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ABSTRACT
Bidirectional Transformer architectures are state-of-the-art sequen-

tial recommendation models that use a bi-directional representation

capacity based on the Cloze task, a.k.a. Masked Language Model-

ing. The latter aims to predict randomly masked items within the

sequence. Because they assume that the true interacted item is the

most relevant one, an exposure bias results, where non-interacted

items with low exposure propensities are assumed to be irrelevant.

The most common approach to mitigating exposure bias in rec-

ommendation has been Inverse Propensity Scoring (IPS), which

consists of down-weighting the interacted predictions in the loss

function in proportion to their propensities of exposure, yielding a

theoretically unbiased learning. In this work, we argue and prove

that IPS does not extend to sequential recommendation because it

fails to account for the temporal nature of the problem. We then

propose a novel propensity scoring mechanism, which can theoret-

ically debias the Cloze task in sequential recommendation. Finally

we empirically demonstrate the debiasing capabilities of our pro-

posed approach and its robustness to the severity of exposure bias.
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1 INTRODUCTION
Sequential recommendation is a recommendation setting in which

the goal is to predict the next best interaction or interactions given a

sequence of previous interactions through time [36]. Most success-

ful recent work relies on deep learning models including Recurrent

Neural Networks (RNNs) [5, 13–15, 21], Convolutional Neural Net-

works (CNNs) [18, 32], and more recently, self-attention modules

[7, 17, 30, 35]. Recent research has also addressed different biases

in recommendation [2]. In particular, exposure bias stems from

the partial exposure of items to the users [2], making items with

relatively low exposure often considered to be irrelevant in building

predictive models. Ideally, recommender systems should capture

the true relevance of the items to the users, regardless of their

propensities of exposure. However, this is far from true on real life

recommendation platforms. Exposure bias can be mitigated during

the training of recommender systems [2], mainly by making the

models aware of the items’ exposure propensities. One of the most

common approaches consists of building propensity-weighted loss

functions that are unbiased estimates of the desirable relevance-

based objectives [27, 28]. This approach, called Inverse Propensity

Scoring (IPS), showed success in recommendation settings with

user profiles [31]. Despite the progress in this area, to the extent

of our knowledge, no previous work has addressed the problem

of exposure bias in sequential recommendation. In this paper, we

mitigate exposure bias in bi-directional transformer-based recom-

mender systems, which are considered state-of-the-art sequential

recommender systems [30], and more specifically, the widely-used

BERT4Rec model [30]. More broadly however, our work covers

any sequential recommender system that is trained to optimize the

Cloze task [7, 33]. Our contributions are summarized as follows:

• We theoretically formulate the problem of exposure bias in

the Cloze task, and argue and prove that traditional Inverse

Propensity Scoring (IPS) based debiasing frameworks do not

extend to sequential recommendation.

• We propose an ideal Cloze task loss function that aims to

capture the relevance of items within a sequence context.

• We propose a novel framework for debiasing the Cloze

task in sequential recommendation, called Inverse Temporal

Propensity Scoring (ITPS), and use it to propose a novel loss

function that produces an unbiased estimator for the ideal

Cloze task loss.

• We make our implementation available to the public
1
.

1
https://github.com/KhalilDMK/DebiasedBERT4Rec
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• We conduct experiments that demonstrate the debiasing

capabilities of our ITPS-based estimator, and empirically

validate our theoretically proven claims.

2 BACKGROUND
Exposure bias occurs when user interactions are dependent upon

the exposure of the items. Thus, recommender systems trained on

collected data would assume that interaction represents relevance;

and hence, non-interacted items would be considered irrelevant

regardless of whether they had a chance to be exposed or not. Pre-

vious work addressing exposure bias varied in whether they treat

bias during the training or evaluation [2]. The common approach

to mitigating exposure bias in the evaluation of recommender sys-

tems relies on incorporating Inverse Propensity Scoring (IPS) in

the ranking evaluation metrics. More specifically, items are down-

weighted by their popularities in the evaluation metrics [38]. On

the other hand, a variety of techniques were introduced to mitigate

exposure bias in the training phase. Some of these techniques are

based on integrating a measure of confidence into the unobserved

interactions when considering them as irrelevant. Among these

techniques, a few [8, 16] considered a uniform weight for all neg-

ative items that is lower than one; while others [23, 24] utilized

user activity, such as the number of interacted items, to weight

the negative interactions. Other approaches used item popularity

[12, 39] and user-item similarity [19] instead. Another line of work

proposed IPS-based unbiased estimators for the ideal pointwise

[28] and pairwise [6, 27] losses, and estimated the propensity of an

interaction using the relative item popularity. Departing from the

previously mentioned methods, some methods proposed new nega-

tive sampling processes to mitigate exposure bias during training.

This is usually performed by exploiting side information such as

social network information [4] or item-based knowledge graphs

[37]. Another approach consists of integrating the ability to learn

the exposure probability within the model by making assumptions

on the probability distribution of exposure [3, 4, 20].

The above methods share the limitation of recommendation with

user profiles, where the goal is to predict items to users regardless

of the temporal context of the previous interactions. To the extent

of our knowledge, no previous work has validated these techniques

in sequential recommendation. Furthermore, only a few studies [26,

41] have addressed exposure bias in sequential recommendation.

However, these approaches treated sequential recommendation in

a seq2seq adversarial setting, and use a different formulation of

exposure bias which consists of a discrepancy between the training

data distribution and the data distribution generated by the model

[25], rather than a discrepancy between relevance and interaction.

We address the aforementioned gaps by first studying the limita-

tions of Inverse Propensity Scoring for mitigating exposure bias in

sequential recommender systems, and then proposing a debiasing

framework that is tailored to sequential recommendation.

3 PROBLEM FORMULATION AND
MOTIVATION

We start by formulating the sequential recommendation setting

before presenting the Cloze task in bidirectional transformer-based

models. Next, we discuss the exposure bias problem in the Cloze

task, and how the traditional Inverse Propensity Scoring (IPS) frame-

work does not generalize to sequential recommendation.

3.1 Sequential Recommendation
Let 𝑆 be a sequential recommendation dataset comprised of |𝑆 |
sequences. Each sequence 𝑆𝑠 is a succession of consecutive item

interactions by a user during a certain period of time. An interaction

could be defined as a click, rating, review, or consumption, and the

time span of the sequence could be short or long. Also, consider

a set of items 𝐼 . The sequence 𝑆𝑠 can be represented by its item

interactions, for example 𝑆𝑠 = [𝐼1, 𝐼5, 𝐼9, 𝐼2, 𝐼3]. We assume that all

the sequences are normalized to the same number of time steps 𝑇

to fit the input requirements of transformer-based models. To do

so, sequences that are longer than 𝑇 time steps are truncated to

the most recent𝑇 interactions, and sequences that are shorter than

𝑇 time steps are padded with a padding item 0 at the beginning.

Hence, the dataset 𝑆 is converted to a matrix 𝑆 ∈ 𝐼 ∪ {0} |𝑆 |×𝑇 ,
where element 𝑆𝑠,𝑡 represents the item, belonging to 𝐼 , in sequence

𝑆𝑠 at time step 𝑡 . The goal of sequential recommendation is to build

a model that is able to accurately predict the next item interaction

given a context of previous interactions in a sequence. We represent

the trained model by the function 𝑓Ω , with parameters Ω, such that

𝑓Ω : [1, |𝑆 |] × [1,𝑇 ] × [1, |𝐼 |] → R; (𝑠, 𝑡, 𝑖) ↦→ 𝑓Ω (𝑆𝑠,𝑡 , 𝐼𝑖 ). The model

𝑓Ω outputs a prediction of the relevance of item 𝐼𝑖 for sequence

𝑆𝑠,𝑡 at time step 𝑡 . More specifically, in our work, 𝑓Ω is the bi-

directional transformer-based model BERT4Rec [30]. Because the

use of Transformers has become common, and because our focus

is on debiasing the Cloze task rather than the model itself, we omit

an exhaustive background description of transformers, and the

BERT4Rec model architecture. Instead, we refer the reader to [30].

That said, we note that all the findings described in this paper are

model-agnostic, as long as the model is trained for the Cloze task,

and is capable of modeling sequential data.

3.2 The Cloze Task in Sequential
Recommendation

The Cloze task [33] consists of randomly masking a percentage

𝜌 of the tokens, in our case items in the sequence, and training

the machine learning model to predict those masked tokens. This

approach, also called “Masked Language Modeling" (MLM) [7],

allows for learning a bidirectional context in the training sequence

without any information leakage [30] from the future. This ability of

modeling a bidirectional context through the Cloze objective is what

gives BERT4Rec its prediction power compared to other models,

such as uni-directional self-attention based recommender systems

[35]. Consider a training dataset 𝑆𝑚 ∈ 𝐼 ∪ {0, ⟨𝑚𝑎𝑠𝑘⟩} |𝑆 |×𝑇 . 𝑆𝑚 is a

masked version of the ground truth dataset 𝑆 where a fraction 𝜌 of

the items is replaced with the token ⟨𝑚𝑎𝑠𝑘⟩ in each sequence. The

goal of the Cloze task is to train the hypothesis 𝑓Ω to reconstruct

the ground truth dataset 𝑆 from the masked training dataset 𝑆𝑚 .

Hence, the loss function associated with the Cloze task is defined as

the negative log-likelihood of the predicted probability of correctly

predicting the masked tokens, which we formulate as follows:
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Definition 1 (Cloze Task Loss Function).

𝐿𝐶𝑙𝑜𝑧𝑒 =
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))
(1)

where 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 )) = 𝑒
𝑓Ω (𝑆𝑚𝑠,𝑡 ,𝐼𝑖 )∑|𝐼 |

𝑘=1
𝑒
𝑓Ω (𝑆𝑚𝑠,𝑡 ,𝐼𝑘 ) approximates the

predicted probability 𝑃 (𝑆𝑠,𝑡 = 𝐼𝑖 |𝑆𝑚𝑠 ) of the ground truth item in

sequence 𝑆𝑠 at time 𝑡 being 𝐼𝑖 given the masked sequence 𝑆𝑚𝑠 .𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡
is a binary random variable that equals 1 when 𝐼𝑖 ∈ 𝐼 is interacted
with in sequence 𝑆𝑠 ∈ 𝑆 at time step 𝑡 ∈ [1,𝑇 ], and 0 otherwise.

3.3 Exposure Bias in the Cloze Task
The Cloze loss function, in Definition 1, considers the interacted

ground truth item 𝑆𝑠,𝑡 as the desirable and relevant target item

for the input 𝑆𝑚𝑠,𝑡 . However, as shown in [27–29], interaction does

not necessarily signify relevance. In other words, an item could

be interacted because it was the most relevant item among the

items that the user was exposed to within the item sequence at

the corresponding time step. Moreover, non-interacted items could

be relevant to some extent, and it could be that the user did not

interact with them because they were not exposed to the user. It

is this estimation of the relevance of an item with the interaction

that engenders the exposure bias. Hence, we can define the ideal

Cloze task loss by replacing the interaction random variable 𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡
by the relevance of the item that the user chose to interact with in

sequence 𝑆𝑠 at time step 𝑡 , assuming that the user is aware of all

items. The awareness of the user of all items completely eliminates

the exposure bias because it infers that all items were exposed to the

user. Moreover, weighting the interaction by the relevance allows

the loss to capture the true relevance of the item. Hence, we consider

a Bernoulli random variable 𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 ∼ 𝐵𝑒𝑟 (𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 ), where 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 =
𝑃 (𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 = 1) represents the probability of item 𝐼𝑖 being relevant

in sequence 𝑆𝑠 at time step 𝑡 (i.e., 𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 equals 1). Moreover, we

define a Choice random variable that simulates the user behaviour

when choosing to interact with item 𝐼𝑖 within sequence 𝑆𝑠 at time

step 𝑡 . We assume that this choice is contingent upon its relevance

compared to all the other items given the sequence context. Hence,

we can model the Choice random variable 𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 by a Categorical

(Generalized Bernoulli) distribution as follows:

𝐶𝑆𝑠 ,𝑡 ∼ 𝐶𝑎𝑡 ( |𝐼 |, [𝛾𝑆𝑠 ,𝐼1,𝑡 , .., 𝛾𝑆𝑠 ,𝐼 |𝐼 |,𝑡 ]) . (2)

The outcome of the random variable is a vector of |𝐼 | zeroes
except for a 1 for the item the user chooses to interact with. This

means that the user chooses one of the |𝐼 | items based on their

relevance to the context 𝑆𝑠,𝑡 . We denote the outcome of 𝐶𝑆𝑠 ,𝑡 for

item 𝐼𝑖 by 𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 and define the ideal Cloze task loss as follows:

Definition 2 (Ideal Cloze Task Loss Function).

𝐿𝑖𝑑𝑒𝑎𝑙
𝐶𝑙𝑜𝑧𝑒

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆
𝑚
𝑠,𝑡 , 𝐼𝑖 )) .

(3)

The discrepancy between the interaction random variable𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡
and the product 𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 causes the Cloze task loss to be

biased against the ideal loss, as stated in the following Proposition:

Proposition 1 (Exposure Bias of the Cloze Task Loss Func-

tion). The Cloze task loss function is biased against the ideal Cloze
task loss, such that E[𝐿𝐶𝑙𝑜𝑧𝑒 ] ≠ 𝐿𝑖𝑑𝑒𝑎𝑙𝐶𝑙𝑜𝑧𝑒

. See Appendix A.1 for proof.

3.4 Inverse Propensity Scoring in the Cloze
Task and Its Limitations

The common solution to debiasing a maximum likelihood-based

loss function for recommendation is Inverse Propensity Scoring

(IPS) where an IPS-based estimator of the ideal pointwise loss is

obtained by weighting every item prediction for a user by the

reciprocal of its exposure propensity for that user [28]. The IPS

framework is suitable for debiasing loss functions for recommenda-

tion with user profiles. However, we argue that it does not extend

to sequential recommendation for the following two reasons:

(1) Inadequacy of the interaction random variable repre-
sentation: The IPS-based framework for recommendation with

user profiles [28] models the interaction random variable 𝑌𝑢,𝑖 , that

represents whether user 𝑢 interacted with item 𝑖 , by the product

of the relevance and the exposure of the item to the user. The

framework relies on two random variables, 𝑂𝑢,𝑖 ∼ 𝐵𝑒𝑟 (𝜃𝑢,𝑖 ) and
𝑅𝑢,𝑖 ∼ 𝐵𝑒𝑟 (𝛾𝑢,𝑖 ), of exposure and relevance respectively, and mod-

els the interaction using 𝑌𝑢,𝑖 = 𝑂𝑢,𝑖𝑅𝑢,𝑖 . This means that an item is

interacted with by a user if and only if it is both observed by, and

relevant to the user. If we extend this modeling of the interaction to

sequential recommendation by mapping users to sequences and in-

troducing the temporal component, we would obtain for a sequence

𝑆𝑠 , an item 𝐼𝑖 and a time step 𝑡 :𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡 = 𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 , where𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡
is the relevance random variable and 𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 is a Bernoulli expo-

sure random variable that takes value 1 if item 𝐼𝑖 was exposed in

sequence 𝑆𝑠 at time step 𝑡 , such that 𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 ∼ 𝐵𝑒𝑟 (𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 ). 𝜃 is

the probability of exposure such that 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 = 𝑃 (𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 = 1). This
modeling of the interaction random variable is inadequate for se-

quential recommendation. In fact, in traditional recommendation, it

is safe to assume that any item that is exposed and relevant to a user

is interacted. However, when introducing the temporal component

into the equation, the assumption does not hold anymore. This is

because a user can only interact with one item at a time. Multiple

items can be relevant for the same sequence at the same time step,

but only one of them can be interacted with. For this reason, the

IPS-based framework for recommendation with user profiles does

not extend to sequential recommendation.

(2) Ignoring the temporal component: The IPS estimator for

the ideal pointwise loss function down-weights every interaction

𝑌𝑢,𝑖 by the propensity of exposure of item 𝑖 to user 𝑢, 𝜃𝑢,𝑖 . In order

to define an IPS-based Cloze loss for sequential recommendation,

we assimilate the users to sequences and consider the propensity

of exposure of an item 𝐼𝑖 in a sequence 𝑆𝑠 as 𝜃𝑆𝑠 ,𝐼𝑖 = 𝑃 (𝑂𝑆𝑠 ,𝐼𝑖 = 1),
where𝑂𝑆𝑠 ,𝐼𝑖 ∼ 𝐵𝑒𝑟 (𝜃𝑆𝑠 ,𝐼𝑖 ) is a Bernoulli random variable that takes

the value 1 when item 𝐼𝑖 is exposed in sequence 𝑆𝑠 . We define the

IPS-based Cloze loss as follows:

Definition 3 (Inverse Propensity Scoring-based Cloze Loss

Function).

𝐿𝐼𝑃𝑆
𝐶𝑙𝑜𝑧𝑒

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }
𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡

𝜃𝑆𝑠 ,𝐼𝑖

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 )) .
(4)
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Figure 1: Boxplots of the interaction timesteps for "The God-
father" and "Back to the Future" trilogies. The interaction
distributions vary through time, meaning that the exposure
propensities must not be considered static.

The IPS-based Cloze loss function can only be completely unbi-

ased if the propensity of every item 𝐼𝑖 in every sequence 𝑆𝑠 at time

step 𝑡 , 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 , is equal to the “static" propensity, 𝜃𝑆𝑠 ,𝐼𝑖 , of item 𝐼𝑖 in

sequence 𝑆𝑠 . We state this in the following proposition:

Proposition 2 (Unbiasedness condition of the IPS-based

Cloze loss function).

E[𝐿𝐼𝑃𝑆
𝐶𝑙𝑜𝑧𝑒

] = 𝐿𝑖𝑑𝑒𝑎𝑙
𝐶𝑙𝑜𝑧𝑒

⇔ 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 = 𝜃𝑆𝑠 ,𝐼𝑖 ,∀(𝑆𝑠 , 𝐼𝑖 , 𝑡) ∈ 𝑆 × 𝐼 × [1..𝑇 ] .
(5)

The proof is in Appendix A.2. This unbiasedness condition of

the IPS estimator is unlikely and hard to satisfy as the propensities

of exposure tend to vary with the temporal context. We demon-

strate this in Figure 1 where we show boxplots of the interaction

time steps for two movie trilogies in the Movielens 1M dataset [11].

The boxplots show that there are movies that tend to be watched

later than others in the sequence; for instance, sequels tend to be

watched after the original movies. We chose movies that are older

than the dataset to ensure that the differences in observation time

are not related to the release dates of the movies, but rather to

the temporal context within the trilogies. Hence, given that the

interaction distribution tends to vary with time, it is safe to assume

that the exposure propensities also vary with time. Thus, in con-

trast to the IPS framework, they should not be considered static

in sequential recommendation. The latter observation additionally

shows how the IPS framework does not extend to sequential recom-

mendation. This consequently calls for proposing a new framework

that is specifically tailored for debiasing the Cloze task in sequential

recommendation, which is the subject of the next section.

4 INVERSE TEMPORAL PROPENSITY
SCORING FOR AN UNBIASED CLOZE TASK

The Inverse Propensity Scoring technique fails to capture the tem-

poral component of the sequential recommendation setting, and

hence fails to provide an unbiased estimation of the ideal Cloze

task loss. We propose a debiasing framework that is tailored to the

Cloze task in sequential recommendation, and that we call Inverse
Temporal Propensity Scoring (ITPS). In ITPS, we address the

two main limitations of IPS that prevent it from generalizing to

sequential recommendation. First, to address the issue of the in-

adequacy of the interaction random variable representation, we

include the outcome of the Choice random variable for item 𝐼𝑖 in

the interaction model for the following formulation:

Definition 4 (Interaction Random Variable Representa-

tion in the ITPS Framework).

𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡 = 𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 (6)

The latter formulation of the interaction allows for only one

item to be interacted within a sequence at a given time step, which

is adequate for sequential recommendation. Now, an item 𝐼𝑖 is

interacted by a user (𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡 = 1) in a sequence 𝑆𝑠 at time step 𝑡 if and

only if the item is exposed (𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 = 1), relevant (𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 = 1), and

chosen by the user based on its relevance (𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 = 1). Finally, to

account for the temporal component in sequential recommendation

in ITPS, we weight the prediction of every item 𝐼𝑖 in every sequence

𝑆𝑠 at every time step 𝑡 by the temporal propensity𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 , as opposed

to the static propensity 𝜃𝑆𝑠 ,𝐼𝑖 of IPS. Thus, we define the ITPS-based

Cloze task loss function as follows:

Definition 5 (Inverse Temporal Propensity Scoring-based

Cloze Loss Function).

𝐿𝐼𝑇𝑃𝑆
𝐶𝑙𝑜𝑧𝑒

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }
𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡

𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))
(7)

This new ITPS-based loss is an unbiased estimator of the ideal

Cloze task loss, as stated in the following proposition:

Proposition 3. The ITPS-based Cloze task loss is unbiased for the
ideal Cloze task loss, meaning that E[𝐿𝐼𝑇𝑃𝑆

𝐶𝑙𝑜𝑧𝑒
] = 𝐿𝑖𝑑𝑒𝑎𝑙

𝐶𝑙𝑜𝑧𝑒
.

The proof is in Appendix A.3.

5 EXPERIMENTAL EVALUATION
We perform experiments to assess the validity of our theoretical

claims of unbiasedness and the applicability of our approach in real

recommendation settings. We use semi-synthetic and real world

datasets. The semi-synthetic data, used in Section 5.1, provides

a full visibility of the data properties, allowing us to evaluate the

debiasing capabilities of our proposed approach. Moreover, it allows

us to control the data properties in order to evaluate the robustness

of our approach to varying bias levels. The real datasets, used in

Section 5.2, allow us to evaluate the applicability of our approach in

real recommendation settings. Additionally, we simulate a feedback

loop to evaluate the longitudinal effects of the proposed debiasing.

5.1 Experiments on Semi-Synthetic Data
We perform experiments to answer three research questions:

RQ1: How well does the proposed ITPS estimator capture the

true relevance?

RQ2: How robust is the proposed ITPS estimator to increasing

levels of exposure bias?

RQ3: How important is an unbiased evaluation in assessing

exposure debiasing?

5.1.1 Data. Semi-synthetic experiments are necessary due to the

unavailability of any open or public unbiased sequential recommen-

dation dataset. In fact, only an exposure-unbiased testing dataset

would allow us to truly compare the debiasing capabilities of the

different approaches - a claim that we validate in RQ3. We use
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Table 1: Statistics of the real (ml-100k) and semi-synthetic
(ss-ml-100k) Movielens 100K datasets.

Dataset # sequences # items # ratings Avg. length Sparsity

ml-100k 943 1,349 99,287 105.28 92.19%

ss-ml-100k 943 229 94,104 99.79 56.42%

the Movielens 100K (ml-100k)
2
dataset because it is a benchmark

dataset that can be used for sequential recommendation since it

includes interaction timestamps. This data is described in the first

row of Table 1. The choice of this dataset is justified due to its

relatively low number of sequences (users) and items, compared to

other sequential datasets. In fact, our first task is to generate all data

properties, including relevance, exposure, and interaction for all se-

quence, item and timestep tuples; a task that is resource-expensive,

especially in memory requirements. Considering a dataset with |𝑆 |
sequences, |𝐼 | items and 𝑇 time steps, the number of parameters

that need to be predicted and kept into memory for each controlled

property is |𝑆 | × |𝐼 | ×𝑇 . Hence, given the ml-100k dataset statistics,

we would be predicting over 127 Million values for every property.

For this reason, using other benchmark datasets with tens of thou-

sands of sequences or items, is simply prohibitive with our current

resources. Moreover, similar conclusions could be drawn regardless

of the dataset, assuming a high reconstruction quality. Our goal is

to use the available ratings to infer all the data properties, namely

the relevance, exposure, and interaction of all items 𝐼𝑖 ∈ 𝐼 , in all

sequences 𝑆𝑠 ∈ 𝑆 , and at all time steps 𝑡 ∈ [1,𝑇 ]. This is done in
the following steps:

(1) We normalize the dataset to 𝑇 = 100 time steps.

(2) We train a Tensor Factorization (TF) model [1, 40] on the

available (sequence, item, timestep, rating) tuples to reconstruct

the missing ratings. We train the model on the Mean Squared Er-

ror (MSE) loss for rating prediction. Finally, we use the trained TF

model to reconstruct the rating tensor by predicting the missing

ratings. Given that the rating represents an explicit measure of sat-

isfaction of a user with an item, we can approximate the probability

of relevance of an item 𝐼𝑖 in a sequence 𝑆𝑠 at a time step 𝑡 by nor-

malizing the predicted rating with the sigmoid function as follows:

𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 ≈ 𝜎 (𝑟𝑠,𝑖,𝑡 ). Here, 𝑟𝑠,𝑖,𝑡 =
∑𝑑
𝑘=1

𝑃𝑠,𝑘𝑄𝑖,𝑘𝑊𝑡,𝑘 is the predicted

rating, where 𝑃 , 𝑄 , and𝑊 are respectively the sequence, item, and

time latent factor matrices, which all have 𝑑 latent features.

(3)We train another Tensor Factorization model to predict the

probabilities of exposure. We convert every rating in the dataset to a

positive exposure, and sample a portion of non-interacted tuples as

negative exposures. We assume that an item has a higher probabil-

ity of not being exposed than of being exposed, which is a realistic

assumption given the abundance of items in recommendation plat-

forms. Thus, we sample 3 negative exposure tuples for every posi-

tive exposure tuple. We train the TF model using the Binary Cross

Entropy loss for exposure classification. Similarly to step (2), we ap-

proximate the propensity of exposure of an item 𝐼𝑖 in a sequence 𝑆𝑠
at a time step 𝑡 by the predicted exposure as follows: 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 ≈ 𝑜𝑠,𝑖,𝑡 .
Here, 𝑜𝑠,𝑖,𝑡 is the predicted exposure probability of item 𝑖 in se-

quence 𝑠 at time step 𝑡 , obtained by: 𝑜𝑠,𝑖,𝑡 = 𝜎 (
∑𝑑
𝑘=1

𝑃𝑠,𝑘𝑄𝑖,𝑘𝑊𝑡,𝑘 ).

2
https://grouplens.org/datasets/movielens/100k/

(4) Following [28], we introduce a hyperparameter 𝑝 that con-

trols the skewness of the exposure distribution, and hence the level

of exposure bias, as follows:

𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 ≈ 𝑜
𝑝

𝑠,𝑖,𝑡
. (8)

The higher the value of 𝑝 , the higher the level of exposure bias

introduced. We will control the value of 𝑝 to study RQ2.

(5) We generate the interaction random variable for every se-

quence 𝑆𝑠 , item 𝐼𝑖 , and timestep 𝑡 combination by following the

probabilistic model presented in Equation 6, such that:

𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 ∼ 𝐵𝑒𝑟 (𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 ) (9)

𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 ∼ 𝐵𝑒𝑟 (𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 ) (10)

𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 ∼ 𝐶𝑎𝑡 ( |𝐼 |, [𝛾𝑆𝑠 ,𝐼1,𝑡 , .., 𝛾𝑆𝑠 ,𝐼 |𝐼 |,𝑡 ]) (11)

𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡 = 𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡 . (12)

In our experiments, we obtain 𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 by considering a rational

user interacting with the exposed item (𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 = 1) with highest

relevance 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 .

(6) Finally, we filter the interacted instances to construct the semi-

synthetic sequential dataset. The statistics of a sample generated

semi-synthetic dataset are presented in the second row of Table 1.

5.1.2 Evaluation Process. Our estimators should be evaluated in

terms of their capacity to capture the true relevance of the test

interactions. However, our sequence interactions are obtained with

the interaction probabilistic model in Equation 6, which requires all

interactions to be exposed. Hence, sampling the test and validation

interactions from the semi-synthetic sequences would not allow

for an evaluation in terms of the true relevance. This is because

the most relevant items are not necessarily exposed to the user. We

cope with this issue using the following evaluation process: We

start by splitting the data into training, validation and test sets by

considering the last item interaction in each sequence for testing

and the second to last for validation. Then, we replace every item

interaction in the validation and test sets by the item 𝐼𝑖 with the

highest relevance 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 in the corresponding sequence 𝑆𝑠 and at

the corresponding timestep 𝑡 . This way, the model is evaluated on

its ability to predict the most relevant item, which translates to

its ability to capture the true relevance of the items. This being

done, we compare the ranking of the test and validation instances

to 100 randomly sampled items. Note that negative sampling does

not introduce any bias because, regardless of their exposure, all the

negative items are less relevant than the test and validation items.

Thus, our evaluation process is unbiased and evaluates the models

in terms of their capacity to capture the true relevance of the items.

We use Normalized Discounted Cumulative Gain (𝑁𝐷𝐶𝐺@𝑘) and

Recall (𝑅@𝑘) for the ranking evaluation.

5.1.3 Models Compared. We compare the following models:

• BERT4Rec: This is the original BERT4Rec model trained

to optimize the Cloze task loss in Equation 1. It relies solely

on the interaction information and does not incorporate any

exposure debiasing.

• IPS-BERT4Rec: This is the BERT4Rec model trained with

the IPS-based Cloze loss function in Equation 4. We estimate
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Table 2: Model comparison in terms of capturing the true
relevance: Average Recall@k and NDCG@k results over 5
replicates. The best results are in bold and second to best
results are underlined. A value with * is significantly higher
than the next best value (p-value < 0.05).

Model R@10 NDCG@10 R@5 NDCG@5

BERT4Rec 0.7992 0.6065 0.6917 0.5716

IPS-BERT4Rec 0.7890 0.5961 0.6868 0.5628

ITPS-BERT4Rec 0.8027* 0.6110* 0.6997* 0.5777*

Oracle 0.8218* 0.6247* 0.7083* 0.5880*

the “static" exposure propensities by averaging the temporal

exposures, such that 𝜃𝑆𝑠 ,𝐼𝑖 =
1

𝑇

∑𝑇
𝑡=1 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 ,∀(𝑆𝑠 , 𝐼𝑖 ) ∈ 𝑆 × 𝐼 .

• ITPS-BERT4Rec: This is the BERT4Rec model trained with

our ITPS-based Cloze task loss in Equation 7. The loss relies

on the temporal propensities 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 to provide an unbiased

estimation of the ideal Cloze task loss.

• Oracle: This is the BERT4Rec model trained with the ideal

Cloze task loss in Equation 3. The loss has access to the true

relevance of the items 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 in the training, and hence, is

able to provide a completely unbiased representation of the

user preferences. Hence, this model provides an upper bound

on capturing the true relevance.

Because the goal of the experiments is to assess the impact of

the different debiasing frameworks, we leave the comparison to

additional baselines for future work.

5.1.4 Hyperparameter Tuning. We tune all the models presented in

Section 5.1.3, along with the Tensor Factorization models presented

in steps 2 and 3 of Section 5.1.1 as described below.

Tuning the BERT4Rec models: Using random search, we tune

the number of hidden units within the set {8, 16, 32, 64}, the number

of transformer blocks within {1, 2}, the number of attention heads

within {1, 2}, the batch size within {8, 16, 32}, the dropout rate within

{0, 0.1, 0.2, 0.4}, and finally, the masking probability 𝜌 of the Cloze

task within {0.1, 0.15, 0.2, 0.4, 0.6}. We try 30 random combinations,

and compare the average 𝑁𝐷𝐶𝐺@10 results over 3 replicates on

the validation set.

Tuning the Tensor Factorization models: We randomly split

the data into training, validation and test sets with the respective

ratios 80%, 10% and 10%. We adopt a grid search by trying all com-

binations of number of latent features within {50, 100, 200}, and

batch size within {64, 128, 256}. We replicate every experiment 3

times and compare the average performances on the validation set.

The rating-based TF model from step 2 is tuned in terms of Mean

Squared Error (MSE) for rating prediction, while the exposure-based

TF-model from step 3 is tuned in terms of Area Under the ROC

Curve (AUC) for exposure classification.

5.1.5 RQ1: How well does the proposed ITPS estimator capture the
true relevance? To answer this research question, we evaluate the

models in terms of their capacity to capture the true relevance using

the evaluation process described in Section 5.1.2. We summarize

the results in Table 2. The best performer on all metrics is the Or-

acle model, owing to its explicit optimization using the relevance

Figure 2: Robustness of the ranking performance of the dif-
ferent models to increasing levels of exposure bias. All the
values are averages over 5 replicates and the 90% confidence
intervals are highlighted. ITPS-BERT4Rec was the best in
withstanding increasing levels of exposure bias overall.

levels. The ITPS-BERT4Rec model was second-to-best in all config-

urations, outperforming the naive BERT4Rec and IPS-BERT4Rec.

These findings demonstrate the power of the ITPS debiasing frame-

work and validate the theoretical claims of exposure debiasing of

the proposed estimator. Finally and interestigly, IPS-BERT4Rec per-

formed worse than the naive BERT4Rec. This is probably due to the

fact that it is trained on estimated static propensities, obtained by

averaging the temporal propensities, rather than true propensities.

5.1.6 RQ2: How robust is the proposed ITPS estimator to increasing
levels of exposure bias? To answer this research question, we train

and evaluate the models on semi-synthetic datasets generated with

increasing levels of exposure bias. The level of exposure bias is

controlled by the power 𝑝 that governs the propensities 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 in

Equation 8. We increase 𝑝 from 1 to 4 with an increment of 1, where

the higher the value of 𝑝 , the stronger the exposure bias introduced

in the data, and show the evolution of the ranking metrics in Fig-

ure 2. All the models’ performances decrease with increasing levels

of exposure bias, however with different slopes. The IPS-BERT4Rec

model shows the worst performance in handling increasing expo-

sure bias. Its performance quickly degrades starting from 𝑝 = 2. This

shows the inability of the IPS framework to mitigate exposure bias

in sequential recommendation. On the other hand, ITPS-BERT4Rec

shows the best performance overall in approximating the Oracle.

These findings validate the robustness of the proposed ITPS es-

timator in handling even extreme levels of exposure bias, and in

capturing the true relevance of the items in a sequence and tem-

poral context. Finally, as opposed to IPS-BERT4Rec which shows a

significantly high and increasing variance, ITPS-BERT4Rec shows

a relatively low and steady variance that compares to the vari-

ance of BERT4Rec. This further demonstrates the robustness of our

proposed approach to increasing levels of exposure bias.
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Table 3: Average R@k and NDCG@k over 5 replicates ob-
tained with a standard evaluation process. ↑means the rank-
ing increased and ↓means the ranking decreased compared
to the unbiased results from section 5.1.5. Best results are
in bold and second to best are underlined. A value with * is
significantly higher than the next best value (p-value < 0.05).

Model R@10 NDCG@10 R@5 NDCG@5

BERT4Rec 0.7782 ↓ 0.5851 ↓ 0.6655 ↓ 0.5486

IPS-BERT4Rec 0.7835 ↑ 0.5854 ↑ 0.6665 ↑ 0.5475

ITPS-BERT4Rec 0.7873* 0.5909* 0.6754* 0.5545

Oracle 0.8000 0.5983 0.6795 0.5593

5.1.7 RQ3: How important is an unbiased evaluation in assessing ex-
posure debiasing? In this research question, we aim to demonstrate

the importance of the unbiased evaluation process, explained in

Section 5.1.2, in evaluating the capacity of the models in capturing

the true preferences of the users. To do so, we try to re-evaluate

the tuned models using a standard Leave One Out (LOO) evalua-

tion process, in which we compare the interacted test items to 100

randomly sampled items. This evaluation process is biased because

the test items are not necessarily the most relevant items due to

their exposure requirement. This results in an overestimation of

the performance of the biased models, and their capacity to capture

the true relevance. We summarize the results obtained with the

standard LOO evaluation process in Table 3. We notice a discrep-

ancy between the results obtained with the standard and unbiased

evaluation processes. In fact, with the standard evaluation process,

IPS-BERT4Rec outperformed BERT4Rec in almost all the settings,

which reflects an over-estimation of the debiasing capabilities of the

IPS framework and its ability to capture the relevance of items given

the sequence context. The ITPS-BERT4Rec model was nonetheless

still the top performer following the Oracle. These findings validate

the necessity of relying on the unbiased evaluation setting, as it

allows us to truly evaluate the properties of the different estimators.

5.2 Experiments on Real Data
We perform offline experiments on real recommendation datasets

that aim to answer the following research questions:

RQ4: How well does our proposed ITPS estimator perform in

terms of ranking accuracy?

RQ5: How well does our proposed ITPS estimator help mitigate

popularity bias in the short and long terms?

5.2.1 Data. We rely on three datasets that are commonly used in

sequential recommendation research [30], which are: the Movielens

1M (ml-1m)
3
[11], Movielens 20M (ml-20m)

3
[11], and Amazon

Beauty (beauty)
4
[22]. For each of the datasets, we consider any

rating, regardless of its value, as a positive interaction, then, we

filter out users with less than 5 interactions to reduce the data

sparsity. The dataset statistics are summarized in Table 4.

5.2.2 Evaluation and Propensity Estimation. Previously (Section 5.1),
we were able to train our models using the true (temporal) exposure

3
https://grouplens.org/datasets/movielens

4
https://nijianmo.github.io/amazon/index.html

Table 4: Real dataset statistics.

Dataset Task Sequences Items Interactions Avg. length Sparsity

ml-1m Movie rec. 6,040 3,416 999,611 165.49 95.15%

ml-20m Movie rec. 138,493 18,345 19,984,024 144.29 99.21%

beauty Product rec. 40,226 54,542 353,962 8.79 99.98%

propensities and evaluate their ability to model the relevance using

the temporal relevance levels, which were available through the

use of semi-synthetic data. However, in real-world data, neither

the (temporal) exposure propensities, nor the temporal relevance

levels are available. This causes the following two issues: (1) We

cannot evaluate the models’ ability to learn the true relevance of

the items to the users because we do not know the true temporal

relevance levels; and (2) we cannot train the IPS-BERT4Rec and

ITPS-BERT4Rec models as they rely on the exposure and temporal

exposure propensities. To solve the first issue, we propose an evalu-

ation process that is based on popularity-based negative sampling.

In fact, the main issue with the standard LOO evaluation process

is that some of the randomly sampled negative items to which we

are comparing our test and validation items may be as relevant,

or possibly more relevant, than the test and validation items. We

propose to sample the negative items for every sequence based on

their popularities, meaning the higher the popularity of an item,

the higher the probability that it will be sampled as a negative item.

The idea is that more popular items have a higher likelihood that

they have been exposed to the user and have not been interacted

with because of their irrelevance to the user. The latter popularity-

based negative sampling does not completely eliminate exposure

bias in the evaluation. However, it is intended to mitigate it. Note

that using popularity-based sampling to mitigate exposure bias was

used in previous work [10] in the training phase. We are extending

it to evaluation. To solve the second issue, we build on previous

work [6, 27] and estimate the temporal exposure propensity of an

item to a user by the temporal popularity of the item such that:

ˆ𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 =

∑ |𝑆 |
𝑗=1

𝑌𝑆 𝑗 ,𝐼𝑖 ,𝑡∑𝑇
𝑘=1

∑ |𝐼 |
𝑙=1

∑ |𝑆 |
𝑗=1

𝑌𝑆 𝑗 ,𝐼𝑙 ,𝑘

. (13)

Similarly, we estimate the static exposure propensity of an item

in a sequence with the item’s popularity, which corresponds to the

sum of the estimated temporal exposure propensities expressed

as follows:
ˆ𝜃𝑆𝑠 ,𝐼𝑖 =

∑𝑇
𝑡=1

ˆ𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 . Thus, we train the IPS-BERT4Rec

and ITPS-BERT4Rec models, presented in section 5.1.3, using the

estimated exposure propensities and estimated temporal exposure

propensities, respectively.

5.2.3 Hyperparameter Tuning. For the beauty and ml-1m datasets,

we perform the same hyperparameter tuning process described in

Section 5.1.4 on the semi-synthetic dataset. However, for the ml-

20m dataset, we increase the ranges of some of the hyperparameters

given the relatively higher size and complexity of the dataset. Hence,

the number of hidden units is tunedwithin {64, 128, 256}, the number

of transformer blocks within {1, 2, 3}, the number of attention heads

within {1, 2, 4, 8}, the batch size within {64, 128, 256}, and the dropout

rate within {0, 0.01, 0.1, 0.2}.
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5.2.4 RQ4: How well does the proposed ITPS estimator perform in
terms of ranking accuracy? To measure the ranking capabilities of

the proposed approach, we evaluate the tuned models using the

evaluation process presented in Section 5.2.2 which ensures that ex-

posure bias is mitigated. Thus, the ranking accuracy results should

provide a good approximation of how well the models capture the

true relevance of the items to the users.We summarize the results on

the three datasets in Table 5. Our proposed ITPS-BERT4Rec model

was the best performer in all the settings, showing significantly

superior performance than the BERT4Rec and the IPS-BERT4Rec

models in all the metrics and on all the datasets. This validates the

ability of the proposed ITPS debiasing framework to learn the true

relevance of the items to the users, in addition to its applicability in

real recommendation settings. Moreover, interestingly, the ranking

performance was not consistent for the second to best model. In

fact, IPS-BERT4Rec outperformed BERT4Rec overall on both the

ml-1m and beauty datasets but not on the ml-20m dataset.

5.2.5 RQ5: How well does the proposed ITPS estimator help mit-
igate popularity bias in the short and long terms? To answer this

question, we implement a feedback loop which simulates a real

recommendation environment. The feedback loop consists of con-

secutive recommendation iterations where at each iteration, the

recommender system is re-trained and generates top 10 recommen-

dations for every user in the dataset. Each user then interacts with

one of the recommended items and the interactions are added to

the dataset for training future iterations. We simulate the user’s

choice with a uniform distribution, meaning that the interacted

item is chosen at random from the recommendation list. Moreover,

the choice of re-training the model at each iteration is related to the

nature of our training datasets. In fact, we assume that an iteration

corresponds to one day and that users interact with at most one

movie or beauty product per day. This setting could be extended to

other types of recommendation datasets in the future. Finally, we

assume that all the users interact with one item at every iteration.

As was discussed in [9], this assumption is meant to speed-up the

feedback loop process and should not alter the general character-

istics of the emerging phenomena. Thus, no conclusions will be

altered. We evaluate the popularity debiasing capabilities by look-

ing at the novelty of the top 10 recommendations. The novelty is

assessed using the Expected Free Discovery (EFD) [34], which is a

measure of the ability of a system to recommend relevant long-tail

items [34] and is calculated as follows

𝐸𝐹𝐷@K(𝑇𝑜𝑝𝐾) = − 1

|𝑆 |

|𝑆 |∑︁
𝑠=1

1

K
∑︁

𝑖∈𝑇𝑜𝑝𝐾 (𝑆𝑠 )
𝑙𝑜𝑔2 ˆ𝜃𝑆𝑠 ,𝑖 , (14)

where 𝑇𝑜𝑝𝐾 is the top K recommendation matrix in which every

row represents the Top K recommendations in a sequence.

We summarize the evolution of 𝐸𝐹𝐷@10 for 10 feedback loop

iterations on the three datasets in Figure 3. On both the ml-20m

and beauty datasets, our proposed ITPS-BERT4Rec model showed

the best results in all iterations. The difference in performance com-

pared to the other two models was significant in all the iterations

for the beauty dataset and in most iterations for the ml-20m dataset.

However, we notice a change in trend in the ml-1m dataset where

Figure 3: Evolution of EFD@10 with respect to feedback
loop iterations. All values are averages over 5 replicates and
90% confidence intervals are highlighted. ITPS-BERT4Rec
showed the best short and long-term popularity debiasing
capabilities on the ml-20m and beauty datasets.

IPS-BERT4Rec and ITPS-BERT4Rec showed a relatively similar pop-

ularity debiasing performance, that still outperformed BERT4Rec.

We believe that the difference in trend in the ml-1m dataset is due to

the relatively low number of items and low sparsity of the dataset

making the popularity bias problem less prominent compared to the

other datasets. Moreover and interestingly, the vanilla BERT4Rec

outperformed IPS-BERT4Rec on the beauty dataset. The overall su-

perior performance of our proposed ITPS-BERT4Rec model shows

the impact of exposure debiasing on popularity debiasing, where

modeling the true preferences of the user results in more diverse

and novel recommendations yielding a higher item discovery by

the user. Moreover, the ml-20m and beauty datasets showed, over-

all, decreasing trends for 𝐸𝐹𝐷 with respect to the feedback loop

iterations for all the models. This means that the issue of popu-

larity bias tends to worsen with time. However, the relatively low

slope of ITPS-BERT4Rec demonstrates the importance of mitigating

exposure bias to mitigate long-term popularity bias.

6 CONCLUSION
We studied the problem of exposure bias in sequential recommen-

dation within the scope of bidirectional transformers trained to

optimize the Cloze task, and proposed an ideal Cloze task loss that

captures the true relevance. Then, we argued and proved that IPS

estimators do not extend to sequential recommendation. In addition,

we proposed a theoretically unbiased estimator for the ideal Cloze

task loss, and formulated a framework that allows for an unbiased

training and evaluation of sequential recommender systems. Our

experiments empirically validated our claims of debiasing of the

proposed ITPS-BERT4Rec estimator, and demonstrated its robust-

ness to increasing levels of exposure bias, alongwith its longitudinal

impact on popularity debiasing. Future work should validate and

challenge the assumptions on which our theory is based.
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A SUPPLEMENTAL MATERIAL
A.1 Proof of Proposition 1

Proof.

E[𝐿𝐶𝑙𝑜𝑧𝑒 ] = E[
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))]

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }

×𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆
𝑚
𝑠,𝑡 , 𝐼𝑖 ))

Given that the temporal propensities 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 cannot always be

equal to 1, ∀(𝑆𝑠 , 𝐼𝑖 , 𝑡) ∈ 𝑆×𝐼 × [1..𝑇 ]. Thus, E[𝐿𝐶𝑙𝑜𝑧𝑒 ] ≠ 𝐿𝑖𝑑𝑒𝑎𝑙𝐶𝑙𝑜𝑧𝑒
. □

Note that the proof relies on the probabilistic model of the inter-

action random variable that is proposed later in Definition 4.

A.2 Proof of Proposition 2
Proof.

E[𝐿𝐼𝑃𝑆
𝐶𝑙𝑜𝑧𝑒

] = 𝐿𝑖𝑑𝑒𝑎𝑙
𝐶𝑙𝑜𝑧𝑒

⇔ E[ −1
|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }
𝑌𝑆𝑠 ,𝐼𝑖 ,𝑡

𝜃𝑆𝑠 ,𝐼𝑖

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))]

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆
𝑚
𝑠,𝑡 , 𝐼𝑖 ))

⇔ E[ −1
|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }
𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡

𝜃𝑆𝑠 ,𝐼𝑖

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))]

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆
𝑚
𝑠,𝑡 , 𝐼𝑖 ))

⇔ −1
|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }
𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡

𝜃𝑆𝑠 ,𝐼𝑖

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆
𝑚
𝑠,𝑡 , 𝐼𝑖 ))

⇔ 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 = 𝜃𝑆𝑠 ,𝐼𝑖 ,∀(𝑆𝑠 , 𝐼𝑖 , 𝑡) ∈ 𝑆 × 𝐼 × [1..𝑇 ] . □

Note that the proof also relies on the probabilistic model of the

interaction random variable that is proposed later in Definition 4.

A.3 Proof of Proposition 3
Proof.

E[𝐿𝐼𝑇𝑃𝑆
𝐶𝑙𝑜𝑧𝑒

] = E[ −1
|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }

×
𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑂𝑆𝑠 ,𝐼𝑖 ,𝑡 𝑅𝑆𝑠 ,𝐼𝑖 ,𝑡

𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡
𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))]

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }

×
𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡

𝜃𝑆𝑠 ,𝐼𝑖 ,𝑡
𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 ))

=
−1

|𝑆 | |𝐼 |𝑇

|𝑆 |∑︁
𝑠=1

𝑇∑︁
𝑡=1

|𝐼 |∑︁
𝑖=1

1{𝑆𝑚𝑠,𝑡=⟨𝑚𝑎𝑠𝑘 ⟩ }𝐶𝑆𝑠 ,𝐼𝑖 ,𝑡 𝛾𝑆𝑠 ,𝐼𝑖 ,𝑡

× 𝑙𝑜𝑔 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓Ω (𝑆𝑚𝑠,𝑡 , 𝐼𝑖 )) = 𝐿𝑖𝑑𝑒𝑎𝑙𝐶𝑙𝑜𝑧𝑒
□

Note that the proof assumes independence between exposure

and relevance. Also, it assumes that the outcome of the choicemodel

for an item is deterministic, which is reasonable if we assume a

rational user who tends to choose the most relevant item among

the exposed items.

282


	Abstract
	1 Introduction
	2 Background
	3 Problem Formulation and Motivation
	3.1 Sequential Recommendation
	3.2 The Cloze Task in Sequential Recommendation
	3.3 Exposure Bias in the Cloze Task
	3.4 Inverse Propensity Scoring in the Cloze Task and Its Limitations

	4 Inverse Temporal Propensity Scoring for an Unbiased Cloze Task
	5 Experimental Evaluation
	5.1 Experiments on Semi-Synthetic Data
	5.2 Experiments on Real Data

	6 Conclusion
	Acknowledgments
	References
	A Supplemental Material
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Proof of Proposition 3




