
Software Impacts 11 (2022) 100208

K

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

A framework for unbiased explainable pairwise ranking for
recommendation
Khalil Damak ∗, Sami Khenissi, Olfa Nasraoui
nowledge Discovery and Web Mining Lab, Department of Computer Science and Engineering, University of Louisville, United States of America

A R T I C L E I N F O

Keywords:
Recommender systems
Fairness in AI
Debiased machine learning
Pairwise ranking
Explainability
Exposure bias

A B S T R A C T

Recent research in recommender systems has demonstrated the advantages of pairwise ranking in recom-
mendation. In this work, we focus on the state-of-the-art pairwise ranking loss function, Bayesian Personalized
Ranking (BPR), and aim to address two of its limitations, namely: (1) the lack of explainability and (2) exposure
bias. We propose a recommendation framework that encompasses various loss functions that are based on BPR
and which aim to mitigate the aforementioned limitations. Our open-source framework includes code to train
and tune state-of-the-art pairwise ranking recommender systems on benchmark datasets and evaluate them
based on the three criteria of ranking accuracy, explainability, and popularity debiasing.

Code metadata

Current code version v1
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2021-158
Permanent link to Reproducible Capsule https://codeocean.com/capsule/7889543/tree/v1
Legal Code License GNU General Public License v3.0
Code versioning system used Git
Software code languages, tools, and services used We use the Python machine learning framework PyTorch 1.7.1.
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual https://github.com/KhalilDMK/EBPR/blob/main/README.md
Support email for questions khalil.damak@louisville.edu

1. Introduction

Bayesian Personalized Ranking (BPR) is a pairwise ranking ap-
proach [1] that has recently received significant praise in the recom-
mender systems community because of its capacity to rank implicit
feedback data with high accuracy [2]. Aiming to rank relevant items
higher than irrelevant items, pairwise ranking recommender systems
often assume that all non-interacted items are irrelevant. The latter
assumption engenders exposure bias, which is a notorious issue in rec-
ommendation from implicit feedback, and that is usually characterized
by a bias against less popular items having a lower propensity of being
observed [3].

Moreover, most state-of-the-art recommender systems, including
BPR, are black boxes that do not justify why or how an item was
recommended to a user. This might engender unfairness issues if par-
ticularly inappropriate content gets recommended to a user. In this

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail address: khalil.damak@louisville.edu (K. Damak).

case, knowing why an item was recommended might help diagnose
the recommendation and mitigate the unfairness. Moreover, the lack
of explainability may limit the capability of the user to make an
informed decision when choosing to follow the recommendation. In
fact, explanations bring more context based on which the user will
make a decision, which was shown in earlier work to increase the user
satisfaction [4,5].

In our previous work [6], we proposed novel loss functions for
pairwise ranking recommendation, which aim to improve the explain-
ability of BPR and mitigate exposure bias. In this article, we present
our related open source framework which allows to train, evaluate
and tune a Matrix Factorization [7] (MF) model with those proposed
loss functions [6]. Our framework aims to facilitate incorporating
explainability and exposure debiasing into pairwise ranking models for
recommendation. We also make it easy to implement new models, in
https://doi.org/10.1016/j.simpa.2021.100208
Received 7 November 2021; Received in revised form 13 December 2021; Accepted 18 December 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2021.100208
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100208&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-158
https://codeocean.com/capsule/7889543/tree/v1
https://github.com/KhalilDMK/EBPR/blob/main/README.md
mailto:khalil.damak@louisville.edu
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:khalil.damak@louisville.edu
https://doi.org/10.1016/j.simpa.2021.100208
http://creativecommons.org/licenses/by/4.0/


K. Damak, S. Khenissi and O. Nasraoui Software Impacts 11 (2022) 100208

2

f
c
a
t
u
o
𝑢
l

addition to matrix factorization, hence extending the scope of use of
our framework. Finally, our framework provides an evaluation pipeline
with metrics that assess the performance of the model in terms of rank-
ing accuracy, explainability, and popularity debiasing. In the following
sections, we will delve in more detail about the different characteristics
and functionalities of our framework.

2. Description

In this section, we start by describing the loss functions and ma-
chine learning models included in our proposed framework. Then,
we describe our framework’s functionalities, namely the training and
hyperparameter tuning of the different approaches.

2.1. Loss functions

Our proposed framework aims to train, tune, evaluate, and compare
machine learning models for pairwise ranking recommendation with
various degrees of explainability and exposure debiasing. The latter
degrees of explainability and debiasing are related to the various loss
functions that were discussed in our previous work [6], and that
are implemented in our proposed recommendation framework. The
following loss functions are implemented:

• Bayesian Personalized Ranking (BPR) [1]: This is the vanilla
BPR loss that was proposed in [1]. This loss function aims to rank
interacted items higher than non-interacted items for a given user.

• Unbiased Bayesian Personalized Ranking (UBPR) [8]: This is
an unbiased version of the BPR loss function proposed in [8].
This approach relies on Inverse Propensity Scoring (IPS) [9] to
theoretically eliminate the exposure bias in the BPR loss.

• Explainable Bayesian Personalized Ranking (EBPR): This is
our proposed explainable BPR loss function [6]. This loss function
is based on BPR and relies on neighborhood-based explainabil-
ity [5,10,11] to rank relevant and explainable recommendations
at the top of the recommendation list for a user. The explanations
in this case are in the form ‘‘This item was recommended because
you also liked these similar items.’’.

• partially Unbiased Explainable Bayesian Personalized Rank-
ing (pUEBPR): This is a loss function that we proposed in [6]
for partially unbiased and explainable BPR. In this loss function,
we use IPS to eliminate the original BPR exposure bias similarly
to UBPR. However, as was proven in [6], neighborhood-based
explainability introduces some additional exposure bias. This ad-
ditional exposure bias is what causes this loss function to be
partially unbiased.

• Unbiased Explainable Bayesian Personalized Ranking
(UEBPR): This is our proposed unbiased and explainable BPR
loss function [6]. This loss function promotes ranking relevant
and explainable items on the top of the recommendation list for
a user and is, at the same time, theoretically free of exposure
bias. We used a similar IPS-based approach to also eliminate
the aforementioned additional exposure bias coming from the
explainability as explained in [6].

.2. Models

In our proposed framework, we implement the aforementioned loss
unctions with a Matrix Factorization (MF) [7] model. The MF model
onsists of two embedding matrices 𝑃𝜖R𝑛×𝐾 and 𝑄𝜖R𝑚×𝐾 for the users
nd items respectively, each with 𝐾 latent factors. In this case, 𝑛 is
he number of users and 𝑚 is the number of items. Each row of the
ser (item) embedding matrix corresponds to a latent representation,
r latent vector, of the user (item). Hence, the preference 𝑦̂𝑢,𝑖 of a user
to an item 𝑖 is determined through a dot product of the user and item
atent vectors, such that:

𝑇

This predicted preference is then fed into the corresponding loss
function, from the previous subsection, to train the model to learn the
‘‘right" ranking of items for the users which fits the training data and
optimizes the intended validation metrics [6].

Although the initial goal of our framework is to assess the effec-
tiveness of the proposed explainability and debiasing components that
were introduced into the BPR loss, which is why we only used MF, we
also aim to ensure flexibility in choosing the machine learning model
to train. For this reason, we made it easy to introduce a new model
into the framework and train it using our proposed loss functions. In
fact, the MF model’s class is defined in the ‘‘Code/EBPR_model.py" file.
Hence, replacing this class with the class of any other pairwise ranking
model should be straight-forward and should allow for testing all of our
framework’s functionalities with the new model.

2.3. Training the models

The first functionality that our proposed framework offers is training
the MF model with a specified loss function and evaluating it in
terms of ranking accuracy, explainability, and popularity debiasing.
The implemented evaluation metrics are summarized in Table 1. The
‘‘README.md" file in the repository explains how the training can be
initiated and summarizes all of the hyperparameters that can be tuned
as arguments in the command. It is worth noting that our framework
comes ready to train on four benchmark datasets, being the ‘‘Movielens
100K", ‘‘Movielens 1M", ‘‘Yahoo! R3", and ‘‘Last.FM 2K" datasets. Also,
switching between loss functions is as easy as updating the value of
the ‘‘model" argument. To evaluate our models, we rely on the Leave
One Out (LOO) evaluation process [12] where the last interaction of
every user is left out for testing and the second to last interaction is
left out for validation. The ranking accuracy metrics compare those test
and validation instances to 100 randomly sampled negatives for every
user. Finally, when training a model using our proposed framework,
the model is trained on the training set, and evaluated on the test set in
every epoch. The test performance on the best epoch is finally output.

Note that, as was mentioned in [6], the implemented loss functions
differ from the proposed estimators in [6] in the following three
aspects: First, as we do not have the true exposure propensities in our
datasets, we estimate them with the relative item popularities. Second,
as we cannot practically train on all possible (user, positive item, neg-
ative item) tuples and consider all non-interacted items as negatives,
we use negative sampling and sample one negative interaction per
positive interaction in the training, following the same methodology
that was used in [1]. Finally, to ensure a fair comparison between all
the models (unbiased and not unbiased) and truly assess the impact of
every component in the loss, we train all the models on exactly the
same training tuples.

2.4. Tuning the models

We provide the possibility to tune a given model on the validation
set through a single command using random search, as explained in the
‘‘README.md" file. In this case, a set of hyperparameter configurations
is sampled from a pool of hyperparameter values that are specified by
the user. Then the model is trained with all of these hyperparameter
configurations for a specified number of replicates. For every run, the
best result on the validation set is saved. Finally, the results of all the
models are aggregated in a table and saved as a Comma-Separated
Values (CSV) file.

3. Impact

We proposed a fairness in recommendation framework that allows
for training, tuning, and evaluating machine learning models for pair-
wise ranking recommendation with various novel loss functions that
𝑦̂𝑢,𝑖 = 𝑃𝑢 ⋅𝑄𝑖 (1)

2



K. Damak, S. Khenissi and O. Nasraoui Software Impacts 11 (2022) 100208

D

c
i

A

g

Table 1
Evaluation metrics implemented.
Evaluation criterion Metric Description

Ranking accuracy NDCG@k Normalized Discounted Cumulative Gain at cutoff k. This metric assesses the ranking
quality of the top k recommendations for every user with a higher emphasis on
items on the top of the recommendation list.

HR@k Hit Ratio at cutoff k. This metric assesses the proportion of hits in the top k
recommendations of every user. A hit corresponds to a relevant item that appeared
in the top k recommendations.

Explainability MEP@k Mean Explainability Precision at cutoff k. This evaluation metric, proposed in [13],
measures the proportion of explainable items that were recommended in the top k
recommendation list of every user. An item 𝑖 is considered explainable to a user 𝑢 if
the explainability value 𝐸𝑢,𝑖 of the item to the user is strictly higher than 0, as
explained in [6].

WMEP@k Weighted Mean Explainability Precision at cutoff k. This evaluation metric, proposed
in [6], provides a smoother evaluation of the explainability of the top k
recommended items, by weighting the items’ contributions with their explainability
values 𝐸𝑢,𝑖, as explained in [6].

Popularity debiasing
EFD@k Expected Free Discovery at cutoff k. This evaluation metric, proposed in [14],

evaluates the model in terms of novelty, which is a measure of the ability of a
system to recommend relevant long-tail items.

Avg_Pop@k Average Popularity at cutoff k. This evaluation metric evaluates the top k
recommendations of every user in terms of the average popularity of the
recommended items. The lower the average popularity, the better the popularity
debiasing capabilities of the model.

Div@k Diversity at cutoff k. This evaluation metric computes the average pairwise similarity
between the items in the top k recommendation list [14]. The lower the average
pairwise similarity between the recommended items, the higher the diversity of the
recommendation list.

have explainability and exposure debiasing capabilities. Our frame-
work’s impact on research in recommender systems can be summarized
below:

• Our framework implements several state-of-the-art machine
learning models for pairwise ranking-based recommendation [1,
6,8].

• Our framework allows for training and tuning machine learning
models for pairwise ranking-based recommendation using a single
command. The hyperparameters of the models can be specified as
arguments to the command which is convenient.

• Our framework is ready to use with the Matrix Factorization (MF)
model and with five state-of-the-art loss functions for pairwise
ranking from implicit feedback that allow for explainability and
debiasing.

• Although our framework implements MF as a base model, it is
fairly easy and straight-forward to implement any other pairwise
ranking model and use it within our framework.

• Our framework is ready to use with four benchmark datasets that
are commonly used in recent research papers.

• Our framework allows for evaluating recommender systems em-
pirically in the three aspects of ranking accuracy, explainability,
and popularity debiasing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work was supported in part by National Science Foundation
rants IIS-1549981, DRL-2026584, and CNS-1828521.

References

[1] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, Lars Schmidt-Thieme,
BPR: Bayesian personalized ranking from implicit feedback, 2012, arXiv preprint
arXiv:1205.2618.

[2] Ruining He, Julian McAuley, VBPR: visual bayesian personalized ranking
from implicit feedback, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 30, No. 1, 2016.

[3] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, Xiangnan He,
Bias and debias in recommender system: A survey and future directions, 2020,
arXiv preprint arXiv:2010.03240.

[4] Mustafa Bilgic, Raymond J. Mooney, Explaining recommendations: Satisfaction
vs. promotion, in: Beyond Personalization Workshop, IUI, Vol. 5, 2005, p. 153.

[5] Behnoush Abdollahi, Olfa Nasraoui, Using explainability for constrained matrix
factorization, in: Proceedings of the Eleventh ACM Conference on Recommender
Systems, 2017, pp. 79–83.

[6] Khalil Damak, Sami Khenissi, Olfa Nasraoui, Debiased explainable pairwise
ranking from implicit feedback, in: Fifteenth ACM Conference on Recommender
Systems, in: RecSys ’21, Association for Computing Machinery, New York, NY,
USA, ISBN: 9781450384582, 2021, pp. 321–331, http://dx.doi.org/10.1145/
3460231.3474274.

[7] Yehuda Koren, Robert Bell, Chris Volinsky, Matrix factorization techniques for
recommender systems, Computer 42 (8) (2009) 30–37, http://dx.doi.org/10.
1109/MC.2009.263.

[8] Yuta Saito, Unbiased pairwise learning from implicit feedback, in: NeurIPS 2019
Workshop on Causal Machine Learning, 2019.

[9] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten
Joachims, Recommendations as treatments: Debiasing learning and evaluation,
2016, arXiv preprint arXiv:1602.05352.

[10] Ludovik Coba, Panagiotis Symeonidis, Markus Zanker, Personalised novel and
explainable matrix factorisation, Data Knowl. Eng. 122 (2019) 142–158.

[11] Shuo Wang, Hui Tian, Xuzhen Zhu, Zhipeng Wu, Explainable matrix factor-
ization with constraints on neighborhood in the latent space, in: International
Conference on Data Mining and Big Data, Springer, 2018, pp. 102–113.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, Tat-Seng
Chua, Neural collaborative filtering, in: Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 173–182.

[13] Behnoush Abdollahi, Olfa Nasraoui, Explainable matrix factorization for collabo-
rative filtering, in: Proceedings of the 25th International Conference Companion
on World Wide Web, 2016, pp. 5–6.

[14] Saúl Vargas, Pablo Castells, Rank and relevance in novelty and diversity metrics
for recommender systems, in: Proceedings of the Fifth ACM Conference on
Recommender Systems, 2011, pp. 109–116.
3

http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/2010.03240
http://dx.doi.org/10.1145/3460231.3474274
http://dx.doi.org/10.1145/3460231.3474274
http://dx.doi.org/10.1145/3460231.3474274
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://arxiv.org/abs/1602.05352
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb10
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb10
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb10
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb11
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb11
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb11
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb11
http://refhub.elsevier.com/S2665-9638(21)00092-0/sb11

	A framework for unbiased explainable pairwise ranking for recommendation
	Introduction
	Description
	Loss functions
	Models
	Training the models
	Tuning the models

	Impact
	Declaration of competing interest
	Acknowledgments
	References


