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ABSTRACT: Anomalous self-diffusive behavior in associative polymer gels has been attributed 

to the presence of multiple diffusive mechanisms on different length scales; however, the role of 

these dynamic modes in networks of linear polymers with pendant stickers remains unknown, 

particularly at sticker densities below the mean-field limit. Here, a generalized Brownian dynamics 

model is developed to study the effect of transient binding on self-diffusion of unentangled linear 

polymers with regularly spaced stickers, selected as a prototypical associative network model with 

wide experimental relevance. The simulations reveal an interplay between several diffusive 

mechanisms, including segmental fluctuations, “walking” diffusion, and “hopping” diffusion, each 

governed by a molecule’s connectivity to the network. These dynamic modes combine to result in 

multiple self-diffusive regimes on different length scales, including two distinct regimes of 

apparent superdiffusion before terminal Fickian diffusion, consistent with experiment. The two 

superdiffusive regimes have different physical origins: while one occurs due to a transition from 

walking to hopping, the second occurs from walking alone on smaller length scales, even in the 

absence of hopping. This second superdiffusive regime is proposed to arise from an increase in the 

chain pervaded volume upon sticker detachment, which increases the walking step size compared 

to the “cage” formed by binding. Each self-diffusive regime is highly sensitive to the sticker 

concentration, equilibrium constant, and association/dissociation kinetics due to their effects on 

the walking and hopping modes. Notably, increasing a chain’s sticker density promotes 

intramolecular loops and enables superdiffusive scaling through hopping; in contrast, increasing 

the chain concentration promotes intermolecular binding and suppresses hopping, resulting in 

dynamics approaching the mean-field limit of Fickian center-of-mass diffusion on all length scales. 

Analytical predictions for the hopping and walking diffusivities demonstrate a link between the 
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static network structure, bond lifetime, and contribution of each dynamic mode, with qualitative 

agreement with simulation.  

1. INTRODUCTION  

Knowledge of dynamics in associative macromolecular networks is centrally important for 

understanding biophysical processes and designing soft materials for applications spanning drug 

delivery, tissue engineering, and organic electronics.1–3 In associative materials, the network 

structure is primarily held together by weak physical interactions such as hydrogen bonding,4 

metal-ligand coordination,5 and hydrophobic aggregation6 between macromolecules with bond 

lifetimes on the order of ~1 − 1000 seconds,5,7,8 wherein the reversible nature of the bonds allows 

junction exchange and molecular self-diffusion on length scales larger than the radius of 

gyration.9,10 This interplay between sticker association and molecular transport gives rise to 

dynamic properties crucial to biophysical processes such as selective protein translocation through 

the nuclear membrane11–13 and homologous recombination of DNA,14 as well as synthetic soft 

material functionalities such as stimuli-responsiveness, stress relaxation, and self-healing 

abilities.15–21 In all cases, understanding the internal molecular dynamics on different length scales, 

particularly the self-diffusive dynamics of the network-forming chains, is essential for predicting 

a system’s collective behavior and optimizing its performance for various applications. 

Transient network theory has emerged as a powerful tool to understand associative network 

behavior, using mean-field approaches to predict macroscopic properties such as the shear 

modulus, viscosity, and relaxation time from molecular-scale parameters such as the association 

energy, bond lifetime, and polymer chain length.22–27 For a prototypical network formed by linear 

polymers with multiple associative side-groups, these theories have established the pivotal role of 

the stickers in increasing the local friction of a chain, resulting in a strong effect of sticker density 
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and polymer concentration on overall network dynamics.24,28 However, though theoretical efforts 

have found success in predicting the bulk rheological behavior of associative systems,5,29–32 their 

ability to accurately capture self-diffusive dynamics has not been verified to similar depth. Recent 

experiments have shown that associative polymers with relatively few (~10) stickers per chain, 

both in linear and branched architectures, can exhibit unexpected self-diffusive behavior on 

different length scales, including apparent superdiffusion on length scales ~10-1000 times the 

radius of gyration.29,30,33,34 These anomalous dynamics have been proposed to arise due to the 

coexistence of multiple diffusive modes, which are largely not considered by current theories, 

including bound-state diffusion (e.g., “walking”) and relatively free diffusion by complete 

detachment of all stickers from the network (“hopping”).13,35–37 Mechanisms involving correlated 

sticker or chain motion in large clusters have also been proposed, though their role in quiescent-

state dynamics is unclear.24,30,36–38 The hopping mechanism, in particular, has been suggested to 

enable superdiffusive scaling in end-functionalized 4-arm star molecules when the sticker 

association kinetics are slower than the conformational relaxation rate of the star arm.37  

For the general case of linear polymers with associative side-groups,24,25,29,39 the presence 

and contribution of these diffusive modes toward network dynamics remain largely unknown. 

Theoretical studies of linear associative polymers have focused on the limiting case of high sticker 

density, leading to a mean-field prediction of Rouse-like relaxation and purely Fickian diffusion 

on all length scales.24,25,28,32 These theories largely do not consider the interplay between different 

diffusive mechanisms and assume negligible hopping in the high-sticker-density limit. 

Experimental evidence, however, suggests that hopping may be a significant diffusive mode in 

linear polymers even when the number of stickers is increased to 15 per chain,29 a surprising 

observation given the small likelihood of simultaneous detachment of such many binding groups. 
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The ability for linear polymers to form complex topological structures due to intramolecular 

binding (e.g., loops of various orders)40 may enhance the likelihood of hopping or lead to 

alternative roles of each diffusive mechanism compared to end-functionalized molecules such as 

the 4-arm stars.34,37,41 Further study of polymers with different sticker densities, particularly sticker 

densities below the mean-field limit, is required to understand the contributions of the individual 

dynamic modes toward self-diffusive behavior as a complement to the theoretical treatments to 

date.24,25,28 

In this work, a generalized Brownian dynamics model of gel-forming linear polymers with 

a finite number of pendant stickers is developed to explore the effect of transient binding of self-

diffusion over a wide range of length scales, from less than the radius of gyration up to the 

macroscopic Fickian regime. The simulations reveal an interplay between dynamic modes of 

segmental fluctuations, walking diffusion, and hopping diffusion that results in two distinct 

regimes of superdiffusive scaling, each with a different origin. The effect of cross-link density in 

the network is explored by varying the chain concentration, number of stickers per chain, and 

binding equilibrium constant, resulting in differences in topological structure that enable 

superdiffusive behavior via hopping even at high sticker density. A comparison of the simulations 

with experimental self-diffusion measurements of analogous associative polymers29,33 finds 

qualitative agreement, suggesting that this molecular model can successfully capture key dynamic 

behaviors of various associative systems across a range of length scales.  

2. MODEL AND METHODS 

The bead-spring model developed here is a hybrid Brownian dynamics/Monte Carlo model 

where chain motion is governed by Langevin dynamics and sticker binding/unbinding events are 

handled through a kinetic Monte Carlo scheme, similar to previous studies.37,39,42 Each simulation 
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contains 𝑛 = 500 chains of 𝑁 = 49 beads connected by springs of Kuhn length 𝑏 dispersed in a 

constant volume 𝑉. In semi-dilute conditions in a good solvent, strands between stickers can be 

modeled as freely-jointed chains of correlation blobs undergoing Rouse motion, where long-range 

interactions such as excluded volume and hydrodynamic forces are screened on length scales larger 

than the correlation blob size.43 The number of beads 𝑁 = 49 per chain is selected to allow various 

numbers of evenly spaced stickers along the chain while keeping the total chain length constant. 

Each bead-spring unit represents a subsection of the chain with enough monomers to have 

Gaussian conformational statistics; thus, the total number of monomers per chain is representative 

of typical degrees of polymerization of associative polymers studied experimentally. Each bead 

has friction factor 𝜉, and adjacent beads along the chain interact via a Hookean spring potential 

𝑈𝑠(Δ𝑟) = 3𝑘𝐵𝑇Δ𝑟2/2𝑏2, where Δ𝑟 is their separation distance, 𝑘𝐵 is Boltzmann’s constant, and 

𝑇 is temperature. For all simulations, the length 𝑏 and relaxation time 𝜏𝑠 = 𝑏2𝜉/𝑘𝐵𝑇 of a single 

Kuhn segment are chosen as the units of length and time, respectively. 

On each chain, 𝑁𝑠 beads are designated as stickers; these sticker beads are identical to 

normal beads except that they can form transient intermolecular or intramolecular bonds, as 

described below. Stickers are placed on each end and spaced regularly along the chain, such that 

the number of springs between stickers is Δ𝑁𝑠𝑡𝑟𝑎𝑛𝑑 = (𝑁 − 1)/(𝑁𝑠 − 1). Only pairwise sticker 

association is allowed, analogous to experimental systems based on hydrogen bonding4,44 and 

metal-ligand coordination.5,7 To access a wide range of time scales, chains are conceptualized as 

diffusing through a structureless, unentangled gel medium with sticker association treated in a 

mean-field sense (see Fig. 1). Therefore, pairwise interactions between different chains are not 

explicitly considered in this work, reducing computational cost. It is important to note that this 

treatment of the gel as a structureless medium is intended to capture the essential physics of the 
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gel matrix, particularly the total sticker density, but it neglects network inhomogeneities and 

geometric constraints on certain length scales that may affect the chain conformational and sticker 

binding statistics through entropic effects.35,36  

 Chain trajectories are calculated by solving the overdamped Langevin equation in three 

dimensions, where the position of bead 𝑗 on molecule 𝑖 is governed by 

𝜉
𝛿𝒓𝑖,𝑗

𝛿𝑡
=

3𝑘𝐵𝑇

𝑏2
(𝒓𝑖,𝑗+1 + 𝒓𝑖,𝑗−1 − 2𝒓𝑖,𝑗) + 𝑭𝐵(𝑖,𝑗) (1) 

The random Brownian force 𝑭𝐵(𝑖,𝑗) is selected in each dimension from a Gaussian distribution 

with zero mean and variance 2𝑘𝐵𝑇𝜉/𝛿𝑡 for discretized time step 𝛿𝑡. As chains diffuse, they can 

form transient intermolecular or intramolecular bonds (forming a bridge or loop, respectively) or, 

if already bonded, dissociate from an existing bridge or loop. Intermolecular association is 

considered to occur with a mean-field background, where any pair of stickers can form a virtual 

bond irrespective of their relative positions in real space. Intermolecularly bound stickers are held 

fixed in place, i.e., 𝛿𝒓𝑖,𝑗/𝛿𝑡 = 0, with fluctuations of intermolecular junctions not studied in this 

work. Intramolecularly bound sticker pairs on the same chain are constrained to move together as 

a rigid body with total friction 2𝜉, with the intramolecular bond length held equal to the sticker 

Figure 1. Schematic representation of the simulation model, illustrating a chain with regularly spaced stickers 

diffusing through a structureless medium while forming transient bonds with the mean-field background. The 

mean-field background is composed of binding sites (green dots) representing the state of all stickers in the system. 

Intermolecularly bound stickers (blue dots) are attached to the background and held fixed in place, while 

intramolecularly bound stickers (red dots) are constrained to move together as a rigid body but not attached to the 

background. Free stickers (white dots) are also not attached to the background and free to fluctuate as any non-

sticky bead. The two panels show an example of one time step 𝛿𝑡 in the simulation. In the right-hand side panel, 

the chain’s initial position is shown in faded color for comparison. 
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pair’s instantaneous separation distance upon forming the loop. That is, if bead 𝑗 is 

intramolecularly bonded to bead 𝑘, the elastic and Brownian forces acting on bead 𝑘 are added to 

the right-hand side of the governing equation for 𝒓𝑖,𝑗, and its friction factor is set to 2𝜉. Similarly, 

the elastic and Brownian forces acting on bead 𝑗 are added to the governing equation for 𝒓𝑖,𝑘, and 

its friction factor is also set to 2𝜉. This transmission of forces effectively places an infinitely stiff 

spring between each looped sticker pair, causing the two beads to act as a single rigid body with a 

constant bond length without altering the total friction of the chain (see Section 1f of the 

Supporting Information for validation).  

Sticker association reactions are implemented via stochastic chemical kinetics, where the 

probability of each reaction 𝑔 at each time step is governed by a propensity function 𝛼𝑔 that 

considers the association states of all the stickers in the system.45 In this work, sticker binding and 

unbinding reactions are considered to follow second- and first-order kinetics, respectively. The 

total intermolecular binding propensity is 

𝛼𝐼 =
𝑘𝐴

𝑉
∑ 𝑓𝑖(𝐹 − 𝑓𝑖)

𝑛

𝑖=1

(2𝑎) 

where 𝑘𝐴 is the association rate constant, 𝑉 is the system volume, 𝑓𝑖 is the number of free stickers 

on molecule 𝑖, and 𝐹 is the total number of free stickers in the system. The propensity for 

intramolecular association (forming a loop) is  

𝛼𝐿 = ∑ ∑
𝑘𝐴

4𝜋𝑅𝑐𝑢𝑡𝑜𝑓𝑓
3 /3

𝑁𝑠

𝑗≠𝑘

𝑛

𝑖=1

𝑙𝑖𝑗𝑘 (2𝑏) 

where 𝑅𝑐𝑢𝑡𝑜𝑓𝑓 is a cutoff distance and 𝑙𝑖𝑗𝑘 is a Boolean variable that is 1 if both stickers 𝑗 and 𝑘 

are available to bind and |𝒓𝑖,𝑗 − 𝒓𝑖,𝑘| < 𝑅𝑐𝑢𝑡𝑜𝑓𝑓, and 0 otherwise. Thus, only free sticker pairs 

whose separation distance is less than 𝑅𝑐𝑢𝑡𝑜𝑓𝑓 (chosen to be 0.1𝑏, as described below) are 
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considered for intramolecular binding, and the reaction probability is independent of their 

separation distance once below this threshold. This treatment of intramolecular association allows 

both the total bound sticker fraction and the loop fraction to be predicted analytically and results 

in the total looping propensity being independent of 𝑅𝑐𝑢𝑡𝑜𝑓𝑓 provided that 𝑅𝑐𝑢𝑡𝑜𝑓𝑓 is small, with 

truncation error of 𝑂(𝑅𝑐𝑢𝑡𝑜𝑓𝑓
2 ) as shown in the Supporting Information. Finally, the propensity for 

sticker dissociation is 

𝛼𝐷 = 𝑘𝐷 (
𝑛𝑁𝑠 − 𝐹

2
) (2𝑐) 

where 𝑘𝐷 is the dissociation rate constant and (𝑛𝑁𝑠 − 𝐹)/2 is the total number of bonds in the 

system. The association and dissociation rate constants are related through the binding equilibrium 

constant, 𝐾𝑒𝑞 = 𝑘𝐴/𝑘𝐷. 

The overdamped Langevin equation (Eq. 1) was integrated using a modified 4th-order 

Runge-Kutta scheme previously described by Spakowitz and coworkers.46 At every time step, the 

association states of the stickers were updated using the tau-leap algorithm,47 where the number of 

occurrences of each reaction 𝑔 (intermolecular association, intramolecular association, and 

dissociation) were drawn from a Poisson distribution with mean and variance equal to 𝛼𝑔𝛿𝑡, with 

𝛼𝑔 being the reaction propensity in Eq. 2. Since the probabilities of all reactions of the same type 

are equal, the actual stickers to react were selected randomly from all possible candidates for each 

reaction. A constant time step of 𝛿𝑡 = 0.1𝜏𝑠 was used for most simulations, chosen to ensure both 

accurate integration of the Langevin equation using the RK4 scheme and fidelity to the leap 

condition mandating that all reaction propensities remain essentially constant during a time 

step.47,48 In particular, the formulation of the looping propensity in this model (Eq. 2b) requires the 

time step to scale with 𝑅𝑐𝑢𝑡𝑜𝑓𝑓
3 /𝑘𝐴 in order to avoid the number of intramolecular reactions 
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exceeding the number of available candidate pairs at any time step. The cutoff distance for 

intramolecular binding was chosen to be 𝑅𝑐𝑢𝑡𝑜𝑓𝑓 = 0.1𝑏 for all simulations in this work to 

represent a physically realistic bond without requiring an excessively small time step for the range 

of 𝑘𝐴 investigated. For most simulations, the value of 𝑘𝐴 used did not require the time step to be 

lower than 𝛿𝑡 = 0.1𝜏𝑠, as determined using a conservative estimate for the maximum time step 

satisfying the leap condition (see Section 1d of the Supporting Information). For the few 

simulations in which a larger value of 𝑘𝐴 was used, the time step was lowered in proportion to 𝑘𝐴
−1 

to ensure fidelity with the leap condition for the intramolecular propensity. Specifics related to the 

validation of the simulation model and choice of time step are discussed in detail in Section 1 of 

the Supporting Information.  

Table 1 lists the seven associative linear polymers that were simulated in this work, each 

with a different number of stickers per chain, 𝑁𝑠. All polymers had the same total length of 𝑁 =

49 beads. The minimum concentration for formation of a percolating network is the chain overlap 

concentration at which 𝑉 = 𝑛𝑉𝑠𝑝𝑎𝑛, where 𝑉𝑠𝑝𝑎𝑛 = 4𝜋(𝑁𝑏2/6)3/2/3 is the characteristic volume 

spanned by a Gaussian chain. Normalizing the concentration by the overlap concentration, a 

dimensionless concentration was defined as 𝜙 = 𝑛𝑉𝑠𝑝𝑎𝑛/𝑉, where 𝜙 = 1 at overlap. All 

simulations were run at 𝜙 ≥ 1 to be physically realistic. The equilibrium constant was chosen to 

be 𝐾𝑒𝑞 > 1 for all simulations to capture the favorable binding in experimental associative systems 

such as those based on coiled-coil aggregation30,33,35,36 and metal-ligand coordination.7,34,41 In 

addition, for most simulations the sticker association rate was chosen to be slow compared to the 

Rouse time of the chain (i.e., 𝑘𝐴⟨𝐹⟩/𝑉 ≪ (𝑁2𝜏𝑠)−1 = 1/482 in the simulation units, where ⟨𝐹⟩ is 

the average number of free stickers in the system). This separation in timescales is characteristic 

of a kinetics-limited system,39 which applies to a large majority of experimental associative 
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polymer gels9,33 and is hypothesized to be crucial in enabling chain superdiffusive behavior via 

hopping.37 

All simulations were run at equilibrium, with the average chain conformations and sticker 

association states constant over time (to within fluctuations governed by the system size). 

Simulations were equilibrated in two stages before each run. In the first stage, simulations were 

initialized by generating a Gaussian chain conformation for each molecule with all stickers initially 

unbound. Then the system was allowed to evolve to the equilibrium distribution of chain 

conformations and sticker association states until the free sticker fraction, loop fraction, and mean-

square chain end-to-end distance became constant over time. In the second stage of equilibration, 

the system was allowed to evolve further until the chain end-to-end vector autocorrelation function 

decayed to zero (to within the noise), indicating relaxation of the system. Representative plots of 

each stage of the equilibration procedure are shown in the Supporting Information in Section 1f. 

During each simulation run, time-correlation functions including the center-of-mass mean-square 

displacement and self-intermediate scattering function were calculated from snapshots taken every 

10 time steps and stored.  

Table 1. Associative linear bead-spring chains studied in this work. Each chain has 49 

beads in total. 

Number of stickers 

(𝑵𝒔) 

Number of springs between stickers 

(𝚫𝑵𝒔𝒕𝒓𝒂𝒏𝒅) 

4 16 

7 8 

9 6 

13 4 

17 3 

25 2 

49 1 
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3. RESULTS AND DISCUSSION 

 To facilitate comparison with common diffusion measurements based on light and neutron 

scattering,30,33,49,50 Fig. 2a presents representative profiles of the center-of-mass self-intermediate 

scattering function 𝑆𝑖𝑛𝑐(𝑞, 𝑡) for various wavevectors 𝑞 from a simulation with 𝑁𝑠 = 4 stickers 

per chain, with simulation parameters of 𝐾𝑒𝑞 = 15, 𝑘𝐴 = 0.0002, and 𝜙 = 1. The simulation 

parameters were chosen to ensure strong sticker binding (𝐾𝑒𝑞 > 1) and slow association kinetics 

compared to the Rouse relaxation time of the chain (𝑘𝐴⟨𝐹⟩/𝑉 ≪ (𝑁2𝜏𝑠)−1). This separation of 

timescales is characteristic of a kinetics-limited system,39 which has been shown to be relevant to 

most experimental associative polymer gels9,33,36 and hypothesized to be crucial in enabling chain 

superdiffusive behavior via hopping.37 The self-intermediate scattering function is the Fourier 

transform of the single-chain position correlation function:  

𝑆𝑖𝑛𝑐(𝑞, 𝑡) =
1

𝑛
∑〈exp(𝑖𝒒 ⋅ [𝒓𝑖(𝑡) − 𝒓𝑖(0)])〉

𝑛

𝑖=1

(3) 

where 𝒓𝑖(𝑡) is the center-of-mass position of chain 𝑖 at time 𝑡. Averages were performed over 

different starting times and over orthogonal directions of 𝒒. The temporal evolution of 𝑆𝑖𝑛𝑐(𝑞, 𝑡) 

informs on self-diffusive chain motion on the length scale 𝑑 = 2𝜋/𝑞. As shown in Fig. 2a, 

𝑆𝑖𝑛𝑐(𝑞, 𝑡) shows qualitatively different behavior depending on the length scale probed, 

transitioning from a single exponential decay on small length scales to a two-mode relaxation for 

intermediate length scales (0.2𝑏2 ≲ 𝑑2/4𝜋2 ≲ 1000𝑏2) until again returning to a single 

exponential on large length scales. The relaxation curve for each wavevector was fit to a double 

stretched exponential function of the form  

𝑆𝑖𝑛𝑐(𝑞, 𝑡) = 𝐴 exp [− (
𝑡

𝜏𝑓𝑎𝑠𝑡
)

𝛽𝑓𝑎𝑠𝑡

] + (1 − 𝐴) exp [− (
𝑡

𝜏𝑠𝑙𝑜𝑤
)

𝛽𝑠𝑙𝑜𝑤

] (4) 
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where the time constants were defined such that 𝜏𝑠𝑙𝑜𝑤 > 𝜏𝑓𝑎𝑠𝑡, and the amplitude parameter 𝐴 

varied between 0 and 1 depending on the relative contribution of each mode. For intermediate 

values of 𝑑2 where a two-mode relaxation is observed, the stretching parameters 𝛽𝑓𝑎𝑠𝑡 and 𝛽𝑠𝑙𝑜𝑤 

range between 0.7 and 1, indicating heterogeneity in each relaxation process. However, for both 

small and large values of 𝑑2 where the relaxation profile exhibits only a single mode, the stretching 

parameter is greater than 0.95, consistent with a homogeneous diffusive process. 

In Fig. 2b, the average relaxation times of the intermediate scattering function, ⟨𝜏𝑓𝑎𝑠𝑡⟩ and 

〈𝜏𝑠𝑙𝑜𝑤⟩, are examined as a function of the reduced diffusion length scale, 𝑑2/4𝜋2. Relaxation times 

were computed as the first moment of the relaxation distribution of each mode, ⟨𝜏𝑖〉 =
𝜏𝑖

𝛽𝑖
Γ (

1

𝛽𝑖
), 

where Γ is the Gamma function. For Fickian diffusion, the decay of each mode 𝑖 should follow a 

simple exponential 𝑆𝑖𝑛𝑐(𝑞, 𝑡) ~ exp(−𝑡/𝜏𝑖), where time constant 𝜏𝑖 is proportional to 𝑑2 via the 

diffusion coefficient, 𝐷𝑖 = 𝑑2/4𝜋2⟨𝜏𝑖⟩. As seen in Fig. 2b, the relaxation behavior of 𝑆𝑖𝑛𝑐(𝑞, 𝑡) 

exhibits several non-Fickian regimes which can be parameterized for each mode by the 

relationship ⟨𝜏𝑖⟩~𝑑2𝜇. The dynamics of the linear 4-sticker polymers shown here share similar 

qualitative features with recent simulations of telechelic 4-arm stars,37 including an early-time 

Fickian regime (𝜇 = 1) for the fast mode (Regime 1) and apparent superdiffusive scaling (𝜇 < 1) 

for the slow mode on intermediate length scales (Regimes 2 and 3) before the onset of terminal 

Fickian diffusion (Regime 4). It is important to note that the relationship ⟨𝜏𝑖⟩~𝑑2𝜇 is different than 

the classical expression of mean-square displacement over time, ⟨Δ𝑅2⟩~𝑡𝛼, with the scaling 

exponents related via 𝜇 = 1/𝛼. Thus, 𝜇 < 1 is equivalent to 𝛼 > 1, indicating apparent 
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superdiffusive scaling. Although the superdiffusive behavior of 𝜏𝑠𝑙𝑜𝑤 in Regime 3 in the linear 4- 

sticker polymers is similar to that observed in the stars, the linear polymers undergo a more 

pronounced second superdiffusive regime at lower 𝑑2 (Regime 2) compared to the stars.37 The 

Figure 2. (A) Representative relaxation profiles of the self-intermediate scattering function 𝑆𝑖𝑛𝑐(𝑞, 𝑡) for various 

values of 𝑑2/4𝜋2 = 1/𝑞2 from a simulation of linear 4-sticker chains with 𝑁 = 49 beads total, with 𝜙 = 1, 𝐾𝑒𝑞 =

15, and 𝑘𝐴 = 0.0002. Solid lines are a fit to either a single exponential or sum of two exponentials, defined in the 

text in Eq. 4. Open symbols indicate a single-mode relaxation and closed symbols indicate a two-mode relaxation. 

(B) Mean relaxation time constants of 𝑆𝑖𝑛𝑐(𝑞, 𝑡) as a function of 𝑑2. Error bars are 95% confidence intervals for 

the fits to Eq. 4 (and if not visible are within the marker). The horizontal dashed lines denote the characteristic 

timescales of the system, including the sticker association and dissociation times (𝑘𝐴
−1 and 𝑘𝐷

−1, respectively) and 

the strand Rouse relaxation time 𝜏𝑠𝑡𝑟𝑎𝑛𝑑 = Δ𝑁𝑠𝑡𝑟𝑎𝑛𝑑
2 𝜏𝑠. The vertical dashed lines indicate transitions between the 

diffusive regimes observed at different length scales, labeled numerically on the top. Dotted lines are power-law 

fits ⟨𝜏𝑠𝑙𝑜𝑤⟩~(𝑑2)𝜇 for Regimes 2-4, where 𝜇 = 1 for Fickian diffusion and 𝜇 < 1 for apparent superdiffusion. 

Units of length and time are the single-spring Kuhn length 𝑏 and relaxation time 𝜏𝑠, respectively. 
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presence of two distinct superdiffusive regimes in the linear polymers is consistent with recent 

experimental measurements of linear protein self-diffusion which have suggested the coexistence 

of multiple mechanisms underlying superdiffusive behavior on different length scales.33  

The regimes in Fig. 2b reflect the various relaxation processes occurring on each length 

and time scale. On length scales smaller than the correlation blob size (Regime 1, 𝑑2/4𝜋2 ≪ 𝑏2), 

𝑆𝑖𝑛𝑐(𝑞, 𝑡) exhibits a single non-stretched exponential mode with a relaxation time 𝜏𝑓𝑎𝑠𝑡 consistent 

with Fickian scaling (𝜇 = 1). This regime corresponds to segmental fluctuations of the connecting 

strands between stickers on time scales smaller than their Rouse relaxation time (𝜏𝑠𝑡𝑟𝑎𝑛𝑑 ≈

Δ𝑁𝑠𝑡𝑟𝑎𝑛𝑑
2 𝜏𝑠 = 256𝜏𝑠), resulting in diffusion of the center-of-mass up to a certain characteristic 

length scale. In this regime, relaxation times are faster than the characteristic sticker association 

and dissociation kinetics, and stickers can be considered permanently bound as in a covalently 

cross-linked gel.33,50 The maximum length scale of the single-mode regime (before the onset of 

the slow mode) is governed by the maximum mean-square center-of-mass displacement of a chain 

at fixed sticker bonding, i.e., on time scales shorter than the sticker lifetime (governed by 𝑘𝐷
−1). 

This confinement due to binding creates a caging effect that hinders chain diffusion beyond the 

characteristic length scale 𝑑𝑐𝑎𝑔𝑒.37,39 However, unlike in the telechelic star polymers where the 

size of the cage is directly related to the arm length (𝑑𝑐𝑎𝑔𝑒
2 /4𝜋2 ≈ Δ𝑁𝑎𝑟𝑚𝑏2),37 the linear polymers 

undergo this caging regime on length scales significantly smaller than the strand length between 

stickers (𝑑𝑐𝑎𝑔𝑒
2 /4𝜋2 ≈ 0.1𝑏2 ≪ Δ𝑁𝑠𝑡𝑟𝑎𝑛𝑑𝑏2). This difference is due to the decoupling of the 

fluctuations of different strands in the linear polymer (since intermolecularly bound stickers are 

fixed in place), resulting in its relatively small mean-square center-of-mass displacement within 

the cage compared to a star. 



 16 

On length scales larger than the size of the cage (Regimes 2-4), segmental motion alone 

cannot result in full relaxation of 𝑆𝑖𝑛𝑐(𝑞, 𝑡) due to topological constraints caused by sticker 

binding. Here, a second slow relaxation mode is observed corresponding to center-of-mass 

diffusion beyond the confines of the cage, which requires the dissociation of one or more stickers. 

To allow comparison with common diffusion measurement techniques such as forced Rayleigh 

scattering,30,33,34 the majority of the analysis in this work focuses on the behavior of the slow mode 

⟨𝜏𝑠𝑙𝑜𝑤⟩ except for the early-time regime where only the fast mode is present. As shown in Fig. 2b, 

the onset of the slow mode occurs at a relaxation time approximately equal to 
𝑘𝐷

−1

2
=

75000

2
𝜏𝑠, 

reflecting the average bond lifetime adjusted for the pairwise nature of binding (i.e., each bond 

dissociation event results in detachment of two stickers). On time scales greater than this 

dissociation time, the occurrence of multiple binding and unbinding events allows center-of-mass 

chain diffusion over distances larger than the size of the cage. The simulations reveal that chain 

diffusion over these length scales occurs primarily by two mechanisms: (1) “walking,” or 

sequential dissociation and re-association of individual stickers on a chain to different sites in the 

network, and (2) “hopping,” or simultaneous detachment of all of a chain’s stickers from the 

network, enabling the chain to undergo relatively unhindered diffusion over large distances before 

rebinding to the network. On these intermediate length scales, the slow mode 〈𝜏𝑠𝑙𝑜𝑤〉 exhibits two 

distinct superdiffusive regimes (Regimes 2 and 3), each occurring over ~2 decades of 𝑑2 and ~1 

decade of 𝜏. Finally, on long length and time scales chains transition to terminal Fickian diffusion 

(Regime 4) with an effective diffusivity that is constant with 𝑑2. It is notable that in contrast to the 

chain relaxation behavior measured by 𝑆𝑖𝑛𝑐(𝑞, 𝑡), a plot of the mean-square center-of-mass 

displacement over time does not reveal the regimes of superdiffusive scaling (Fig. S10). Instead, 

only a subdiffusive regime (i.e., ⟨Δ𝑅2⟩~𝑡𝛼, with 𝛼 < 1) is observed between short-time and long-
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time Fickian regimes, which occurs due to the caging effect caused by binding. This is because the 

mean-square displacement reflects only the average behavior of all diffusing species in the system, 

whereas the intermediate scattering function 𝑆𝑖𝑛𝑐(𝑞, 𝑡) is sensitive to the presence of multiple 

diffusing populations, particularly the slow-diffusing tail of the distribution, thus enabling a more 

detailed view into chain dynamics on different length scales.30,37 

Origin of superdiffusive scaling regimes. The presence of two superdiffusive regimes in 

Fig. 2b suggests the presence of distinct physical mechanisms that can cause superdiffusive 

behavior on different length scales. Prior work has proposed a transition between walking and 

hopping as the origin for superdiffusive scaling, where the hopping mode allows faster diffusion 

over long distances compared to walking.30,33,37 To deconvolute the individual effects of each 

mode, simulations were performed where each diffusive mechanism (i.e., either hopping or 

walking) was selectively disabled. This selection was achieved by moving the frame of reference 

of each chain along with its center-of-mass trajectory while it underwent the diffusive mechanism 

to be eliminated. This ensured that the chain center of mass remained stationary (in its moving 

reference frame) but that its conformation and binding configuration were able to fluctuate as 

normal, allowing isolation of each mode without perturbing the conformational motion or sticker 

binding dynamics in any way. 

In Fig. 3, the chain diffusion curves for the full model are compared with hopping- and 

walking-only models for several values of 𝑁𝑠. For the full model, the same four qualitative 

diffusive regimes are observed for all values of 𝑁𝑠, as shown earlier for the 𝑁𝑠 = 4 case (Fig. 2b), 

though the transition length scales between regimes vary with 𝑁𝑠 (see Fig. S14). Comparing the 

curves in each panel of Fig. 3 reveals pronouncedly different behavior in diffusion by walking and 
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hopping on length scales larger than the size of the cage (i.e., in the slow time constant 𝜏𝑠𝑙𝑜𝑤).  

When only walking is enabled, chains undergo an early-time Fickian regime in the fast time 

constant 𝜏𝑓𝑎𝑠𝑡 due to segmental motion, followed by the appearance of a well-separated slow mode 

on length scales greater than the cage size. As in the full model, the discontinuity between the fast 

and slow modes in the walking-only model occurs due to the large difference between the 

timescale of segmental diffusion (which, for length scales smaller than the cage size, can result in 

Figure 3. Comparison of chain diffusion curves in the full model and with walking and hopping individually 

enabled for sticker densities of (A) 𝑁𝑠 = 4, (B) 𝑁𝑠 = 9, (C) 𝑁𝑠 = 17, and (D) 𝑁𝑠 = 49 stickers per chain. The 

chain length is 𝑁 = 49 beads for all simulations. Simulation parameters are 𝑘𝐴 = 0.0002, 𝐾𝑒𝑞 = 15, and 𝜙 = 1. 

The black dotted lines show Fickian diffusive scaling as a guide to the eye. The four diffusive regimes observed 

in the full model are labeled above each panel. 
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full relaxation of 𝑆𝑖𝑛𝑐(𝑞, 𝑡) even without sticker dissociation) and the bond lifetime, regardless of 

the absence of the hopping mode. For the slow mode in the walking-only model, chains exhibit a 

short regime of superdiffusive scaling before transitioning immediately to Fickian scaling with a 

terminal diffusivity 2 − 3 orders of magnitude slower than in the full model. In contrast, when 

only hopping is enabled, the relaxation times of the slow mode are initially constant at small length 

scales before transitioning to terminal Fickian scaling with a long-time diffusivity equal to that of 

the full model.  

 A comparison between the three curves in each panel of Fig. 3 reveals two distinct 

mechanisms responsible for the two superdiffusive regimes seen in the full model (Regimes 2 and 

3). Notably, in Regime 2 the curves for the full model and the walking-only model are 

quantitatively equal, demonstrating that this lower superdiffusive regime arises from walking 

alone. In contrast, the upper superdiffusive regime (Regime 3) results from a transition from 

walking to hopping, similar to the behavior seen in telechelic 4-arm stars.37 The time scale for the 

transition to hopping is seen as the relaxation time plateau at low 𝑑2 in the hopping-only model in 

each panel of Fig. 3, which corresponds to the average time required for a molecule to completely 

detach from the network. On shorter time scales, the fastest diffusive mechanism is walking since 

only a small fraction of molecules have had time to fully detach from the network. On longer time 

scales, however, the hopping mode becomes faster than the walking mode as the fraction of chains 

that have taken a hopping step approaches unity. The length scale associated with the transition to 

hopping is determined by the mean-square displacement of a molecule by walking until it begins 

the hopping step; it is a function of both the hopping frequency and walking diffusivity of a 

molecule and varies with 𝑁𝑠 (see Fig. S14). It is important to note that the presence of 

superdiffusive scaling in the simulations is unlikely to arise from the lack of excluded volume and 
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hydrodynamic interactions in the simulation model, as these long-range interactions are screened 

on length scales larger than the correlation blob size and may be neglected with good accuracy in 

the Rouse description of unentangled chains used here.43,51  

Examining the mean-square displacement over time with each mode deconvoluted also 

reveals a transition from walking to hopping for each value of 𝑁𝑠 (Fig. S11), where the hopping 

mode becomes faster than the walking mode above a certain time scale (depending on the 

particular value of 𝑁𝑠). However, as in the full model, the MSD does not show signs of apparent 

superdiffusive scaling in any of the curves, even when hopping and walking are selectively 

enabled. In the walking-only model, similar to the full model, the MSD shows a subdiffusive 

regime separating early- and late-time Fickian regimes due to tethering from binding, whereas in 

the hopping-only model the MSD exhibits purely Fickian scaling over all length scales. This is 

again due to the greater sensitivity of the self-intermediate scattering function 𝑆𝑖𝑛𝑐(𝑞, 𝑡) to the 

presence of multiple diffusing species (e.g., in the hopping-only model these species include the 

subset of molecules that have begun a hopping step vs. those that have not); in contrast, the mean-

square displacement is sensitive only to the average. Thus, by deconvoluting the effects of walking 

and hopping in the system, the data for 𝑆𝑖𝑛𝑐(𝑞, 𝑡) provide evidence for a distinct set of mechanisms 

underlying superdiffusive behavior in associative linear polymers, including the ability for chains 

to exhibit apparent superdiffusion even in the absence of hopping.   

Real-space displacement distribution. The role of hopping and walking in each 

superdiffusive regime can be further elucidated by examining the real-space displacement 

distribution as chains diffuse over time. Figure 4 displays profiles of the 1D center-of-mass 

displacement distribution, 𝑝(𝑥 − 𝑥0), from various time snapshots from simulations of the full 

model and with walking and hopping each selectively enabled, with 𝑁𝑠 = 4 and 𝐾𝑒𝑞 = 15, 𝑘𝐴 =
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0.002, and 𝜙 = 1. For Fickian diffusion with diffusivity 𝐷𝑒𝑓𝑓, the displacement density should be 

a Gaussian function with mean 0 and variance 2𝐷𝑒𝑓𝑓𝑡 in each dimension. As shown in Fig. 4a, the 

chain displacement distribution in the full model shows pronounced non-Gaussian behavior except 

for early times, 𝑡 < 100𝜏𝑠. This short-time regime corresponds to the Fickian diffusion observed 

on small length scales in Fig. 2 (Regime 1), where molecules are caged and can only diffuse via 

segmental motion. At later times 𝑡 > 100𝜏𝑠, the displacement distribution becomes bimodal and 

Figure 4. (A) Normalized 1D real-space distribution of the chain center-of-mass for various time snapshots of a 

simulation of the full model with 𝑁𝑠 = 4, 𝑘𝐴 = 0.0002, 𝐾𝑒𝑞 = 15, and 𝜙 = 1. Lines are least-squares fits to sums 

of two Gaussians with different amplitudes and variances. (B, C) Normalized 1D real-space distributions from 

simulations with hopping and walking selectively enabled, respectively (all other simulation parameters identical 

to panel A). Lines are least-squares fits to single Gaussian functions. (D) Time evolution of the 3D non-Gaussian 

parameter 𝛼 as defined in the text for the simulations in panels A-C. Characteristic timescales are shown for 

comparison. 
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can be captured by a sum of two Gaussian functions with different variances (solid lines in Fig. 

4a). The Gaussian mode with large variance represents the population of molecules that have 

begun to take hopping steps and can diffuse over a large distance, whereas the second mode with 

small variance represents the population of molecules that have only undergone slow diffusion by 

walking and internal strand fluctuations. As time progresses, the fraction of molecules that have 

taken a hopping step increases, and the amplitude of the large-variance mode grows. Finally, at 

long times (𝑡 ≳ 106𝜏𝑠) the chain displacement distribution can again be captured by a single 

Gaussian function, which is governed by the hopping mode as the fraction of molecules that have 

taken a hopping step approaches 1. In contrast to the full model, when hopping and walking are 

selectively enabled (Figs. 4b and 4c), the displacement distributions show a smaller extent of non-

Gaussian behavior and can be approximately fit with a single Gaussian function for all times. The 

Gaussian distributions seen in the hopping- and walking-only models (Figs. 4b and 4c) are 

qualitatively similar to the respective high- and low-variance modes in the full model (Fig. 4a), 

reflecting the individual contributions of each population of chains toward overall self-diffusion 

in the system.  

For each model, the time scales corresponding to transitions between the single- and 

double-mode distributions can be quantified by examining the temporal evolution of the 3D non-

Gaussian parameter,37,39   

𝛼 =
3⟨Δ𝑟4⟩

5⟨Δ𝑟2⟩2
− 1 (5) 

where Δ𝑟 is the molecule’s 3D center-of-mass displacement. A value of 𝛼 = 0 indicates a single-

Gaussian profile, whereas a value of 𝛼 > 0 indicates the presence of multiple populations with 

different diffusivities.39,52 As seen in Fig. 4d, at both short and long times in the full model (𝑡 <

30𝜏𝑠 and 𝑡 > 4 × 106𝜏𝑠) the non-Gaussian parameter is close to 0, indicating a single Gaussian 
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distribution. However, at intermediate times the value of 𝛼 becomes positive, corresponding to the 

presence of distinct Gaussian modes from the walking and hopping populations. In contrast, in the 

walking-only model the non-Gaussian parameter is significantly closer to 0 for all times, consistent 

with the presence of only one main diffusive mechanism on length scales larger than the size of 

the cage. However, there is still a region of positive values of the non-Gaussian parameter over 

approximately the same times as in the full model, revealing a smaller but nonzero deviation from 

Gaussian behavior even in the absence of hopping. This positive value of 𝛼 is likely related to an 

interplay between multiple walking modes, as seen in the superdiffusive behavior in Regime 2. 

Finally, in the hopping-only model, the non-Gaussian parameter has a large initial value of 𝛼 = 5 

before gradually decreasing until it aligns with the long-time behavior of the full model (𝑡 >

105𝜏𝑠). This qualitatively distinct behavior in the hopping-only model arises from the large 

difference between the diffusivities of the hopping molecules and those that are still attached to 

the network (and thus are held completely immobile, i.e., without undergoing diffusion by 

segmental fluctuations), which results in a large value of 𝛼 on short time scales. It should be noted 

that in the full model, unlike in the hopping-only model, chains that are attached to the network 

still undergo segmental motion on short time scales, resulting in an initial bound diffusivity 

approximately equal to that of the hopping diffusivity and thus a small early-time value of 𝛼 ≈ 0 

(see Fig. 3). On long time scales where hopping dominates chain diffusion, the non-Gaussian 

parameters for the full and hopping-only models become quantitatively equal as they both decrease 

to 0. Importantly, a comparison between the Figs. 3 and 4 reveals that the timescales corresponding 

to non-Gaussian behavior in the real-space displacement distribution (𝛼 > 0) correlate with those 

where chains undergo anomalous scaling in 𝜏 vs 𝑑2 (Regimes 2 and 3). In contrast, the early and 

late times where only a single Gaussian mode is observed correlate with purely Fickian scaling 
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(Regimes 1 and 4). Thus, the real-space distributions are able to reveal the contributions of walking 

and hopping toward chain diffusion on different length scales, in particular showing that non-

Gaussian behavior in the spatial distribution can occur even in the presence of only one diffusive 

mechanism. 

 Origin of superdiffusive behavior from walking. A qualitative explanation for 

superdiffusive scaling from walking alone (Regime 2) can be found by considering the change in 

the pervaded volume of strands on a chain during its transition from being caged to undergoing a 

walking step (i.e., before and after unbinding a sticker, which releases the topological constraint 

on the chain). If chains exhibited purely Fickian diffusion on all length scales beyond the cage, a 

limiting terminal diffusion coefficient (𝐷𝑙𝑖𝑚) would arise governed by the characteristic length and 

time scales of the exit from the cage, as shown by the dotted lines in Fig. 5a:  

𝐷𝑙𝑖𝑚 = 2𝑘𝐷 (
𝑑𝑐𝑎𝑔𝑒

2

4𝜋2
) = 2𝑘𝐷 (

⟨Δ𝑅𝐶𝑀,𝑐𝑎𝑔𝑒
2 ⟩

6
) (6) 

where ⟨Δ𝑅𝐶𝑀,𝑐𝑎𝑔𝑒
2 ⟩ is the mean-square center-of-mass displacement of the chain within the cage 

and 2𝑘𝐷 is the sticker detachment frequency (with the factor of 2 arising from the pairwise nature 

of binding, i.e., each dissociation event detaches two stickers). The last equality in Eq. 6 arises 

from the relationship between the real-space mean-square displacement and the 𝑑-spacing of the 

system, which is 𝑑2/4𝜋2 = ⟨Δ𝑅2⟩/2𝑛 where 𝑛 = 3 is the dimensionality. The presence of 

superdiffusive scaling from walking following exit from the cage indicates that the long-time 

diffusivity of the walking mechanism, 𝐷𝑤𝑎𝑙𝑘, must be larger than 𝐷𝑙𝑖𝑚. The walking diffusivity 

can be approximated37 as the sticker detachment frequency, 2𝑘𝐷, multiplied by a chain’s mean-

square center-of-mass  displacement within the hypothetical “cage” (i.e., due to strand motion 
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alone) resulting after unbinding a sticker, averaged over all chains and all possible sticker 

dissociation events: 

𝐷𝑤𝑎𝑙𝑘 ≈ 2𝑘𝐷 ∑ 𝑝𝑠

⟨Δ𝑅𝐶𝑀,(𝑠−1)
2 ⟩

6

𝑁𝑠

𝑠=2

(7) 

Figure 5. (A) Simulation results for the slow time constant, 𝜏𝑠𝑙𝑜𝑤, with hopping switched off for 𝑁𝑠 = 9, 𝜙 = 1, 

𝑘𝐴 = 0.0002, and 𝐾𝑒𝑞 = 15, illustrating the terminal walking diffusivity (𝐷𝑤𝑎𝑙𝑘) and the limiting diffusivity in the 

absence of superdiffusive scaling, 𝐷𝑙𝑖𝑚. (B) Schematic representation of the increase in the strand pervaded volume 

upon unbinding a sticker, enabling an increase in the center-of-mass mean-square displacement during a walking 

step compared to within the cage. Blue filled circles are intermolecularly bound stickers, the green filled circle is the 

recently detached sticker, and empty circles are non-sticky beads. (C) Theoretical center-of-mass mean-square 

displacement (calculated as shown in the Supporting Information) of a hypothetical chain with 𝑁 = 769 beads both 

within the cage and during a walking step as a function of 𝑁𝑠, showing a convergence with increasing 𝑁𝑠. 
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 where 𝑝𝑠 is the probability of a chain having 𝑠 attached stickers, ⟨Δ𝑅𝐶𝑀,(𝑠−1)
2 ⟩ is the mean-square 

center-of-mass displacement of the chain after unbinding a sticker and before rebinding, and the 

index 𝑠 runs from 2 to 𝑁𝑠. The estimate for 𝐷𝑤𝑎𝑙𝑘 in Eq. 7 assumes a kinetics-limited system, 

where sticker dissociation is the rate-limiting step in each walking step and chains completely relax 

their conformation before sticker reattachment (i.e., 𝜏𝑠𝑡𝑟𝑎𝑛𝑑 ≈ Δ𝑁𝑠𝑡𝑟𝑎𝑛𝑑
2 𝜏𝑠 ≪ (𝑘𝐴𝐹/𝑉)−1). During 

each walking step, a chain’s mean-square center-of-mass displacement, ⟨Δ𝑅𝐶𝑀,(𝑠−1)
2 ⟩, scales with 

the radius of gyration of each strand, 𝑅𝑔,𝑠𝑡𝑟𝑎𝑛𝑑
2 ≈ Δ𝑁𝑠𝑡𝑟𝑎𝑛𝑑𝑏2/6, averaged across all strands on 

the chain. Because unbinding a sticker results in an increase in the average strand radius of 

gyration, as illustrated in Fig. 5b, the mean-square center-of-mass displacement of a chain during 

a walking step must necessarily be greater than that of the chain within the cage (i.e., before sticker 

unbinding). Thus, 𝐷𝑤𝑎𝑙𝑘 must be greater than 𝐷𝑙𝑖𝑚 due to the increase in the average strand length 

upon unbinding a sticker. The difference between 𝐷𝑙𝑖𝑚 and 𝐷𝑤𝑎𝑙𝑘 is illustrated in Fig. 5a for a 

simulation of a 9-sticker chain with hopping switched off, where the increase in the effective 

diffusivity from 𝐷𝑙𝑖𝑚 to 𝐷𝑤𝑎𝑙𝑘 is seen as the lower superdiffusive regime (Regime 2) upon exit 

from the cage. This analysis suggests that the lower superdiffusive regime may be a universal 

phenomenon in associative linear polymers due to the transition from caging to walking on 

timescales smaller than the onset of hopping, irrespective of sticker kinetics, equilibrium constant, 

or chain concentration.  

 However, in the limit of high sticker density where the strand length approaches zero, the 

impact of sticker dissociation on a chain’s average strand length is hypothesized to be diminished 

due to the small spacing between stickers and the large number of strands (most of which would 

be unaffected by detachment of a single sticker). In turn, the extent of superdiffusive scaling from 

walking alone should be suppressed due the smaller change in the average strand length upon 
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exiting the cage. Figure 5c compares theoretical predictions for mean-square center-of-mass 

displacement within the cage and during a walking step (i.e., before and after detachment of a 

single sticker) as a function of 𝑁𝑠 for a hypothetical long chain with 769 beads. Theoretical 

predictions for the mean-square displacement before and after a sticker detachment event were 

calculated from the configurational partition function for a Gaussian bead-spring chain with a 

subset of beads fixed in place, as described in Section IV of the Supporting Information. As shown 

in Fig. 5c, increasing 𝑁𝑠 decreases the characteristic center-of-mass displacement both during a 

walking step and within the cage, resulting in a convergence of the two curves at high 𝑁𝑠 such that 

𝐷𝑙𝑖𝑚 = 𝐷𝑤𝑎𝑙𝑘. It is hypothesized that superdiffusive scaling from walking may be suppressed at 

sufficiently high sticker density, where the characteristic walking step size becomes approximately 

equal to the cage size before unbinding. Although the simulations show a decrease in 𝐷𝑙𝑖𝑚 and 

𝐷𝑤𝑎𝑙𝑘 with 𝑁𝑠 that is consistent with the prediction of Fig. 5c (see Fig. S15), it is difficult to 

observe a clear convergence in their values due to the relatively small range of 𝑁𝑠 accessible in the 

simulations. Thus, further study is required to understand the precise effect of sticker density on 

the extent of superdiffusive scaling from walking as seen in Regime 2. 

Effect of sticker density on superdiffusive scaling by hopping. In addition to the walking 

diffusivity, the ability for chains to exhibit superdiffusive scaling by hopping has been 

hypothesized to be affected by molecular-scale parameters such as the number of stickers per 

chain, the association/dissociation kinetics, and the equilibrium constant.36,37 Increasing the 

number of stickers per chain has been proposed to suppress hopping due to the decreased 

likelihood for simultaneous detachment of all stickers, which should have a strong (exponential) 

dependence on 𝑁𝑠.37 Recent experiments, however, have suggested that hopping may be a 

significant diffusive mode even in polymers containing 15 stickers per chain.29,36 To test this 
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hypothesis, Figure 6a shows the chain diffusive behavior at different values of 𝑁𝑠 with constant 

chain length (𝑁 = 49 beads) and volume fraction (𝜙 = 1). The diffusion profiles exhibit the same 

qualitative regimes as in the 4-sticker case, including short-time Fickian scaling for the fast mode 

and two regimes of apparent superdiffusion for the slow mode before terminal Fickian scaling. 

The short-time values of 𝜏𝑓𝑎𝑠𝑡 are equal to within error for all sticker densities, suggesting that 

segmental chain motion on length scales smaller than the sticker spacing is unaffected by binding. 

However, the size of the cage (determined as length scale at which the slow mode appears) 

Figure 6. (A) Effect of number of stickers per chain on the characteristic time constants as a function of the square 

length scale 𝑑2/4𝜋2, from simulations with 𝜙 = 1, 𝐾𝑒𝑞 = 15, and 𝑘𝐴 = 0.0002. (B) Histograms of the average 

number of intermolecularly bound stickers per chain for different values of 𝑁𝑠, both in the full model and in the 

loop-free model. Loop fractions for the full model are listed. (C) Comparison of chain diffusion for various values 

of 𝑁𝑠 in the full model and in a loop-free model where intramolecular reactions are disabled. (D) Average number 

of intermolecularly bound stickers, 〈𝑁𝑠,𝑖𝑛𝑡𝑒𝑟⟩, and long-time effective diffusion coefficient, 𝐷𝑒𝑓𝑓, as a function of 

𝑁𝑠. 
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decreases with 𝑁𝑠, consistent with the reduction in the mean-square extension of the strands 

between stickers Δ𝑁𝑠𝑡𝑟𝑎𝑛𝑑𝑏2 at constant chain length (see Fig. S14).  

The behavior of the slow relaxation time 𝜏𝑠𝑙𝑜𝑤 shows a strong dependence on 𝑁𝑠, including 

a crossover between the short- and long-𝑑2 regimes (Regimes 2 through 4) for 𝑁𝑠 > 17. This 

indicates that while the diffusion coefficient immediately following exit from the cage decreases 

monotonically with 𝑁𝑠, the terminal diffusivity in the long-time Fickian regime follows a non- 

monotonic dependence on 𝑁𝑠 (see Fig. 6d). Notably, both regimes of superdiffusive scaling 

(Regimes 2 and 3) are present for all values of 𝑁𝑠, with the curves showing no sign of transitioning 

to the purely Fickian scaling at high sticker density predicted by mean-field theories.24,28 These 

results are consistent with self-diffusion experiments of metal-coordinate polymers29 and suggest 

that hopping is an important diffusive mode even when the number of stickers per chain is 

increased to 49 at constant chain concentration. 

The ability for high-sticker-density chains to hop can be explained by their enhanced 

propensity to form intramolecular loops, which reduces the number of stickers required to unbind 

from the network to begin a hopping step. The loop fraction in the system is determined by the 

balance between intermolecular and intramolecular binding rates, which are governed by the 

global and local (i.e., within the pervaded volume of a chain) sticker concentrations. As shown in 

Figs. 6b and S16, increasing 𝑁𝑠 at constant chain length and concentration results in a monotonic 

increase in the loop fraction, from 19% for the 4-sticker chains to 93% for the 49-sticker chains. 

The increase in loop fraction with 𝑁𝑠 occurs due to both the smaller volume of the strands between 

stickers and the greater number of sticker combinations that can intramolecularly react, as also 

shown in recent MD simulations studying the static properties of associative polymer melts.53 This 

higher loop fraction counteracts the increase in 𝑁𝑠 by decreasing the number of stickers per chain 
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that are intermolecularly bound, as shown by the histograms in Fig. 6b. The average number of 

intermolecularly bound stickers per chain, 〈𝑁𝑠,𝑖𝑛𝑡𝑒𝑟⟩, increases with sticker density up to 𝑁𝑠 = 17 

before decreasing at higher 𝑁𝑠, where the enhancement of looping reactions begins to outweigh 

the increase in total number of stickers per chain. This reduction in 〈𝑁𝑠,𝑖𝑛𝑡𝑒𝑟⟩ in turn enhances the 

likelihood of chain hopping, resulting in the crossover of the diffusion curves seen in Fig. 6a.  

The role of loops in enabling superdiffusive scaling at high sticker density is clearly seen 

by comparing the simulation results between the full model and a loop-free model in which 

intramolecular reactions are explicitly disabled (Fig. 6c). In contrast to the full model, the diffusion 

curves in the loop-free model shift monotonically to higher values of 𝜏 with 𝑁𝑠, which is 

accompanied by a decrease in the width of the superdiffusive scaling regimes. Figure 6d shows 

the effect of increasing 𝑁𝑠 on the long-time effective diffusion coefficient 𝐷𝑒𝑓𝑓. In the full model, 

the presence of loops results in an increase in 𝐷𝑒𝑓𝑓 for 𝑁𝑠 > 17, whereas in the loop-free model 

there is a monotonic decrease in 𝐷𝑒𝑓𝑓 with 𝑁𝑠. These results explain the origin of the experimental 

observations of superdiffusive scaling at high sticker density,29 demonstrating the enhancement in 

loops that allows hopping to remain a significant diffusive mode even with a large number of 

stickers per chain (at constant chain concentration). It is important to note that in the simulations, 

the binding equilibrium constant 𝐾𝑒𝑞 is kept constant for each sticker regardless of the number of 

bound stickers or total number of stickers on a chain. Recent studies by Rapp et al35,36 have 

suggested that structural inhomogeneities and geometric constraints in real associative gels may 

reduce the effective binding strength with increasing sticker density due to the loss of 

conformational entropy associated with strand tethering. Although these effects are not accounted 

for in the mean-field description of sticker binding used here, the simulations show that chains can 

hop at high 𝑁𝑠 even without an entropic pentalty for binding. Rather, the enhancement in the 
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looping propensity with increasing 𝑁𝑠 is sufficient to allow hopping, even with the strength of each 

bond kept constant. However, these results do not contraindicate the entropic effect on 𝐾𝑒𝑞, which 

may indeed be present in experimental systems. As suggested by Rapp et al, the effect of 

conformational entropy on the looping vs. bridging propensities is expected to increase the looping 

probability at high 𝑁𝑠 and enhance the contribution of hopping even further compared to the mean-

field description. Further study is required to probe the effect of chain conformation on sticker 

binding energy, which is treated as a pre-defined parameter in this work. 

Distribution of hopping events. The effect of sticker density (𝑁𝑠) on the contribution of 

the hopping mode can be further elucidated by examining the duration and displacement of 

hopping events in the system at different values of 𝑁𝑠. Figure 7a presents the probability 

distribution of the time duration that a molecule spends hopping before rebinding to the network, 

𝑝(𝜏ℎ𝑜𝑝), for each value of 𝑁𝑠 from simulations with 𝐾𝑒𝑞 = 15, 𝑘𝐴 = 0.0002, and 𝜙 = 1. For all 

sticker densities, the hopping duration 𝜏ℎ𝑜𝑝 follows an exponential distribution (solid curves), 

which arises from the Poisson nature of the sticker binding process,45  

𝑝(𝜏ℎ𝑜𝑝) =
1

⟨𝜏ℎ𝑜𝑝⟩
exp (−

𝜏ℎ𝑜𝑝

〈𝜏ℎ𝑜𝑝⟩
) (8) 

where ⟨𝜏ℎ𝑜𝑝⟩ is the mean hopping duration. A non-monotonic dependence of ⟨𝜏ℎ𝑜𝑝⟩ with 𝑁𝑠 is 

observed, as shown in Fig. 7c. The initial decrease in ⟨𝜏ℎ𝑜𝑝⟩ with 𝑁𝑠 can be explained by the 

increase in the number of free stickers on the chain, which increases the rate of rebinding to the 

network. However, for 𝑁𝑠 > 17, the increase in number of stickers per chain is compensated for 

(and eventually outweighed) by the increase in the loop fraction, which decreases the number of 

free stickers in the system, such that that the hopping duration begins to increase with sticker 

density at high 𝑁𝑠. 
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Figure 7b presents the normalized distribution of the 1D hopping displacement, averaged 

over three dimensions, for each value of 𝑁𝑠. The hopping displacement distribution, 𝑝(Δ𝑥ℎ𝑜𝑝), 

can be predicted from the hopping duration distribution, 𝑝(𝜏ℎ𝑜𝑝), and the displacement density of 

each hopping event of duration 𝜏ℎ𝑜𝑝: 

Figure 7. (A) Distribution of the hopping duration, 𝜏ℎ𝑜𝑝, for varying 𝑁𝑠. Solid curves are fits to exponential 

distributions given by Eq. 8. (B) Distribution of 1D hopping displacement for the same simulations as in panel A. 

Solid lines are analytical predictions for the displacement distribution given by Eq. 9, using the mean hopping 

duration ⟨𝜏ℎ𝑜𝑝⟩ obtained from the data in panel A. (C) Mean hopping duration ⟨𝜏ℎ𝑜𝑝⟩ and mean-square 1D hopping 

displacement ⟨Δ𝑥ℎ𝑜𝑝
2 ⟩/2 as a function of 𝑁𝑠 obtained from the distributions shown in panels A and B, 

demonstrating a non-monotonic dependence on 𝑁𝑠. Error bars are uncertainties based on the histogram bin sizes. 
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𝑝(Δ𝑥ℎ𝑜𝑝) = ∫ 𝑝(𝜏ℎ𝑜𝑝)𝑝(Δ𝑥ℎ𝑜𝑝; 𝜏ℎ𝑜𝑝)𝑑𝜏ℎ𝑜𝑝

∞

0

(9) 

where the displacement of a hop with duration 𝜏ℎ𝑜𝑝 follows a Gaussian distribution: 

𝑝(Δ𝑥ℎ𝑜𝑝; 𝜏ℎ𝑜𝑝) =
1

√4𝜋𝐷𝑓𝑟𝑒𝑒𝜏ℎ𝑜𝑝

exp (−
Δ𝑥ℎ𝑜𝑝

2

4𝐷𝑓𝑟𝑒𝑒𝜏ℎ𝑜𝑝
) (10) 

 with the diffusivity of a hopping chain 𝐷𝑓𝑟𝑒𝑒 given by Einstein’s relation: 

𝐷𝑓𝑟𝑒𝑒 =
𝑘𝐵𝑇

𝑁𝜉
(11) 

As shown by the solid lines in Fig. 7b, the hopping displacement distributions in the simulations 

are well-captured by the prediction of Eq. 9, using the values of ⟨𝜏ℎ𝑜𝑝⟩ calculated from the data in 

Fig. 7a. Consistent with ⟨𝜏ℎ𝑜𝑝⟩, the mean-square hopping displacement ⟨Δ𝑥ℎ𝑜𝑝
2 ⟩ also displays a 

non-monotonic dependence on 𝑁𝑠 (Fig. 7c) due to changes in the loop fraction as described.  

 On long length and time scales, the occurrence of multiple hopping events is expected to 

result in terminal Fickian diffusion with an effective diffusivity governed by the characteristic 

hopping frequency and displacement.30,37 Figure 7c plots the mean hopping duration, ⟨𝜏ℎ𝑜𝑝⟩, along 

with the characteristic 1D mean-square displacement of a single hop, 𝑑ℎ𝑜𝑝
2 /4𝜋2 = ⟨Δ𝑥ℎ𝑜𝑝

2 ⟩/2. A 

comparison between the ⟨Δ𝑥ℎ𝑜𝑝
2 ⟩/2 values and the diffusion curves shown in Fig. 6a indicates that 

the characteristic hopping displacements of 300𝑏2 < ⟨Δ𝑥ℎ𝑜𝑝
2 ⟩/2 < 600𝑏2 align with the 

transition from superdiffusive scaling to terminal Fickian scaling (Regime 3 to Regime 4). On this 

length scale, chains begin to undergo multiple hopping events, leading to terminal Fickian 

diffusion governed by the hopping diffusivity. Notably, these results suggest a link between 

transitions in the ⟨𝜏⟩ vs 𝑑2 curve, which is accessible by ensemble-averaged scattering 

measurements,29,30,33,34 and the characteristic length scale of molecular hopping events. Examining 
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recent forced Rayleigh scattering diffusion measurements of metal-coordinate polymer gels29 in 

this context suggests an average hopping displacement in these systems on the order of  1 − 10 

μm, several orders of magnitude larger than the chain radius of gyration. However, it is important 

to note that a direct experimental observation of chain hopping has yet to be performed.29,33,34 

 Effect of chain concentration. The loop fraction in the system and the resulting dynamics 

are governed by the balance between the local and global sticker densities, which depend 

respectively on the number of stickers per chain (𝑁𝑠) and the chain concentration (𝜙). At low 𝜙 

and high 𝑁𝑠, interchain interactions are minimal, promoting loop formation. However, at large 𝜙 

different chains interpenetrate and intermolecular association becomes likely. As seen in Fig. 8, 

increasing 𝜙 for each value of 𝑁𝑠 reduces the width of the upper superdiffusive regime caused by 

hopping. The suppression in superdiffusive scaling arises primarily due to the decrease in the loop 

fraction in favor of intermolecular bonds at higher concentration (Fig. S16), which decreases the 

equilibrium fraction of chains detached from the network. As 𝑁𝑠 increases, the diffusive behavior 

of a chain with loops switched off at 𝜙 = 1 (open symbols in Fig. 8) becomes qualitatively similar 

to that of a chain with loops enabled at significantly higher concentration (e.g., 𝜙 = 10).  

When both 𝑁𝑠 and 𝜙 are high, the global sticker density in the system (~𝑁𝑠𝜙) is maximal,  

and dynamics approach the mean-field limit of Fickian center-of-mass chain diffusion on all length 

scales larger than the cage size as predicted by the sticky Rouse model.24,25,28 As seen in Fig. 8d, 

when 𝑁𝑠 = 49 and 𝜙 = 10, Fickian scaling is observed for almost all length scales beyond the 

caging regime. This likely arises from (1) the suppression of hopping due to the decrease in the 

loop fraction at high 𝜙 and (2) the convergence of the walking diffusive states at high 𝑁𝑠 (Fig. 5), 

suppressing the extent of superdiffusive scaling in both Regimes 2 and 3. The results show that 

mean-field dynamics of purely Fickian diffusion can be achieved when both 𝑁𝑠 and 𝜙 are large.24,28 
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This regime of both high concentration and high sticker density results in long diffusion times and 

was not accessed in recent studies of metal-coordinate linear polymers due to  limitations in the 

range of forced Rayleigh scattering.29 In addition, these high concentrations (𝜙 ≥ 10) may be 

above the entanglement threshold in real associative networks,29 which may result in qualitative 

changes to chain diffusive mechanisms on different length scales.54,55 For unentangled gels, 

systems with faster sticker kinetics but otherwise identical parameters may enable diffusion 

Figure 8. Effect of chain concentration 𝜙 on diffusion for sticker densities of (A) 𝑁𝑠 = 4, (B) 𝑁𝑠 = 9, (C) 𝑁𝑠 =
17, and (D) 𝑁𝑠 = 49 per chain. Simulation parameters were 𝑘𝐴 = 0.0002, 𝐾𝑒𝑞 = 15, and 𝜙 = 1. Open black 

symbols show the diffusive behavior of chains at 𝜙 = 1 in the loop-free model for comparison. 
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measurements at this mean-field limit of Fickian diffusion on all length scales, but such studies 

have not been performed to date.29,33,36  

At low 𝑑2/4𝜋2, the values of 𝜏𝑠𝑙𝑜𝑤 in each panel of Fig. 8 converge to a single point, 

signifying an intrinsic, concentration-independent dissociation time corresponding to the exit from 

the cage. Longer timescales involve multiple sticker association and dissociation events, allowing 

the coexistence of dynamic modes and a concentration-dependent diffusivity. However, it is 

important to note that the single-spring length and relaxation time used as the units of length and 

time in the simulation are functions of concentration due its effect on the correlation blob size.43 

The blob size (equal to the single-spring length 𝑏 in the simulation) decreases with concentration 

and its relaxation time 𝜏𝑠 increases, as governed by solvent quality.43,51 When transformed to real 

units, the diffusion curves in Fig. 8 show the same qualitative trends but are more spread out in 

space than when plotted with the scaled units; see Fig. S12.  

  Effect of sticker kinetics and equilibrium constant. While the sticker density in the 

system affects the extent of superdiffusive scaling largely through changes in the intermolecular 

and intramolecular bond fractions, the contribution of the hopping mode can be more directly 

controlled through the sticker equilibrium constant (𝐾𝑒𝑞) and kinetic rate constants (𝑘𝐴 and 𝑘𝐷). 

Figure 9 compares the effects of independently varying 𝐾𝑒𝑞 and 𝑘𝐷 from simulations with 𝑁𝑠 = 4 

and 𝜙 = 1. As seen in Fig. 9a, increasing 𝐾𝑒𝑞 slows diffusion on long length scales due to the 

greater equilibrium fraction of bound stickers, which reduces the frequency and duration of 

hopping events. However, varying 𝐾𝑒𝑞 has minimal effect on the timescale of exit from the cage, 

which is governed by 𝜏𝑒𝑥𝑖𝑡 = 𝑘𝐷
−1/2 and independent of the hopping mode. In contrast, increasing  

the association/dissociation rate constants at constant 𝐾𝑒𝑞 (equivalent to decreasing 𝑘𝐷
−1) reduces 

the diffusion timescale on small length scales, immediately after a chain exits the cage, but has 
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minimal effect on the long-time diffusivity (Fig. 9b). This can be rationalized by recognizing that 

at constant 𝐾𝑒𝑞, changes in the sticker binding kinetics concomitantly affect both the frequencies 

of beginning and ending a hopping event. That is, the enhancement in the hopping frequency when 

𝑘𝐷 is increased is matched by the greater rate of rebinding due to the increase in 𝑘𝐴 (note that 

𝐾𝑒𝑞 = 𝑘𝐴/𝑘𝐷). This results in the average fraction of molecules undergoing a hopping step being 

a function of 𝐾𝑒𝑞 only, independent of 𝑘𝐷 (Fig. S17). Because the long-time diffusivity is governed 

largely by the number of hopping molecules in the system (see Fig. 10), the curves converge on 

long timescales to a constant terminal diffusivity for all values of 𝑘𝐷. Thus, the results in Fig. 9 

Figure 9. (a) Effect of varying 𝐾𝑒𝑞 at constant 𝑘𝐷
−1 = 75000 on chain diffusion behavior for a system with 𝑁𝑠 =

4 and 𝜙 = 1. (b) Effect of varying 𝑘𝐷 at constant 𝐾𝑒𝑞 = 15 for the same system.  
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demonstrate that the extent of superdiffusive scaling can be tuned by varying both the equilibrium 

constant and the kinetics, but through opposite effects on the chain diffusion rate at either end of 

the length scale range.   

 Analytical prediction of the walking and hopping diffusivities. Analytical expressions 

for the hopping and walking diffusivities in the system can be formulated by considering the 

relevant dynamic processes underlying each mechanism. The hopping diffusivity can be estimated 

as the diffusivity of a free chain, 𝐷𝑓𝑟𝑒𝑒 = 𝑘𝐵𝑇/𝑁𝜉, multiplied by the average fraction of hopping 

chains in the system, 𝑝0:  

𝐷ℎ𝑜𝑝 = 𝑝0 (
𝑘𝐵𝑇

𝑁𝜉
) (12) 

Using the arguments developed in the sticky Rouse theory,24 a scaling prediction for the walking 

diffusivity can be obtained from the radius of gyration and terminal relaxation time of a chain: 

𝐷𝑤𝑎𝑙𝑘,𝑠𝑐 ≈
𝑅𝑔

2

𝜏𝑐ℎ𝑎𝑖𝑛
=

𝑁𝑏2/6

⟨𝑁𝑖𝑛𝑡𝑒𝑟〉2(𝑘𝐷
−1/2)

(13) 

 where 𝜏𝑐ℎ𝑎𝑖𝑛 is the chain’s longest relaxation time, which is proportional to the sticker lifetime, 

and ⟨𝑁𝑖𝑛𝑡𝑒𝑟⟩ is the average number of stickers per chain that are intermolecularly bound to the 

network. In addition to the scaling theory, a more rigorous analytical prediction for the walking 

diffusivity (𝐷𝑤𝑎𝑙𝑘,𝑎𝑛) can be obtained by calculating the expected mean-square center-of-mass 

displacement of each chain in the system during a walking step (i.e., after unbinding a sticker), 

using its specific sticker bonding configuration. As shown earlier in Eq. 7, the walking diffusivity 

for a kinetics-limited system can be written in terms of the mean-square center-of-mass 

displacement during the walking step and the timescale for sticker dissociation: 

𝐷𝑤𝑎𝑙𝑘,𝑎𝑛 ≈ 2𝑘𝐷 ∑ 𝑝𝑠

⟨Δ𝑅𝐶𝑀,(𝑠−1)
2 ⟩

6

𝑁𝑠

𝑠=2

(14) 



 39 

where 2𝑘𝐷 is the sticker unbinding frequency, 𝑝𝑠 is the probability of having 𝑠 stickers bound to 

the network, and ⟨Δ𝑅𝐶𝑀,(𝑠−1)
2 ⟩ is the mean-square center-of-mass displacement of a chain after 

unbinding a sticker, averaged over all possible unbinding events. The mean-square displacement 

after each possible unbinding event, ⟨Δ𝑅𝐶𝑀,(𝑠−1)
2 ⟩, can be analytically calculated from the 

configurational partition function of a Gaussian chain at fixed sticker bonding,56–58 assuming that 

the original position of the recently detached sticker follows a Gaussian distribution within the 

pervaded volume of the strand and that strands relax to their equilibrium conformational 

distribution during the time the sticker is detached.39,42 A full derivation for this approach of 

calculating ⟨Δ𝑅𝐶𝑀,(𝑠−1)
2 ⟩ given a chain’s particular sticker bonding configuration is provided in 

Section IV of the Supporting Information. Importantly, this analytical approach allows the exact 

topological structure of each chain, including loops, to be captured in the estimate for 𝐷𝑤𝑎𝑙𝑘,𝑎𝑛.  

 As seen in Fig. 10, the analytical predictions for the walking and hopping diffusivities (Eqs. 

12 and 14) show good qualitative agreement with the results from simulation in both the full and 

no-hopping models, capturing both the non-monotonic trend in the hopping diffusivity (due to 

changes in the loop fraction; see Fig. 6) and the monotonic decrease in the walking diffusivity with 

increasing 𝑁𝑠. The scaling prediction 𝐷𝑤𝑎𝑙𝑘,𝑠𝑐 given in Eq. 13 also provides a reasonable prediction 

for the walking diffusivity, though it becomes less accurate at high 𝑁𝑠 due to its neglect of the 

specific bonding configuration of each chain, particularly the increased loop fraction. Overall, the 

analytical predictions provide insight into the link between the static topological structure of the 

network, bond lifetime, and the relative importance of each diffusive mechanism on various length 

scales, with good agreement with the trends seen in simulation. 

 Comparison to experiment. A comparison of the simulations to recent experiments on 

associative linear polymer gels of different types29,33 suggests that this molecular model can 
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capture key dynamics in associative systems across a range of length scales. Figure 11a compares 

the simulation results with self-diffusion measurements of unentangled gels composed of linear 

coiled-coil proteins with 4 stickers per chain.33 Dynamics of the coiled-coil proteins were 

measured using neutron spin-echo spectroscopy and forced Rayleigh scattering, accessing a wide 

range of length scales; the units have been scaled by the junction spacing and Zimm time of the 

strands to allow comparison with the simulations (see Ref. 33 for experimental details). As seen in 

Figs. 11a and 11b, the simulation results for 𝑁𝑠 = 4 at different 𝜙 show qualitative agreement with 

the experimental results for the protein gels, including the caging regime and the two regimes of 

superdiffusive scaling before terminal Fickian diffusion. The simulations provide a well-defined 

molecular basis for each regime, showing explicit transitions from caging to walking and 

subsequently hopping as the origin for the two superdiffusive regimes in the protein gels. The 

simulations demonstrate the narrowing of the upper superdiffusive regime with concentration seen 

experimentally (Fig. 11b) to result from an enhancement in intermolecular binding, which 

decreases the fraction of hopping molecules. However, in the protein gels, the scaled relaxation 

Figure 10. Comparison of the simulation results (symbols) for the full and hopping-free models with analytical 

and scaling predictions (lines) for the walking and hopping diffusivities, 𝐷𝑤𝑎𝑙𝑘 and 𝐷ℎ𝑜𝑝, obtained using Eqs. 12-

14. The simulation parameters are 𝜙 = 1, 𝑘𝐴 = 0.0002, and 𝐾𝑒𝑞 = 15.  
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times in the superdiffusive and terminal Fickian regimes are ~6 orders of magnitude greater than 

those in the simulations. This is largely a consequence of differences in association/dissociation 

kinetics of the associative bonds in the protein gels (𝜏𝐷/𝜏𝑍𝑖𝑚𝑚 ≈ 107 − 108; see Ref.33) compared 

to those in the simulations (𝑘𝐷
−1/𝜏𝑠𝑡𝑟𝑎𝑛𝑑 = 293), which determine the characteristic timescales of 

self-diffusion. In addition, the scaling of the terminal diffusivity with concentration in the protein 

Figure 11. (A) Simulation results for 𝑁𝑠 = 4 at various concentrations (the same data as in Fig. 8a). (B) 

Experimental self-diffusion measurements of 4-sticker coiled-coil protein hydrogels of various concentrations 

obtained using neutron spin-echo spectroscopy and forced Rayleigh scattering. Data are obtained from Ref. 31. 

(C) Simulation results for the slow relaxation mode, 𝜏𝑠𝑙𝑜𝑤, for various values of 𝑁𝑠 at 𝜙 = 1 (the same data as in 

Fig. 6a). (D) Self-diffusion measurements of associative poly(dimethylacrylamide) gels based on Ni2+-histidine 

coordination bonds with different numbers of stickers per chain obtained using forced Rayleigh scattering. Data 

are obtained from Ref. 27. The dashed lines are fits to a two-state model as described in Ref. 27 and are presented 

as a guide to the eye.  
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gels (𝐷𝑒𝑓𝑓~𝜙−6.1±0.5; Ref.33) is stronger than that observed in simulation (in real units, 

𝐷𝑒𝑓𝑓~𝜙−1.9±0.2; Fig. S13). This discrepancy may arise from differences in the sticker functionality 

between the simulations (binary association) and the protein hydrogels (pentameric association), 

as well as contributions from trapped entanglements or multi-chain clustering in the protein gels 

that are not accounted for in the simulations; such network inhomogeneities or topological 

entrapments may enhance the slowing of chain dynamics with concentration to a greater extent 

than that due to binding site density alone.24 However, further study is required to fully elucidate 

the role of such multi-chain effects on self-diffusion in the gel.  

As a further comparison to a chemically distinct system, Fig. 11d shows self-diffusion 

measurements of Ni2+-coordinated poly(dimethylacrylamide) chains of various sticker densities 

using forced Rayleigh scattering.29 The experimental results show a similar extent of 

superdiffusive behavior for all sticker densities probed, both in the width and scaling exponent of 

the upper superdiffusive regime, between 5 and 15 stickers per chain. The simulations (Fig. 11c) 

capture this qualitative behavior and establish the key role of loops in enabling apparent 

superdiffusion at higher sticker density. Thus, despite the approximations inherent to the coarse-

grained approach used here, the simulations are able to qualitatively capture all of the diffusive 

regimes observed experimentally, revealing insight into the origins of chain diffusive behavior in 

multiple distinct systems. 

4. CONCLUSIONS 

This work develops a generalized Brownian dynamics model of gel-forming linear 

polymers with pendant stickers, exploring the effect of varying the sticker density, chain 

concentration, and binding kinetics on their dynamics across a range of length scales. The 

simulations are able to deconvolute the diffusive modes of hopping and walking, demonstrating 
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clear transitions from caging to walking and subsequently to hopping as the origin for two regimes 

of superdiffusive scaling on mesoscopic length scales before terminal Fickian diffusion. Notably, 

the simulations show that the lower superdiffusive regime occurs even in the absence of hopping, 

which is attributed to the increase in the average strand pervaded volume upon sticker detachment 

during the transition from caging to walking. The presence of multiple dynamic modes results in 

a non-Gaussian real-space displacement distribution on timescales that correlate with the presence 

of superdiffusive scaling. Disabling hopping is found to suppress, but not eliminate, the non-

Gaussian behavior in the real-space distribution, which is attributed to the presence of 

superdiffusive behavior by walking alone. In addition, the mean-square displacement of hopping 

events is computed for each sticker density, which is found to correspond with the transition length 

scale from apparent superdiffusion to terminal Fickian diffusion primarily dictated by the hopping 

mode.  

The simulations also demonstrate that the extent of superdiffusion by hopping is highly 

sensitive to the sticker binding kinetics, equilibrium constant, and total chain concentration. When 

the number of stickers per chain is increased at constant concentration, the enhanced prevalence 

of loops counteracts the greater sticker density in the system, resulting in a non-monotonic trend 

of the terminal diffusivity and enabling hopping of chains with as many as 49 stickers. When both 

the chain concentration and the sticker density per chain are increased, dynamics approach the 

mean-field limit of Fickian diffusive scaling on all length scales. Analytical predictions are 

developed to estimate the walking and hopping diffusivities, finding qualitative agreement with 

simulation and revealing the link between the static network topology and contribution of each 

self-diffusive mode. Finally, a comparison with recent diffusion measurements of analogous 

associative polymer gels finds qualitative agreement, suggesting that this coarse-grained model 
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can capture key dynamic trends in chemically distinct systems. It is anticipated that this model can 

be generalized to other associative polymer systems, including those with different chain 

architectures and sticker distributions along the chain, and can provide insight into the design of 

soft materials for various applications from biomedicine to self-healing materials.   

 

SUPPORTING INFORMATION: Model validation, simulation equilibration, mean-square 

displacement over time, chain diffusion curves in real units, and other supplementary figures. 
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