[It Sec | It Sec
beacxc 497/506 449/0.2 73 05225 0.044 |25 0.15 |419 3.8 |25 0.041|25 0.15 ncf NC
1p_25fv47 821/1876 820/0.007 | 60 0.82|60 0.21 |60 0.14| 62 0.85 |62 0.22 |62 0.14 |61 0.73
lp_agg2 516/758 516/0.01 40 0.21 |40 0.054 |40 0.052| 42 0.21 |42 0.056 | 42 0.055| 41 0.22
1p-agg3 516/758 516/0.01 39 0.21|39 0.051 |39 0.051]| 39 0.2 |39 0.052 |39 0.051|44 0.24
1p-bnlil 643/1586 642/0.005 70 05770 0.14 |70 0.079| 67 0.6 |67 0.14 |67 0.078] 62 0.59
1lp-bnl2 2324/4486 2324/0.001 69 11 | 69 0.62 69 0.28 | 69 11 69 0.52 |69 0.27 | 67 2.2
lp_cre.a 3516/7248 | 3428/0.0007 |N/A* N/A |83 0.65 |83 0.37 |[N/A* N/A |88 0.71 |88 0.38 |87 3.3
lp_cred 8926/73948 | 6476/0.0004 |N/A* N/A |556 1.2e+02|510 24 |N/A* N/A |503 le+02|552 25 nct NC
1p_czprob 929/3562 929/0.003 17 0.27 |17 0.059 |17 0.0%2| 17 0.25 | 17 0.049 | 17 0.028]| 18 0.34

1p_d6cube 415/6184 404/0.01 35 02235 0.4 35 0.17| 36 021 |36 044 |36 0.18 | 38 1.1
1lp_degen3 1503/2604 1503/0.006 | 39 2.2 |39 0.25 |39 0.25 | 39 23 |39 027 |39 0.24 | 40 1.5
1p-df1001 6071/12230 | 6071/0.0005 |N/A* N/A |226 16 |231 19 |N/A* N/A |226 16 238 20 |207 1.2e+02
1lp_etamacro 400/816 400/0.008 78 027|78 0.12 |78 0.085| 8 0.29 |8 0.13 |86 0.09 | 68 0.44

1p £££££800| 524/1028 524/0.01 | nct NC |61 0.095 |[ncT wc [Nt NC |59 0.097|ncT we |57 045
1p_finnis 497/1064 | 497/0.005 | 150 0.72 151 0.2 [156 0.13 | 159 0.69 155 0.2 [155 0.14 [167 1.2
1p_fit2d 25/10524 25/0.5 | 266 1.3 [266 0.9 [258 0.88 |247 1.4 [261 0.91 [279 0.99 [ncf NC

lp_ganges 1309/1706 1309/0.003 | 41 1.3 |41 0.11 |41 0.067| 41 1.4 |41 0.12 |41 0.073| 37 0.43
lp_gfrd pnc| 616/1160 616/0.003 | NcT NC |54 0.054 |54 0.043 | nct NC |54 0.052 |54 0.042| 48 0.36
lp_greenbea| 2392/5598 2389/0.002 | 149 47 |149 1.2 149 0.63 | 157 33 |153 1.3 |150 0.72 |181 6.8
lp_greenbeb| 2392/5598 2389/0.002 | 149 45 |149 1.2 149 0.65 | 157 31 |153 1.3 |150 0.65 |181 6.5

1lp_grow22 440/946 440/0.02 79 02479 0.079 |79 0.071| 79 024 |79 0.08 |79 0.069| 65 0.36
1p_ken 07 2426/3602 2426/0.001 | 34 12 |34 0.091 |34 0.067| 34 74 |34 0.093|34 0.07 |31 085
lp-maros 846/1966 846/0.006 74 0.87|74 0.21 |nct wC 74 0.86 |74 0.21 |nct nc |71 0.92

1pmarosr7| 3136/9408 | 3136/0.005 |N/A* N/A |57 2.4 |57 22 |N/A* N/A |57 2.1 |57 23 |51 25
1pmodszkl | 687/1620 | 686/0.003 | 71 051 |71 0.3 |71 0.07 | 71 051 |71 0.4 |71 0.071|70 0.53
1posa 30 |4350/104374 | 4350/0.001 |N/A* N/A |46 85 |46 1.9 |N/A* N/A |45 88 |45 2 |43 30
1p.osa60 |10280/243246|10280/0.0006|N/A* N/A |47 24 |47 5.9 |N/A* N/A [44 23 |44 5.9 |42 1.1e+02
1ppds.02 | 2953/7716 |2953/0.0007 |N/A* N/A |25 0.25 |25 0.14 [N/A* N/A |25 024 |25 0.099|26 1.3
1ppds_10 | 16558/49932 |16558/0.0001 |N/A* N/A |61 13 |61 &1 |N/A* N/A |60 13 |60 7.9 |59 62
1pperold | 625/1506 | 625/0.007 | 58 0.39 |58 0.16 |58 0.084| 58 0.38 |58 0.16 |58 0.087|57 0.59
1p_pilot 1441/4860 | 1441/0.006 | 105 13 |105 1.3 [105 0.83 | 109 6.2 |109 1.3 |109 0.97 [117 5.8
1ppilot87 | 2030/6680 | 2030/0.006 | 102 17 [102 2.6 [102 1.9 |104 15 |104 2.7 [104 1.9 |[110 15
lppilotwe| 722/2928 | 722/0.004 | 73 0.69 |73 024 |73 0.11 | 73 065 |73 021 |73 01181 1.4
1ppilotnov| 975/2446 | 975/0.006 | 77 1.3 |77 0.35 |nct wec | 77 13 |77 0.85 |[n¢t Ne |78 1.3

1lp-gapi2 3192/8856 3192/0.001 |N/A* N/A |27 3.8 27 3.7 |N/A* N/A |26 3.1 |26 3.6 |25 1.4e+02
1lp_gap8 912/1632 912/0.005 20 04220 0.15 |20 0.11 |22 031 |22 0.15 |22 0.1 |21 1.9
lp_scfxmi 330/600 330/0.01 45 0.1 |45 0.042 |45 0.036| 44 0.098 | 44 0.041 | 44 0.036| 44 0.19
1p_scfxm2 660/1200 660/0.007 52 0.42 |52 0.079 |52 0.056| 57 0.43 | 57 0.094 | 57 0.06 | 55 0.46
1lp_scfxm3 990/1800 990/0.005 45 0.8 |45 0.096 |45 0.061| 45 0.76 |45 0.097 | 45 0.062| 48 0.54
lp_scsdl 77/760 77/0.04 74 0.035| 74 0.035 |74 0.044| 74 0.033| 74 0.034 |74 0.043 |nct NC
lp_scsd6 147/1350 147/0.02 84 0.077| 84 0.054 |84 0.06 | 92 0.084|92 0.06 |92 0.065| 75 0.34
1p-scsd8 397/2750 397/0.008 66 0.21 |66 0.07 |66 0.066| 65 0.21 |65 0.069 |65 0.066|66 0.54
lp_sctapl 300/660 300/0.009 | 107 0.25|107 0.088 |107 0.075| 102 0.24 |102 0.081 [102 0.07 |100 0.45

lp_sctap2 1090/2500 1090/0.003 | 145 5.5 |146 0.43 |146 0.18 | 145 3.6 |143 0.46 |146 0.19 |157 2.3
lp_sctap3 1480/3340 1480/0.002 | 204 27 |205 0.75 |201 0.539 | 199 13 |197 0.74 |202 0.39 |220 4.3
1lp_ship041 402/2166 360/0.007 84 0.25|84 0.12 |84 0.077| 84 0.27 |84 0.12 |84 0.08 |92 0.84
1p-shipO4s 402/1506 360/0.007 74 0.17|74 0.063 |74 0.053| 74 0.16 | 74 0.065 | 74 0.055| 71 0.48
lp_stair 356/614 356/0.02 47 0.11 | 47 0.047 |47 0.046 | 47 0.11 | 47 0.047 | 47 0.045| 47 0.23
lp_standata| 359/1274 359/0.007 78 02278 0.072 |78 0.058| 79 0.21 |79 0.067 |79 0.057|80 0.65
lp_standmps| 467/1274 467,/0.007 52 0.21 |52 0.06 |52 0.042| 52 0.21 |52 0.065 |52 0.043| 58 0.48

experiment. Problems 1-19 in Table 5 are convex and can immediately be attempted
by the solvers (with bounds released). Problems 20-31 are not convex when the bounds
are relaxed, but adding the term 2|z[|3 with § = 10 to the objective functions produced
finite solutions for these problems. As in the previous experiment, convergence is
determined by each algorithm internally. For TR1, TR1H, TR1L, TR2, TR2H, TR2L
the conditions || Pg|lcc <1 x 1075 and ||Azy — b2 < 5 x 1078 are explicitly enforced,
while for IPOPT we set options_ipopt.ipopt.tol=1e-5. We use the iteration limit
of 100,000 for all solvers. The limited-memory parameter is [= 5 for all TR solvers
and | = 6 (default) for IPOPT. Since TR1 and TR2 are not designed for large m,
they are applied to problems with m < 2500, with the exception of 3 problems

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A122

J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

TABLE 4

Ezxperiment II compares T solvers on 61 large problems from the CUTEst collection [22]. et
means the solver did not converge to tolerances. MX' means the iteration limit was reached. TR1L
converged on 58 problems, the largest number of problems among the solvers. TR2H was faster than
TR2 on 51 problems, and TR2L was faster than TR2 on 46 problems (the differences are often
significant). TR1H was faster than TR1 on 49 problems, and TR1L was faster than TR1 on 41
problems (often significantly). All of TR1{H,L} and TR2{H,L} were faster than IPOPT.

Problem m/n TR2 TR2H TR2L TRI1 TRIH TRIL IPOPT

It Sec It Sec It Sec It Sec It Sec It Sec It Sec
ARWHEAD | 1250/5000 | 343 1.7e402| 349 19 | 372 19 | 264 72 |304 16 |315 16 |NcT NC
BDQRTIC | 1250/5000 | 181 50 174 81 | 187 99 | 174 31 186 89 | 160 84 | 78 1.2e+02
BOX 2500/10000| 240 1.5¢+03| 280 63 | 281 79 | 218 2.1e+02| 258 54 | 208 58 |nct wc
BROYDN7D| 1250/5000 | 355 20 | 370 18 | 367 18 [355 20 | 370 17 | 381 19 | 432 6.5e+02
BRYBND | 1250/5000 | 897 1.5¢402| 883 45 |1273 64 |1396 1.2¢+02| 1177 60 |1421 70 |1027 1.7e403
COSINE |2500/10000| Nct NC [5028 1le+03 |4527 1.2e+03|4755 2e+03 |7318 1.6e+03[3292 910 |nct Nc
CRAGGLVY| 1250/5000 | 373 63 | 371 18 | 369 19 | 400 45 |390 20 | 397 21 |205 3.4e+02
CURLY10 |2500/10000| 1563 7.2e+02| 2498 5.3e4+02| 1496 429 |1512 4.5e+02| 1549 347 | 1759 4.9e+02(1775 3e+04
CURLY20 (2500/10000| 1951 9.5¢+02| 2015 455 [1993 552 |3149 9.5e+02|4110 8.7e+02| 3836 1.le+03|Nct Nc
CURLY30 |2500/10000| 4457 2.8e4-03|4210 952 |3669 1le+03 |2744 783 |6940 1.6e+03|6145 1.7e+03| NcT NC
DIXMAANA| 750/3000 | 10 0.53 | 10 0.43 | 10 051 | 10 0.5 10 047 | 10 046 | 13 83
DIXMAANB| 750/3000 | 9 0.55 9 0.5 9 0.5 9 0.59 9 0.5 9 055 | 11 8.1
DIXMAANC| 750/3000 | 12 0.73 | 12 067 | 12 072 | 12 065 | 12 063 | 12 069 | 14 10
DIXMAAND| 750/3000 | 23 1.7 23 1.1 23 1.2 22 093 | 22 0.83 | 22 1 27 16
DIXMAANE| 750/3000 | 35 1.1 35 1 35 1.1 35 0.83 | 35 088 | 35 1.1 |41 18
DIXMAANF| 750/3000 | 183 5.2 | 194 3.9 | 194 57 | 194 6.6 | 195 4.9 | 203 6.7 |297 1.3e+02
DIXMAANG| 750/3000 | 434 19 | 397 83 |439 12 | 435 13 | 408 9.8 | 404 11 |[nct ne
DIXMAANH| 750/3000 | 433 14 | 470 11 | 454 13 | 459 11 421 9.3 | 443 12 | 422 1.8e+02
DIXMAANI| 750/3000 | 82 2 82 1.8 82 2.4 82 1.6 82 1.8 82 2.5 [103 46
DIXMAANJ| 750/3000 | 1054 41 |1506 35 |1023 27 |1415 42 |1490 34 | 944 24 |nct wc
DIXMAANK| 750/3000 | 2971 1e+02 [3026 65 [3082 71 |2831 80 [2870 61 |2691 62 |nct nc
DIXMAANL| 750/3000 | 1461 38 [3198 69 [2609 60 |2690 66 |2728 58 |2597 59 |nct wc
DIXON3DQ|2500/10000| 51 17 51 12 51 17 51 17 51 12 51 16 | 56 6.7e+02
DQDRTIC | 1250/5000 | 13 1.7 7 0.85 7 0.77 | 13 1.5 7075 | 7 0.75 | 7 13
DQRTIC | 1250/5000 | 63 4.6 | 107 6.7 | 107 7 63 45 | 107 57 | 107 6.1 | 93 1.5¢4+02
EDENSCH | 500/2000 | 32 0.33 | 32 0.4 32 038 | 32 0.32 | 32 039 | 32 036 | 34 5
EG2 250/1000 | 423 2.2 | 504 1.3 | 439 1.3 | 514 52 | 624 2 502 1.9 |908 23
ENGVAL1 | 1250/5000 | 31 2.7 31 1.8 31 2 31 2.6 31 1.9 31 2 38 61
EXTROSNB| 250/1000 | 148 0.44 | 148 045 | 148 049 | 145 053 | 145 046 | 145 0.39 |129 3
FLETCHCR| 250/1000 | 150 0.4 | 150 0.46 | 150 051 | 150 0.37 | 150 0.42 | 150 0.41 |137 3.1
FMINSRF2| 1407/5625 | 122 10 122 9.3 | 122 10 122 10 122 7.8 | 122 9.6 |167 4et02
FREUROTH| 1250/5000 | 287 1e+02 | 247 12 | 235 18 | 274 37 | 255 13 | 234 13 [202 3.2e+02
GENHUMPS | 1250/5000 | 2215 1.2e402[1762 99 |1829 93 |2215 1.3e4+02|1762 98 |1829 95 |Nct NC
LIARWHD | 1250/5000 | 3854 1.6e4-03| 3998 4.4e4-02|2726 196 | 2638 1.2e403|2408 2.6e+02| 1591 128 |Nct NC
MOREBV | 1250/5000 | 151 23 151 22 151 20 151 19 151 16 | 151 16 |Nct NC
MSQRTALS| 256/1024 | Mxf MX uxt MX mxt MX mxt MX |78461 6.6e+02[99724 620 |NcT NC
MSQRTBLS| 256/1024 | Mx' MX Mxt MX mxt MX mxt MX Mxt MX Mxt Mx | nct NC
NCB20 1253/5010 | 345 47 | 348 18 | 349 18 | 314 33 |317 16 | 307 16 |252 3.9e4+02
NONCVXU2| 1250/5000 | 185 20 185 9 185 9.5 | 186 14 187 9.2 | 186 9.4 |120 1.9e4+02
NONCVXUN| 1250/5000 | 282 33 | 283 14 | 282 14 360 31 354 17 | 370 19 [199 3.1e+02
NONDIA |1250/5000 | 1612 6.9¢+02| 1600 88 [1734 88 |2764 7.3e+021407 78 |1907 98 |Nnct wmc
NONDQUAR| 1250/5000 | 897 4.3¢4-02| 865 47 | 811 42 | 816 2.1e+02| 876 47 | 857 44 |332 8.1e+02
PENALTY1| 250/1000 | 8 0.051 | 2 0018 | 2 0017 | 8 005 | 2 0019 | 2 0.016 | 1 0.043
POWELLSG| 1250/5000 | 88 6.1 88 4.4 | 88 4.6 88 5.6 88 44 88 4.6 | 99 1.5e+02
POWER |2500/10000| 51 17 uxt MX uxt MX 51 17 Mxt MX mxt MX 62 6.9e+02
QUARTC | 1250/5000 | 70 4.9 | 104 53 | 104 5.4 70 45 | 104 51 | 104 56 | 89 1.4et02
SCHMVETT| 1250/5000 | Mxf MX |70882 3.9e+03| Mx' MX nct NC uxt MX 96572 5.1e+03| nct NC
SINQUAD |1250/5000 | 236 56 | 282 15 | 214 11 | 247 32 | 216 12 | 277 14 [116 1.8e+02
SPARSQUR|2500/10000| 35 13 43 10 43 14 35 13 43 9.9 | 43 14 | 31 3.5e+02
SPMSRTLS| 1250/4999 | 2222 2.7e+02| 1791 95 [2377 1.2e4+02| 2792 2402 | 2475 1.3e4+02| 1834 98 |nct nc
SROSENBR| 1250/5000 | 5561 4.1e4-02| 8211 4.3e4-02|4814 235 | 6400 4.3e4-02| 6747 3.6e4+02| 5280 270 |Nct Nc
TOINTGSS| 1250/5000 | 39 3.1 39 2.2 39 2.3 39 3 39 2.3 39 2.3 | 49 76
TQUARTIC| 1250/5000 | 2069 8.7e+02| 1155 64 |1508 78 | 1494 3.7e+02| 1867 1le402 | 1871 98 |nct wc
TRIDIA | 1250/5000 | 147 9 82 4.2 82 43 | 147 91 82 4.2 82 44 | 66 let02
WooDS 1000/4000 | 1192 45 |1157 38 |1077 27 |1236 44 |1167 37 1132 29 |971 1.3e+03
SPARSINE| 1250/5000 | 1504 1.7e4-02| 1476 79 |1464 74 | 2188 1.6e4+02|1407 74 |3999 2e+02 |2294 5.6e+03
TESTQUAD| 1250/5000 |10988 623 [14186 7.3e+02|13357 6.5e+02|10988 643 |14186 7.3e+02|13357 6.6e+02| NCT NC
JIMACK | 888/3549 | nct NC nct NC nct NC nct NC nct NC nct nc | nct we
NCB20B | 1250/5000 | 57 4.1 56 3.2 56 3.2 57 4.2 56 3.1 56 3.2 |41 73
EIGENALS| 638/2550 | 202 8.2 | 204 3.7 | 203 41 | 202 3 204 3.6 | 203 4 161 43
EIGENBLS| 638/2550 | 28 0.59 | 28 0.65 | 28 0.6 28 051 | 28 052 | 28 062 |28 7.7

(BLOWEYA, BLOWEYB, BLOWEYC) that did not terminate within hours using TR1 and
TR2. All other solvers are applied to all problems. The results are in Figure 3 and
Table 5.

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A123

TABLE 5

Ezxperiment II1 compares T solvers on 31 linear equality constrained problems from the CUTEst
collection [22]. NC' means the solver did not converge to tolerances. N/A means that TR1 and
TR2 were not applied because the problem size rendered them mot practical. TR2H and TR1H
converged on all 31 problems. TR2L, TR1L, and IPOPT converged on 30 problems (the exception
is CVXQP2). The fastest and second fastest solvers for each problem are highlighted in bold and italic
fonts, respectively. Overall, TR2H was fastest on 12 problems (the best outcome on this experiment),
while TR1L was fastest on 11 problems (the second best outcome). Problems AOESDNDL and AOESINDL
contain dense columns in A, and the sparse QR factorization takes additional time as seen from
the entries of TR2H and TR1H. However, preconditioned LSQR can overcome this difficulty, as
observed in the entries for TR2L and TR1L for these problem instances.

TR2 TR2H TR2L TR1 TR1H TRI1L IPOPT

Problem m/n It Sec It Sec It Sec It Sec It Sec It Sec | It Sec

AUG2D 10000/20200 |N/A* N/A 7 0.26 7 0.15 |[N/A* N/A 7 0.24 7 0.13 |12 1.4
AUG2DC |10000/20200 |N/A* N/A 2 0.11 2 0.067 |N/A* N/A 2 0.1 2 0.067| 1 0.15
AUG2DCQP|10000/20200 |N/A* N/A 2 0.11 2 0.072 |N/A* N/A 2 0.11 2 0.07 |1 0.16
AUG2DQP |10000/20200|N/A* N/A 7 0.23 7 0.13 |[N/A* N/A 7 0.24 7 018 |12 1.4
AUG3D 8000/27543 |N/A* N/A 10 0.68 10 0.52 |[N/A* N/A 10 0.6 10 0.51 |11 2.6
AUG3DC 8000/27543 |N/A* N/A 2 0.3 2 0.28 |[N/A* N/A 2 0.3 2 0261 0.31

AUG3DCQP | 8000/27543 |N/A* N/A | 2 03 |2 0.27 |[N/A* N/A | 2 033 |2 026|1 033
AUG3DQP | 8000/27543 |N/A* N/A | 10 0.74 |10 0.55 [N/A* N/A | 10 064 [10 0.5 |11 2.6
CVXQP1 | 5000/10000 |N/A* N/A | 827 7.8 (805 3.8 |N/A* N/A | 827 7.3 [805 3.8 |740 51
CVXQP2 | 2500/10000 [N/A* N/A [39596 1.5e+02|NcT NC |N/A* N/A |47572 1.8e4+02|Nct nc |nct wC
CVXQP3 | 7500/10000 |N/A* N/A | 169 2.8 |169 1.4 |N/A* N/A | 169 24 [169 1.4 [118 8.9
STCQP1 | 4095/8193 |N/A* N/A | 88 0.15 |88 0.42 [N/A* N/A | 88 0.18 |88 0.36 | 75 6.8e+02
STCQP2 | 4095/8193 |N/A* N/A | 142 0.25 |142 0.8 |N/A* N/A | 144 0.28 |144 0.72 136 4.8
DTOCIL | 3996/5998 |N/A* N/A | 13 0.073 |13 0.13 |N/A* N/A | 13 0.075 |13 0.4 |16 0.41

DTOC3 2998/4499 |N/A* N/A 5 0.025 | 5 0.059 |[N/A* N/A 5 0.08 5 0.033] 4 0.09
PORTSQP 1/100000 2 0.09 2 0.064 | 2 0.067| 2 0.062 2 0.059 | 2 0.062 | 1 0.42
HUES-MOD 2/5000 1 0.0028] 1 0.0018 | 1 0.0027| 1 0.0026| 1 0.0018 | 1 0.0026| 1 0.024
HUESTIS 2/5000 2 0.0073 2 0.0042| 2 0.011 | 2 0.0061] 2 0.0047 | 2 0.0094| 2 0.072
AOESDNDL | 15002/45006 |N/A* N/A 5 69 5 0.13 |N/A* N/A 5 71 5 0.12 | 6 1.8

AOESINDL|15002/45006 |N/A* N/A 5 73 5 0.12 |N/A* N/A 5 70 5 0.11 | 6 1.8

PORTSNQP| 2/100000 | Nct NC 2 0.092 | 2 0.11 | 14 047 2 0.095 | 2 0.1 2 0.88
BLOWEYA | 2002/4002 |N/A* N/A 2 0.011 | 2 0.031 |N/A* N/A 2 0.015 | 2 0.021| 2 0.082
BLOWEYB | 2002/4002 |N/A* N/A 2 0.015 | 2 0.019 |N/A* N/A 2 0.016 | 2 0.019| 2 0.082
BLOWEYC | 2002/4002 |N/A* N/A 2 0.015 | 2 0.017 |N/A* N/A 2 0.015 | 2 0.021 | 2 0.15
CONT5-QP |40200/40601 |N/A* N/A 2 0.51 2 0.79 |N/A* N/A 2 0.49 2 0.8 2 1.3

DTOC1L 3996/5998 |N/A* N/A 5 0.03 5 0.09 |[N/A* N/A 5 0.043 | 5 0.045| 4 0.12
FERRISDC| 210/2200 2 0.084 2 0.083 | 2 0.077| 2 0.076| 2 0.078 | 2 0.079| 0 0.021
GOULDQP2| 9999/19999 |N/A* N/A 2 0.038 | 2 0.025|N/A* N/A 2 0.038 | 2 0.026 | 2 0.2

GOULDQP3| 9999/19999 |N/A* N/A 6 0.076 | 6 0.054 |N/A* N/A 6 0.077 | 6 0.053| 7 0.69
LINCONT 419/1257 5 0.058 5 0.02 5 0.031] 5 0.05 5 0.019 | 5 0.03 | 5 0.055
sS0SQP2 2501/5000 |N/A* N/A 3 0.017 | 3 0.04 |N/A®* N/A 3 0.022 | 3 0.019]| 4 0.11

10. Conclusion. For subproblem (1.2), this article develops the RCR of the (1,1)
block in the inverse KKT matrix, when the objective Hessian is approximated by a
compact quasi-Newton matrix. The representation is based on the fact that part of
the solution to the KKT system is unaffected when it is projected onto the nullspace
of the constraints. An advantage of the RCR is that it enables a decoupling of solves
with the constraint matrix and remaining small terms. Moreover, a projected gradient
can be used in two places: once as part of the matrix update and second as part of
the new step. By effectively handling orthogonal projections, in combination with
limited-memory techniques, we can compute search directions efficiently. We apply
the orthogonal projections with a sparse QR factorization or a preconditioned LSQR
iteration, including large and potentially rank-deficient constraints. The RCRs are
implemented in two trust-region algorithms, one of which exploits the underlying
matrix structures in order to compute the search direction by an analytic formula.
The other is based on an £s-norm and uses the RCR within a 1D Newton iteration to
determine the optimal scalar shift. In numerical experiments on large problems, our
implementations of the RCR yield often significant improvements in the computation
time as a result of the advantageous structure of the proposed matrices.

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Al124 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

Applications of problem (1.1) often include bounds ¢ < z < u. When second
derivatives of the objective function are available, the problem is best handled by
an interior method. Otherwise, a barrier function could be added to the objective,
and the methods here may sometimes be effective on a sequence of large equality
constrained subproblems.

Appendix A. Here we describe a simplified expression for the matrix C,| G1.C,
from section 4.2. Recall that the L-BFGS inverse Bk_1 =0l + JkaJ,;r is defined by

Ty " (Dy + 6., V)Tt —6 Ty "

Je=[Sx Y], Wi= ST Ot

First, note that
Cr=ALWi = [0 AV Wy = [<6,AVRT 0]

Second, it holds that

G.' = AB'AT = 5, AAT + AW AT = 6, AAT + Cy [(Aﬁ)T] ;
k

so that G,;l = 6, AAT, because the last term in the above expression for G,:l vanishes.
Multiplying C,I, Gy, and C), we see that

ClGpCr =

T Y, AT(AAT) LAY T Ole]'
Ol><l 0l><l

Appendix B. This appendix describes how we apply the functions from the
SuiteSparse library [12] in our implementations. We use SuiteSparse version 5.8.1 from
https://github.com/DrTimothyAldenDavis/SuiteSparse/releases.

B.1. Householder QR projection. The MATLAB commands to compute the
projection Pg; using a Householder QR factorization are listed in Table 1.

B.2. Preconditioned LSQR projection. The MATLAB commands to com-
pute the projection Pgy using preconditioned LSQR [28] are listed in Table 2.

Appendix C. This appendix overviews the subproblem solution with the shape-
changing norm. Note that U = [Ql U, Ug} € R™ " (from section 7) represents an
orthogonal matrix and that the quadratic function is

1 1
q(s) =s'gi+ §sTBks = sTUU g + 5sTUUTBkUUTs.

We introduce the change of variables v = [vlT vy vg] = 5" U. Moreover, it holds

that . - -
Qy BrQ1 Qy BxUz Q BxUs
U'BLU = |Uy BrQ: (0x1 + Ap)™?

Uy BrQ: 5.1
(cf. [6, Lemma 2]) and that
U1
AUU's=AUv=[R 0 0] |vz| = Ruy.
U3

© 2022 U.S. Government

https://github.com/DrTimothyAldenDavis/SuiteSparse/releases

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A125

With the constraint As = 0 = AUw, this implies v; = 0 (for R nonsingular). Therefore,
the trust-region subproblem defined by the shape-changing norm decouples into a
problem with v, and vs only (once v = 0 is fixed):

o o 1 _
minimize ¢(s) = 4 minimize vy Uy g 4+ =vg (6,1 + Az) ™ vy
lsly < &y llvzloo <Ak 2

T ||v3||§}
4+ minimize vy Us gx + .
lvzll2<Ag 3789 20

This reformulated subproblem can be solved analytically, and the componentwise
solution of vy is in (8.1). The analytic solution of vs is v3 = BU; gx with 3 from (8.2).
Subsequently, s is obtained by transforming variables as s = Uv = Usvy + Usvs. The
orthonormal matrix Us is computed as Uy = [Sk Zk] lfig_lfi’g, and since U3U3T =
P — UyU, , the optimal step with the shape-changing norm is as in (8):

ssc = Uz(va — BUY gi) + BPgs.
With ug, = U gg, the step is then computed as in Algorithm 8.1 (line 15):
ssc =[Sk Zi] Ry Pa(va — Buy) + BPgs.

Appendix D.

D.1. Detailed table for Experiment I. In this experiment the degree of
difficulty in solving a problem depends largely on handling A because the structure
of the objective function is the same for all instances. We observe that our proposed
algorithms (any of TR1{H,L}, TR2{H,L}) always use less computation time (often
significantly), except for two problem instances. On problem lp_d6cube, TR2 used
less time than TR2H, as did TR1 over TR1H. However, the “L” versions were fastest
overall on this problem. On problem lp_scsdl, TR1 used the least time. In these two
problems the number of constraints is not large, and one can expect that TR1, TR2
do comparatively well. However, for all other 48 problems the new methods used the
least time. We observe that both “H” versions converged to the prescribed tolerances
on all problems. On the other hand, the “L” versions are often the overall fastest, yet
they did not converge on 3 problem instances (beacxc, lp_cre_d, fit2d).

D.2. Detailed table for Experiment II. In Experiment II, the objective
functions for each problem are defined by a large CUTEst problem, whereas the
corresponding A matrices are not meant to be overly challenging. We observe that the
proposed algorithms (the ones including “{H,L}”) improve the computation times on
the majority of problems. For the 10 instances in which TR2 used less time than TR2H,
the differences are relatively small. An exception is DIXMAANL, where the difference
amounts to 31s. However, for the other 51 problems, TR2H resulted in often significant
improvements in computation time. For instance, in LIARWHD this difference amounts
to 1182s (more than 19 minutes). These observations carry over when comparing TR1
with TR1H. The “L” versions exhibit similar outcomes as the “H” ones, with occasional
increases in computation times. Overall, TR1L converged to the specified tolerances on
the largest number of problems. The problems reported as “NC” in IPOPT’s column
correspond to status flags other than “0, 1, 2”7 = “solved, solved to acceptable level,
infeasible problem detected.”

© 2022 U.S. Government

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A126 J. BRUST, R. MARCIA, C. PETRA, M. SAUNDERS

D.3. Detailed table for Experiment III. In Experiment III, TR2H and TR1H
converged on all 31 problems, while all other solvers (besides TR1 and TR2) converged
on all problems except one: CVXQP2. TR2H was the fastest on 10 problems (the
best outcome among the solvers), while TRIL was the fastest on 9 problems (the
second best outcome). Problems AOESDNDL and AOESINDL appear noteworthy: they
contain dense columns (satisfying the condition nnz(4;;)/m > 0.1). Sparse QR
factorization is expensive because of fill-in. However, the iterative method LSQR (with
the preconditioning technique from section 5.2) can overcome these difficulties.

Acknowledgments. We would like to acknowledge the valuable discussions
initiated by Ariadna Cairo Baza and spurred by the 9th ICIAM conference at the
Universidad de Valencia. We thank two referees for their extremely detailed and
helpful comments.

REFERENCES

[1] S. Boyp, N. ParIKH, E. CHU, B. PELEATO, AND J. ECKSTEIN, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found. Trends Mach.
Learn., 3 (2011), pp. 1-122, https://doi.org/10.1561/2200000016.

[2] C. G. BROYDEN, The convergence of a class of double-rank minimization algorithms 1. General
considerations, IMA J. Appl. Math., 6 (1970), pp. 76-90, https://doi.org/10.1093 /imamat/
6.1.76.

. BrusT, O. BURDAKOV, J. ERWAY, AND R. MARCIA, A dense initialization for limited-memory
quasi-Newton methods, Comput. Optim. Appl., 74 (2019), pp. 121-142.

. J. BRuUST, Large-Scale Quasi-Newton Trust-Region Methods: High-Accuracy Solvers, Dense
Initializations, and Extensions, PhD thesis, University of California, Merced, 2018, https:
/ /escholarship.org/uc/item/2bv922qk.

. J. Brust, J. B. ERwAY, AND R. F. MARCIA, On solving L-SR1 trust-region subproblems,
Comput. Optim. Appl., 66 (2017), pp. 245-266.

. J. BrusT, R. F. MARCIA, AND C. G. PETRA, Large-scale quasi-Newton trust-region methods
with low-dimensional linear equality constraints, Comput. Optim. Appl., 74 (2019), pp.
669-701, https://doi.org/10.1007/s10589-019-00127-4.

[7] O. BurpAKOV, L. GONG, Y.-X. YUAN, AND S. ZIKRIN, On efficiently combining limited memory
and trust-region techniques, Math. Program. Comput., 9 (2016), pp. 101-134.

[8] R. H. BYRD, J. NOCEDAL, AND R. B. SCHNABEL, Representations of quasi-Newton matrices
and their use in limited-memory methods, Math. Program., 63 (1994), pp. 129-156.

[9] R. H. BYRD, J. NOCEDAL, AND R. A. WALTZ, Knitro: An Integrated Package for Nonlin-
ear Optimization, Springer US, Boston, MA, 2006, pp. 35-59, https://doi.org/10.1007/
0-387-30065-1_4.

[10] A. R. ConN, N. I. M. GouLDp, AND P. L. TOINT, Trust-Region Methods, SIAM, Philadelphia,
PA, 2000.

. A. Davis, Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse
QR factorization, ACM Trans. Math. Software, 38 (2011), pp. 8:1-22.

. A. Davis AND Y. Hu, The University of Florida sparse matriz collection, ACM Trans. Math.
Software, 38 (2011), p. 25.

. A. Davis, Y. Hu, AND S. KOLODZIEJ, SuiteSparse Matriz Collection, https://sparse.tamu.
edu/, 2015-present.

. DEGucny, J. B. ErRwAy, AND R. F. MARCIA, Compact representation of the full Broyden
class of quasi-Newton updates, Numer. Linear Algebra Appl., 25 (2018), €2186.

[15] E. DoLAN AND J. MORE, Benchmarking optimization software with performance profiles, Math.
Program., 91 (2002), pp. 201-213.

R. FLETCHER, A new approach to variable metric algorithms, Comput. J., 13 (1970), pp. 317-322,
https://doi.org/10.1093/comjnl/13.3.317.

[17] D. C.-L. FONG AND M. SAUNDERS, LSMR: An iterative algorithm for least-squares problems,

A

=
—

=
—

=
[

=
—

= = =
L Ny =
S8 s

=
Lt
O

SIAM J. Sci. Comput., 33 (2011), pp. 29502971, https://doi.org/10.1137/10079687X.
. Fu, J. ZHANG, AND S. BoyD, Anderson accelerated Douglas—Rachford splitting, SIAM J. Sci.
Comput., 42 (2020), pp. A3560-A3583, https://doi.org/10.1137/19M1290097.
[19] P. E. GiLL AND W. MURRAY, Numerical Methods for Constrained Optimization, Academic
Press, London, 1974.

© 2022 U.S. Government

https://doi.org/10.1561/2200000016
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/imamat/6.1.76
https://escholarship.org/uc/item/2bv922qk
https://escholarship.org/uc/item/2bv922qk
https://doi.org/10.1007/s10589-019-00127-4
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1007/0-387-30065-1_4
https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1137/10079687X
https://doi.org/10.1137/19M1290097

Downloaded 09/07/22 to 169.236.236.7 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RCR: REDUCED COMPACT REPRESENTATION A127

D. GOLDFARB, A family of variable-metric methods derived by variational means, Math. Comp.,
24 (1970), pp. 23-26, https://doi.org/10.1090/S0025-5718-1970-0258249-6.

G. H. GorLuB AND C. F. VAN LOAN, Matriz Computations, 4th ed., Johns Hopkins Stud. Math.
Sci., Johns Hopkins University Press, Baltimore, MD, 2013.

N. I. M. GouLp, D. OrBAN, AND P. L. ToiNT, CUTEr and SifDec: A constrained and
unconstrained testing environment, revisited, ACM Trans. Math. Software, 29 (2003),
pp. 373-394.

M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J.
Res. Natl. Bureau. Standards, 49 (1952), pp. 409-436.

D. C. Liv AND J. NOCEDAL, On the limited memory BFGS method for large scale optimization,
Math. Program., 45 (1989), pp. 503-528.

A. MAHAJAN, S. LEYFFER, AND C. KIRCHES, Solving Mized-Integer Nonlinear Programs by
QP Diving, Technical Report ANL/MCS-P2071-0312, Mathematics and Computer Science
Division, Argonne National Laboratory, Lemont, IL, 2012.

J. NOCEDAL, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980),
pp. 773-782.

J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, 2nd ed., Springer-Verlag, New York,
2006.

C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software, 8 (1982a), pp. 43-71, https://doi.org/10.1145/
355984.355989.

D. F. SHANNO, Conditioning of quasi-Newton methods for function minimization, Math. Comp.,
24 (1970), pp. 647-656, https://doi.org/10.1090/S0025-5718-1970-0274029-X.

A. WACHTER AND L. T. BIEGLER, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), pp. 25-57.

H. ZuaNG AND W. W. HAGER, A nonmonotone line search technique and its application to
unconstrained optimization, SIAM J. Optim., 14 (2004), pp. 1043-1056, https://doi.org/10.
1137/51052623403428208.

C. Zuu, R. H. BYrD, P. Lu, AND J. NOCEDAL, Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization, ACM Trans. Math. Software, 23 (1997),
pp. 550-560, https://doi.org/10.1145/279232.279236.

© 2022 U.S. Government

https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1145/355984.355989
https://doi.org/10.1145/355984.355989
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.1137/S1052623403428208
https://doi.org/10.1137/S1052623403428208
https://doi.org/10.1145/279232.279236

	Introduction
	Background
	Compact representation
	Outline

	Contributions
	Motivation
	Reduced compact representation
	Reduced Hessian
	RCR
	Computational complexity
	Updating

	Computing projections
	QR factorization
	Iterative computation of z
	Implementation
	Trust-region algorithm

	ell_2-norm trust-region constraint
	ell_2-norm search direction

	Eigendecomposition of V_k
	Shape-changing-norm trust-region constraint
	Numerical experiments
	Experiment I
	Experiment II
	Experiment III

	Conclusion
	Appendix A
	Appendix B
	Householder QR projection
	Preconditioned LSQR projection

	Appendix C
	Appendix D
	Detailed table for Experiment I
	Detailed table for Experiment II
	Detailed table for Experiment III

	Acknowledgments
	References

