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ABSTRACT

Children’s automatic speech recognition (ASR) is always dif-
ficult due to, in part, the data scarcity problem, especially
for kindergarten-aged kids. When data are scarce, the model
might overfit to the training data, and hence good starting
points for training are essential. Recently, meta-learning was
proposed to learn model initialization (MI) for ASR tasks of
different languages. This method leads to good performance
when the model is adapted to an unseen language. How-
ever, MI is vulnerable to overfitting on training tasks (learner
overfitting). It is also unknown whether MI generalizes to
other low-resource tasks. In this paper, we validate the ef-
fectiveness of MI in children’s ASR and attempt to alleviate
the problem of learner overfitting. To achieve model-agnostic
meta-learning (MAML), we regard children’s speech at each
age as a different task. In terms of learner overfitting, we
propose a task-level augmentation method by simulating new
ages using frequency warping techniques. Detailed experi-
ments are conducted to show the impact of task augmentation
on each age for kindergarten-aged speech. As a result, our
approach achieves a relative word error rate (WER) improve-
ment of 51% over the baseline system with no augmentation
or initialization.

Index Terms— Child ASR, Kindergarten-aged ASR,
Meta-initialization, Task augmentation

1. INTRODUCTION

Child ASR is a challenging problem, in part, because of the
lack of large child speech databases. This is especially true for
kindergarten-aged children [1], even though ASR technology
for such young kids might be helpful in literacy instruction
and assessment. The main problem with insufficient training
data is that the resulting acoustic model does not generalize
well because of optimizing to local minima during training. A
common approach used to address this problem is data aug-
mentation using techniques such as SpecAug [2], speed per-
turbation [3], and VTLP [4].

Another possible solution for this problem is model-
agnostic meta-learning (MAML) [5,6]. Meta-learning allows
for fast adaption from different tasks to an unseen task, and
is referred to as meta-initialization (MI) [7, 8]. The idea is

to learn a good model initialization from different training
tasks. It has been shown to be effective in cross-accent [9]
and multi-lingual ASR [10] as well as in other fields such as
computer vision [11], neural machine translation [12], and
speaker adaptive training [13]. However, MI is also vulner-
able to learner overfitting [14, 15], which happens when the
model overfits to the training tasks and is unable to generalize
to the testing task.

To address the issue of learner overfitting, several task
augmentation based mechanisms were proposed. Liu et al.
treated each rotation of an image as a new task for image clas-
sification tasks [16], and Murty et al. proposed DRECA that
uses latent reasoning categories to form new tasks for natural
language processing tasks [17]. To our knowledge, no study
has addressed the issue of learner overfitting in ASR before.

In this paper, we discover how meta-learning and task-
based augmentation algorithms can apply to kindergarten
children’s ASR. In MI, the tasks are defined according to
the development of children’s vocal tract because it varies
by the child’s age. Although a promising improvement is
observed with the MI for kindergarten-aged speech, learner
overfitting occurs. To alleviate learner overfitting, we pro-
pose a task augmentation mechanism for children’s ASR by
simulating new tasks using speed perturbation, and spectral
shifting-based data augmentation methods, VTLP, because of
the characteristics of each task (vocal tract differences).

The remainder of this paper is organized as follows: Sec-
tion 2 presents the meta-initialization and task augmentation
approaches for the low resource kindergarten-aged ASR. Sec-
tion 3 describes the experimental setup, followed by results
and discussion in Section 4. Section 5 concludes this paper.

2. METHOD

For a data sufficient task, traditional machine learning can
generalize well for in-domain data using random parameter
initialization. However, when data are scarce, random ini-
tialization might overfit to the training data easily, and hence
good starting points for training are essential for better model
generalization. Previously, it has been shown that supervised
pre-training can provide a good starting point for training
in low resource tasks [18]. As mentioned earlier, the aim
of meta-learning application is to provide good initialization
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for low-resource tasks by quickly adapting the knowledge
learned from the different available tasks to the unseen task,
and is referred to as meta-initialization (MI). However, meta-
initialization can be at risk of overfitting to the training tasks;
this is referred to as learner overfitting [19]. In this section,
we show how to use MI for ASR of children’s speech and
describe the proposed task-level augmentation method for
solving the learner overfitting problem.

2.1. Meta-initialization (MI)

Meta-learning is defined as a ”learning to learn” method
where the goal is to design a strategy to better choose a
system’s hyperparameters and learning algorithm. Learning
model initialization, or meta-initialization (MI) is also one of
the most important components in meta-learning. Suppose we
have a set of training tasks G = {G1, G2, . . . , Gi, . . . , Gn}
and a target test task T . The idea is to simulate the adapta-
tion stage during training and minimize an objective function.
Note that the objective function is based on the adapted model
so that the model before adaptation can be regarded as a good
model initialization for the adaptation stage. For each train-
ing task Gi, the data are split into a support set Gsup

i that is
used in the inner loop for the adaptation stage, and a query set
Gque

i for evaluating the effectiveness of the model after the
task’s adaptation stage. A better initial model before adapta-
tion leads to better performance. The loss function based on
the query set is used in the outer loop to calculate the final
objective function.

Suppose that the model parameters in the inner-loop are
θj at step j, the audio samples in the support set of each train-
ing task Gsup

i are used to simulate the adaptation stage. The
model is updated as follows:

ϕji = θj − α▽θj L(f(Xsup
i ; θj), Y

sup
i ) (1)

where Xsup
i and Y sup

i are data samples and corresponding
labels in the support set of task i, respectively. ϕji is the
model parameter updated for task i and step j. f is the for-
ward computation of the model. L is the cross-entropy loss
used in acoustic modelling, and α is the learning rate for the
inner-loop optimizer. ▽ is the nabla operator for computing
the gradient of θj .

In the outer-loop, we quantify how the adaptation behaves
in the inner loop by a summation over the loss function for
the query set of each task. The summation is referred to as
the meta-objective function:∑

Gi

L(f(Xque
i ;ϕji), Y

que
i ) (2)

where Xque
i and Y que

i are data samples and corresponding
labels in the query set of task i, respectively. By minimizing
the above objective function with respect to θj , we can find a
model that is suitable for adaptation, and hence the model can

be regarded as a good initialization. After the optimization,
which is based on the inner loop, is completed (Eq.1), the
initialization would be the focus of the algorithm.

θj+1 ← θj − β▽′
θj

∑
Gi

L(f(Xque
i ;ϕji), Y

que
i )) (3)

where β is the learning rate for the outer-loop optimizer, and
▽′

θj
indicates that only first-order MAML [6] is used since

the second-order derivative is computationally expensive and
it does not affect the results significantly. After enough train-
ing steps, N , the final model θN is regarded as the learned
initialization for the unseen test task.

2.2. Age-based Task Augmentation for MI

Different from overfitting in traditional machine learning
algorithms, there are two other overfitting problems in MI,
which are memorization overfitting [20] and learner overfit-
ting. The memorization overfitting happens when the θj+1

memorizes all tasks and does not rely on support sets for
inner-loop adaptation. The learner overfitting happens when
the θj+1 is unable to generalize well on the test task T . The
memorization can be well mitigated by randomly sampling
the support set and query set at each step during training since
each sample has the opportunity to participate in either inner
loop updates or outer loop updates. In terms of the learner
overfitting, a common strategy is to use task augmentation
to increase the model generalization for the test task. How-
ever, task augmentation has not been explored in ASR, to our
knowledge, before.

We propose an age-based task augmentation framework
to alleviate the problem of learner overfitting in kindergarten-
aged speech recognition. The higher degree of inter-speaker
variability of children speech is mainly due to different
growth patterns of children. These differences result in shifts
in the fundamental frequency (F0) and formant frequencies
(F1, F2, F3, etc.) in kids’ speech as they grow. Hence, we
perform the augmentation by simulating new tasks of chil-
dren’s speech using time and frequency warping techniques,
such as VTLP and speed perturbation. For example, the task
for each age Gi(G1.0

i ) is augmented with two new tasks with
two warping factors 0.9 (G0.9

i ) and 1.1 (G1.1
i ). We compare

the two techniques in Section 3.

3. EXPERIMENTAL SETUP

Experiments are conducted using the Kaldi toolkit [21] for
feature extraction and WFST-based decoding and Pykaldi2
[22] for acoustic model training.

3.1. Database

The database for the experiments is the scripted part of OGI
Kids’ Speech Corpus [23]. The Corpus contains kids speech
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in eleven age groups from kindergarten, grade 1 (G1) to grade
10 (G10). Each age group has approximately 100 speakers
saying single words, sentences, and digit strings. The dataset
is randomly split into 70 % training data, 8 % development
data, and 22 % test data without speaker overlap for each
age as in [24]. The kindergarten-aged task is regarded as the
meta-testing task for fine-tuning. G1 speech data, which cor-
responds to the closest age to kindergarten speech, are used
for the validation task in meta-learning. Other tasks with kids
speech from G2 to G10 are used as the training tasks, which
is similar to pre-training, for obtaining a model initialization.
For meta-training and meta-validation tasks, training and de-
velopment sets are combined for sampling the support and
query sets. Note that the training data for kindergarten-aged
speech is approximately 4 hours and the training data for the
meta-initialization stage is about 45 hours.

3.2. Acoustic Model Setup

First, an HMM-GMM model is trained with all the data in
the meta-training tasks to obtain frame-level alignment for
the DNN-based acoustic model training. 80-dimensional log-
mel-filter bank features are extracted every 10 ms with a 25
ms window. An additional frame of features after each frame
is appended to form a 160-dimensional input [25]. The model
has 4 BLSTM layers with 512 hidden units in each direction.
The last layer transforms the outputs of BLSTM to a proba-
bility distribution of the 1360 states from the HMM model.
For the baseline and adaptation of kindergarten-aged task, the
training process takes 15 iterations. An Adam optimizer with
a multi-step scheduler is applied, where the learning rate is
initially set to 1e−5 for the first two iterations and decayed
with a ratio of 0.1 till the last iteration.

3.3. Meta-initialization Setup

In MI, the support set and query set are randomly sampled
with a batch size of 16 for each age of G2 to G10 during
training. The same frame-level alignment and BLSTM model
configuration are used as mentioned in Section 3.2.

The number of iterations for MI training is empirically
set to 6,800. Separate optimizers are applied to the outer-loop
and inner-loop optimization. The inner loop uses a SGD op-
timizer with a fixed learning rate of 2e−4. The outer loop
uses an Adam optimizer with a multi-step scheduler, where
the learning rate is stabilized to 2e−4 for the first 2,000 iter-
ations and decayed with a ratio of 0.15 to 3e−5 till the last
iteration. All the parameters trained from MI are used as the
initialization for the training in the adaptation stage.

3.4. Augmentation Setup

For age-based task augmentation during the MI stage, speed
perturbation and vocal tract length perturbation (VTLP) are

Table 1: % Word error rate (WER) for Data Augmen-
tation (Data Aug) mechanisms on baseline system, meta-
initialization (MI), and the proposed task augmentation (Task
Aug) mechanisms for MI with vocal tract length perturbation
(VTLP) and speed perturbation (SP) on the Kindergarten-
aged development and test sets. SPT stands for supervised
pre-training. Raw Aug stands for augmentation within each
task without creating new tasks.

Model Data Aug MI Aug Dev TestType Type
Baseline - - 53.17 55.01

+ Data Aug
SP - 46.13 43.75

VTLP - 45.42 46.05
SpecAug - 56.69 53.70

+ SPT [18] - - 36.27 29.06
+ MI - - 35.21 30.68

+ Raw Aug - SP 36.62 28.00
- VTLP 36.27 30.06

+ Task Aug - SP 34.86 27.50
- VTLP 34.86 29.06

used with the warping factors of 0.9, 1.0, and 1.1, accord-
ing to our preliminary results [26, 27], and hence the number
of tasks is increased by 3 folds. Thus, we adopt an online
augmentation mechanism where at each iteration the warping
factor is randomly selected from (0.9, 1.0, 1.1).

During the adaptation stage, speed perturbation and
VTLP are used with same warping factors (0.9, 1.0, 1.1)
as task augmentation. For SpecAug, a maximum width of 5
frequency channels are masked twice, and a maximum width
of 8 time channels are masked twice as well. The width of
the frequency and time channel are chosen empirically.

4. RESULTS AND DISCUSSION

An HMM-DNN hybrid system with BLSTM modelling is
used as our baseline. As shown in Table 1, the development
and test set of kindergarten speech have a WER of 53.17%
and 55.01%, respectively, without any prior knowledge. The
baseline WER is similar to that reported in [26] for a small
size (5 hours) kids dataset.

4.1. MI and Task Augmentation

The results of MI and the proposed task augmentation meth-
ods are shown in Table 1. As we can observe from the table,
using data augmentation (Data Aug) strategies can improve
the performance over baseline. The relative improvement in
WER for speed perturbation (SP) and VTLP is around 20%.
When training with an initialization through meta-learning,
the WER of the kindergarten-aged test set is decreased from
55.01% to 30.68%, a larger relative WER improvement than
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Fig. 1: % WER Results of task augmentation mechanism us-
ing speed perturbation (SP) versus the number of augmenta-
tion tasks for MI on the Kindergarten test set. The tasks are
added either from G2 to G10 (in blue), or from G10 to G2
(in orange). The dashed line (in red) is MI without any task
augmentation mechanism.

the data augmentation strategies. For a fair comparison, we
used the supervised pre-training method (SPT) to directly
train the acoustic model with data from G2-G10 as the start-
ing point. We can see from the table that MI is slightly worse
than SPT on the test set.

The proposed task augmentation methods are used to ad-
dress the overfitting problem and we observe a significant im-
provement over the MI without augmentation. From Table 1,
we found that SP is better than VTLP as a method to simulate
new tasks. For a fair comparison, we also experimented with
augmentation that is not task dependent. In raw augmentation
(Raw Aug), warping is applied to the original data. The re-
sults validate the effectiveness of the proposed task augmenta-
tion (Task Aug) method, which achieves a WER of 27.5% on
the kindergarten test set. SpecAug is not used in task augmen-
tation since it randomly masks out time or frequency chan-
nels. Such masking is not consistent for the data in one task
that is regarded as a new task after augmentation.

4.2. The Impact of the Augmented Tasks

The task augmentation in Table 1 is using speech data from
all ages in the training set to augment a new ASR task. To
obtain an insight into the impact of the augmented tasks on
WER performance, we add the number of augmented tasks
incrementally according to age. For example, as shown in
Fig.1, the number of tasks is added in either an increasing
order (from G2 to G10), or a decreasing order (from G10 to
G2). Our goal is to investigate which subset of the data is
more important for the augmentation.

Since SP outperforms VTLP in the previous experiments,
SP is explored. As shown in Fig.1, including more augmented
tasks in either the forward order or reverse order results in

Table 2: % Word error rate (WER) for data augmentation dur-
ing the adaptation stage with SpecAug, vocal tract length per-
turbation (VTLP), and speed perturbation (SP) on the Kinder-
garten development and test sets.

Aug Type (in adaptation stage) Dev Test
No Aug 34.86 27.50
SpecAug 32.75 27.01
VTLP 32.39 28.13
SP 33.45 27.75

improved performance. However, the reverse order generally
performs worse than the forward order by 1% WER for the
kindergarten-aged test set, which means creating new tasks
that is similar to the target task is effective in addressing the
learner overfitting problem. With all tasks being augmented,
the final performance has a 10% relative WER improvement
over MI without the task augmentation.

4.3. Data Augmentation for Adaptation

The task we are focusing on is a low-resource one (kinder-
garten ASR). Hence, data augmentation methods are further
used during the adaptation stage of the kindergarten-aged
task. SP, SpecAug and VTLP are compared in the experi-
ments. The results are shown in Table 2. Although all three
strategies can improve the performance on the development
set, only SpecAug achieves a slightly better performance on
the test set. The reasons why VTLP and SP did not achieve
better results will be explored in the future work.

5. CONCLUSION

In this paper, to deal with the data scarcity of children’s
speech, particularly kindergarten-aged, meta-initialization is
used to find a good starting point for training the acous-
tic model. To mitigate the overfitting problem in meta-
initialization, particularly learner overfitting, an age-based
task augmentation mechanism is proposed to simulate new
ages using time and frequency warping techniques. The data
augmentation strategies using speed perturbation and VTLP
that are also used in the task augmentation stage are not
helpful in the adaptation stage. SpecAug used in the adapta-
tion stage resulted in small WER improvement, and the final
system achieved a 51% relative WER improvement over the
baseline (no augmentation and no adaptation). In the future,
we will explore the use of the proposed algorithm in other
low-resource tasks for both adults and children’s ASR.
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