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ABSTRACT
Deepfake videos are getting better in quality and can be used for
dangerous disinformation campaigns. The pressing need to detect
these videos has motivated researchers to develop different types
of detection models. Among them, the models that utilize tempo-
ral information (i.e., sequence-based models) are more effective at
detection than the ones that only detect intra-frame discrepancies.
Recent work has shown that the latter detection models can be
fooled with adversarial examples, leveraging the rich literature on
crafting adversarial (still) images. It is less clear, however, how well
these attacks will work on sequence-based models that operate on
information taken over multiple frames. In this paper, we explore
the effectiveness of the Fast Gradient Sign Method (FGSM) and
the Carlini-Wagner 𝐿2-norm attack to fool sequence-based deep-
fake detector models in both the white-box and black-box settings.
The experimental results show that the attacks are effective with
a maximum success rate of 99.72% and 67.14% in the white-box
and black-box attack scenarios, respectively. This highlights the
importance of developing more robust sequence-based deepfake
detectors and opens up directions for future research.

CCS CONCEPTS
• Applied computing → Computer forensics; • Computing
methodologies → Computer vision; • Human-centered com-
puting → Collaborative and social computing theory, concepts
and paradigms.
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Figure 1: The process of crafting adversarially perturbed
deepfakes, in which a perturbation is added to each frame.

1 INTRODUCTION
Deepfakes are a form of synthetic media in which a target indi-
vidual’s likeness is swapped with someone else or manipulated to
move and speak as the creator desires. Although there are positive
uses of this technology, it has been used to make non-consensual
pornography [9, 36] and are a serious threat for spreading misin-
formation online [18]. To combat the spreading of misinformation
via deepfakes, Facebook, Twitter, and Microsoft joined forces to
remove deepfakes from online platforms in 2020 [4, 37].

Furthermore, researchers have come up with various deep-
learning-based solutions to detect deepfakes. CNN-based deepfake
detection methods usually try to find discrepancies in each frame of
the deepfake video independently from the other frames [1, 8, 11].
Although these approaches are sound, they do not consider the tem-
poral coherence of the frames. Researchers have since introduced
sequence-based models such as Conv-LSTM, which can detect the
inter-frame temporal inconsistencies in a deepfake video and thus
perform significantly better than CNN-based models [7, 15, 31].

Naturally, since these detection models are based on machine
learning, they are vulnerable to being fooled by adversarial ex-
amples. Researchers have studied the vulnerability of CNN-based
deepfake detectors and found them to fare poorly [5, 13, 16]. A
general process to craft adversarial deepfakes is shown in Fig. 1.
The sequence-based models are relatively more complex, so it is
unclear how well the same techniques will fare. Since the sequence-
based models have greater detection accuracy than the CNN-based
ones [7, 15, 31], they are more likely to be deployed. Thus, assessing
the vulnerabilities of these sequence-based models against adver-
sarial perturbations is crucial in making them robust against future
adversarial attacks.
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Figure 2: An overview of deepfake video detection. Frames
are sampled from the raw input video and passed to a face-
detection layer that crops the faces from the frames with ex-
tra margins and feeds them to the deepfake detection model
for inference.

In this paper, we evaluate the effectiveness of the Fast Gradi-
ent Sign Method (FGSM) [14] and Carlini-Wagner 𝐿2-norm (CW-
𝐿2) attacks [6] in both white-box and black-box settings to fool
sequence-based deepfake video detector models. The experimental
results show that the attacks are effective against these models, with
a maximum success rate of 99.72% and 67.14% for white-box and
black-box attack scenarios, respectively. We note that our black-box
attacks rely entirely on transferability, and they do not require any
queries of the model, which could hinder real-world attacks. These
findings highlight the importance of building defenses against ad-
versarial perturbation for sequence-based detectors, and also opens
up future directions for this research area.

2 BACKGROUND
2.1 Input Video Processing
The approach of processing each frame from a video and classifying
them as real and fake is shown in Fig. 2. Deepfake detection models
generally take a set of frames as input rather than the complete
video. The detection model can have a separate face detection layer
that detects faces in the frames and crops them with extra mar-
gins. Otherwise, the face detection and cropping can be achieved
via independent face detection libraries, such as dlib [20], which
preprocess the input video and feeds the cropped region to the
model.
2.2 CNN-based Detectors
There are several prominent detection models that use CNN-based
architectures for frame-level classification [42]. Among them, Xcep-
tionNet [8] and MesoNet [1] are among the most effective ones,
with 95% and 84% reported accuracy, respectively.
2.3 Sequence-based Detectors
Videos have a time continuity that can be disruptedwhen the frames
are manipulated by any perturbation. To potentially detect disrup-
tions caused by deepfake generation, sequence-based models add
some sequence processing layers, e.g. LSTM units, that take inputs
from convolutional layers are used for image-level feature extrac-
tion. The Conv-LSTM model proposed by Güera and Delp [15] was

the first sequence-based model for deepfake detection. FacenetL-
STM [31] uses a similar approach, but with a pre-trained FaceNet
model [30] for the convolutional layers.

Further research has also taken place in advancing the capabil-
ities of sequence-based deepfake detectors [42]. A comparison of
the CNN-based and sequence-based models in terms of detection
accuracy on the FaceForensics++ dataset is shown in Tab. 1. The
sequence-based models generally outperform the CNN-based ones
and are thus more likely to be deployed. Thus, evaluating their
effectiveness against adversarial perturbation and finding their vul-
nerabilities is becoming increasingly important.
2.4 Adversarial Examples
Fig. 1 depicts the process of generating white-box adversarial exam-
ples for deepfake videos. First, frames are extracted from the input
videos as explained in §2.1. Each extracted frame is then perturbed
by using an attack algorithm based on the detector model. Using
the FGSM attack for example, an input frame is fed to the detector.
The detector correctly classifies it as fake, but the attack utilizes
the loss of the detector network and backpropagates the gradient
of the network back to the input frame. The attack then uses this
to determine the direction of perturbation to apply to the input
frame to make the model classify it as a real frame. This process
is performed on every input frame, and the resulting frames are
classified as real.

In case of a black-box approach, the assumption is that the at-
tacker would not have prior access to the model architecture. A
typical approach in this case is to have the attacker to perform
queries to the target model and get the classification probabilities to
craft effective adversarial examples without any gradient informa-
tion. This approach, however, can require a huge number of queries
and can be difficult in realistic scenarios, where the attacker might
have a limit on the number of queries they can perform. Another
solution is to perform black-box attacks based on the transferability
of adversarial examples. Researchers have found that the adversar-
ial examples generated for a reference model are likely to remain
effective for the target model, even transferring between different
families of models and models trained on different data [24, 27].

3 RELATEDWORK
In this section, we take a look at the existing research in crafting
adversarial examples (e.g. adversarial deepfake videos), and also
dive into the vulnerability analysis of different deepfake detection
methods by other prominent works.
3.1 Adversarial Video Generation
Significant work has been done to craft adversarial videos by fol-
lowing different techniques [19, 23, 39, 40, 43]. The study of these
techniques are valuable in exploring potential attack approaches
and crafting more effective adversarial deepfake videos. Wei et al.
were the first researchers to propose an adversarial video crafting

Table 1: Deepfake detection accuracy on FaceForensics++ [28], as reported in the respective papers

CNN-based Deepfake Detectors Accuracy (%) Sequence-based Deepfake Detectors Accuracy (%)
XceptionNet [8] 96.71 XcepTemporal [7] 100
MesoNet [1] 84.00 Sabir et al. [29] 96.90

Amerini et al. [2] 81.61 FaceNetLSTM [31] 93.71



process [39]. The authors aim to limit the amount of perturbation
to the video by using an 𝐿1 norm across frames, meaning that the
attack becomes optimized to only perturb a few select frames, and
an 𝐿2 norm within each perturbed frame. They find that the pertur-
bations lead to misclassification of later frames due to the temporal
nature of the video classifier.

Li et al. developed a targeted 3D adversarial perturbation us-
ing Generative Adversarial Network (GAN)-like architecture that
works on real-time video classifiers [23]. These video classifiers
use a sliding window approach to extract frames from real-time
video stream; the same approach is used by the GAN to add per-
turbations. Although Li et al.’s work is similar to the work of Wei
et al. [39], it is quite tricky to train a GAN that produces video
agnostic perturbations with higher success rate at each inference.

Zajac et al. crafted adversarial videos by adding an adversarial
border to each original frames of the source video [43]. While
this technique has its merit, it would not be effective in crafting
adversarial deepfake videos. The adversarial deepfake videos have
to be visually imperceptible from the original deepfake videos to
fool users into thinking that the video has not been manipulated.
The borders in this technique are highly visible and clearly atypical.

All the previous work discussed above has considered crafting
adversarial videos in a white-box setting. Jiang et al. proposed the
first black-box video attack technique, named "V-BAD" where the
prior assumption is that the adversary can only query the target
model for class labels or probabilities [19]. The average number of
queries needed ranges between 3400 to 8400. Wei et al. developed a
black-box heuristic-based algorithm to find out the importance of
each frame in an input video and also to locate the salient region of
the input frames and perform a targeted attack [40]. Although the
reported method achieved 100% attack success rate, it uses huge
number of queries such as, 190,000 for a targeted attack and 14,000
for an untargeted attack.

Although, these black-box techniques are good, they both involve
large number of queries to the victimmodel. For our proposed work,
we will not allow the attacker query access to the model, making
these techniques impossible to use.

3.2 Vulnerability of Deepfake Detectors
Three research groups have investigated the vulnerability of CNN-
based deepfake detector models to adversarial examples. Gandhi et
al. tested the robustness of two vanilla CNN-based image classifiers
in a deepfake image detection task [13]. They chose the VGG and
ResNet architectures and trained them on a custom dataset to detect
deepfake images. They then perturbed the images using FGSM [14]
and CW-𝐿2 [6] attacks. They reported that the deepfake image
detector’s accuracy dropped from 95% to under 27%. Carlini et
al. [5] proposed multiple white-box and black-Box attacks on two
CNN-based deepfake image classifiers, from Wang et al. [38] and
Frank et al. [12]. The white-box attacks on those classifiers reduced
their accuracy to almost 0% and the black-box attacks resulted in
the reduction of the area under the ROC curve (AUC) from 0.95 to
0.22. Both of these works considered only deepfake image classifiers
for their study, while not studying deepfake video detectors nor
temporal models.

Hussain et al. [16] tested the robustness of XceptionNet [8] and
MesoNet [1], two of the best performing CNN-based deepfake video

detectors. They used the IGSM attack [22] for a white-box attack
and NES [17, 41] for robust white-box [3] and black-box attacks.
They report that the average success rate of their white-box attacks
was 99.85% for XceptionNet and 98.15% for MesoNet. In the case
of black-box attacks on raw format videos, the average success
rates were 97.04% for XceptionNet and 86.70% for MesoNet. The
authors also considered a pre-trained 3D-CNN model for evalu-
ating a form of sequence-based detector. Their attacks were less
successful than those on XceptionNet and MesoNet, in both white-
box and black-box settings. Although this work evaluates deepfake
video detectors, the 3D-CNN attacked here only learns temporally
local features, while CNN+RNN/LSTM based models learn tem-
porally global features. Better performing deepfake detectors uti-
lize the latter architecture, making it important to establish that
CNN+RNN/LSTM-based models are vulnerable to adversarial per-
turbation. To the best of our knowledge, no other work has been
done to test the robustness of these CNN+RNN/LSTM-based models
which leaves open a potential research area to explore.

4 SYSTEM DESIGN
The purpose of this research is to determine the robustness of
sequence-based deepfake detectors to adversarial perturbations. To
this end, we have designed a realistic threat model, chosen two
sequence-based models as our victim models, and selected two
prominent adversarial attacks that were utilized in prior literature
to attack CNN-based deepfake detectors.

4.1 Victim Models
We have considered two pioneering sequence-based deep learning
models that employ convolutional LSTM architectures for detecting
deepfake videos. The first victim model is Conv-LSTM in which a
CNN is used for feature extraction and an LSTM is used for sequence
processing [15].The model works as an end-to-end deepfake video
detection system. For the convolution model, they have adopted
Inception V3 [32], where the fully-connected final layer is removed.
The model takes each frame from the deepfake video and provides
a corresponding 2048-dimensional feature vector as output. This
2048-dimensional feature vector is then fed into a 2048-wide LSTM
unit with a dropout rate of 0.5. The output from this LSTM unit is
then forwarded to a 512-unit fully-connected layer that also has a
dropout rate of 0.5. Finally, a softmax layer is used to compute the
probability of each frame being either real or fake. We implemented
Conv-LSTM according to the architecture and parameters discussed
by Güera and Delp [15].

FacenetLSTM, proposed by Sohrawardi et al. [31], builds upon
the work of Güera and Delp. The authors replace the convolutional
module (Inception V3) of the prior Conv-LSTM model with the
FaceNet[30] architecture. FaceNet differs significantly from the
Inception V3 architecture, as it tries to create a compact latent
representation of the input face and also transforms the input face
into a frontal face.We implemented and trained themodel according
to the architecture and parameters described by Sohrawardi et
al. [31].

4.2 Threat Model
To evaluate the robustness of the victim deepfake video detector
models, we have used FGSM and CW-𝐿2 attacks in both white-
box and black-box settings. We chose these attacks based on their



Table 2: Parameters for FGSM and CW-𝐿2 attack

Attack Hyperparam.
Fine-tuned

Value
Search Space

FGSM 𝜖 0.03 [0.01 to 0.5]

CW-𝐿2

c
[100 to 10000]
Search step = 5

[10^{-10} to
10^{10}]

Learning rate 0.001 -
Max Iteration 1000 -

𝜅 200 [0 to 500]

popularity and effectiveness in attacking CNN-based models as
reported in [5, 13].

The goal of the adversary in both settings is to perturb each frame
of the target deepfake video to such a degree that the full video is
classified as real by the victim models. Also, the adversary seeks
to craft adversarial deepfake videos that are visually imperceptible
from the original deepfake videos or at least minimally modified.

White-box Attack. To examine a worst-case setting and establish
a baseline, we assume in this setting that the adversary has complete
access to the victim model’s architecture and parameters.

Black-box Attack. In case of more realistic black-box attacks,
we assume the adversary has no access to the model architecture.
Also, we assume the attacker cannot perform any queries to the
victimmodel, and insteadmust rely on the transferability of samples
generated against one model working on the victim model [14, 27,
33]. We created adversarial examples based on the FacenetLSTM
architecture and used them to perform black-box attacks on the
Conv-LSTM model, and vice versa.

5 EXPERIMENTAL DESIGN
We preprocessed the dataset, trained the victim model, and per-
formed adversarial attacks using our local server consisting of two
NVIDIA GTX 2080 GPUs in a Linux environment.
5.1 Dataset
We use the FaceForensics++ dataset developed by Rossler et al. [28].
Hussain et al. [16] evaluated the robustness of XceptionNet [8] and
MesoNet [1] on this same dataset. Moreover, the FacenetLSTM was
primarily trained on it [31]. The FaceForensics++ dataset consists
of 1000 source videos which are manipulated by four different deep-
fake generationmethods: DeepFakes (DF) [10], Face2Face (F2F) [35],
FaceSwap (FS) [21] and NeuralTextures (NT) [34]. The mapping of
training, validation and test sets are kept the same as mentioned
in the Github repository of Rossler et al. [28] which include 720,
140 and 140 samples, respectively. Both of the victim models are
trained on the raw training videos of this dataset.
5.2 Attack Parameters
Tab. 2 shows the attack parameters used in this study. The values
of 𝜖 for FGSM and 𝑐 and 𝜅 were chosen subjectively based on how
they distorted the examples and objectively based on how they
decreased the accuracy of the victim models. We have left other
parameters to their respective default values as recommended in
the CW-𝐿2 implementation from the CleverHans [26] library.

Figure 3: Adversarially perturbed frame generation using the
FacenetLSTMmodel and the FGSM attack. Each frame is first
extracted from the deepfake video and fed into the FaceNet
model to generate the feature vector. The feature vector is
passed all the way through the 256-node LSTM module and
fully connected layer to collect the sign gradient of the loss
function with respect to the input frame. The sign gradient
is multiplied by the 𝜖 value to generate the adversarial per-
turbation, which in turn is added to the input frame to craft
the adversarially perturbed deepfake video frames.

5.3 Crafting Adversarial Videos
Even though sequential models aremore complex than CNNmodels,
they are surprisingly easy to apply existing adversarial attacks to.
An overview of the perturbation process using FGSM against the
FacenetLSTM model is shown as an example in Fig. 3. The model
produces a prediction for every frame of the video, and we can
use this to compute the gradient of the loss. For the CW-𝐿2 attack,
we can instead compute the gradient of the logits. The resulting
perturbation is then combined with the original frame. We note
that this approach is somewhat naive, in that it does not optimize
jointly over multiple frames. We leave exploration of this to future
work.
5.4 Evaluation Metrics
To evaluate the robustness of the victim models, we use three met-
rics:

Success Rate (SR).. SR is the ratio of frames that are perturbed and
classified as “real” and the total number of frames in a corresponding
video. A lower SR value represents a higher degree of robustness
in the victim models.

Accuracy. Classification accuracy of each victim model is eval-
uated on the unperturbed test set, FGSM-perturbed test set, and
CW-𝐿2-perturbed test set.

Mean 𝐿∞ Distortion. We calculate the average 𝐿∞ distortion be-
tween the original frames and adversarial frames. The pixel values
of each frame are scaled in the range [0,1], so the maximum value
of 𝐿∞ is 1 if the adversarial frame is completely distorted.
6 EXPERIMENTAL RESULTS
Following §4, we have implemented the victim models and crafted
adversarial examples from the specified dataset. The Conv-LSTM
model achieved an accuracy of 81.3%, and the FacenetLSTM model
achieved an accuracy of 84.5% after training on the unperturbed
FaceForensics++ training set. Both of models were trained for 10
epochs and converged successfully. The average training time for



Table 3: Model accuracy and attack success rate

Sn Model
Unperturbed
Accuracy

White-box Attack Black-box Attack
FGSM CW-𝐿2 FGSM CW-𝐿2

Accuracy SR Accuracy SR Accuracy SR Accuracy SR
1 Conv-LSTM 81.3% 14.8% 72.31% 8.3% 99.72% 44.7% 21.73% 38.4% 63.82%
2 FacenetLSTM 84.5% 20.9% 68.23% 13.5% 98.83% 53.5% 33.89% 28.7% 67.14%

each epoch was 8.5 and 11.3 hours for Conv-LSTM and FacenetL-
STM, respectively.

Tab. 3 shows the performance of these models in both white-box
and black-box settings. Recall that we performed the black-box
attack in a cross-model manner, such that the adversarial examples
used for attacking the Conv-LSTM model were generated using the
FacenetLSTM architecture and vice-versa.

Accuracy and Success Rate. The white-box attacks reduced the
accuracy of the victim models to 8.3%-20.9%, while the black-box
attacks reduced their accuracy to 28.7%-53.5%. The attack success
rate (SR) shows similar patterns. As expected, the CW-𝐿2 attack
outperforms FGSM. The results are in line with those achieved by
Gandhi and Jain on CNN-based deepfake image detectors [13].

Distortion. Tab. 4 shows the mean distortion results on the Face-
foresnsics++ dataset. As our attack model perturbed each test video
using both FGSM and CW-𝐿2 for both of the victim models, we
have calculated the mean 𝐿∞ distortion for each type of deepfake
dataset. The average 𝐿∞ distortion ranged from 0.0548 to 0.0613.
These distortion values are higher than those reported by Hussain
et al. [16], which ranged from 0.04-0.047. We note that our attack
needs to fool both convolutional and LSTM layers, which explains
the greater distortion required. Gandhi et al. and Carlini et al. did
not use the FaceForesnics++ dataset for training and testing their
victim models [5, 13], and thus we have excluded their work while
comparing distortion values.

Perturbation vs. Imperceptibility. We have explored the search
space of the FGSM and CW-𝐿2 attack hyperparameters (Tab. 2) to
understand the trade off between perturbation and imperceptibility.
For FGSM, we perturbed the frames with different 𝜖 values rang-
ing from 0.01 to 0.5. As the perturbation nears 0.5, model accuracy
drops close to 1%. Fig. 4 shows the relationship between the amount

Table 4: 𝐿∞ distortion results. Datasets from FaceForen-
sics++ [28]: DeepFakes (DF) [10], Face2Face (F2F) [35],
FaceSwap (FS) [21] and NeuralTextures (NT) [34]

Sn Dataset
Conv-LSTM
Distortion 𝐿∞

FacenetLSTM
Distortion 𝐿∞

FGSM CW-𝐿2 FGSM CW-𝐿2
1 DF 0.074 0.069 0.083 0.072
2 F2F 0.067 0.052 0.071 0.043
3 FS 0.057 0.055 0.049 0.065
4 NT 0.045 0.058 0.042 0.039
Average 0.0607 0.0585 0.0613 0.0548

Figure 4: Adversarially perturbed frames extracted from ran-
domly selected deepfakes from the FaceForensics++ test set.
The input frames are classified as Fake by the victim mod-
els. The perturbed frames generated according to different 𝜖
values using FGSM are shown in each row. Perturbed frames
whose 𝜖 > 0.01 are labeled as Real by the victim models. The
distortion increases proportionally with 𝜖.

of perturbation and subjective imperceptibility in case of FGSM
attack. The frames are collected randomly from four different types
of deepfake videos available in the FaceForensics++ test set. We per-
turbed the input frames according to different 𝜖 values in the range
of 0.01 to 0.5, with a step size of 0.01. The victim models classify
all frames with 𝜖 ≥ 0.1 as Real. We can see that the input frames
become more distorted as the amount of perturbation increases.
The 𝐿∞ value under each frame gives us an idea about the amount
of distortion present at each perturbed frame. It grows significantly
as 𝜖 grows from 0.03 to 0.1, as the perturbation becomes visible,
and against as 𝜖 grows from 0.1 to 0.3, as the perturbation becomes
highly noticeable.

For the CW-𝐿2 attack, we have performed similar exploration
and found that the upper bound of the search space for 𝑐 can be
extended to 100000 and 𝜅 can be increased to 500 to generate more
successful adversarial frames. The performance of the victimmodels
also drops significantly (close to 1% accuracy), with a similar trade-
off between the amount of distortion and imperceptibility of the
adversarial frames in case of CW-𝐿2 attack.

7 DISCUSSION AND LIMITATIONS
Our experimental results validate our attack model and exposes
the vulnerability of sequence-based deepfake detectors. There are



some limitations to our work, however. First, we note that our
initial training of the FacenetLSTM model on the Faceforensics++
dataset achieved an accuracy of 84.5%, which is significantly lower
than the accuracy of 93.71% reported by Sohrawardi et al. [31]. Fur-
ther fine-tuning may be required. Second, there are other attack
algorithms that may be more effective, such as PGD [25] or the
more sophisticated video attack of Wei et al. [39]. We selected two
well-established attack algorithms for this initial exploration, but
identifying more effective approaches will be important for future
work. Also, we have not tested the effect of different pre-processing
steps on the perturbed video frames such as lossy or lossless com-
pression. Finally, we have not tested on defenses that could be
applied, such as adversarial training among many options. Explor-
ing the space of defense designs as applied to deepfake detection is
a critical avenue for future work.

8 CONCLUSION
It is quite challenging to detect deepfakes, as more realistic deepfake
generation methods are being developed all the time. Sequence-
based models offer state-of-the-art detection performance, but our
experiments indicate that they are highly vulnerable to adversarial
perturbations, including transferability-based black-box attacks.
Developing defenses against these attacks will be critical for trust-
worthy deepfake detection systems.
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