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ABSTRACT: Anomalous self-diffusive behavior in associative polymer gels has been attributed
to the presence of multiple diffusive mechanisms on different length scales; however, the role of
these dynamic modes in networks of linear polymers with pendant stickers remains unknown,
particularly at sticker densities below the mean-field limit. Here, a generalized Brownian dynamics
model is developed to study the effect of transient binding on self-diffusion of unentangled linear
polymers with regularly spaced stickers, selected as a prototypical associative network model with
wide experimental relevance. The simulations reveal an interplay between several diffusive
mechanisms, including segmental fluctuations, “walking” diffusion, and “hopping” diffusion, each
governed by a molecule’s connectivity to the network. These dynamic modes combine to result in
multiple self-diffusive regimes on different length scales, including two distinct regimes of
apparent superdiffusion before terminal Fickian diffusion, consistent with experiment. The two
superdiffusive regimes have different physical origins: while one occurs due to a transition from
walking to hopping, the second occurs from walking alone on smaller length scales, even in the
absence of hopping. This second superdiffusive regime is proposed to arise from an increase in the
chain pervaded volume upon sticker detachment, which increases the walking step size compared
to the “cage” formed by binding. Each self-diffusive regime is highly sensitive to the sticker
concentration, equilibrium constant, and association/dissociation kinetics due to their effects on
the walking and hopping modes. Notably, increasing a chain’s sticker density promotes
intramolecular loops and enables superdiffusive scaling through hopping; in contrast, increasing
the chain concentration promotes intermolecular binding and suppresses hopping, resulting in
dynamics approaching the mean-field limit of Fickian center-of-mass diffusion on all length scales.

Analytical predictions for the hopping and walking diffusivities demonstrate a link between the



static network structure, bond lifetime, and contribution of each dynamic mode, with qualitative

agreement with simulation.
1. INTRODUCTION

Knowledge of dynamics in associative macromolecular networks is centrally important for
understanding biophysical processes and designing soft materials for applications spanning drug
delivery, tissue engineering, and organic electronics.!” In associative materials, the network
structure is primarily held together by weak physical interactions such as hydrogen bonding,*
metal-ligand coordination,’ and hydrophobic aggregation® between macromolecules with bond

3,78 wherein the reversible nature of the bonds allows

lifetimes on the order of ~1 — 1000 seconds,
junction exchange and molecular self-diffusion on length scales larger than the radius of
gyration.”!? This interplay between sticker association and molecular transport gives rise to
dynamic properties crucial to biophysical processes such as selective protein translocation through

the nuclear membrane'! '3

and homologous recombination of DNA,!* as well as synthetic soft
material functionalities such as stimuli-responsiveness, stress relaxation, and self-healing
abilities.!>2! In all cases, understanding the internal molecular dynamics on different length scales,
particularly the self-diffusive dynamics of the network-forming chains, is essential for predicting
a system’s collective behavior and optimizing its performance for various applications.

Transient network theory has emerged as a powerful tool to understand associative network
behavior, using mean-field approaches to predict macroscopic properties such as the shear
modulus, viscosity, and relaxation time from molecular-scale parameters such as the association
energy, bond lifetime, and polymer chain length.?>2” For a prototypical network formed by linear

polymers with multiple associative side-groups, these theories have established the pivotal role of

the stickers in increasing the local friction of a chain, resulting in a strong effect of sticker density



and polymer concentration on overall network dynamics.?**® However, though theoretical efforts
have found success in predicting the bulk rheological behavior of associative systems,>?°2 their
ability to accurately capture self-diffusive dynamics has not been verified to similar depth. Recent
experiments have shown that associative polymers with relatively few (~10) stickers per chain,
both in linear and branched architectures, can exhibit unexpected self-diffusive behavior on
different length scales, including apparent superdiffusion on length scales ~10-1000 times the
radius of gyration.?>*%33** These anomalous dynamics have been proposed to arise due to the
coexistence of multiple diffusive modes, which are largely not considered by current theories,
including bound-state diffusion (e.g., “walking”) and relatively free diffusion by complete
detachment of all stickers from the network (“hopping”)."**>*7 Mechanisms involving correlated
sticker or chain motion in large clusters have also been proposed, though their role in quiescent-
state dynamics is unclear.?**%3%=% The hopping mechanism, in particular, has been suggested to
enable superdiffusive scaling in end-functionalized 4-arm star molecules when the sticker
association kinetics are slower than the conformational relaxation rate of the star arm.*’

For the general case of linear polymers with associative side-groups,?#?32%3? the presence
and contribution of these diffusive modes toward network dynamics remain largely unknown.
Theoretical studies of linear associative polymers have focused on the limiting case of high sticker
density, leading to a mean-field prediction of Rouse-like relaxation and purely Fickian diffusion
on all length scales.?#?>2832 These theories largely do not consider the interplay between different
diffusive mechanisms and assume negligible hopping in the high-sticker-density limit.
Experimental evidence, however, suggests that hopping may be a significant diffusive mode in
linear polymers even when the number of stickers is increased to 15 per chain,?® a surprising

observation given the small likelihood of simultaneous detachment of such many binding groups.



The ability for linear polymers to form complex topological structures due to intramolecular
binding (e.g., loops of various orders)*® may enhance the likelihood of hopping or lead to
alternative roles of each diffusive mechanism compared to end-functionalized molecules such as
the 4-arm stars.***”*! Further study of polymers with different sticker densities, particularly sticker
densities below the mean-field limit, is required to understand the contributions of the individual
dynamic modes toward self-diffusive behavior as a complement to the theoretical treatments to
date 242528

In this work, a generalized Brownian dynamics model of gel-forming linear polymers with
a finite number of pendant stickers is developed to explore the effect of transient binding of self-
diffusion over a wide range of length scales, from less than the radius of gyration up to the
macroscopic Fickian regime. The simulations reveal an interplay between dynamic modes of
segmental fluctuations, walking diffusion, and hopping diffusion that results in two distinct
regimes of superdiffusive scaling, each with a different origin. The effect of cross-link density in
the network is explored by varying the chain concentration, number of stickers per chain, and
binding equilibrium constant, resulting in differences in topological structure that enable
superdiffusive behavior via hopping even at high sticker density. A comparison of the simulations
with experimental self-diffusion measurements of analogous associative polymers*-* finds
qualitative agreement, suggesting that this molecular model can successfully capture key dynamic

behaviors of various associative systems across a range of length scales.
2. MODEL AND METHODS

The bead-spring model developed here is a hybrid Brownian dynamics/Monte Carlo model
where chain motion is governed by Langevin dynamics and sticker binding/unbinding events are

handled through a kinetic Monte Carlo scheme, similar to previous studies.*”***? Each simulation



contains n = 500 chains of N = 49 beads connected by springs of Kuhn length b dispersed in a
constant volume V. In semi-dilute conditions in a good solvent, strands between stickers can be
modeled as freely-jointed chains of correlation blobs undergoing Rouse motion, where long-range
interactions such as excluded volume and hydrodynamic forces are screened on length scales larger
than the correlation blob size.** The number of beads N = 49 per chain is selected to allow various
numbers of evenly spaced stickers along the chain while keeping the total chain length constant.
Each bead-spring unit represents a subsection of the chain with enough monomers to have
Gaussian conformational statistics; thus, the total number of monomers per chain is representative
of typical degrees of polymerization of associative polymers studied experimentally. Each bead
has friction factor &, and adjacent beads along the chain interact via a Hookean spring potential
U,(Ar) = 3kzTAr?/2b?, where Ar is their separation distance, kg is Boltzmann’s constant, and
T is temperature. For all simulations, the length b and relaxation time 7, = b%2& /kgT of a single
Kuhn segment are chosen as the units of length and time, respectively.

On each chain, Ng beads are designated as stickers; these sticker beads are identical to
normal beads except that they can form transient intermolecular or intramolecular bonds, as
described below. Stickers are placed on each end and spaced regularly along the chain, such that
the number of springs between stickers is ANgirqna = (N —1)/(Ng — 1). Only pairwise sticker
association is allowed, analogous to experimental systems based on hydrogen bonding** and
metal-ligand coordination.>’” To access a wide range of time scales, chains are conceptualized as
diffusing through a structureless, unentangled gel medium with sticker association treated in a
mean-field sense (see Fig. 1). Therefore, pairwise interactions between different chains are not
explicitly considered in this work, reducing computational cost. It is important to note that this

treatment of the gel as a structureless medium is intended to capture the essential physics of the



Figure 1. Schematic representation of the simulation model, illustrating a chain with regularly spaced stickers
diffusing through a structureless medium while forming transient bonds with the mean-field background. The
mean-field background is composed of binding sites (green dots) representing the state of all stickers in the system.
Intermolecularly bound stickers (blue dots) are attached to the background and held fixed in place, while
intramolecularly bound stickers (red dots) are constrained to move together as a rigid body but not attached to the
background. Free stickers (white dots) are also not attached to the background and free to fluctuate as any non-
sticky bead. The two panels show an example of one time step &t in the simulation. In the right-hand side panel,
the chain’s initial position is shown in faded color for comparison.

gel matrix, particularly the total sticker density, but it neglects network inhomogeneities and
geometric constraints on certain length scales that may affect the chain conformational and sticker
binding statistics through entropic effects.3>-

Chain trajectories are calculated by solving the overdamped Langevin equation in three

dimensions, where the position of bead j on molecule i is governed by

6ri;  3kgT
— = 5z (Mijer + 7oy = 21) + Fag )

The random Brownian force Fp(; jy is selected in each dimension from a Gaussian distribution
with zero mean and variance 2kzT¢ /6t for discretized time step &t. As chains diffuse, they can
form transient intermolecular or intramolecular bonds (forming a bridge or loop, respectively) or,
if already bonded, dissociate from an existing bridge or loop. Intermolecular association is
considered to occur with a mean-field background, where any pair of stickers can form a virtual
bond irrespective of their relative positions in real space. Intermolecularly bound stickers are held
fixed in place, i.e., 81; ; /6t = 0, with fluctuations of intermolecular junctions not studied in this
work. Intramolecularly bound sticker pairs on the same chain are constrained to move together as

a rigid body with total friction 2¢, with the intramolecular bond length held equal to the sticker



pair’s instantaneous separation distance upon forming the loop. That is, if bead j is
intramolecularly bonded to bead k, the elastic and Brownian forces acting on bead k are added to

the right-hand side of the governing equation for r; ;, and its friction factor is set to 2. Similarly,

ij
the elastic and Brownian forces acting on bead j are added to the governing equation for r; ., and
its friction factor is also set to 2&. This transmission of forces effectively places an infinitely stiff
spring between each looped sticker pair, causing the two beads to act as a single rigid body with a
constant bond length without altering the total friction of the chain (see Section 1f of the
Supporting Information for validation).

Sticker association reactions are implemented via stochastic chemical kinetics, where the
probability of each reaction g at each time step is governed by a propensity function a, that
considers the association states of all the stickers in the system.* In this work, sticker binding and

unbinding reactions are considered to follow second- and first-order kinetics, respectively. The

total intermolecular binding propensity is
k n
=2 KF=1) (20)
i=1

where k, is the association rate constant, V is the system volume, f; is the number of free stickers
on molecule i, and F is the total number of free stickers in the system. The propensity for

intramolecular association (forming a loop) is

n Ng
ik (2b)
le cutoff/3 U

where Ryeor 18 a cutoff distance and [ is a Boolean variable that is 1 if both stickers j and k
are available to bind and |rl-, i rl-’kl < Reytoff» and O otherwise. Thus, only free sticker pairs

whose separation distance is less than Rgyofr (chosen to be 0.1b, as described below) are



considered for intramolecular binding, and the reaction probability is independent of their
separation distance once below this threshold. This treatment of intramolecular association allows
both the total bound sticker fraction and the loop fraction to be predicted analytically and results

in the total looping propensity being independent of Riyto5f provided that Rey s 55 18 small, with
truncation error of O (RZ,;, £f) as shown in the Supporting Information. Finally, the propensity for

sticker dissociation is

where kj is the dissociation rate constant and (nNg — F)/2 is the total number of bonds in the
system. The association and dissociation rate constants are related through the binding equilibrium
constant, K., = ka/kp.

The overdamped Langevin equation (Eq. 1) was integrated using a modified 4"-order
Runge-Kutta scheme previously described by Spakowitz and coworkers.*® At every time step, the
association states of the stickers were updated using the tau-leap algorithm,*’ where the number of
occurrences of each reaction g (intermolecular association, intramolecular association, and
dissociation) were drawn from a Poisson distribution with mean and variance equal to a,8t, with
a4 being the reaction propensity in Eq. 2. Since the probabilities of all reactions of the same type
are equal, the actual stickers to react were selected randomly from all possible candidates for each
reaction. A constant time step of §t = 0.1t was used for most simulations, chosen to ensure both
accurate integration of the Langevin equation using the RK4 scheme and fidelity to the leap
condition mandating that all reaction propensities remain essentially constant during a time
step.*”*® In particular, the formulation of the looping propensity in this model (Eq. 2b) requires the

time step to scale with R3,,, sr/ka in order to avoid the number of intramolecular reactions



exceeding the number of available candidate pairs at any time step. The cutoff distance for
intramolecular binding was chosen to be Rgysorr = 0.1b for all simulations in this work to
represent a physically realistic bond without requiring an excessively small time step for the range
of k, investigated. For most simulations, the value of k, used did not require the time step to be
lower than §t = 0.17,, as determined using a conservative estimate for the maximum time step
satisfying the leap condition (see Section 1d of the Supporting Information). For the few
simulations in which a larger value of k, was used, the time step was lowered in proportion to k!
to ensure fidelity with the leap condition for the intramolecular propensity. Specifics related to the
validation of the simulation model and choice of time step are discussed in detail in Section 1 of
the Supporting Information.

Table 1 lists the seven associative linear polymers that were simulated in this work, each
with a different number of stickers per chain, N;. All polymers had the same total length of N =
49 beads. The minimum concentration for formation of a percolating network is the chain overlap
concentration at which V = nV,,q,, where Vpq, = 4m(Nb?/6)3/?/3 is the characteristic volume
spanned by a Gaussian chain. Normalizing the concentration by the overlap concentration, a
dimensionless concentration was defined as ¢ = nVg,,,/V, where ¢ =1 at overlap. All
simulations were run at ¢ = 1 to be physically realistic. The equilibrium constant was chosen to

be K., > 1 for all simulations to capture the favorable binding in experimental associative systems

30,33,35,36 7,34,41 In

such as those based on coiled-coil aggregation and metal-ligand coordination.
addition, for most simulations the sticker association rate was chosen to be slow compared to the
Rouse time of the chain (i.e., k,(F)/V « (N%t,)~! = 1/482 in the simulation units, where (F) is

the average number of free stickers in the system). This separation in timescales is characteristic

of a kinetics-limited system,>® which applies to a large majority of experimental associative

10



polymer gels®>?

and is hypothesized to be crucial in enabling chain superdiffusive behavior via
hopping.?’

All simulations were run at equilibrium, with the average chain conformations and sticker
association states constant over time (to within fluctuations governed by the system size).
Simulations were equilibrated in two stages before each run. In the first stage, simulations were
initialized by generating a Gaussian chain conformation for each molecule with all stickers initially
unbound. Then the system was allowed to evolve to the equilibrium distribution of chain
conformations and sticker association states until the free sticker fraction, loop fraction, and mean-
square chain end-to-end distance became constant over time. In the second stage of equilibration,
the system was allowed to evolve further until the chain end-to-end vector autocorrelation function
decayed to zero (to within the noise), indicating relaxation of the system. Representative plots of
each stage of the equilibration procedure are shown in the Supporting Information in Section 1f.
During each simulation run, time-correlation functions including the center-of-mass mean-square
displacement and self-intermediate scattering function were calculated from snapshots taken every
10 time steps and stored.

Table 1. Associative linear bead-spring chains studied in this work. Each chain has 49

beads in total.

Number of stickers Number of springs between stickers
(N s) (AN strand)
4 16
7 8
9 6
13 4
17 3
25 2
49 1

11



3. RESULTS AND DISCUSSION

To facilitate comparison with common diffusion measurements based on light and neutron
scattering,>*334%%0 Fig. 2a presents representative profiles of the center-of-mass self-intermediate
scattering function S;,,.(q,t) for various wavevectors g from a simulation with N; = 4 stickers
per chain, with simulation parameters of K., = 15, k4 = 0.0002, and ¢ = 1. The simulation
parameters were chosen to ensure strong sticker binding (K., > 1) and slow association kinetics
compared to the Rouse relaxation time of the chain (k,(F)/V <« (N?t,)™1). This separation of
timescales is characteristic of a kinetics-limited system,** which has been shown to be relevant to

most experimental associative polymer gels®>*3¢

and hypothesized to be crucial in enabling chain
superdiffusive behavior via hopping.’” The self-intermediate scattering function is the Fourier

transform of the single-chain position correlation function:
1 n
Sine(@,8) = = > (exp(iq - [r:(6) = 1:(O)])) 3
i=1

where r;(t) is the center-of-mass position of chain i at time t. Averages were performed over
different starting times and over orthogonal directions of q. The temporal evolution of S;,,.(q, t)
informs on self-diffusive chain motion on the length scale d = 2m/q. As shown in Fig. 2a,
Sinc(q,t) shows qualitatively different behavior depending on the length scale probed,
transitioning from a single exponential decay on small length scales to a two-mode relaxation for
intermediate length scales (0.2b% < d?/4m? < 1000b?) until again returning to a single
exponential on large length scales. The relaxation curve for each wavevector was fit to a double

stretched exponential function of the form

t ﬁfast
<Tf ast>

12

+(1—A)exp I— ( ' )Bswwl (4)

slow

Sine (q' t) = Aexp




where the time constants were defined such that 7g,,, > Tf4q, and the amplitude parameter A
varied between 0 and 1 depending on the relative contribution of each mode. For intermediate
values of d? where a two-mode relaxation is observed, the stretching parameters Brast and Bgow
range between 0.7 and 1, indicating heterogeneity in each relaxation process. However, for both
small and large values of d? where the relaxation profile exhibits only a single mode, the stretching
parameter is greater than 0.95, consistent with a homogeneous diffusive process.

In Fig. 2b, the average relaxation times of the intermediate scattering function, (Zs44:) and

(Ts10w), are examined as a function of the reduced diffusion length scale, d? /47 ?. Relaxation times

were computed as the first moment of the relaxation distribution of each mode, (t;) = %F (i),
where T is the Gamma function. For Fickian diffusion, the decay of each mode i should follow a
simple exponential S;,.(q,t) ~ exp(—t/7;), where time constant 7; is proportional to d? via the
diffusion coefficient, D; = d?/4m?(t;). As seen in Fig. 2b, the relaxation behavior of S;,,.(q,t)
exhibits several non-Fickian regimes which can be parameterized for each mode by the
relationship (t;)~d?*. The dynamics of the linear 4-sticker polymers shown here share similar
qualitative features with recent simulations of telechelic 4-arm stars,’” including an early-time
Fickian regime (4 = 1) for the fast mode (Regime 1) and apparent superdiffusive scaling (u < 1)
for the slow mode on intermediate length scales (Regimes 2 and 3) before the onset of terminal
Fickian diffusion (Regime 4). It is important to note that the relationship (z;)~d?* is different than

the classical expression of mean-square displacement over time, (AR?)~t%, with the scaling

exponents related via u = 1/a. Thus, © <1 is equivalent to a > 1, indicating apparent
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d?/47% = 0.0028
d?/4m? = 0.009
d?/4n? = 0.028
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Figure 2. (A) Representative relaxation profiles of the self-intermediate scattering function S;, (g, t) for various
values of d? /4 = 1/q” from a simulation of linear 4-sticker chains with N = 49 beads total, with ¢ = 1, K, =
15, and k4 = 0.0002. Solid lines are a fit to either a single exponential or sum of two exponentials, defined in the
text in Eq. 4. Open symbols indicate a single-mode relaxation and closed symbols indicate a two-mode relaxation.
(B) Mean relaxation time constants of S;,.(q, t) as a function of d2. Error bars are 95% confidence intervals for
the fits to Eq. 4 (and if not visible are within the marker). The horizontal dashed lines denote the characteristic
timescales of the system, including the sticker association and dissociation times (k! and kp?, respectively) and
the strand Rouse relaxation time Tgprqng = ANZ,4naTs- The vertical dashed lines indicate transitions between the
diffusive regimes observed at different length scales, labeled numerically on the top. Dotted lines are power-law
fits (Tgiow)~(d?)* for Regimes 2-4, where u = 1 for Fickian diffusion and p < 1 for apparent superdiffusion.
Units of length and time are the single-spring Kuhn length b and relaxation time 7, respectively.

superdiffusive scaling. Although the superdiffusive behavior of 7y, in Regime 3 in the linear 4-
sticker polymers is similar to that observed in the stars, the linear polymers undergo a more

pronounced second superdiffusive regime at lower d? (Regime 2) compared to the stars.’” The
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presence of two distinct superdiffusive regimes in the linear polymers is consistent with recent
experimental measurements of linear protein self-diffusion which have suggested the coexistence
of multiple mechanisms underlying superdiffusive behavior on different length scales.*?

The regimes in Fig. 2b reflect the various relaxation processes occurring on each length
and time scale. On length scales smaller than the correlation blob size (Regime 1, d?/4m? « b?),

Sinc(q, t) exhibits a single non-stretched exponential mode with a relaxation time Ty, consistent

with Fickian scaling (4 = 1). This regime corresponds to segmental fluctuations of the connecting
strands between stickers on time scales smaller than their Rouse relaxation time (Tgtrgna =
ANZ, 4naTs = 2567), resulting in diffusion of the center-of-mass up to a certain characteristic
length scale. In this regime, relaxation times are faster than the characteristic sticker association
and dissociation kinetics, and stickers can be considered permanently bound as in a covalently
cross-linked gel.***° The maximum length scale of the single-mode regime (before the onset of
the slow mode) is governed by the maximum mean-square center-of-mass displacement of a chain
at fixed sticker bonding, i.e., on time scales shorter than the sticker lifetime (governed by kp1).
This confinement due to binding creates a caging effect that hinders chain diffusion beyond the
characteristic length scale d.qg..""*" However, unlike in the telechelic star polymers where the
size of the cage is directly related to the arm length (dZ, 4. /472 ~ ANy, b®),% the linear polymers
undergo this caging regime on length scales significantly smaller than the strand length between
stickers (dZgge/4m% = 0.1b* & ANg4yangb?). This difference is due to the decoupling of the
fluctuations of different strands in the linear polymer (since intermolecularly bound stickers are
fixed in place), resulting in its relatively small mean-square center-of-mass displacement within

the cage compared to a star.
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On length scales larger than the size of the cage (Regimes 2-4), segmental motion alone
cannot result in full relaxation of S;,.(q,t) due to topological constraints caused by sticker
binding. Here, a second slow relaxation mode is observed corresponding to center-of-mass
diffusion beyond the confines of the cage, which requires the dissociation of one or more stickers.
To allow comparison with common diffusion measurement techniques such as forced Rayleigh

30.33.34 the majority of the analysis in this work focuses on the behavior of the slow mode

scattering,
(T510w) €Xxcept for the early-time regime where only the fast mode is present. As shown in Fig. 2b,

. . . kp' _ 75000
the onset of the slow mode occurs at a relaxation time approximately equal to % =—Ts

reflecting the average bond lifetime adjusted for the pairwise nature of binding (i.e., each bond
dissociation event results in detachment of two stickers). On time scales greater than this
dissociation time, the occurrence of multiple binding and unbinding events allows center-of-mass
chain diffusion over distances larger than the size of the cage. The simulations reveal that chain
diffusion over these length scales occurs primarily by two mechanisms: (1) “walking,” or
sequential dissociation and re-association of individual stickers on a chain to different sites in the
network, and (2) “hopping,” or simultaneous detachment of all of a chain’s stickers from the
network, enabling the chain to undergo relatively unhindered diffusion over large distances before
rebinding to the network. On these intermediate length scales, the slow mode (74;,,,) exhibits two
distinct superdiffusive regimes (Regimes 2 and 3), each occurring over ~2 decades of d? and ~1
decade of 7. Finally, on long length and time scales chains transition to terminal Fickian diffusion
(Regime 4) with an effective diffusivity that is constant with d?. It is notable that in contrast to the
chain relaxation behavior measured by S;,.(q,t), a plot of the mean-square center-of-mass
displacement over time does not reveal the regimes of superdiffusive scaling (Fig. S10). Instead,

only a subdiffusive regime (i.e., (AR?)~t%, with a < 1) is observed between short-time and long-
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time Fickian regimes, which occurs due to the caging effect caused by binding. This is because the
mean-square displacement reflects only the average behavior of all diffusing species in the system,
whereas the intermediate scattering function S;,.(q,t) is sensitive to the presence of multiple
diffusing populations, particularly the slow-diffusing tail of the distribution, thus enabling a more
detailed view into chain dynamics on different length scales.?**’

Origin of superdiffusive scaling regimes. The presence of two superdiffusive regimes in
Fig. 2b suggests the presence of distinct physical mechanisms that can cause superdiffusive
behavior on different length scales. Prior work has proposed a transition between walking and
hopping as the origin for superdiffusive scaling, where the hopping mode allows faster diffusion
over long distances compared to walking.’****7 To deconvolute the individual effects of each
mode, simulations were performed where each diffusive mechanism (i.e., either hopping or
walking) was selectively disabled. This selection was achieved by moving the frame of reference
of each chain along with its center-of-mass trajectory while it underwent the diffusive mechanism
to be eliminated. This ensured that the chain center of mass remained stationary (in its moving
reference frame) but that its conformation and binding configuration were able to fluctuate as
normal, allowing isolation of each mode without perturbing the conformational motion or sticker
binding dynamics in any way.

In Fig. 3, the chain diffusion curves for the full model are compared with hopping- and
walking-only models for several values of Ng. For the full model, the same four qualitative
diffusive regimes are observed for all values of Ny, as shown earlier for the N; = 4 case (Fig. 2b),
though the transition length scales between regimes vary with Ny (see Fig. S14). Comparing the

curves in each panel of Fig. 3 reveals pronouncedly different behavior in diffusion by walking and
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Figure 3. Comparison of chain diffusion curves in the full model and with walking and hopping individually
enabled for sticker densities of (A) Ny =4, (B) Ny =9, (C) Ny = 17, and (D) N; = 49 stickers per chain. The
chain length is N = 49 beads for all simulations. Simulation parameters are k, = 0.0002, K, = 15, and ¢p = 1.
The black dotted lines show Fickian diffusive scaling as a guide to the eye. The four diffusive regimes observed
in the full model are labeled above each panel.

hopping on length scales larger than the size of the cage (i.e., in the slow time constant 7g,,,).
When only walking is enabled, chains undergo an early-time Fickian regime in the fast time
constant Tr,s; due to segmental motion, followed by the appearance of a well-separated slow mode
on length scales greater than the cage size. As in the full model, the discontinuity between the fast
and slow modes in the walking-only model occurs due to the large difference between the

timescale of segmental diffusion (which, for length scales smaller than the cage size, can result in
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full relaxation of S;,.(q, t) even without sticker dissociation) and the bond lifetime, regardless of
the absence of the hopping mode. For the slow mode in the walking-only model, chains exhibit a
short regime of superdiffusive scaling before transitioning immediately to Fickian scaling with a
terminal diffusivity 2 — 3 orders of magnitude slower than in the full model. In contrast, when
only hopping is enabled, the relaxation times of the slow mode are initially constant at small length
scales before transitioning to terminal Fickian scaling with a long-time diffusivity equal to that of
the full model.

A comparison between the three curves in each panel of Fig. 3 reveals two distinct
mechanisms responsible for the two superdiffusive regimes seen in the full model (Regimes 2 and
3). Notably, in Regime 2 the curves for the full model and the walking-only model are
quantitatively equal, demonstrating that this lower superdiffusive regime arises from walking
alone. In contrast, the upper superdiffusive regime (Regime 3) results from a transition from
walking to hopping, similar to the behavior seen in telechelic 4-arm stars.>” The time scale for the
transition to hopping is seen as the relaxation time plateau at low d? in the hopping-only model in
each panel of Fig. 3, which corresponds to the average time required for a molecule to completely
detach from the network. On shorter time scales, the fastest diffusive mechanism is walking since
only a small fraction of molecules have had time to fully detach from the network. On longer time
scales, however, the hopping mode becomes faster than the walking mode as the fraction of chains
that have taken a hopping step approaches unity. The length scale associated with the transition to
hopping is determined by the mean-square displacement of a molecule by walking until it begins
the hopping step; it is a function of both the hopping frequency and walking diffusivity of a
molecule and varies with N; (see Fig. S14). It is important to note that the presence of

superdiffusive scaling in the simulations is unlikely to arise from the lack of excluded volume and
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hydrodynamic interactions in the simulation model, as these long-range interactions are screened
on length scales larger than the correlation blob size and may be neglected with good accuracy in
the Rouse description of unentangled chains used here.*!

Examining the mean-square displacement over time with each mode deconvoluted also
reveals a transition from walking to hopping for each value of N (Fig. S11), where the hopping
mode becomes faster than the walking mode above a certain time scale (depending on the
particular value of N). However, as in the full model, the MSD does not show signs of apparent
superdiffusive scaling in any of the curves, even when hopping and walking are selectively
enabled. In the walking-only model, similar to the full model, the MSD shows a subdiffusive
regime separating early- and late-time Fickian regimes due to tethering from binding, whereas in
the hopping-only model the MSD exhibits purely Fickian scaling over all length scales. This is
again due to the greater sensitivity of the self-intermediate scattering function S;,.(q,t) to the
presence of multiple diffusing species (e.g., in the hopping-only model these species include the
subset of molecules that have begun a hopping step vs. those that have not); in contrast, the mean-
square displacement is sensitive only to the average. Thus, by deconvoluting the effects of walking
and hopping in the system, the data for S;,,.(q, t) provide evidence for a distinct set of mechanisms
underlying superdiffusive behavior in associative linear polymers, including the ability for chains
to exhibit apparent superdiffusion even in the absence of hopping.

Real-space displacement distribution. The role of hopping and walking in each
superdiffusive regime can be further elucidated by examining the real-space displacement
distribution as chains diffuse over time. Figure 4 displays profiles of the 1D center-of-mass

displacement distribution, p(x — x,), from various time snapshots from simulations of the full

model and with walking and hopping each selectively enabled, with Ny = 4 and K., = 15, k4 =
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Figure 4. (A) Normalized 1D real-space distribution of the chain center-of-mass for various time snapshots of a
simulation of the full model with Ny = 4, k, = 0.0002, K, = 15, and ¢ = 1. Lines are least-squares fits to sums
of two Gaussians with different amplitudes and variances. (B, C) Normalized 1D real-space distributions from
simulations with hopping and walking selectively enabled, respectively (all other simulation parameters identical
to panel A). Lines are least-squares fits to single Gaussian functions. (D) Time evolution of the 3D non-Gaussian
parameter a as defined in the text for the simulations in panels A-C. Characteristic timescales are shown for
comparison.

0.002, and ¢ = 1. For Fickian diffusion with diffusivity D, the displacement density should be

a Gaussian function with mean 0 and variance 2D, ¢t in each dimension. As shown in Fig. 4a, the

chain displacement distribution in the full model shows pronounced non-Gaussian behavior except

for early times, t < 1007,. This short-time regime corresponds to the Fickian diffusion observed

on small length scales in Fig. 2 (Regime 1), where molecules are caged and can only diffuse via

segmental motion. At later times t > 1007, the displacement distribution becomes bimodal and
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can be captured by a sum of two Gaussian functions with different variances (solid lines in Fig.
4a). The Gaussian mode with large variance represents the population of molecules that have
begun to take hopping steps and can diffuse over a large distance, whereas the second mode with
small variance represents the population of molecules that have only undergone slow diffusion by
walking and internal strand fluctuations. As time progresses, the fraction of molecules that have
taken a hopping step increases, and the amplitude of the large-variance mode grows. Finally, at
long times (t = 10°7,) the chain displacement distribution can again be captured by a single
Gaussian function, which is governed by the hopping mode as the fraction of molecules that have
taken a hopping step approaches 1. In contrast to the full model, when hopping and walking are
selectively enabled (Figs. 4b and 4c), the displacement distributions show a smaller extent of non-
Gaussian behavior and can be approximately fit with a single Gaussian function for all times. The
Gaussian distributions seen in the hopping- and walking-only models (Figs. 4b and 4c) are
qualitatively similar to the respective high- and low-variance modes in the full model (Fig. 4a),
reflecting the individual contributions of each population of chains toward overall self-diffusion
in the system.

For each model, the time scales corresponding to transitions between the single- and
double-mode distributions can be quantified by examining the temporal evolution of the 3D non-
37,39

Gaussian parameter,

3(Ar?)
= 5
“ T 52 )
where Ar is the molecule’s 3D center-of-mass displacement. A value of &« = 0 indicates a single-
Gaussian profile, whereas a value of @ > 0 indicates the presence of multiple populations with

different diffusivities.>>>> As seen in Fig. 4d, at both short and long times in the full model (t <

307 and t > 4 X 10°7,) the non-Gaussian parameter is close to 0, indicating a single Gaussian
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distribution. However, at intermediate times the value of @ becomes positive, corresponding to the
presence of distinct Gaussian modes from the walking and hopping populations. In contrast, in the
walking-only model the non-Gaussian parameter is significantly closer to 0 for all times, consistent
with the presence of only one main diffusive mechanism on length scales larger than the size of
the cage. However, there is still a region of positive values of the non-Gaussian parameter over
approximately the same times as in the full model, revealing a smaller but nonzero deviation from
Gaussian behavior even in the absence of hopping. This positive value of « is likely related to an
interplay between multiple walking modes, as seen in the superdiffusive behavior in Regime 2.
Finally, in the hopping-only model, the non-Gaussian parameter has a large initial value of @ = 5
before gradually decreasing until it aligns with the long-time behavior of the full model (t >
1057,). This qualitatively distinct behavior in the hopping-only model arises from the large
difference between the diffusivities of the hopping molecules and those that are still attached to
the network (and thus are held completely immobile, i.e., without undergoing diffusion by
segmental fluctuations), which results in a large value of a on short time scales. It should be noted
that in the full model, unlike in the hopping-only model, chains that are attached to the network
still undergo segmental motion on short time scales, resulting in an initial bound diffusivity
approximately equal to that of the hopping diffusivity and thus a small early-time value of @ = 0
(see Fig. 3). On long time scales where hopping dominates chain diffusion, the non-Gaussian
parameters for the full and hopping-only models become quantitatively equal as they both decrease
to 0. Importantly, a comparison between the Figs. 3 and 4 reveals that the timescales corresponding
to non-Gaussian behavior in the real-space displacement distribution (¢ > 0) correlate with those
where chains undergo anomalous scaling in 7 vs d? (Regimes 2 and 3). In contrast, the early and

late times where only a single Gaussian mode is observed correlate with purely Fickian scaling
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(Regimes 1 and 4). Thus, the real-space distributions are able to reveal the contributions of walking
and hopping toward chain diffusion on different length scales, in particular showing that non-
Gaussian behavior in the spatial distribution can occur even in the presence of only one diffusive
mechanism.

Origin of superdiffusive behavior from walking. A qualitative explanation for
superdiffusive scaling from walking alone (Regime 2) can be found by considering the change in
the pervaded volume of strands on a chain during its transition from being caged to undergoing a
walking step (i.e., before and after unbinding a sticker, which releases the topological constraint
on the chain). If chains exhibited purely Fickian diffusion on all length scales beyond the cage, a
limiting terminal diffusion coefficient (Dy;,,,) would arise governed by the characteristic length and

time scales of the exit from the cage, as shown by the dotted lines in Fig. 5a:

d2 AR2
Dyim = 2kp < "“99> = 2k, (—( CM'“‘ge)) (6)

42 6
where (ARgMjmge) is the mean-square center-of-mass displacement of the chain within the cage
and 2k, is the sticker detachment frequency (with the factor of 2 arising from the pairwise nature
of binding, i.e., each dissociation event detaches two stickers). The last equality in Eq. 6 arises
from the relationship between the real-space mean-square displacement and the d-spacing of the
system, which is d?/4m? = (AR?)/2n where n = 3 is the dimensionality. The presence of
superdiffusive scaling from walking following exit from the cage indicates that the long-time
diffusivity of the walking mechanism, D,, 45, must be larger than D;;,,,. The walking diffusivity
can be approximated®’ as the sticker detachment frequency, 2k, multiplied by a chain’s mean-

square center-of-mass displacement within the hypothetical “cage” (i.e., due to strand motion
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absence of superdiffusive scaling, D;;,,,. (B) Schematic representation of the increase in the strand pervaded volume
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recently detached sticker, and empty circles are non-sticky beads. (C) Theoretical center-of-mass mean-square
displacement (calculated as shown in the Supporting Information) of a hypothetical chain with N = 769 beads both
within the cage and during a walking step as a function of Ny, showing a convergence with increasing Nj.

alone) resulting after unbinding a sticker, averaged over all chains and all possible sticker

dissociation events:

Ny

(ARCy,(s—1))
Dwalk ~ 2kD Z Ds T'S (7)

s=2
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where p; is the probability of a chain having s attached stickers, (AR%M'(S_D) is the mean-square
center-of-mass displacement of the chain after unbinding a sticker and before rebinding, and the
index s runs from 2 to N;. The estimate for D,,,;, in Eq. 7 assumes a kinetics-limited system,
where sticker dissociation is the rate-limiting step in each walking step and chains completely relax
their conformation before sticker reattachment (i.e., Totrgng = ANZ gnaTs < (k4F /V)™1). During
each walking step, a chain’s mean-square center-of-mass displacement, (AR%M,(S_D), scales with
the radius of gyration of each strand, Ré‘smmd ~ AN, qnab?/6, averaged across all strands on

the chain. Because unbinding a sticker results in an increase in the average strand radius of
gyration, as illustrated in Fig. 5b, the mean-square center-of-mass displacement of a chain during
a walking step must necessarily be greater than that of the chain within the cage (i.e., before sticker
unbinding). Thus, D, ,;; must be greater than D;;,,, due to the increase in the average strand length
upon unbinding a sticker. The difference between Dy;,,, and D, 1s illustrated in Fig. 5a for a
simulation of a 9-sticker chain with hopping switched off, where the increase in the effective
diffusivity from Dy;,, to D, 4k 1S seen as the lower superdiffusive regime (Regime 2) upon exit
from the cage. This analysis suggests that the lower superdiffusive regime may be a universal
phenomenon in associative linear polymers due to the transition from caging to walking on
timescales smaller than the onset of hopping, irrespective of sticker kinetics, equilibrium constant,
or chain concentration.

However, in the limit of high sticker density where the strand length approaches zero, the
impact of sticker dissociation on a chain’s average strand length is hypothesized to be diminished
due to the small spacing between stickers and the large number of strands (most of which would
be unaffected by detachment of a single sticker). In turn, the extent of superdiffusive scaling from

walking alone should be suppressed due the smaller change in the average strand length upon
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exiting the cage. Figure 5c compares theoretical predictions for mean-square center-of-mass
displacement within the cage and during a walking step (i.e., before and after detachment of a
single sticker) as a function of N; for a hypothetical long chain with 769 beads. Theoretical
predictions for the mean-square displacement before and after a sticker detachment event were
calculated from the configurational partition function for a Gaussian bead-spring chain with a
subset of beads fixed in place, as described in Section IV of the Supporting Information. As shown
in Fig. 5c, increasing N, decreases the characteristic center-of-mass displacement both during a
walking step and within the cage, resulting in a convergence of the two curves at high Ny such that
Diim = Dyair- It 1s hypothesized that superdiffusive scaling from walking may be suppressed at
sufficiently high sticker density, where the characteristic walking step size becomes approximately
equal to the cage size before unbinding. Although the simulations show a decrease in D;;;,, and
Dy,aix With Ny that is consistent with the prediction of Fig. 5¢ (see Fig. S15), it is difficult to
observe a clear convergence in their values due to the relatively small range of Ny accessible in the
simulations. Thus, further study is required to understand the precise effect of sticker density on
the extent of superdiffusive scaling from walking as seen in Regime 2.

Effect of sticker density on superdiffusive scaling by hopping. In addition to the walking
diffusivity, the ability for chains to exhibit superdiffusive scaling by hopping has been
hypothesized to be affected by molecular-scale parameters such as the number of stickers per
chain, the association/dissociation kinetics, and the equilibrium constant.’®3” Increasing the
number of stickers per chain has been proposed to suppress hopping due to the decreased
likelihood for simultaneous detachment of all stickers, which should have a strong (exponential)
dependence on N,.>” Recent experiments, however, have suggested that hopping may be a

significant diffusive mode even in polymers containing 15 stickers per chain.?>*¢ To test this
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Figure 6. (A) Effect of number of stickers per chain on the characteristic time constants as a function of the square
length scale d?/4m?, from simulations with ¢ = 1, Kqq = 15, and k, = 0.0002. (B) Histograms of the average
number of intermolecularly bound stickers per chain for different values of Ny, both in the full model and in the
loop-free model. Loop fractions for the full model are listed. (C) Comparison of chain diffusion for various values
of N in the full model and in a loop-free model where intramolecular reactions are disabled. (D) Average number
of intermolecularly bound stickers, (Ns,mter>, and long-time effective diffusion coefficient, D,sf, as a function of
N;.

hypothesis, Figure 6a shows the chain diffusive behavior at different values of Ny with constant
chain length (N = 49 beads) and volume fraction (¢ = 1). The diffusion profiles exhibit the same
qualitative regimes as in the 4-sticker case, including short-time Fickian scaling for the fast mode
and two regimes of apparent superdiffusion for the slow mode before terminal Fickian scaling.
The short-time values of 774, are equal to within error for all sticker densities, suggesting that
segmental chain motion on length scales smaller than the sticker spacing is unaffected by binding.

However, the size of the cage (determined as length scale at which the slow mode appears)
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decreases with N, consistent with the reduction in the mean-square extension of the strands
between stickers AN, qngb? at constant chain length (see Fig. S14).

The behavior of the slow relaxation time 7;,,, shows a strong dependence on N, including
a crossover between the short- and long-d? regimes (Regimes 2 through 4) for N, > 17. This
indicates that while the diffusion coefficient immediately following exit from the cage decreases
monotonically with Ny, the terminal diffusivity in the long-time Fickian regime follows a non-
monotonic dependence on N; (see Fig. 6d). Notably, both regimes of superdiffusive scaling
(Regimes 2 and 3) are present for all values of N, with the curves showing no sign of transitioning
to the purely Fickian scaling at high sticker density predicted by mean-field theories.>*?® These
results are consistent with self-diffusion experiments of metal-coordinate polymers®’ and suggest
that hopping is an important diffusive mode even when the number of stickers per chain is
increased to 49 at constant chain concentration.

The ability for high-sticker-density chains to hop can be explained by their enhanced
propensity to form intramolecular loops, which reduces the number of stickers required to unbind
from the network to begin a hopping step. The loop fraction in the system is determined by the
balance between intermolecular and intramolecular binding rates, which are governed by the
global and local (i.e., within the pervaded volume of a chain) sticker concentrations. As shown in
Figs. 6b and S16, increasing N; at constant chain length and concentration results in a monotonic
increase in the loop fraction, from 19% for the 4-sticker chains to 93% for the 49-sticker chains.
The increase in loop fraction with Ng occurs due to both the smaller volume of the strands between
stickers and the greater number of sticker combinations that can intramolecularly react, as also
shown in recent MD simulations studying the static properties of associative polymer melts.>® This

higher loop fraction counteracts the increase in Ng by decreasing the number of stickers per chain
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that are intermolecularly bound, as shown by the histograms in Fig. 6b. The average number of
intermolecularly bound stickers per chain, (N ;¢er), increases with sticker density up to Ny = 17
before decreasing at higher Ng, where the enhancement of looping reactions begins to outweigh
the increase in total number of stickers per chain. This reduction in (N j,t¢r) in turn enhances the
likelihood of chain hopping, resulting in the crossover of the diffusion curves seen in Fig. 6a.

The role of loops in enabling superdiffusive scaling at high sticker density is clearly seen
by comparing the simulation results between the full model and a loop-free model in which
intramolecular reactions are explicitly disabled (Fig. 6¢). In contrast to the full model, the diffusion
curves in the loop-free model shift monotonically to higher values of T with Ny, which is
accompanied by a decrease in the width of the superdiffusive scaling regimes. Figure 6d shows
the effect of increasing N, on the long-time effective diffusion coefficient D s. In the full model,
the presence of loops results in an increase in D,¢s for Ny > 17, whereas in the loop-free model
there is a monotonic decrease in D sf with N;. These results explain the origin of the experimental
observations of superdiffusive scaling at high sticker density,>” demonstrating the enhancement in
loops that allows hopping to remain a significant diffusive mode even with a large number of
stickers per chain (at constant chain concentration). It is important to note that in the simulations,
the binding equilibrium constant K, is kept constant for each sticker regardless of the number of
bound stickers or total number of stickers on a chain. Recent studies by Rapp et al*>-® have
suggested that structural inhomogeneities and geometric constraints in real associative gels may
reduce the effective binding strength with increasing sticker density due to the loss of
conformational entropy associated with strand tethering. Although these effects are not accounted
for in the mean-field description of sticker binding used here, the simulations show that chains can

hop at high N; even without an entropic pentalty for binding. Rather, the enhancement in the
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looping propensity with increasing N is sufficient to allow hopping, even with the strength of each
bond kept constant. However, these results do not contraindicate the entropic effect on K,4, which
may indeed be present in experimental systems. As suggested by Rapp et al, the effect of
conformational entropy on the looping vs. bridging propensities is expected to increase the looping
probability at high Ng and enhance the contribution of hopping even further compared to the mean-
field description. Further study is required to probe the effect of chain conformation on sticker
binding energy, which is treated as a pre-defined parameter in this work.

Distribution of hopping events. The effect of sticker density (Ns) on the contribution of
the hopping mode can be further elucidated by examining the duration and displacement of
hopping events in the system at different values of N;. Figure 7a presents the probability
distribution of the time duration that a molecule spends hopping before rebinding to the network,
P (Thop), for each value of Ng from simulations with K., = 15, k4 = 0.0002, and ¢ = 1. For all

sticker densities, the hopping duration 7j,, follows an exponential distribution (solid curves),

which arises from the Poisson nature of the sticker binding process,*

p(Thop) = (T—l)eXp <— “hop > (8)

hop (Thop)
where <Th0p> is the mean hopping duration. A non-monotonic dependence of (Thop) with N; is
observed, as shown in Fig. 7c. The initial decrease in (Thop) with Ng can be explained by the
increase in the number of free stickers on the chain, which increases the rate of rebinding to the
network. However, for Ny > 17, the increase in number of stickers per chain is compensated for
(and eventually outweighed) by the increase in the loop fraction, which decreases the number of
free stickers in the system, such that that the hopping duration begins to increase with sticker

density at high N;.
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Figure 7. (A) Distribution of the hopping duration, 7,,, for varying N;. Solid curves are fits to exponential
distributions given by Eq. 8. (B) Distribution of 1D hopping displacement for the same simulations as in panel A.
Solid lines are analytical predictions for the displacement distribution given by Eq. 9, using the mean hopping
duration (‘L’hop> obtained from the data in panel A. (C) Mean hopping duration (’[hap) and mean-square 1D hopping
displacement (Ax,zwp) /2 as a function of N; obtained from the distributions shown in panels A and B,
demonstrating a non-monotonic dependence on N;. Error bars are uncertainties based on the histogram bin sizes.

Figure 7b presents the normalized distribution of the 1D hopping displacement, averaged
over three dimensions, for each value of N;. The hopping displacement distribution, p(Axp,y),
can be predicted from the hopping duration distribution, p(7p,y), and the displacement density of

each hopping event of duration Tj,):
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p(Axhop) = f p(Thop)p(Axhop;Thop)dThop 9)
0

where the displacement of a hop with duration 7y, follows a Gaussian distribution:

1 Axfop )
P(Axpop; T =—exp<—— (10)
( hop hOP) ,—47TDfreeThop 4DfreeThop
with the diffusivity of a hopping chain D¢, given by Einstein’s relation:
kgT
Dfree = N_E (11)

As shown by the solid lines in Fig. 7b, the hopping displacement distributions in the simulations
are well-captured by the prediction of Eq. 9, using the values of (Thop) calculated from the data in
Fig. 7a. Consistent with (‘L'hop>, the mean-square hopping displacement (Ax,%op> also displays a
non-monotonic dependence on N (Fig. 7c) due to changes in the loop fraction as described.

On long length and time scales, the occurrence of multiple hopping events is expected to
result in terminal Fickian diffusion with an effective diffusivity governed by the characteristic
hopping frequency and displacement.***” Figure 7c plots the mean hopping duration, (7p,y), along
with the characteristic 1D mean-square displacement of a single hop, dj,, /41 = (Ax,zwp) /2. A
comparison between the (Ax,zwp) /2 values and the diffusion curves shown in Fig. 6a indicates that
the characteristic hopping displacements of 300bh? < (Ax,zwp) /2 < 600b% align with the
transition from superdiffusive scaling to terminal Fickian scaling (Regime 3 to Regime 4). On this
length scale, chains begin to undergo multiple hopping events, leading to terminal Fickian
diffusion governed by the hopping diffusivity. Notably, these results suggest a link between
transitions in the (t) vs d? curve, which is accessible by ensemble-averaged scattering

29,30,33,34

measurements, and the characteristic length scale of molecular hopping events. Examining
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recent forced Rayleigh scattering diffusion measurements of metal-coordinate polymer gels® in
this context suggests an average hopping displacement in these systems on the order of 1 — 10
um, several orders of magnitude larger than the chain radius of gyration. However, it is important
to note that a direct experimental observation of chain hopping has yet to be performed.?*-**34

Effect of chain concentration. The loop fraction in the system and the resulting dynamics
are governed by the balance between the local and global sticker densities, which depend
respectively on the number of stickers per chain (Ny) and the chain concentration (¢). At low ¢
and high N, interchain interactions are minimal, promoting loop formation. However, at large ¢
different chains interpenetrate and intermolecular association becomes likely. As seen in Fig. §,
increasing ¢ for each value of N reduces the width of the upper superdiffusive regime caused by
hopping. The suppression in superdiffusive scaling arises primarily due to the decrease in the loop
fraction in favor of intermolecular bonds at higher concentration (Fig. S16), which decreases the
equilibrium fraction of chains detached from the network. As Ny increases, the diffusive behavior
of a chain with loops switched off at ¢ = 1 (open symbols in Fig. 8) becomes qualitatively similar
to that of a chain with loops enabled at significantly higher concentration (e.g., ¢ = 10).

When both N and ¢ are high, the global sticker density in the system (~N ¢) is maximal,
and dynamics approach the mean-field limit of Fickian center-of-mass chain diffusion on all length
scales larger than the cage size as predicted by the sticky Rouse model.>**?® As seen in Fig. 8d,
when Ng = 49 and ¢ = 10, Fickian scaling is observed for almost all length scales beyond the
caging regime. This likely arises from (1) the suppression of hopping due to the decrease in the
loop fraction at high ¢ and (2) the convergence of the walking diffusive states at high N (Fig. 5),
suppressing the extent of superdiffusive scaling in both Regimes 2 and 3. The results show that

mean-field dynamics of purely Fickian diffusion can be achieved when both N and ¢ are large.>**
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Figure 8. Effect of chain concentration ¢ on diffusion for sticker densities of (A) Ny = 4, (B) Ny =9, (C) N; =
17, and (D) Ng = 49 per chain. Simulation parameters were k4 = 0.0002, K, = 15, and ¢ = 1. Open black
symbols show the diffusive behavior of chains at ¢ = 1 in the loop-free model for comparison.

This regime of both high concentration and high sticker density results in long diffusion times and
was not accessed in recent studies of metal-coordinate linear polymers due to limitations in the
range of forced Rayleigh scattering.? In addition, these high concentrations (¢p > 10) may be
above the entanglement threshold in real associative networks,? which may result in qualitative

changes to chain diffusive mechanisms on different length scales.>*>> For unentangled gels,

systems with faster sticker kinetics but otherwise identical parameters may enable diffusion
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measurements at this mean-field limit of Fickian diffusion on all length scales, but such studies
have not been performed to date.?%33-3

At low d?/4m?, the values of tg,,, in each panel of Fig. 8 converge to a single point,
signifying an intrinsic, concentration-independent dissociation time corresponding to the exit from
the cage. Longer timescales involve multiple sticker association and dissociation events, allowing
the coexistence of dynamic modes and a concentration-dependent diffusivity. However, it is
important to note that the single-spring length and relaxation time used as the units of length and
time in the simulation are functions of concentration due its effect on the correlation blob size.*’
The blob size (equal to the single-spring length b in the simulation) decreases with concentration
and its relaxation time 7 increases, as governed by solvent quality.**>! When transformed to real
units, the diffusion curves in Fig. 8 show the same qualitative trends but are more spread out in
space than when plotted with the scaled units; see Fig. S12.

Effect of sticker kinetics and equilibrium constant. While the sticker density in the
system affects the extent of superdiffusive scaling largely through changes in the intermolecular

and intramolecular bond fractions, the contribution of the hopping mode can be more directly

controlled through the sticker equilibrium constant (K,,) and kinetic rate constants (k, and kp).
Figure 9 compares the effects of independently varying K., and kj, from simulations with Ny = 4
and ¢ = 1. As seen in Fig. 9a, increasing K., slows diffusion on long length scales due to the

greater equilibrium fraction of bound stickers, which reduces the frequency and duration of

hopping events. However, varying K,, has minimal effect on the timescale of exit from the cage,
which is governed by 7,,;; = kjp1/2 and independent of the hopping mode. In contrast, increasing
the association/dissociation rate constants at constant K,, (equivalent to decreasing kp, 1) reduces

the diffusion timescale on small length scales, immediately after a chain exits the cage, but has
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Figure 9. (a) Effect of varying K, at constant kp' = 75000 on chain diffusion behavior for a system with Ny =
4 and ¢ = 1. (b) Effect of varying k, at constant K., = 15 for the same system.

minimal effect on the long-time diffusivity (Fig. 9b). This can be rationalized by recognizing that

at constant K,,, changes in the sticker binding kinetics concomitantly affect both the frequencies

eq>
of beginning and ending a hopping event. That is, the enhancement in the hopping frequency when

kp is increased is matched by the greater rate of rebinding due to the increase in k4 (note that

K,

eq = ka/kp). This results in the average fraction of molecules undergoing a hopping step being

a function of K, only, independent of k, (Fig. S17). Because the long-time diffusivity is governed
largely by the number of hopping molecules in the system (see Fig. 10), the curves converge on

long timescales to a constant terminal diffusivity for all values of kj. Thus, the results in Fig. 9
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demonstrate that the extent of superdiffusive scaling can be tuned by varying both the equilibrium
constant and the kinetics, but through opposite effects on the chain diffusion rate at either end of
the length scale range.

Analytical prediction of the walking and hopping diffusivities. Analytical expressions
for the hopping and walking diffusivities in the system can be formulated by considering the
relevant dynamic processes underlying each mechanism. The hopping diffusivity can be estimated

as the diffusivity of a free chain, D¢y, = kgT /N&, multiplied by the average fraction of hopping

chains in the system, py:

kBT) (12)

Dhop = Do (N_E
Using the arguments developed in the sticky Rouse theory,?* a scaling prediction for the walking
diffusivity can be obtained from the radius of gyration and terminal relaxation time of a chain:

R2 Nb?/6

D = = — (13)
watkse Tchain (Ninter)z(le/Z)

where T;pqin 15 the chain’s longest relaxation time, which is proportional to the sticker lifetime,
and (Njncerr) 1s the average number of stickers per chain that are intermolecularly bound to the
network. In addition to the scaling theory, a more rigorous analytical prediction for the walking
diffusivity (Dyqix,qn) can be obtained by calculating the expected mean-square center-of-mass
displacement of each chain in the system during a walking step (i.e., after unbinding a sticker),
using its specific sticker bonding configuration. As shown earlier in Eq. 7, the walking diffusivity
for a kinetics-limited system can be written in terms of the mean-square center-of-mass

displacement during the walking step and the timescale for sticker dissociation:

ZNS (ARG (s-1))
CM,(s—1
Dwalk,an ~ 2kD Ps 6 (14)
s=2
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where 2k, is the sticker unbinding frequency, ps is the probability of having s stickers bound to
the network, and (AR%M'(S_D) is the mean-square center-of-mass displacement of a chain after
unbinding a sticker, averaged over all possible unbinding events. The mean-square displacement

after each possible unbinding event, (ARgM_(S_l)), can be analytically calculated from the

configurational partition function of a Gaussian chain at fixed sticker bonding,**®

assuming that
the original position of the recently detached sticker follows a Gaussian distribution within the
pervaded volume of the strand and that strands relax to their equilibrium conformational
distribution during the time the sticker is detached.®* A full derivation for this approach of

calculating (AREM,(S_D) given a chain’s particular sticker bonding configuration is provided in

Section IV of the Supporting Information. Importantly, this analytical approach allows the exact
topological structure of each chain, including loops, to be captured in the estimate for Dy,qix qn-

As seen in Fig. 10, the analytical predictions for the walking and hopping diffusivities (Egs.
12 and 14) show good qualitative agreement with the results from simulation in both the full and
no-hopping models, capturing both the non-monotonic trend in the hopping diffusivity (due to
changes in the loop fraction; see Fig. 6) and the monotonic decrease in the walking diffusivity with
increasing Ns. The scaling prediction Dy, 4, sc given in Eq. 13 also provides a reasonable prediction
for the walking diffusivity, though it becomes less accurate at high N due to its neglect of the
specific bonding configuration of each chain, particularly the increased loop fraction. Overall, the
analytical predictions provide insight into the link between the static topological structure of the
network, bond lifetime, and the relative importance of each diffusive mechanism on various length
scales, with good agreement with the trends seen in simulation.

Comparison to experiment. A comparison of the simulations to recent experiments on

29,33

associative linear polymer gels of different types suggests that this molecular model can
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Figure 10. Comparison of the simulation results (symbols) for the full and hopping-free models with analytical
and scaling predictions (lines) for the walking and hopping diffusivities, Dy, gy and Dy, obtained using Egs. 12-
14. The simulation parameters are ¢ = 1,k, = 0.0002, and K., = 15.

capture key dynamics in associative systems across a range of length scales. Figure 11a compares
the simulation results with self-diffusion measurements of unentangled gels composed of linear
coiled-coil proteins with 4 stickers per chain.>® Dynamics of the coiled-coil proteins were
measured using neutron spin-echo spectroscopy and forced Rayleigh scattering, accessing a wide
range of length scales; the units have been scaled by the junction spacing and Zimm time of the
strands to allow comparison with the simulations (see Ref. ** for experimental details). As seen in
Figs. 11a and 11b, the simulation results for Ng = 4 at different ¢ show qualitative agreement with
the experimental results for the protein gels, including the caging regime and the two regimes of
superdiffusive scaling before terminal Fickian diffusion. The simulations provide a well-defined
molecular basis for each regime, showing explicit transitions from caging to walking and
subsequently hopping as the origin for the two superdiffusive regimes in the protein gels. The
simulations demonstrate the narrowing of the upper superdiffusive regime with concentration seen
experimentally (Fig. 11b) to result from an enhancement in intermolecular binding, which

decreases the fraction of hopping molecules. However, in the protein gels, the scaled relaxation
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Figure 11. (A) Simulation results for Ny = 4 at various concentrations (the same data as in Fig. 8a). (B)
Experimental self-diffusion measurements of 4-sticker coiled-coil protein hydrogels of various concentrations
obtained using neutron spin-echo spectroscopy and forced Rayleigh scattering. Data are obtained from Ref. 31.
(C) Simulation results for the slow relaxation mode, 7g;,,,, for various values of Ny at ¢ = 1 (the same data as in
Fig. 6a). (D) Self-diffusion measurements of associative poly(dimethylacrylamide) gels based on Ni**-histidine
coordination bonds with different numbers of stickers per chain obtained using forced Rayleigh scattering. Data
are obtained from Ref. 27. The dashed lines are fits to a two-state model as described in Ref. 27 and are presented
as a guide to the eye.

times in the superdiffusive and terminal Fickian regimes are ~6 orders of magnitude greater than
those in the simulations. This is largely a consequence of differences in association/dissociation
kinetics of the associative bonds in the protein gels (Tp /Tzimm =~ 107 — 108; see Ref.>*) compared

to those in the simulations (k31 /Tsrrana = 293), which determine the characteristic timescales of

self-diffusion. In addition, the scaling of the terminal diffusivity with concentration in the protein
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gels (Dopp~¢p~ 01502, Ref.>) is stronger than that observed in simulation (in real units,
Dosr~¢~12%%2; Fig. S13). This discrepancy may arise from differences in the sticker functionality
between the simulations (binary association) and the protein hydrogels (pentameric association),
as well as contributions from trapped entanglements or multi-chain clustering in the protein gels
that are not accounted for in the simulations; such network inhomogeneities or topological
entrapments may enhance the slowing of chain dynamics with concentration to a greater extent
than that due to binding site density alone.?* However, further study is required to fully elucidate
the role of such multi-chain effects on self-diffusion in the gel.

As a further comparison to a chemically distinct system, Fig. 11d shows self-diffusion
measurements of Ni**-coordinated poly(dimethylacrylamide) chains of various sticker densities
using forced Rayleigh scattering.”” The experimental results show a similar extent of
superdiffusive behavior for all sticker densities probed, both in the width and scaling exponent of
the upper superdiffusive regime, between 5 and 15 stickers per chain. The simulations (Fig. 11c)
capture this qualitative behavior and establish the key role of loops in enabling apparent
superdiffusion at higher sticker density. Thus, despite the approximations inherent to the coarse-
grained approach used here, the simulations are able to qualitatively capture all of the diffusive
regimes observed experimentally, revealing insight into the origins of chain diffusive behavior in

multiple distinct systems.
4. CONCLUSIONS

This work develops a generalized Brownian dynamics model of gel-forming linear
polymers with pendant stickers, exploring the effect of varying the sticker density, chain
concentration, and binding kinetics on their dynamics across a range of length scales. The

simulations are able to deconvolute the diffusive modes of hopping and walking, demonstrating
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clear transitions from caging to walking and subsequently to hopping as the origin for two regimes
of superdiffusive scaling on mesoscopic length scales before terminal Fickian diffusion. Notably,
the simulations show that the lower superdiffusive regime occurs even in the absence of hopping,
which is attributed to the increase in the average strand pervaded volume upon sticker detachment
during the transition from caging to walking. The presence of multiple dynamic modes results in
a non-Gaussian real-space displacement distribution on timescales that correlate with the presence
of superdiffusive scaling. Disabling hopping is found to suppress, but not eliminate, the non-
Gaussian behavior in the real-space distribution, which is attributed to the presence of
superdiffusive behavior by walking alone. In addition, the mean-square displacement of hopping
events is computed for each sticker density, which is found to correspond with the transition length
scale from apparent superdiffusion to terminal Fickian diffusion primarily dictated by the hopping
mode.

The simulations also demonstrate that the extent of superdiffusion by hopping is highly
sensitive to the sticker binding kinetics, equilibrium constant, and total chain concentration. When
the number of stickers per chain is increased at constant concentration, the enhanced prevalence
of loops counteracts the greater sticker density in the system, resulting in a non-monotonic trend
of the terminal diffusivity and enabling hopping of chains with as many as 49 stickers. When both
the chain concentration and the sticker density per chain are increased, dynamics approach the
mean-field limit of Fickian diffusive scaling on all length scales. Analytical predictions are
developed to estimate the walking and hopping diffusivities, finding qualitative agreement with
simulation and revealing the link between the static network topology and contribution of each
self-diffusive mode. Finally, a comparison with recent diffusion measurements of analogous

associative polymer gels finds qualitative agreement, suggesting that this coarse-grained model
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can capture key dynamic trends in chemically distinct systems. It is anticipated that this model can
be generalized to other associative polymer systems, including those with different chain
architectures and sticker distributions along the chain, and can provide insight into the design of

soft materials for various applications from biomedicine to self-healing materials.

SUPPORTING INFORMATION: Model validation, simulation equilibration, mean-square

displacement over time, chain diffusion curves in real units, and other supplementary figures.
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