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Despite advances in deep learning methods for song recommendation, most existing
methods do not take advantage of the sequential nature of song content. In addition, there
is a lack of methods that can explain their predictions using the content of recommended
songs and only a few approaches can handle the item cold start problem. In this work, we
propose a hybrid deep learning model that uses collaborative filtering (CF) and deep
learning sequence models on the Musical Instrument Digital Interface (MIDI) content of
songs to provide accurate recommendations, while also being able to generate a relevant,
personalized explanation for each recommended song. Compared to state-of-the-art
methods, our validation experiments showed that in addition to generating explainable
recommendations, our model stood out among the top performers in terms of
recommendation accuracy and the ability to handle the item cold start problem.
Moreover, validation shows that our personalized explanations capture properties that
are in accordance with the user’s preferences.

Keywords: song recommendation, hybrid recommender system, recurrent neural networks, explainability, item cold
start problem, deep learning, collaborative filtering, transparency and fairness in Al

1 INTRODUCTION

Among the diverse domains in which automated recommendations play an important role is music.
In music, like in other domains, the most accurate recommender systems have been relying on
increasingly complex (black-box) machine learning models that cannot explain their output
predictions. Hence, one main challenge in designing a recommender system is mitigating the
trade-off between recommendation performance (i.e., prediction accuracy) and the ability to explain
predictions (i.e., explainability) (Abdollahi and Nasraoui, 2017). State-of-the-Art techniques in
music recommendation include Matrix Factorization (MF)-based approaches (Mehta and Rana,
2017) and Deep Learning (DL) architectures (Zhang et al., 2017). MF builds a model that captures the
similarities between users and items in a latent space obtained by factorizing the rating matrix into
user and item latent factor matrices (Koren et al., 2009). Among all deep learning architectures, deep
sequence models (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Lipton, 2015) are designed to
model sequential data. Sequence model-based recommender systems follow three main approaches.
The first approach uses sequence models to predict the next interaction given the previous
interactions (Hidasi et al., 2015; Hidasi et al., 2016; Tan et al., 2016; Wu et al., 2016; Smirnova
and Vasile, 2017) in a session-based fashion. The second approach uses sequence models to model
the temporal dependencies, in terms of seasonal evolutions of items and user preferences, to generate
recommendations (Wu et al., 2017a; Wu et al., 2017b). Finally, the third approach uses sequence
models as a feature representation learning tool on textual data (Bansal et al., 2016). Despite the
advances in deep learning for song recommendation and even though the sequential nature of songs
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makes them naturally amenable to sequence models, no work has
used sequence models with the content of songs for
recommendation. Furthermore, black-box music
recommender systems cannot explain their recommendations
based on content. On music streaming platforms, new users and
songs are constantly added, and since these additions have few, if
any, ratings, they cannot be handled by classical CF algorithms.
This problem, known as the cold start problem, thus adds another
challenge to collaborative filtering (CF) recommender systems in
addition to the demands of recommendation accuracy and
explainability (Abdollahi, 2017).

current

1.1 Contributions

In this work, we take advantage of the sequential nature of songs’
content, the prediction power of MF, and the superior capabilities
of DL sequence models to present the following contributions:

e We propose a method to transform the Musical Instrument
Digital Interface (MIDI) format of songs into
multidimensional time series to be the input for sequence
models and, hence, capture rich information about the song;

e We integrate content-based filtering using DL sequence
models with CF to build a hybrid model that provides
accurate predictions compared to state-of-the-art CF
recommender systems, while also providing personalized
explanations and handling the item cold start problem

e We propose a new type of content-based explanation that
consists of presenting a short personalized MIDI segment
from the song that characterizes the portion that the user is
predicted to like the most;

e We present two evaluation methodologies of the
personalized music explanation segments based,
respectively, on the concordance of musical sound and
the preferred user tags. Given the absence of any prior
technique for song explanation based on segments, our
evaluation approach attempts to evaluate why a song’s
segment serves as an explanation for a given user; and

e We perform an online user study that demonstrates the validity
of personalized segment explanations and their ability to
improve user satisfaction, effectiveness, and transparency.

2 RELATED WORK

2.1 Sequence Models in Recommendation

Various recommender systems rely on sequence models (Wang
et al.,, 2019a; Wang et al., 2019b). However, not all of them use
them for recommendation with user preferences. In fact, some are
session-based CF models that predict the next interaction (Hidasi
et al, 2015; Tan et al, 2016; Wu et al, 2016; Hidasi and
Karatzoglou, 2018; Yuan et al., 2020), or basket of interactions
(Yu et al,, 2016; Wang Z. et al., 2018; Wang et al., 2020a; Wang
etal., 2020b), in a sequence of interactions regardless of the user’s
personal preferences. Similarly, other approaches relied on self-
attention networks (Vaswani et al., 2017) to predict the next item
recommendation given a sequence of consecutive interactions
(Kang and McAuley, 2018; Sun et al,, 2019; Li et al., 2020; Tan
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etal,, 2021). Other methods integrated content into session-based
recommendation (Hidasi et al., 2016; Smirnova and Vasile, 2017)
and proved that side information enhances the recommendation
quality (Zhang et al, 2017). Other sequence-model-based
recommender systems take into consideration the user’s
identification (Wu et al,, 2017a; Wu et al., 2017b). These
engines model temporal dependencies for both users and
movies (Wu et al, 2017a; Wu et al, 2017b) and generate
reviews (Wu et al, 2017a). The main objective of the
aforementioned models is to predict ratings of users to items
using seasonal evolutions of items and user preferences in
addition to user and item latent vectors. Alternative models
aimed to generate review tips (Li et al, 2017), predict the
returning time of users, and predict items (Jing and Smola,
2017) or produce next item recommendations for a user by
using a novel Gated Recurrent Unit (Cho et al.,, 2014) (GRU)
structure (Donkers et al, 2017). Finally, some recommender
systems use sequence models as a feature representation
learning tool for text recommendation (Zhang et al., 2017).
For instance, (Bansal et al, 2016), created a latent
representation of items and used it as input to a CF model
with a user embedding to predict ratings.

Our proposed approach differs from the aforementioned
recommender systems in the goal towards which the sequence
model is used. In fact, as opposed to the other approaches, we use
a sequence model to encode the sequential evolution of the song
content, and leverage this kind of information later in the rating
prediction process.

2.2 Hybrid Song Recommender Systems

In contrast to all the aforementioned efforts, song
recommendation has attracted the attention of only a few
hybrid models, that differ significantly from one another in
terms of the input data and the features created. In fact, music
items can be represented by features derived from audio signals,
social tags or web content (Vall and Widmer, 2018). Among the
most noticeable hybrid song recommender systems, (Wang and
Wang, 2014) learns latent factors of users and items using matrix
factorization and then sums their product with the product
obtained from the constructed user and song features.
Meanwhile, (Benzi et al, 2016) combines non-negative MF
and graph regularization to predict the inclusion of a song in
a playlist. Another approach (Oramas et al., 2017) learns artist
embeddings from biographies and track embeddings from audio
spectrograms, and then aggregates and multiplies them by user
latent factors obtained by weighted MF to predict ratings. Van
den Oord et al. (2013) trains a Convolutional Neural Network
(LeCun et al., 1999) on spectrograms of song samples to predict
latent features for songs with no ratings. Finally, Andjelkovic et al.
(2018) positions the users in a mood space, given their favorite
artists, and recommends new artists using similarity measures.

2.3 Explainability in Recommendation

According to Arrieta et al. (2020), explainability can either
come from transparent models or post-hoc techniques that
try to explain predictions after they are generated. Explaining
recommendations using transparent models can vary from
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using simple user or item-based (Sarwar et al., 2001) CF
approaches that rely on rating matrix similarities, to building
white-box models (Zhang and Chen, 2018). The methods that
are most related to our work rely either on MF or deep
learning. Among the MF-based white-box models, we find
(Abdollahi and Nasraoui, 2017), which optimizes a measure
of explainability with the recommendation accuracy yielding
explainable recommendations with user or item-based neighbor
style explanations. Coba et al. (2019) and Wang S. et al. (2018)
extended the idea by, respectively, trying to improve the novelty of
the recommendations and modifying the calculation of the
explainability matrix by integrating the neighbors’ weights.
Other works (Zhang et al,, 2014; Zhang, 2015) used sentiment
analysis on user review data along with MF-learned latent features
to generate explainable recommendations. The explanations, in
this case, are in the form of either user or item features (Zhang
etal., 2014), textual sentences (Zhang et al., 2014), or word clusters
(Zhang, 2015). On the other hand, among deep learning-based
explainable models, we find (Chen et al, 2018) which uses
memory-based structures, such as sequence models, to
introduce users” historical records into a MF-based model. The
explanations in this case are generated using an attention
mechanism (Luong et al, 2015) in sequence models which
provide insight on how the user’s historical records affect their
current and future decisions (Chen et al., 2018). For instance, (Seo
et al., 2017), models user preferences and item properties using
attention-based (Luong et al, 2015) Convolutional Neural
Networks (CNNs) (Lecun et al, 1998) for review rating
prediction. The explanation, in this case, is an importance
heatmap of each word in the review. On the other hand, (Li
etal., 2017), proposes a multimodal attention network that explains
fashion recommendations using image regions and their
correspondences with the user’s review. Because there is usually a
tradeoff between explainability and recommendation accuracy, some
research has focused on post-hoc explanainability of powerful black-
box models. Such work includes (Rastegarpanah et al., 2017) which
explains MF-based recommender systems using influence functions
to determine the effect of each user rating on the recommendation.
Cheng et al. (2019) also uses an influence-based approach to
measure the impact of user-item interactions on a prediction
and provides neighborhood-style explanations. Finally, Wang X.
et al. (2018) proposes a model-agnostic reinforcement learning
framework that was demonstrated with sentence-level explanations.

We propose a model-specific post-hoc explainable
recommender system (Arrieta et al., 2020) that, aside from
reaching competitive recommendation performance compared to
state-of-the-art methods, succeeds in explaining a song
recommendation using a personalized 10-second instrumental
segment from the recommendation.

3 METHODS

3.1 Data Preparation for MIDI Content and
Ratings

To build a dataset that includes both user to item interactions and
song content data, we used two datasets from the Million Song

Sequence-Based Explainable Song Recommendation
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FIGURE 1 | Play count normalization into 5-star ratings.

Dataset (MSD) (Bertin-Mahieux et al., 2011). The Echo Nest
Taste Profile Subset (Bertin-Mahieux et al., 2011) includes 48,
373, 586 play counts of 1, 019, 318 users to 384, 546 songs
collected from The Echo Nest’s undisclosed partners. The Lakh
MIDI Dataset, on the other hand, includes 45, 129 unique MIDI
files matched to the MSD songs (Raffel, 2016a; Raffel, 2016b). We
combined both datasets by taking the intersection in terms of
songs. Then, we followed the same methodology used in He et al.
(2017) to reduce the sparsity of the data, and filtered out users
that interacted with fewer than 20 unique songs. Consequently,
we ended up with a dataset consisting of 32, 180 users, 6, 442
songs with available MIDI files, and 941, 044 play counts.

We pre-processed our dataset by first mapping the play counts
to ratings to remove outliers. To do so, we used the statistics of the
play counts to map them to ratings as shown in Figure 1. Next, we
created the inputs to train sequence models by transforming each
MIDI file into a multidimensional time series. MIDI files are
polyphonic digital instrumental audios that are used to create
music. They are composed of event messages that are consecutive
in time'. Each message includes a type (such as a note), notation
(the note played), time (the time it is played), and velocity (how
rapidly and forcefully it is played). These events are distributed
over 16 channels of information, which are independent paths
over which messages travel'. Each channel can be programmed to
play one instrument. We first used “MIDICSV™” to translate the
MIDI files into sheets of the event messages. We only considered
the “Note on C” events to focus our interest on the sequences of
notes played throughout time. In fact, the “Note on C” event
represents the event of a note being played. It includes features
such as the note being played, its velocity, the channel of
information, and the time stamp during which it is being
played. Thus, we extracted the notes that are played within the
16 channels with their velocities. As a result, each transformed
multidimensional time series consists of a certain number of rows
representing the number of “Note on C” events and 32 features
representing the notes and velocities played within the 16
channels. The transformation process is summarized in Figure 2.

We then normalized the number of time steps to the median
number of time steps of the songs in our dataset (2,600) to be able
to train models with mini-batches (Li et al., 2014). To avoid
duplicates of the same song in the input and ensure memory

'https://cecm.indiana.edu/361/midihtml
*http://www.fourmilab.ch/webtools/midicsv/
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MIDI file events ‘ Multidimensional time series
Time Type Channel| Note | Velocity = 32 features =
3072 | Note on_c 1 26 9 c1 @ | @ @ @ G| @
3072 Note_on_c 2 38 86 note velocity note velocity note velocity *** note velocity
3220 | Pitch_bend c| 3 9200 26 | 9% |38 8 |0 0 0 0 -
[| 3220 | Note onc 3 74 0 o |of| o |7a| o ol o 3
3648 Control_c 3 1 0 0 0 0 72 0 0 0
I 3648 Note_on_c 72 0 E
FIGURE 2 | MIDI events to multidimensional time series transformation.
Training with
CSm>, _, c<m> Mean Squared
t-1 t
Seq. model p<m>S h;m>'5 Error (MSE) A
—_— Jj ht<_"{> (with dropout) Concatenate us
MIDI data |
Qo <1> <1> U
% Cet Seq. model Ce L
b -
LE, h<1> (with dropout) ht<1>
g %
Norn;gl(iz:d #ti:n)est;ps Reshape layer l I I
X channels) x A i
Normalized # timesteps x 32
(note + velocity) ( p ) User latent matrix (U)
G .
3*
1%
E " [Tolelo Mo ool ]  [cleloToMMelelo] ]
l l l w
Song (s) User (u)
Song lookup matrix (S)
FIGURE 3| Structure of SeER: For every training tuple (user, song, rating), the model extracts the corresponding user latent vector and flat song array from the user
latent matrix and the song lookup matrix, respectively. The song array is reshaped to its original 2-dimensional format and input to a sequence model. The resulting
song’s hidden state vector is concatenated to the user’s latent vector and the predicted rating is a weighted combination of the resulting vector.

efficiency, we created a song lookup matrix by flattening each
multidimensional time series into one row in this matrix.

3.2 Sequence-Based Explainable

Recommender System

We designed a model, that we call “SeER”: a sequence-based
explainable hybrid song recommender system (Figure 3),
which takes as input the song lookup matrix and a user
embedding matrix. The user embedding matrix consists of
learnable weights that are randomly initialized, and are
updated during the model training to represent hidden
characteristics of the users. For each user, song, and rating
triplet (u,s,r,) in the training data R, we extract the
corresponding latent factor vector U, of the user and the
flattened song array S;. The latter process is illustrated in
Figure 3 with multiplications of the user embedding and song

lookup matrices with one hot vectors of u and s respectively.
The song array is next reshaped into its two-dimensional
original shape (2,600 time steps by 32 features). The resulting
array x° is input to a sequence model and, finally, the last layer
(m' layer) at the last time step (T = 2,600), produces the
hidden state h$™*, which is concatenated to the user’s latent
vector U, and then used as input to a neuron with a linear
activation to predict a rating of the user to the song such that
Tus = alUy, h<Tm>’5]. Where (.,.) represents a concatenation and
a is a weight vector. The intuition is that the weights
lak | kel..| (U, h<T'">’S)|] would regulate the flow of
information coming from the user’s latent factor and the
hidden state, which is a representation of the song’s content,
to predict the rating. We chose the size of the hidden state to
be the same as the number of user latent features to constrain
the model to represent the user and the song in the same
latent space size. The model is trained using the Mean
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Squared Error (MSE) (Lehmann and Casella, 1998), with the
loss between the actual rating r,; and the predicted rating 7,
given by:

_ 1 s _ap - b ms] _p P
Jserr = |R| Z (rus rus) = |R| ( Z) R[a[Uu, I’lT ] rus]

(u:5,7us)ER

(1)

Note that in Figure 3, the cell states C<™> can be ignored when
using Recurrent Neural Networks (Lipton, 2015) (RNNs) or
Gated Recurrent Units (Cho et al., 2014) (GRUs).

3.3 Segment Forward Propagation
Explainability

After generating a song recommendation s to a user u, we
explain it by presenting a 10-second MIDI segment x;; of the
song that strives to justify the recommendation using the most
important portion of the recommended song for the user. To
do so, we sample 10-s segments from the recommended song
array x° using a sliding window of 1s. Then, we input the
segments along with the user’s latent vector U, to the trained
model to predict a rating for each segment. Finally, the
segment with the highest predicted rating is selected as the
explanation for the song recommendation. The insight is that
the segment with the highest predicted rating is the segment
that is predicted by the model to best match the preferences
of the user. Thus, it could be considered as the segment
that had the most influence on the rating prediction of the
song for the user. That is why we rely on it to explain the
recommendation. The explanation process is summarized in
Algorithm 1. To illustrate the SeER recommendation and
explainability processes, we provide a link to a video® demo
that demonstrates the top 10 explained recommendations for
user 1,000 in our dataset.

Note that the approach of learning on entire objects and
then explaining using sub-objects is intuitive and commonly
used in classifying objects that can be decomposed (e.g., using
regions or pixels for images or words for text). We relied on
the same intuition to design our Segment Forward
Propagation Explainability mechanism which extends the
mechanism to the music content. Also note that the MIDI
format of the explanations is intended to match the type of
content that the model wused to generate the
recommendations. Thus, when the user listens to the
MIDI-based explanation, they would understand that the
song recommendation was based on the MIDI (melodial)
segment presented regardless of any other type of content
such as the lyrics. Finally, since this is a new approach to
explain song recommendations, we could not rely on any
known standards for selecting the optimal segment length.
Our choice of 10 s for the length of the explanation is largely
justified by the fact that 10 s song previews are common on
music platforms. Moreover, 10 s seemed long enough to form

*https://drive.google.com/open?id=1E5SZ3I6 WNKFTSlodyuzY G9S_Szppz0I9
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a consistent explanation but still short enough to constitute a
small portion of a song. We leave studying the effectiveness of
various sequence lengths to future work.

ALGORITHM 1 Segment Forward Propagation Explainability

Input recommended song s, length of s in seconds L, song array z*, user latent vector U,,, number of
timesteps 7', trained model SeER
Output Explainability segment array a5

1. procedure SEGMENT_FORWARD_PROPAGATION
Step 1: Offline Pre-Segmentation:
MIDI time(x§

(xf) o .5 — 4 imestens to abs: smes i
Division(e) Tempo(x}) | t = I.AT} ©> match timesteps to absolute times in

3 abs_time_a® [
x®

4 abs_time_seg < [(i,i+9) | i=1.L—9] > create absolute time segments

s: song_segments « [x*F = 25[i : j] | (abs_time_x*[i], abs_time_x°[j]) in abs_time_seg] > create
10 second segments of z*

6 Step 2: Online Forward-Propagation:

7 seg_ratings < [k, = SeER(x>F U,) | 5k
segment

8: 2“7« song_segments|argmazy(seg-ratings)|

9. end procedure

in song_segments) ©> predict ratings for each

> determine explainability segment

4 OFFLINE EXPERIMENTAL EVALUATION

In this section, we assess the proposed model’s recommendation
accuracy and ability to handle the item cold start problem by
comparing it to state-of-the-art baselines. Then we validate the
explanation segments with offline experiments.

4.1 Experimental Setting

We used the same 80/20% train/test split for all the experiments. We
report the best results within 20 epochs in terms of recommendation
ranking using Mean Average Precision at cutoff K (MAP@K) and
Normalized Discounted Cumulative Gain at cutoff K (NDCG@K).
We also compared the models in terms of rating prediction using the
Root Mean Squared Error (RMSE). The code, data, and trained
models are available for reproducibility*.

4.2 Hyperparameter Tuning

We fixed the number of sequence model layers to one and the
batch size to 500 due to our limited memory budget. Also, we
relied on the Adaptive Moment Estimation (Adam) (Kingma and
Ba, 2014) optimizer. Finally, we tuned the number of latent
features from 50 to 200 with increments of 50, the sequence
model type by trying RNN, GRU, and Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997) (LSTM) and, finally, the
normalized sequence lengths within the set {2,600, 1,000, 500,
300, 100}. We relied on a greedy approach, that consists of
varying the hyperparameters one by one independently from
each other. Note that tuning the sequence length aims to avoid
overfitting and vanishing gradient issues due to long-term
dependencies. We reached the best performance with 150
latent features, LSTM as the sequence model and a sequence
length of 500.

4.3 Research Questions
To evaluate the prediction ability of our model, we match it to
state-of-the-art baseline recommender systems regardless of their

“https://github.com/KhalilDMK/SeER_Keras

Frontiers in Big Data | www.frontiersin.org

July 2021 | Volume 4 | Article 693494


%20https://drive.google.com/open?id=1E5SZ3I6WNKFTSIodyuzYG9S_Szppz0I9
%20https://drive.google.com/open?id=1E5SZ3I6WNKFTSIodyuzYG9S_Szppz0I9
https://github.com/KhalilDMK/SeER_Keras
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Damak et al.

types and nature of input data. This leads us to formulate our first
research question:

RQ1: How does our model compare to baseline recommender
systems?

In addition, we run experiments to demonstrate how well our
model overcomes the item cold start problem compared to pure
CF models in the second research question:

RQ2: How well does our model solve the item cold start
problem?

Finally, we assess whether our explanations share similar
characteristics based on pure MIDI content. The logic behind
this is that the shared characteristics may be interpreted as user
preferences that could be captured in the explanations. This is
translated in the following question:

RQ3: Do the personalized explanations share similar
characteristics?

4.4 RQ1: How Does Our Model Compare to
State-of-the-Art and Baseline

Recommender Systems?

We compare against the following recommender system models,
which include competitive state-of-the-art models (i.e., the top 2
performing models on the MSD data®) as well as simpler
baselines:

1) Matrix Factorization (Mehta and Rana, 2017): This is one of
the most common CF techniques. We optimize its loss with
Stochastic Gradient Descent, and tuned the number of latent
factors from 50 to 200 with an increment of 50.

2) NeuMF (He et al., 2017): This is a state-of-the-art CF technique
that combines Generalized Matrix Factorization (He et al.,, 2017)
and Multi-Layer Perceptron (LeCun et al,, 1988). We replaced its
output layer with a dot product and used MSE as a loss function
because we are using ratings. We followed the same tuning process
that was employed in He et al. (2017).

3) RecVAE (Shenbin et al, 2020): This is a state-of-the-art
variational autoencoder-based implicit feedback recommender
system. It is the second to best model in ranking performance on
the MSD data according to’. We fixed the hyperparameters to the
values recommended for the MSD in Shenbin et al. (2020), and
tuned the latent dimension from 50 to 200 with increments of 50.

4) EASE (Steck, 2019): This is a linear model based on shallow
autoencoders. It is the best model in terms of ranking performance
on the MSD dataset according to’. It is an implicit feedback model.
We tuned the regularization parameter A within the set of values
{0.5, 1, 100, 200, 500, 1,000}.

5) ItemPop (Rendle et al., 2009): This is the most popular item
recommendation model, a simple baseline to benchmark the
performance.

For each of the implicit feedback models, we converted the ratings
into either interactions or normalized ratings in the same way
described in their respective papers and compared the results in

*https://paperswithcode.com/sota/collaborative-filtering-on-million-song
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TABLE 1| Comparison of SeER with baseline models: Average performance over
five replications. Best scores are in bold and second to best scores are
underlined. First three models are implicit feedback models, and last three are
explicit feedback models. Tukey test groups are between parenthesis, ordered
from A (best) to D (worst). Based on the group based ranking, SeER ranks in

the top performance group (A).

Model MAP@5  MAP@10 NDCG@5 NDCG@10  RMSE
RecVAE  0.3622 (C) 0.4082 (C) 0.8328 (C)  0.9841 (C) -
EASE 0.4144 (MB) 0.4554(A) 0.8535(A) 0.9863 (A/B) -
ltemPop  0.0978 () 0.1450 (D) 0.0566 (D)  0.0752 (D) -

MF 0.3598 (C) 0.4057 (C) 0.8338 (C) 09842 (C) 2.4977 (O)
NeuMF 04109 (B) 04515 (B) 0.8482 (B) 0.9855(B) 1.2765 (B)
SeER 0.4145(A)  0.4550(A) 0.8528(A)  0.9867(A)  1.2433(A)

terms of ranking performance. We present the average results over
five replications obtained with each model in Table 1. We also applied
a Tukey test (Haynes, 2013) for pairwise comparison for each metric
and report the group-ranked results, categorized into groups ordered
from A to D, from best to worst performance, that we list next to the
average performances. For instance, models in group A are not
significantly different from each other, but they are significantly
different from models in group B; and so forth. SeER yielded the
best MAP@5 and NDCG@10 scores of 04145 and 0.9867
respectively, and was second to best in terms of MAP@10 and
NDCG@5 following EASE which is known as the best performing
model so far on the MSD dataset’. It is worth noting that in the latter
two metrics, even though SeER was second to best, the difference with
EASE was not significant, as both models were in group A and were
significantly better than all the other models. Furthermore, SeER
presented significantly better rating prediction performance, in terms
of RMSE, than all the other models (i.e., SeER was in group A while
the other models were in groups B and C). Note that models
belonging to group (A/B) can, statistically, be considered in either
group. It is important to mention that in addition to its competitive
recommendation accuracy, SeER can handle the cold start problem, as
we show next, and has the unique ability to explain its
recommendations. Hence, our approach is able to mitigate the
cold start problem and provide explanations while still achieving
state-of-the-art performance.

4.5 RQ2: How Well Does Our Model Solve
the Item Cold Start Problem?

Even with no ratings, unseen songs can have their MIDI content
propagated through the sequence model, thus allowing SeER to
handle the item cold start problem. We validate the robustness to
the item cold start problem by splitting the dataset into training
and test sets in terms of songs. Specifically, we randomly hold out
ratings related to 5% (46,069 ratings), 10% (92,347 ratings), 15%
(143,535 ratings), and 20% (191,159 ratings) of the songs from
the training set and use the held out songs as a test set. We made
sure to include ratings from all the users in the training set to
avoid user cold start issues. We assess the prediction capacity of
SeER compared to only the baseline explicit feedback models
because we cannot be guaranteed to have enough items for all the
users in the test data to compute ranking metrics. Additionally,
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TABLE 2| Average RMSE over five replications. We compare SeER to only explicit
feedback models (MF, NeuMF, and MLP) because we cannot guarantee to
have enough items for all the users in the test data to compute ranking metrics.
SeER achieves a lower RMSE compared to the other approaches, for increasing
item cold start levels, which means that it is more robust in dealing with unseen
items. All differences are significant (Tukey test p — values < 0.05).

% Item cold start

0% (no cold start) 5% 10% 15% 20%
MF 2.4977 2.5696 2.5344 2.5100 2.5487
NeuMF 1.2765 1.3273 1.3166 1.2889 1.3237
MLP 1.2750 1.3123 1.3046 1.2750 1.3017
SeER 1.2433 1.3055 1.2914 1.2652 1.2940

we compare to a Multi-Layer Perceptron (MLP) architecture with
the same hyperparameter configuration as in the MLP part of
NeuMF. Table 2 compares the average RMSE over five
replications for varying item cold start levels for all the explicit
feedback models. To predict a rating of an unseen song, the four
models rely on the learned user’s latent vectors. However, in
contrast to SeER, MF, MLP, and NeuMF combine the user’s latent
vector with the un-updated (thus the randomly intialized) song’s
latent vector to generate the output. SeER has the unique ability to
also employ the song’s content as input to the learned sequence
model and then combines the user’s latent vector with the
resulting item’s hidden state to predict the rating. The results
in Table 2 demonstrate how SeER significantly outperforms the
other baselines, namely MF, MLP, and NeuMF, for all the item
cold start settings. This means that our proposed approach is
more robust in dealing with unseen items, and demonstrates its
ability to mitigate the item cold start problem by relying on the
content of songs.

4.6 RQ3: Do the Personalized Explanations
Share Similar Characteristics That Capture

User-Preferences?

In order to validate the 10-s segment explanations, we tried to
determine, for every user, whether their personalized explanations
share some common characteristics. This is because explanations that
share common properties are likely to have been generated based on
user preferences that have been learned by the model. Hence, they
may represent relevant sections of the recommended songs instead of
being just artifacts. To study the latter property, we propose two
approaches based on analysis of the concordance between song
content and tags.

4.6.1 MIDI Content-Based Validation

We computed distance measures between the explanations’ MIDI
content to prove that they share similar characteristics. We
randomly selected 100 test users, for whom we generated the
top five recommendations and their explanations. We then
computed the average Dynamic Time Warping (DTW)
(Salvador and Chan, 2007) distance between the explanations
(DTWe), which can compare multidimensional time series that
do not necessarily have the same size. To compare two lists of

Sequence-Based Explainable Song Recommendation

multidimensional time series, we compute the DTW distance
matrix between them and take the average of all the values in the
matrix. In the case of DTW distances between explanations, both
lists are similar and include the song arrays of the explanation
segments for the top-5 recommended songs. As a comparison
baseline, we selected a random 10-s segment from every
recommended song and computed the average DTW distance
between these five segments (DTWr) for every user. Note that we
compute the average DTW distances between 10-s segments
instead of between the entire recommended songs to avoid
any bias caused by the different song lengths. Finally, we
considered the problem as a Randomized Complete Block
Design (RCBD) (Olsson, 1978) and applied a Tukey test
(Haynes, 2013) for pairwise comparison. The null hypothesis
is that when averaged over all the users, the average DTW
distances between the explanations (DTWe) and average DTW
distances between the random segments (DTWTr) are similar. For
simplicity, we will call these two quantities “Avg. DTW between
explanations” (or DTWe) and “Avg. DTW between random
segments” (or DTWr). We show these average values with the
95% Confidence Intervals (CIs) of the difference
(DTWe — DTWr) for SeER and the corresponding statistical
test results in Table 3. We notice that DTWe is significantly
smaller than DTWr (p-value < 0.05 and 0 is not in the Confidence
Interval). This means that for each user, we can assert with 95%
confidence that the explanations are significantly close to each
other compared to the random segments. Thus, we can assert that
our generated 10-s segment explanations share some common
characteristics which are likely to represent the learned
preferences of the user.

4.6.2 Tag-Based Validation

In addition to pure music content, tags can capture an item’s
properties in terms that are familiar to humans. In the case of
songs, they can include genres, the era, the name of the artist, or
subjective emotional descriptions. We used the tags from the
“Last.fm” dataset (Bertin-Mahieux et al., 2011) provided with the
MSD. These tags are available for almost every song in the MSD
and amount to 522,366 tags (Bertin-Mahieux et al., 2011). In our
dataset, we selected the songs that intersect with the “Last.fm”
dataset and filtered the tags that occur in at least 100 songs in
order to remove noisy tags. We obtained 4,659 songs with 227
tags. From the users that interacted with these songs, we filtered
the ones that have at least 10 liked songs with the assumption that
a rating strictly higher than three means that the user likes the
song. Next, we randomly selected 100 users as our test sample.
For every user, we determined the top 1, 2, and 3 preferred tags,
based on the tags of their liked songs, and generated the top five
recommendations with explanations using SeER.

Our objective is to determine how much the personalized
recommendations and explanations match the preferred tags of
every user. Thus, we needed to determine the tags of both the
recommendations and the explanations, which are not
necessarily in the tag dataset. To cope with this issue, we
trained a multi-label classification model on our tagged dataset
to predict the tags of the recommendations and explanations. The
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TABLE 3| Significance testing with 95% confidence of the difference between Avg. DTW between explanation and Avg. DTW between random segments: The explanations
are significantly close to each other compared to the random segments. This means that the explanations capture and share some common characteristics that are likely

to represent the learned user’s preferences.

Avg. DTW between
explanations (DTWe)

Avg. DTW between random
segments(DTWr)

7,949.2 8,467

classifier is a sequence model layer with 20% dropout, followed by
Multi-Layer Perceptron (MLP) (Popescu et al., 2009) layers with
ReLU activations and an output layer with 227 nodes,
corresponding to the 227 classes (ie., tags), each with a
Sigmoid activation function. The model is trained to optimize
the Binary Cross-entropy loss to predict the probability of each
tag individually in every node (Lapin et al., 2017).

To tune the tag classification model’s hyperparameters, we
started with an LSTM layer followed by the output layer. We
tuned the size of the hidden state from 100 to 500 with an
increment of 100. Then, we tuned the number of MLP hidden
layers from 1 to 5. We chose the number of nodes in the
hidden layers to be the optimal size of the hidden state, which
is 300. Finally, we tuned the sequence model type of the first
layer by additionally trying RNN and GRU. The best model
has one LSTM layer with a hidden state size of 300 followed
by four MLP layers of the same size and, finally, the output
layer. We reached a performance of 93.4% accuracy; and
respectively, 51.8, 61.9, and 67.7% top-1, top-2 and top-3
categorical accuracy with 5-fold cross validation. We used
top-k categorical accuracy (Lapin et al., 2017) because we are
interested in correctly predicting the existing tags in a sparse
target space. We used our trained tag classifier to predict the
tags of all the recommendations and explanation segments
for all the users. Then, we calculated the Average Percentage
Match of the recommendations and explanations with the top
1, 2, and 3 user preferred tags.

We define the Percentage Match of a list of songs S with the top k
preferred tags T (1) of a user ueU as the percentage of songs from S
including at least one of the top k preferred tags Ty (u), as follows:

100
% Match[S, Ty (u)] = W

| (seS|Tags (HNTi (w) £ D)|  (2)
Tags (s) is the set of tags of the song s. In our case, the set of tags of
arecommendation or an explanation is predicted using the multi-
label classification model. The Average Percentage Match over all
the test users is computed using:

100 Ul
Avg % Match (S, U, k) = %(I) > % Match (S (), Te (w)  (3)

I u=1

S(u) is either the set of recommendations or explanations for user
u. We varied k, considered every problem as a Randomized
Complete Block Design (RCBD) (Olsson, 1978), and applied
Tukey tests (Haynes, 2013) for pairwise comparison. The null
hypothesis for every test is whether the average percentage match
of the recommendations and of the explanations with the top k

95% ClI of
difference(DTWe - DTWr)

Adjusted p-value

(25, 1,010) 0.04

liked songs (Avg%Match (rec., U, k) and Avg%Match (exp., U, k),
respectively) are equal. We show the two average percentage
match values with the corresponding 90% Cls of the differences
(Avg%Match (rec., U, k) - Avg%Match (exp., U, k)) and adjusted
p-values of the Tukey tests in Table 4. We notice that for all k, the
explanations match the preferred tags of the users more than the
recommendations. The difference is significant for k = 1, 2, and 3
(CI of the difference does not include 0 and p-value <0.1). This
means that the explanations share similar properties which agree
with the preferred tags of the users even more than the overall
recommendations. For instance, assuming that the tags represent
the genres, if the user’s preferred genre is, for instance, “Rock,”
and a “Pop” song gets recommended, the explanation of that song
is likely to be a “Rock” segment of the song, which means that the
explanations are personalized. We show an example of a user
from our test sample in Table 5.

5 USER STUDY EVALUATION

We performed a real-life user study® that aims to evaluate the
validity of our explainability process. We were granted approval
from the Institutional Review Board (IRB) before conducting our
user study.

5.1 Hypotheses and Research Questions
Our hypothesis is that an explanation to a relevant recommendation
using our model will lead to better satisfaction, effectiveness, and
transparency than a random 10-s segment explanation. First,
“satisfaction” measures the contentment of the wuser with
explanations accompanying a set of relevant recommendations
based on their ratings. Hence, RQ5 Does the type of explanation
(i.e., personalized vs random) impact user satisfaction with the model?
Moreover, we assess “effectiveness,” which is the ability of the
explanation to help the user make good decisions (Abdollahi,
2017). Finally, we evaluate “transparency” which is the
comprehensibility of how the model works and its ability to

°This user study was performed with a slightly different version of SeER, in which
the output layer is a dot product of the user and song latent representations. This
was an old version of the model that we updated because of a significant gain in
performance that we obtained with the current output layer. Even with this
difference in the output layer, the model architecture and the explainability
process are the same. Hence, any conclusion drawn from the online
experiments with the old version of the model could be extended to the
current model. We would also like to mention that we were unable to continue
the user study, or replicate it with the updated model, because of the in-person
setting of the experiment that was prevented by the COVID-19 pandemic.
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TABLE 4 | Significance testing with 90% confidence of the difference between the Avg % Match of recommendations and explanations with user top k preferred tags. The
results show that explanations can tell more about the recommendation since they capture a user’s expressed tag preferences.

k Avg%Match (rec., U, k) Avg%Match (exp., U, k) 90% CI of the difference Adjusted p-value
1 83.43% 85.85% (-0.0482, —0.0003) 0.096
2 94.14% 94.94% (-0.01469, -0.00148) 0.045
3 96.16% 96.96% (-0.01469, -0.00148) 0.045

TABLE 5 | Example of a Test User (#26647) where the explanations match the
favorite tags more than the recommendations: The first recommended song is

a “pop” song (in bold). However, the explainability segment is both “pop” and
“rock” which matches the favorite tags of the user better than the recommendation
itself (value in bold), thus validating this instance.

Recommendation Recommendation Explanation
tags tags
1 Pop Pop, rock
2 Pop, rock Pop, rock
3 Pop, rock Pop, rock
4 Pop, rock Pop, rock
5 Pop, rock Pop, rock
User’s top 3 tags (sorted) Rock, pop, favorites
K 1 2 3
% Match(rec., Ty (u)] 80% 100% 100%
% Match [exp., T (U)] 100% 100% 100%

justify the recommendations (Tintarev and Masthoft, 2007). This
suggests the following questions:

RQ6: Does our type of explanation (ie., instrumental
segment) impact perceived effectiveness of the model?

RQ7: Does our type of explanation increase perceived
transparency of the model?

5.2 Experimental Procedure

The user is presented a list of 100 songs randomly selected
from our dataset and is asked to rate at least 10 of them. They
are also provided a link to every song so that they can listen to
any songs with which they are unfamiliar. Based on the
ratings, three recommendations, each with two different
explanations, are generated and presented to the user. The

first explanation is generated using the Segment Forward
Propagation Explainability process while the second
explanation is a baseline random 10-second segment of the
song. Of course, the subject does not know the difference
between the two explanations, they are presented as
“EXPLANATION 1”7 and “EXPLANATION 2” respectively.
Each recommendation is accompanied with a related Likert
Scale questionnaire. The questions are presented in Table 6 as
Questions 1 and 2. They aim to assess the user satisfaction with
the explanation compared to the random segment, and thus,
answer RQ5. Next, a questionnaire with general questions is
presented to the user. This aims to assess the effectiveness and
transparency criteria defined in the previous subsection in
addition to collecting demographic data about the users to
describe our sample. The latter questionnaire is presented in
Table 6 as Questions 3 to 9. Questions 3 and 4 respectively
assess the effectiveness and transparency. Finally, questions 5 to
9 collect demographic data about the users. Note that in the
following subsections, the results and statistics might not always
match the sample size because users have the choice of not
answering a question or not submitting a form.

5.3 Subject Sample

Participants (N = 30) were recruited through fliers or emails
across a large, urban public university. Participant’s age
(Mean = 31) ranged from 18 to 54 and there were 12 male
and 15 female participants. The majority of participants were
Computer Science majors (78%) followed by mathematics
(7%) and education majors (15%) respectively. 74% of the
volunteers somewhat or strongly agree that they cannot
spend a day without listening to music. Moreover, most of
the participants (74%) are familiar with recommender
systems.

TABLE 6 | Survey questions.

Questions related to recommendations

Question 1
Question 2

The song segment “EXPLANATION 1” explains why someone would like the song
The song segment “EXPLANATION 2” explains why someone would like the song

General questions

Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9

| will listen to the song based on a 10-s sample that | like

The 10-s sample explanation helps me understand how the recommender system works
What is your age?

What is your sex?

What is your major?

How familiar are you with automated recommender systems?

| cannot spend a day without listening to music

Frontiers in Big Data | www.frontiersin.org

July 2021 | Volume 4 | Article 693494


https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Damak et al.

Sequence-Based Explainable Song Recommendation

30
p=0.228

= = N
o (S2) o

wv
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The song segment "EXPLANATION #" explains why someone would like the song.

Recommendation 1 Recommendation 2 Recommendation 3

FIGURE 4 | User satisfaction with explainability: Comparison between answers to questions 1 and 2 with paired t-test p-values.

p=0.574
M Strongly agree

Strongly disagree

Explanation 1
Explanation 2

Our choice of the sample size was based on a prior
prospective study. Our goal was to determine the
minimum sample size necessary to detect a minimum
difference between the average measures of satisfaction of
the two types of explanation that corresponds to 0.5, with a
power of 95%, and assuming a standard deviation of 0.7. In
fact, we considered the Likert scale levels as values from 1 to 5
for our statistical tests, where 1 represents “Strongly disagree”
and 5 represents “Strongly agree.” The prospective test
suggested a minimum sample size of 28, that we rounded
up to 30 participants.

5.4 Analysis of Results
We evaluate the explainability in terms of satisfaction (Questions 1
and 2), effectiveness (Question 3) and transparency (Question 4).

5.4.1 RQ5: Does the Type of Explanation

(i.e., Personalized vs Random) Impact the User
Satisfaction?

We compared our explanations (‘EXPLANATION 1”) to random
10-s segments (“EXPLANATION 2”) in all three recommendations
for every user. The comparison was based on the degree of
satisfaction of the user towards both explanations which was
measured with the two Likert scale questions 1 and 2. The
answers to these questions are summarized in Figure 4. We can
clearly notice, in recommendations 1 and 2, the abundance of the
“Strongly agree” and “Somewhat agree” answers in “Explanation 17
compared to “Explanation 2.” In fact, in recommendations 1 and 2
respectively, 18 (60%) and 16 (61.5%) users agree that explanation 1
is relevant against only 15 (50%) and 12 (46.1%) that agree the same
for explanation 2. However, for the third recommendation,
explanation 2 was more relevant than explanation 1 (16 agreeing

participants in “Explanation 1” versus 19 in “Explanation 2”). This is
probably due to the decreasing relevance of the recommendations in
general as we go down in the ranked list of recommendations.

5.4.2 RQ6: Does Our Type of Explanation (Instrumental
Segment) Impact the Perceived Effectiveness?

In order to study the effectiveness of our explainability process, we
asked the users if they would listen to a song based on a 10-s segment
that they like (Question 3). The users almost unanimously agreed
(88.9%), among which 51.9% strongly agreed, with no participants
disagreeing. This validates the effectiveness of our 10-s segment
explainability method. The answers to Question 3 are summarized in
Figure 5.

| will listen to the song based on a 10-
second sample that | like.

Strongly agree I
BBVrr————

Strongly disagree

0 2 4 6 8 10 12 14

Count

FIGURE 5 | Explainability effectiveness evaluation: Answers to Question 3.
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The 10-second sample explanation helps me
understand how the recommender system works.

Strongly agree I
1
|
==

Strongly disagree N

0 2 4 6 8 10 12 14
Count

FIGURE 6 | Explainability transparency evaluation: Answers to Question 4.

5.4.3 RQ7: Does Our Type of Explanation Increase the
Perceived Transparency?

Finally, to evaluate the impact of our explainability method in terms of
transparency, we asked the users whether the 10-s segment explanation
helps them understand how the recommender system works (Question
4). 18 (66.7%) users agree that the explanation improves the
transparency of system [5 of them (18.5%) strongly agree]. This
proves that our explanation helps the user understand how our
deep learning model works. The answers to Question 4 are
summarized in Figure 6.

6 CONCLUSION

We proposed a hybrid song recommender system (SeER) that
combines the user ratings with the songs’ MIDI content to
generate both song recommendations and short MIDI
segments that serve as personalized explanations for each
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