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ABSTRACT

Bidirectional Transformer architectures are state-of-the-art sequen-
tial recommendation models that use a bi-directional representation
capacity based on the Cloze task, a.k.a. Masked Language Model-
ing. The latter aims to predict randomly masked items within the
sequence. Because they assume that the true interacted item is the
most relevant one, an exposure bias results, where non-interacted
items with low exposure propensities are assumed to be irrelevant.
The most common approach to mitigating exposure bias in rec-
ommendation has been Inverse Propensity Scoring (IPS), which
consists of down-weighting the interacted predictions in the loss
function in proportion to their propensities of exposure, yielding a
theoretically unbiased learning. In this work, we argue and prove
that IPS does not extend to sequential recommendation because it
fails to account for the temporal nature of the problem. We then
propose a novel propensity scoring mechanism, which can theoret-
ically debias the Cloze task in sequential recommendation. Finally
we empirically demonstrate the debiasing capabilities of our pro-
posed approach and its robustness to the severity of exposure bias.
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1 INTRODUCTION

Sequential recommendation is a recommendation setting in which
the goal is to predict the next best interaction or interactions given a
sequence of previous interactions through time [36]. Most success-
ful recent work relies on deep learning models including Recurrent
Neural Networks (RNNs) [5, 13-15, 21], Convolutional Neural Net-
works (CNNs) [18, 32], and more recently, self-attention modules
[7, 17, 30, 35]. Recent research has also addressed different biases
in recommendation [2]. In particular, exposure bias stems from
the partial exposure of items to the users [2], making items with
relatively low exposure often considered to be irrelevant in building
predictive models. Ideally, recommender systems should capture
the true relevance of the items to the users, regardless of their
propensities of exposure. However, this is far from true on real life
recommendation platforms. Exposure bias can be mitigated during
the training of recommender systems [2], mainly by making the
models aware of the items’ exposure propensities. One of the most
common approaches consists of building propensity-weighted loss
functions that are unbiased estimates of the desirable relevance-
based objectives [27, 28]. This approach, called Inverse Propensity
Scoring (IPS), showed success in recommendation settings with
user profiles [31]. Despite the progress in this area, to the extent
of our knowledge, no previous work has addressed the problem
of exposure bias in sequential recommendation. In this paper, we
mitigate exposure bias in bi-directional transformer-based recom-
mender systems, which are considered state-of-the-art sequential
recommender systems [30], and more specifically, the widely-used
BERT4Rec model [30]. More broadly however, our work covers
any sequential recommender system that is trained to optimize the
Cloze task [7, 33]. Our contributions are summarized as follows:

e We theoretically formulate the problem of exposure bias in
the Cloze task, and argue and prove that traditional Inverse
Propensity Scoring (IPS) based debiasing frameworks do not
extend to sequential recommendation.

e We propose an ideal Cloze task loss function that aims to
capture the relevance of items within a sequence context.

e We propose a novel framework for debiasing the Cloze
task in sequential recommendation, called Inverse Temporal
Propensity Scoring (ITPS), and use it to propose a novel loss
function that produces an unbiased estimator for the ideal
Cloze task loss.

e We make our implementation available to the public!.

!https://github.com/KhalilDMK/DebiasedBERT4Rec
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e We conduct experiments that demonstrate the debiasing
capabilities of our ITPS-based estimator, and empirically
validate our theoretically proven claims.

2 BACKGROUND

Exposure bias occurs when user interactions are dependent upon
the exposure of the items. Thus, recommender systems trained on
collected data would assume that interaction represents relevance;
and hence, non-interacted items would be considered irrelevant
regardless of whether they had a chance to be exposed or not. Pre-
vious work addressing exposure bias varied in whether they treat
bias during the training or evaluation [2]. The common approach
to mitigating exposure bias in the evaluation of recommender sys-
tems relies on incorporating Inverse Propensity Scoring (IPS) in
the ranking evaluation metrics. More specifically, items are down-
weighted by their popularities in the evaluation metrics [38]. On
the other hand, a variety of techniques were introduced to mitigate
exposure bias in the training phase. Some of these techniques are
based on integrating a measure of confidence into the unobserved
interactions when considering them as irrelevant. Among these
techniques, a few [8, 16] considered a uniform weight for all neg-
ative items that is lower than one; while others [23, 24] utilized
user activity, such as the number of interacted items, to weight
the negative interactions. Other approaches used item popularity
[12, 39] and user-item similarity [19] instead. Another line of work
proposed IPS-based unbiased estimators for the ideal pointwise
[28] and pairwise [6, 27] losses, and estimated the propensity of an
interaction using the relative item popularity. Departing from the
previously mentioned methods, some methods proposed new nega-
tive sampling processes to mitigate exposure bias during training.
This is usually performed by exploiting side information such as
social network information [4] or item-based knowledge graphs
[37]. Another approach consists of integrating the ability to learn
the exposure probability within the model by making assumptions
on the probability distribution of exposure [3, 4, 20].

The above methods share the limitation of recommendation with
user profiles, where the goal is to predict items to users regardless
of the temporal context of the previous interactions. To the extent
of our knowledge, no previous work has validated these techniques
in sequential recommendation. Furthermore, only a few studies [26,
41] have addressed exposure bias in sequential recommendation.
However, these approaches treated sequential recommendation in
a seq2seq adversarial setting, and use a different formulation of
exposure bias which consists of a discrepancy between the training
data distribution and the data distribution generated by the model
[25], rather than a discrepancy between relevance and interaction.

We address the aforementioned gaps by first studying the limita-
tions of Inverse Propensity Scoring for mitigating exposure bias in
sequential recommender systems, and then proposing a debiasing
framework that is tailored to sequential recommendation.

3 PROBLEM FORMULATION AND
MOTIVATION
We start by formulating the sequential recommendation setting

before presenting the Cloze task in bidirectional transformer-based
models. Next, we discuss the exposure bias problem in the Cloze
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task, and how the traditional Inverse Propensity Scoring (IPS) frame-
work does not generalize to sequential recommendation.

3.1 Sequential Recommendation

Let S be a sequential recommendation dataset comprised of |S|
sequences. Each sequence S; is a succession of consecutive item
interactions by a user during a certain period of time. An interaction
could be defined as a click, rating, review, or consumption, and the
time span of the sequence could be short or long. Also, consider
a set of items I. The sequence S can be represented by its item
interactions, for example Sg = [I1, Is, Iy, I, I3]. We assume that all
the sequences are normalized to the same number of time steps T
to fit the input requirements of transformer-based models. To do
so, sequences that are longer than T time steps are truncated to
the most recent T interactions, and sequences that are shorter than
T time steps are padded with a padding item 0 at the beginning.
Hence, the dataset S is converted to a matrix S € TU {0}|5|XT,
where element S ; represents the item, belonging to I, in sequence
Ss at time step t. The goal of sequential recommendation is to build
a model that is able to accurately predict the next item interaction
given a context of previous interactions in a sequence. We represent
the trained model by the function fq, with parameters Q, such that
fo  [LISITx[LT]x[1,I]] = R; (s, t,i) = fo(Ss,, Li). The model
fa outputs a prediction of the relevance of item I; for sequence
Ss,+ at time step t. More specifically, in our work, fo is the bi-
directional transformer-based model BERT4Rec [30]. Because the
use of Transformers has become common, and because our focus
is on debiasing the Cloze task rather than the model itself, we omit
an exhaustive background description of transformers, and the
BERT4Rec model architecture. Instead, we refer the reader to [30].
That said, we note that all the findings described in this paper are
model-agnostic, as long as the model is trained for the Cloze task,
and is capable of modeling sequential data.

3.2 The Cloze Task in Sequential
Recommendation

The Cloze task [33] consists of randomly masking a percentage
p of the tokens, in our case items in the sequence, and training
the machine learning model to predict those masked tokens. This
approach, also called “Masked Language Modeling" (MLM) [7],
allows for learning a bidirectional context in the training sequence
without any information leakage [30] from the future. This ability of
modeling a bidirectional context through the Cloze objective is what
gives BERT4Rec its prediction power compared to other models,
such as uni-directional self-attention based recommender systems
[35]. Consider a training dataset S™ € T U {0, (mask)}|S|XT. S™isa
masked version of the ground truth dataset S where a fraction p of
the items is replaced with the token (mask) in each sequence. The
goal of the Cloze task is to train the hypothesis fq to reconstruct
the ground truth dataset S from the masked training dataset S™.
Hence, the loss function associated with the Cloze task is defined as
the negative log-likelihood of the predicted probability of correctly
predicting the masked tokens, which we formulate as follows:
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DEFINITION 1 (CLOZE Task Loss FUNCTION).
PR =1 R A
Leioze =W SZ:; ; ; H{S?t:(mask)}yss,fi,t

x log softmax(fa(Sgy. I;))
S ST

S AT

predicted probability P(Ss; = I;|SI") of the ground truth item in

sequence Ss at time ¢ being I; given the masked sequence S{*. Ys_1, 1

is a binary random variable that equals 1 when I; € I is interacted

with in sequence Sg € S at time step t € [1,T], and 0 otherwise.

ey

where softmax(fo (S?f[, L)) = approximates the

3.3 Exposure Bias in the Cloze Task

The Cloze loss function, in Definition 1, considers the interacted
ground truth item Sg; as the desirable and relevant target item
for the input Sg’t. However, as shown in [27-29], interaction does
not necessarily signify relevance. In other words, an item could
be interacted because it was the most relevant item among the
items that the user was exposed to within the item sequence at
the corresponding time step. Moreover, non-interacted items could
be relevant to some extent, and it could be that the user did not
interact with them because they were not exposed to the user. It
is this estimation of the relevance of an item with the interaction
that engenders the exposure bias. Hence, we can define the ideal
Cloze task loss by replacing the interaction random variable Ys_y, ;
by the relevance of the item that the user chose to interact with in
sequence S at time step ¢, assuming that the user is aware of all
items. The awareness of the user of all items completely eliminates
the exposure bias because it infers that all items were exposed to the
user. Moreover, weighting the interaction by the relevance allows
the loss to capture the true relevance of the item. Hence, we consider
a Bernoulli random variable Rs_ 1, ; ~ Ber(ys, 1), Where ys_r1.; =
P(Rs, 1,,+ = 1) represents the probability of item I; being relevant
in sequence Sg at time step ¢ (i.e., Rs_ j, » equals 1). Moreover, we
define a Choice random variable that simulates the user behaviour
when choosing to interact with item I; within sequence Ss at time
step t. We assume that this choice is contingent upon its relevance
compared to all the other items given the sequence context. Hence,
we can model the Choice random variable Cs_, ; by a Categorical
(Generalized Bernoulli) distribution as follows:

Cso,t ~ Cat([I1, [yse,1,t> - ¥YSo, .t ])- (2

The outcome of the random variable is a vector of |I| zeroes

except for a 1 for the item the user chooses to interact with. This

means that the user chooses one of the |I| items based on their

relevance to the context Ss;. We denote the outcome of Cs_; for
item I; by Cs_ 1, ; and define the ideal Cloze task loss as follows:

DEFINITION 2 (IDEAL CLOZE Task Loss FUNCTION).
S| T
2 D Lisri=(mask))Cs. bt

s=1t=1 i=1
X ys,. 1, log softmax(fo (S, 1))
The discrepancy between the interaction random variable Ys_y, ;
and the product Cs_1,; ys,.1,: causes the Cloze task loss to be
biased against the ideal loss, as stated in the following Proposition:

Lideal _ -1

Cloze “|S||1|T ®)
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ProposITION 1 (ExPOSURE Bi1as oF THE CLoZE TAsk Loss Func-
TION). The Cloze task loss function is biased against the ideal Cloze
task loss, such that E[Lcjoze] # Llcdlf)‘;le, See Appendix A.1 for proof.

3.4 Inverse Propensity Scoring in the Cloze
Task and Its Limitations

The common solution to debiasing a maximum likelihood-based
loss function for recommendation is Inverse Propensity Scoring
(IPS) where an IPS-based estimator of the ideal pointwise loss is
obtained by weighting every item prediction for a user by the
reciprocal of its exposure propensity for that user [28]. The IPS
framework is suitable for debiasing loss functions for recommenda-
tion with user profiles. However, we argue that it does not extend
to sequential recommendation for the following two reasons:

(1) Inadequacy of the interaction random variable repre-
sentation: The IPS-based framework for recommendation with
user profiles [28] models the interaction random variable Y, ;, that
represents whether user u interacted with item i, by the product
of the relevance and the exposure of the item to the user. The
framework relies on two random variables, O, ; ~ Ber(6,,;) and
Ry.i ~ Ber(yy,i), of exposure and relevance respectively, and mod-
els the interaction using Yy, ; = Oy iRy, ;. This means that an item is
interacted with by a user if and only if it is both observed by, and
relevant to the user. If we extend this modeling of the interaction to
sequential recommendation by mapping users to sequences and in-
troducing the temporal component, we would obtain for a sequence
Ss,anitemI; and a time step t: Ys_, ; = Os_ 1, +Rs, 1,+» Where Rs_ 1, ;
is the relevance random variable and Og_, ; is a Bernoulli expo-
sure random variable that takes value 1 if item I; was exposed in
sequence Ss at time step ¢, such that Og_1,; ~ Ber(0s,1, ). 6 is
the probability of exposure such that 0s_r, ; = P(Os, 1, = 1). This
modeling of the interaction random variable is inadequate for se-
quential recommendation. In fact, in traditional recommendation, it
is safe to assume that any item that is exposed and relevant to a user
is interacted. However, when introducing the temporal component
into the equation, the assumption does not hold anymore. This is
because a user can only interact with one item at a time. Multiple
items can be relevant for the same sequence at the same time step,
but only one of them can be interacted with. For this reason, the
IPS-based framework for recommendation with user profiles does
not extend to sequential recommendation.

(2) Ignoring the temporal component: The IPS estimator for
the ideal pointwise loss function down-weights every interaction
Y, by the propensity of exposure of item i to user u, 6,,;. In order
to define an IPS-based Cloze loss for sequential recommendation,
we assimilate the users to sequences and consider the propensity
of exposure of an item I; in a sequence Ss as 0s_ 1, = P(Os, 1, = 1),
where Os_ 1, ~ Ber (s, 1,) is a Bernoulli random variable that takes
the value 1 when item I; is exposed in sequence Ss. We define the
IPS-based Cloze loss as follows:

DEFINITION 3 (INVERSE PROPENSITY SCORING-BASED CLOZE Loss
FuncTION).

I Ys, 1.t
_—Zzzﬂ{sg;:mask)} 95’ =

1
Cloze ISIIT s=1 t=1 i=1 Ss.li

x log softmax(fo (S5, 1))

IPS —
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Figure 1: Boxplots of the interaction timesteps for "The God-
father" and "Back to the Future" trilogies. The interaction
distributions vary through time, meaning that the exposure
propensities must not be considered static.

The IPS-based Cloze loss function can only be completely unbi-
ased if the propensity of every item I; in every sequence S at time
step t, Os_ 1, +, is equal to the “static” propensity, Os_ y,, of item J; in
sequence S;. We state this in the following proposition:

PROPOSITION 2 (UNBIASEDNESS CONDITION OF THE IPS-BASED
CLOZE LOSS FUNCTION).

E[LES ] & 05,11 = 05,1, V(Ss, I, t) € Sx I X [1..T].
(5)

The proof is in Appendix A.2. This unbiasedness condition of
the IPS estimator is unlikely and hard to satisfy as the propensities
of exposure tend to vary with the temporal context. We demon-
strate this in Figure 1 where we show boxplots of the interaction
time steps for two movie trilogies in the Movielens 1M dataset [11].
The boxplots show that there are movies that tend to be watched
later than others in the sequence; for instance, sequels tend to be
watched after the original movies. We chose movies that are older
than the dataset to ensure that the differences in observation time
are not related to the release dates of the movies, but rather to
the temporal context within the trilogies. Hence, given that the
interaction distribution tends to vary with time, it is safe to assume
that the exposure propensities also vary with time. Thus, in con-
trast to the IPS framework, they should not be considered static
in sequential recommendation. The latter observation additionally
shows how the IPS framework does not extend to sequential recom-
mendation. This consequently calls for proposing a new framework
that is specifically tailored for debiasing the Cloze task in sequential
recommendation, which is the subject of the next section.

_ rideal
- LCloze

4 INVERSE TEMPORAL PROPENSITY
SCORING FOR AN UNBIASED CLOZE TASK

The Inverse Propensity Scoring technique fails to capture the tem-
poral component of the sequential recommendation setting, and
hence fails to provide an unbiased estimation of the ideal Cloze
task loss. We propose a debiasing framework that is tailored to the
Cloze task in sequential recommendation, and that we call Inverse
Temporal Propensity Scoring (ITPS). In ITPS, we address the
two main limitations of IPS that prevent it from generalizing to
sequential recommendation. First, to address the issue of the in-
adequacy of the interaction random variable representation, we
include the outcome of the Choice random variable for item I; in
the interaction model for the following formulation:
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DEFINITION 4 (INTERACTION RANDOM VARIABLE REPRESENTA-
TION IN THE ITPS FRAMEWORK).

(6)

The latter formulation of the interaction allows for only one
item to be interacted within a sequence at a given time step, which
is adequate for sequential recommendation. Now, an item I; is
interacted by a user (Ys, 1, ; = 1) in a sequence S at time step ¢ if and
only if the item is exposed (Os, 1, ; = 1), relevant (Rs_ 1, ; = 1), and
chosen by the user based on its relevance (Cs, 1, ; = 1). Finally, to
account for the temporal component in sequential recommendation
in ITPS, we weight the prediction of every item I; in every sequence
Ss at every time step t by the temporal propensity 0s_y, ;, as opposed
to the static propensity 0s, j, of IPS. Thus, we define the ITPS-based
Cloze task loss function as follows:

Ys.1,t = Cs1,t Osgqt R, 1.t

DEFINITION 5 (INVERSE TEMPORAL PROPENSITY SCORING-BASED
Croze Loss FUNCTION).

ips __—1 SNy Sedit

_ ]l m s>Lis

Cloze ~ |S||I|T ; ; ; {8g;=(mask)} 05, 1.t
x log softmax(fa (8% 1i))

This new ITPS-based loss is an unbiased estimator of the ideal
Cloze task loss, as stated in the following proposition:

™)

ProPosITION 3. The ITPS-based Cloze task loss is unbiased for the

: : ITPS 1 _ rideal
ideal Cloze task loss, meaning thatE[LClaze] =Lgo.

The proof is in Appendix A.3.

5 EXPERIMENTAL EVALUATION

We perform experiments to assess the validity of our theoretical
claims of unbiasedness and the applicability of our approach in real
recommendation settings. We use semi-synthetic and real world
datasets. The semi-synthetic data, used in Section 5.1, provides
a full visibility of the data properties, allowing us to evaluate the
debiasing capabilities of our proposed approach. Moreover, it allows
us to control the data properties in order to evaluate the robustness
of our approach to varying bias levels. The real datasets, used in
Section 5.2, allow us to evaluate the applicability of our approach in
real recommendation settings. Additionally, we simulate a feedback
loop to evaluate the longitudinal effects of the proposed debiasing.

5.1 Experiments on Semi-Synthetic Data

We perform experiments to answer three research questions:

RQ1: How well does the proposed ITPS estimator capture the
true relevance?

RQ2: How robust is the proposed ITPS estimator to increasing
levels of exposure bias?

RQ3: How important is an unbiased evaluation in assessing
exposure debiasing?

5.1.1 Data. Semi-synthetic experiments are necessary due to the
unavailability of any open or public unbiased sequential recommen-
dation dataset. In fact, only an exposure-unbiased testing dataset
would allow us to truly compare the debiasing capabilities of the
different approaches - a claim that we validate in RQ3. We use
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Table 1: Statistics of the real (ml-100k) and semi-synthetic
(ss-ml-100k) Movielens 100K datasets.

Dataset ‘ # sequences #items #ratings Avg. length Sparsity
ml-100k 943 1,349 99,287 105.28 92.19%
ss-ml-100k 943 229 94,104 99.79 56.42%

the Movielens 100K (ml-100k)? dataset because it is a benchmark
dataset that can be used for sequential recommendation since it
includes interaction timestamps. This data is described in the first
row of Table 1. The choice of this dataset is justified due to its
relatively low number of sequences (users) and items, compared to
other sequential datasets. In fact, our first task is to generate all data
properties, including relevance, exposure, and interaction for all se-
quence, item and timestep tuples; a task that is resource-expensive,
especially in memory requirements. Considering a dataset with |S|
sequences, |I| items and T time steps, the number of parameters
that need to be predicted and kept into memory for each controlled
property is |S| X |I| X T. Hence, given the ml-100k dataset statistics,
we would be predicting over 127 Million values for every property.
For this reason, using other benchmark datasets with tens of thou-
sands of sequences or items, is simply prohibitive with our current
resources. Moreover, similar conclusions could be drawn regardless
of the dataset, assuming a high reconstruction quality. Our goal is
to use the available ratings to infer all the data properties, namely
the relevance, exposure, and interaction of all items I; € I, in all
sequences Ss € S, and at all time steps t € [1,T]. This is done in
the following steps:

(1) We normalize the dataset to T = 100 time steps.

(2) We train a Tensor Factorization (TF) model [1, 40] on the
available (sequence, item, timestep, rating) tuples to reconstruct
the missing ratings. We train the model on the Mean Squared Er-
ror (MSE) loss for rating prediction. Finally, we use the trained TF
model to reconstruct the rating tensor by predicting the missing
ratings. Given that the rating represents an explicit measure of sat-
isfaction of a user with an item, we can approximate the probability
of relevance of an item I; in a sequence Ss at a time step ¢ by nor-
malizing the predicted rating with the sigmoid function as follows:
YsoInt = 0(Fsiz). Here, s = ZZ:I P 1 Q; x Wy . is the predicted
rating, where P, Q, and W are respectively the sequence, item, and
time latent factor matrices, which all have d latent features.

(3) We train another Tensor Factorization model to predict the
probabilities of exposure. We convert every rating in the dataset to a
positive exposure, and sample a portion of non-interacted tuples as
negative exposures. We assume that an item has a higher probabil-
ity of not being exposed than of being exposed, which is a realistic
assumption given the abundance of items in recommendation plat-
forms. Thus, we sample 3 negative exposure tuples for every posi-
tive exposure tuple. We train the TF model using the Binary Cross
Entropy loss for exposure classification. Similarly to step (2), we ap-
proximate the propensity of exposure of an item J; in a sequence Sg
at a time step t by the predicted exposure as follows: Os_ 1, ; = 05,z
Here, 05 is the predicted exposure probability of item i in se-
quence s at time step ¢, obtained by: 65 ;s = O'(Zgzl Py Qi kW o).

Zhttps://grouplens.org/datasets/movielens/100k/
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(4) Following [28], we introduce a hyperparameter p that con-
trols the skewness of the exposure distribution, and hence the level
of exposure bias, as follows:

®)
The higher the value of p, the higher the level of exposure bias
introduced. We will control the value of p to study RQ2.
(5) We generate the interaction random variable for every se-
quence Sg, item I;, and timestep ¢ combination by following the
probabilistic model presented in Equation 6, such that:

~ 6P
Os,.1;,0 = Ot

Os,.1,,+ ~ Ber(0s, 1,.1) )

Rs, 1,0 ~ Ber(ys, 1,.t) (10)

Cso1,e ~ Cat(lI], [ys, 1,6 - ¥Se, 1.t 1) (11)
Y, 1.t = Cs It O, .t Rsg It (12)

In our experiments, we obtain Cs_j, ; by considering a rational
user interacting with the exposed item (Os, 1, ; = 1) with highest
relevance ys_, ¢-

(6) Finally, we filter the interacted instances to construct the semi-
synthetic sequential dataset. The statistics of a sample generated
semi-synthetic dataset are presented in the second row of Table 1.

5.1.2  Evaluation Process. Our estimators should be evaluated in
terms of their capacity to capture the true relevance of the test
interactions. However, our sequence interactions are obtained with
the interaction probabilistic model in Equation 6, which requires all
interactions to be exposed. Hence, sampling the test and validation
interactions from the semi-synthetic sequences would not allow
for an evaluation in terms of the true relevance. This is because
the most relevant items are not necessarily exposed to the user. We
cope with this issue using the following evaluation process: We
start by splitting the data into training, validation and test sets by
considering the last item interaction in each sequence for testing
and the second to last for validation. Then, we replace every item
interaction in the validation and test sets by the item I; with the
highest relevance ys_, ; in the corresponding sequence S and at
the corresponding timestep ¢. This way, the model is evaluated on
its ability to predict the most relevant item, which translates to
its ability to capture the true relevance of the items. This being
done, we compare the ranking of the test and validation instances
to 100 randomly sampled items. Note that negative sampling does
not introduce any bias because, regardless of their exposure, all the
negative items are less relevant than the test and validation items.
Thus, our evaluation process is unbiased and evaluates the models
in terms of their capacity to capture the true relevance of the items.
We use Normalized Discounted Cumulative Gain (NDCG@k) and
Recall (R@k) for the ranking evaluation.

5.1.3 Models Compared. We compare the following models:

e BERT4Rec: This is the original BERT4Rec model trained
to optimize the Cloze task loss in Equation 1. It relies solely
on the interaction information and does not incorporate any
exposure debiasing.

o IPS-BERT4Rec: This is the BERT4Rec model trained with
the IPS-based Cloze loss function in Equation 4. We estimate
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Table 2: Model comparison in terms of capturing the true
relevance: Average Recall@k and NDCG@k results over 5
replicates. The best results are in bold and second to best
results are underlined. A value with * is significantly higher
than the next best value (p-value < 0.05).

Model | R@10 NDCG@10 R@5 NDCG@5
BERT4Rec 07992 0.6065  0.6917 05716
IPS-BERT4Rec | 07890  0.5961  0.6868  0.5628
ITPS-BERT4Rec | 0.8027*  0.6110°  0.6997*  0.5777*
Oracle 0.8218°  0.6247° 07083  0.5880"

the “static" exposure propensities by averaging the temporal
exposures, such that 0s_j, = % Zthl 0s,.1,,6V(Ss,I;) € SXI.

o ITPS-BERT4Rec: This is the BERT4Rec model trained with
our ITPS-based Cloze task loss in Equation 7. The loss relies
on the temporal propensities 0s_ 1, ; to provide an unbiased
estimation of the ideal Cloze task loss.

e Oracle: This is the BERT4Rec model trained with the ideal
Cloze task loss in Equation 3. The loss has access to the true
relevance of the items ys_, ; in the training, and hence, is
able to provide a completely unbiased representation of the
user preferences. Hence, this model provides an upper bound
on capturing the true relevance.

Because the goal of the experiments is to assess the impact of
the different debiasing frameworks, we leave the comparison to
additional baselines for future work.

5.1.4  Hyperparameter Tuning. We tune all the models presented in
Section 5.1.3, along with the Tensor Factorization models presented
in steps 2 and 3 of Section 5.1.1 as described below.

Tuning the BERT4Rec models: Using random search, we tune
the number of hidden units within the set {8, 16, 32, 64}, the number
of transformer blocks within {1, 2}, the number of attention heads
within {1, 2}, the batch size within {8, 16, 32}, the dropout rate within
{0, 0.1, 0.2, 0.4}, and finally, the masking probability p of the Cloze
task within {0.1, 0.15, 0.2, 0.4, 0.6}. We try 30 random combinations,
and compare the average NDCG@10 results over 3 replicates on
the validation set.

Tuning the Tensor Factorization models: We randomly split
the data into training, validation and test sets with the respective
ratios 80%, 10% and 10%. We adopt a grid search by trying all com-
binations of number of latent features within {50, 100, 200}, and
batch size within {64, 128, 256}. We replicate every experiment 3
times and compare the average performances on the validation set.
The rating-based TF model from step 2 is tuned in terms of Mean
Squared Error (MSE) for rating prediction, while the exposure-based
TF-model from step 3 is tuned in terms of Area Under the ROC
Curve (AUC) for exposure classification.

5.1.5 RQI: How well does the proposed ITPS estimator capture the
true relevance? To answer this research question, we evaluate the
models in terms of their capacity to capture the true relevance using
the evaluation process described in Section 5.1.2. We summarize
the results in Table 2. The best performer on all metrics is the Or-
acle model, owing to its explicit optimization using the relevance
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Figure 2: Robustness of the ranking performance of the dif-
ferent models to increasing levels of exposure bias. All the
values are averages over 5 replicates and the 90% confidence
intervals are highlighted. ITPS-BERT4Rec was the best in
withstanding increasing levels of exposure bias overall.

levels. The ITPS-BERT4Rec model was second-to-best in all config-
urations, outperforming the naive BERT4Rec and IPS-BERT4Rec.
These findings demonstrate the power of the ITPS debiasing frame-
work and validate the theoretical claims of exposure debiasing of
the proposed estimator. Finally and interestigly, IPS-BERT4Rec per-
formed worse than the naive BERT4Rec. This is probably due to the
fact that it is trained on estimated static propensities, obtained by
averaging the temporal propensities, rather than true propensities.

5.1.6  RQ2: How robust is the proposed ITPS estimator to increasing
levels of exposure bias? To answer this research question, we train
and evaluate the models on semi-synthetic datasets generated with
increasing levels of exposure bias. The level of exposure bias is
controlled by the power p that governs the propensities 0s_ 1, ; in
Equation 8. We increase p from 1 to 4 with an increment of 1, where
the higher the value of p, the stronger the exposure bias introduced
in the data, and show the evolution of the ranking metrics in Fig-
ure 2. All the models’ performances decrease with increasing levels
of exposure bias, however with different slopes. The IPS-BERT4Rec
model shows the worst performance in handling increasing expo-
sure bias. Its performance quickly degrades starting from p = 2. This
shows the inability of the IPS framework to mitigate exposure bias
in sequential recommendation. On the other hand, ITPS-BERT4Rec
shows the best performance overall in approximating the Oracle.
These findings validate the robustness of the proposed ITPS es-
timator in handling even extreme levels of exposure bias, and in
capturing the true relevance of the items in a sequence and tem-
poral context. Finally, as opposed to IPS-BERT4Rec which shows a
significantly high and increasing variance, ITPS-BERT4Rec shows
a relatively low and steady variance that compares to the vari-
ance of BERT4Rec. This further demonstrates the robustness of our
proposed approach to increasing levels of exposure bias.
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Table 3: Average R@k and NDCG@k over 5 replicates ob-
tained with a standard evaluation process. T means the rank-
ing increased and | means the ranking decreased compared
to the unbiased results from section 5.1.5. Best results are
in bold and second to best are underlined. A value with * is
significantly higher than the next best value (p-value < 0.05).

Model | R@10 NDCG@10 R@5 NDCG@5
BERT4Rec 07782  0.5851]  0.6655]  0.5486
IPS-BERT4Rec | 0.78357  0.5854T  0.66657  0.5475
ITPS-BERT4Rec | 0.7873* 05909  0.6754*  0.5545
Oracle 0.8000 0.5983 0.6795 0.5593

5.1.7  RQ3: How important is an unbiased evaluation in assessing ex-
posure debiasing? In this research question, we aim to demonstrate
the importance of the unbiased evaluation process, explained in
Section 5.1.2, in evaluating the capacity of the models in capturing
the true preferences of the users. To do so, we try to re-evaluate
the tuned models using a standard Leave One Out (LOO) evalua-
tion process, in which we compare the interacted test items to 100
randomly sampled items. This evaluation process is biased because
the test items are not necessarily the most relevant items due to
their exposure requirement. This results in an overestimation of
the performance of the biased models, and their capacity to capture
the true relevance. We summarize the results obtained with the
standard LOO evaluation process in Table 3. We notice a discrep-
ancy between the results obtained with the standard and unbiased
evaluation processes. In fact, with the standard evaluation process,
IPS-BERT4Rec outperformed BERT4Rec in almost all the settings,
which reflects an over-estimation of the debiasing capabilities of the
IPS framework and its ability to capture the relevance of items given
the sequence context. The ITPS-BERT4Rec model was nonetheless
still the top performer following the Oracle. These findings validate
the necessity of relying on the unbiased evaluation setting, as it
allows us to truly evaluate the properties of the different estimators.

5.2 Experiments on Real Data

We perform offline experiments on real recommendation datasets
that aim to answer the following research questions:

RQ4: How well does our proposed ITPS estimator perform in
terms of ranking accuracy?

RQ5: How well does our proposed ITPS estimator help mitigate
popularity bias in the short and long terms?

5.2.1 Data. We rely on three datasets that are commonly used in
sequential recommendation research [30], which are: the Movielens
IM (ml-1m)3 [11], Movielens 20M (ml-20m)3 [11], and Amazon
Beauty (beauty)* [22]. For each of the datasets, we consider any
rating, regardless of its value, as a positive interaction, then, we
filter out users with less than 5 interactions to reduce the data
sparsity. The dataset statistics are summarized in Table 4.

5.2.2  Evaluation and Propensity Estimation. Previously (Section 5.1),
we were able to train our models using the true (temporal) exposure

3https://grouplens.org/datasets/movielens
“4https://nijianmo.github.io/amazon/index.html
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Table 4: Real dataset statistics.

Dataset ‘ Task Sequences Items Interactions Avg.length Sparsity
ml-1m Movie rec. 6,040 3,416 999,611 165.49 95.15%
ml-20m | Movie rec. 138,493 18,345 19,984,024 144.29 99.21%
beauty | Product rec. 40,226 54,542 353,962 8.79 99.98%

propensities and evaluate their ability to model the relevance using
the temporal relevance levels, which were available through the
use of semi-synthetic data. However, in real-world data, neither
the (temporal) exposure propensities, nor the temporal relevance
levels are available. This causes the following two issues: (1) We
cannot evaluate the models’ ability to learn the true relevance of
the items to the users because we do not know the true temporal
relevance levels; and (2) we cannot train the IPS-BERT4Rec and
ITPS-BERT4Rec models as they rely on the exposure and temporal
exposure propensities. To solve the first issue, we propose an evalu-
ation process that is based on popularity-based negative sampling.
In fact, the main issue with the standard LOO evaluation process
is that some of the randomly sampled negative items to which we
are comparing our test and validation items may be as relevant,
or possibly more relevant, than the test and validation items. We
propose to sample the negative items for every sequence based on
their popularities, meaning the higher the popularity of an item,
the higher the probability that it will be sampled as a negative item.
The idea is that more popular items have a higher likelihood that
they have been exposed to the user and have not been interacted
with because of their irrelevance to the user. The latter popularity-
based negative sampling does not completely eliminate exposure
bias in the evaluation. However, it is intended to mitigate it. Note
that using popularity-based sampling to mitigate exposure bias was
used in previous work [10] in the training phase. We are extending
it to evaluation. To solve the second issue, we build on previous
work [6, 27] and estimate the temporal exposure propensity of an
item to a user by the temporal popularity of the item such that:

Ys, 1.t

sz sl

j=1

S|
~ Zj:l

st’li,t =

. (13)
Ys, 1.k

Similarly, we estimate the static exposure propensity of an item
in a sequence with the item’s popularity, which corresponds to the
sum of the estimated temporal exposure propensities expressed
as follows: éss, I = Zthl QASS, 1,,t- Thus, we train the IPS-BERT4Rec
and ITPS-BERT4Rec models, presented in section 5.1.3, using the
estimated exposure propensities and estimated temporal exposure
propensities, respectively.

5.2.3 Hyperparameter Tuning. For the beauty and ml-1m datasets,
we perform the same hyperparameter tuning process described in
Section 5.1.4 on the semi-synthetic dataset. However, for the ml-
20m dataset, we increase the ranges of some of the hyperparameters
given the relatively higher size and complexity of the dataset. Hence,
the number of hidden units is tuned within {64, 128, 256}, the number
of transformer blocks within {1, 2, 3}, the number of attention heads
within {1, 2, 4, 8}, the batch size within {64, 128, 256}, and the dropout
rate within {0, 0.01, 0.1, 0.2}.
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5.24 RQ4: How well does the proposed ITPS estimator perform in
terms of ranking accuracy? To measure the ranking capabilities of
the proposed approach, we evaluate the tuned models using the
evaluation process presented in Section 5.2.2 which ensures that ex-
posure bias is mitigated. Thus, the ranking accuracy results should
provide a good approximation of how well the models capture the
true relevance of the items to the users. We summarize the results on
the three datasets in Table 5. Our proposed ITPS-BERT4Rec model
was the best performer in all the settings, showing significantly
superior performance than the BERT4Rec and the IPS-BERT4Rec
models in all the metrics and on all the datasets. This validates the
ability of the proposed ITPS debiasing framework to learn the true
relevance of the items to the users, in addition to its applicability in
real recommendation settings. Moreover, interestingly, the ranking
performance was not consistent for the second to best model. In
fact, IPS-BERT4Rec outperformed BERT4Rec overall on both the
ml-1m and beauty datasets but not on the ml-20m dataset.

5.2.5 RQ5: How well does the proposed ITPS estimator help mit-
igate popularity bias in the short and long terms? To answer this
question, we implement a feedback loop which simulates a real
recommendation environment. The feedback loop consists of con-
secutive recommendation iterations where at each iteration, the
recommender system is re-trained and generates top 10 recommen-
dations for every user in the dataset. Each user then interacts with
one of the recommended items and the interactions are added to
the dataset for training future iterations. We simulate the user’s
choice with a uniform distribution, meaning that the interacted
item is chosen at random from the recommendation list. Moreover,
the choice of re-training the model at each iteration is related to the
nature of our training datasets. In fact, we assume that an iteration
corresponds to one day and that users interact with at most one
movie or beauty product per day. This setting could be extended to
other types of recommendation datasets in the future. Finally, we
assume that all the users interact with one item at every iteration.
As was discussed in [9], this assumption is meant to speed-up the
feedback loop process and should not alter the general character-
istics of the emerging phenomena. Thus, no conclusions will be
altered. We evaluate the popularity debiasing capabilities by look-
ing at the novelty of the top 10 recommendations. The novelty is
assessed using the Expected Free Discovery (EFD) [34], which is a
measure of the ability of a system to recommend relevant long-tail
items [34] and is calculated as follows

lngéss,i, (14)

S|
1 1
EFD@K(TopK) = I8l Z % s

s=1

where TopK is the top K recommendation matrix in which every
row represents the Top K recommendations in a sequence.

We summarize the evolution of EFD@10 for 10 feedback loop
iterations on the three datasets in Figure 3. On both the ml-20m
and beauty datasets, our proposed ITPS-BERT4Rec model showed
the best results in all iterations. The difference in performance com-
pared to the other two models was significant in all the iterations
for the beauty dataset and in most iterations for the ml-20m dataset.
However, we notice a change in trend in the ml-1m dataset where
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Figure 3: Evolution of EFD@10 with respect to feedback
loop iterations. All values are averages over 5 replicates and
90% confidence intervals are highlighted. ITPS-BERT4Rec
showed the best short and long-term popularity debiasing
capabilities on the ml-20m and beauty datasets.

IPS-BERT4Rec and ITPS-BERT4Rec showed a relatively similar pop-
ularity debiasing performance, that still outperformed BERT4Rec.
We believe that the difference in trend in the ml-1m dataset is due to
the relatively low number of items and low sparsity of the dataset
making the popularity bias problem less prominent compared to the
other datasets. Moreover and interestingly, the vanilla BERT4Rec
outperformed IPS-BERT4Rec on the beauty dataset. The overall su-
perior performance of our proposed ITPS-BERT4Rec model shows
the impact of exposure debiasing on popularity debiasing, where
modeling the true preferences of the user results in more diverse
and novel recommendations yielding a higher item discovery by
the user. Moreover, the ml-20m and beauty datasets showed, over-
all, decreasing trends for EFD with respect to the feedback loop
iterations for all the models. This means that the issue of popu-
larity bias tends to worsen with time. However, the relatively low
slope of ITPS-BERT4Rec demonstrates the importance of mitigating
exposure bias to mitigate long-term popularity bias.

6 CONCLUSION

We studied the problem of exposure bias in sequential recommen-
dation within the scope of bidirectional transformers trained to
optimize the Cloze task, and proposed an ideal Cloze task loss that
captures the true relevance. Then, we argued and proved that IPS
estimators do not extend to sequential recommendation. In addition,
we proposed a theoretically unbiased estimator for the ideal Cloze
task loss, and formulated a framework that allows for an unbiased
training and evaluation of sequential recommender systems. Our
experiments empirically validated our claims of debiasing of the
proposed ITPS-BERT4Rec estimator, and demonstrated its robust-
ness to increasing levels of exposure bias, along with its longitudinal
impact on popularity debiasing. Future work should validate and
challenge the assumptions on which our theory is based.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation
grants IIS-1549981, DRL-2026584, and CNS-1828521.

REFERENCES

[1] Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen, and Alexan-
der Tuzhilin. 2005. Incorporating contextual information in recommender sys-
tems using a multidimensional approach. ACM Transactions on Information
Systems (TOIS) 23, 1 (2005), 103-145.

[2] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He.
2020. Bias and Debias in Recommender System: A Survey and Future Directions.
arXiv preprint arXiv:2010.03240 (2020).



Debiasing the Cloze Task in Sequential Recommendation with Bidirectional Transformers

KDD ’22, August 14-18, 2022, Washington, DC, USA

Table 5: Average Recall (R) and NDCG (N) results over 5 replicates on the three real interaction datasets. The best results are in
bold and second to best results are underlined. A value with * is significantly higher than the next best value (p-value < 0.05).

Dataset ml-1m ml-20m beauty

Model N@5 R@5 N@10 R@10 N@5 R@5 N@10 R@10 N@5 R@5 N@10 R@10

BERT4Rec 0.2820  0.4086  0.3262 0.5454 | 0.4205* 0.5583*  0.4624*  0.6876" | 0.1056 0.1516 0.1260 0.2148

IPS-BERT4Rec 0.3416 0.4751* 0.3801*  0.5940" 0.4004 0.5389 0.4434 0.6715 0.1053 0.1528 0.1268 0.2195

ITPS-BERT4Rec | 0.3451* 0.4796 0.3844* 0.6007" | 0.4295" 0.5674" 0.4709* 0.6952* | 0.1197* 0.1745" 0.1444" 0.2510"

[3] Jiawei Chen, Can Wang, Sheng Zhou, Qihao Shi, Jingbang Chen, Yan Feng, and

[4

(13

[14

[15

[16

[17

[18

[19

[20

[21

[22

fla

]

]

]

]

Chun Chen. 2020. Fast Adaptively Weighted Matrix Factorization for Recom-
mendation with Implicit Feedback.. In AAAL 3470-3477.

Jiawei Chen, Can Wang, Sheng Zhou, Qihao Shi, Yan Feng, and Chun Chen. 2019.
Samwalker: Social recommendation with informative sampling strategy. In The
World Wide Web Conference. 228-239.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Doha, Qatar). Association for Computational Linguistics,
1724-1734. https://doi.org/10.3115/v1/D14-1179

Khalil Damak, Sami Khenissi, and Olfa Nasraoui. 2021. Debiased Explainable
Pairwise Ranking from Implicit Feedback. In Fifteenth ACM Conference on Rec-
ommender Systems. 321-331.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix
factorization with priors on unknown values. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. 189—
198.

Andres Ferraro, Dietmar Jannach, and Xavier Serra. 2020. Exploring Longitudinal
Effects of Session-based Recommendations. In Fourteenth ACM Conference on
Recommender Systems. 474-479.

Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-
Thieme. 2012. Personalized ranking for non-uniformly sampled items. In Pro-
ceedings of KDD Cup 2011. PMLR, 231-247.

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (dec 2015), 19 pages.
https://doi.org/10.1145/2827872

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-
trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. 549-558.

Balazs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with
top-k gains for session-based recommendations. In Proceedings of the 27th ACM
international conference on information and knowledge management. 843-852.
Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735-1780. https://doi.org/10.1162/neco0.1997.9.
8.1735

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. leee, 263-272.

Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197-206.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. 1999. Object
recognition with gradient-based learning. In Shape, contour and grouping in
computer vision. Springer, 319-345.

Yanen Li, Jia Hu, ChengXiang Zhai, and Ye Chen. 2010. Improving one-class
collaborative filtering by incorporating rich user information. In Proceedings of
the 19th ACM international conference on Information and knowledge management.
959-968.

Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In Proceedings of the 25th international
conference on World Wide Web. 951-961.

Zachary Chase Lipton. 2015. A Critical Review of Recurrent Neural Networks
for Sequence Learning. CoRR abs/1506.00019 (2015).

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings

281

[23]

[24

[25

[27

[28

[29

[31

[32

[33

[34

[36

[37

[38

[39

[40

[41

]

of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43-52.

Rong Pan and Martin Scholz. 2009. Mind the gaps: weighting the unknown
in large-scale one-class collaborative filtering. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining. 667
676.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative filtering. In 2008 Eighth IEEE
International Conference on Data Mining. IEEE, 502-511.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732 (2015).

Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin
Ding, and Ji-Rong Wen. 2020. Sequential recommendation with self-attentive
multi-adversarial network. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 89-98.

Yuta Saito. 2019. Unbiased Pairwise Learning from Implicit Feedback. In NeurIPS
2019 Workshop on Causal Machine Learning.

Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.
2020. Unbiased recommender learning from missing-not-at-random implicit
feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501-509.

Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning
and evaluation. In international conference on machine learning. PMLR, 1670—
1679.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441-1450.

Wenlong Sun, Sami Khenissi, Olfa Nasraoui, and Patrick Shafto. 2019. Debiasing
the human-recommender system feedback loop in collaborative filtering. In
Companion Proceedings of The 2019 World Wide Web Conference. 645-651.

Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. 565-573.

Wilson L Taylor. 1953. “Cloze procedure”: A new tool for measuring readability.
Journalism quarterly 30, 4 (1953), 415-433.

Satl Vargas and Pablo Castells. 2011. Rank and relevance in novelty and diversity
metrics for recommender systems. In Proceedings of the fifth ACM conference on
Recommender systems. 109-116.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

Shoujin Wang, Longbing Cao, Yan Wang, Quan Z Sheng, Mehmet Orgun, and
Defu Lian. 2019. A survey on session-based recommender systems. arXiv preprint
arXiv:1902.04864 (2019).

Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, and Tat-Seng
Chua. 2020. Reinforced Negative Sampling over Knowledge Graph for Recom-
mendation. In Proceedings of The Web Conference 2020. 99-109.

Longgqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Debo-
rah Estrin. 2018. Unbiased offline recommender evaluation for missing-not-at-
random implicit feedback. In Proceedings of the 12th ACM Conference on Recom-
mender Systems. 279-287.

Hsiang-Fu Yu, Mikhail Bilenko, and Chih-Jen Lin. 2017. Selection of negative
samples for one-class matrix factorization. In Proceedings of the 2017 SIAM Inter-
national Conference on Data Mining. SIAM, 363-371.

Jianli Zhao, Shangcheng Yang, Huan Huo, Qiuxia Sun, and Xijiao Geng. 2021.
TBTF: an effective time-varying bias tensor factorization algorithm for recom-
mender system. Applied Intelligence (2021), 1-12.

Pengyu Zhao, Tianxiao Shui, Yuanxing Zhang, Kecheng Xiao, and Kaigui Bian.
2020. Adversarial Oracular Seq2seq Learning for Sequential Recommendation.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAL 1905-1911.


https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1145/2827872
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

KDD ’22, August 14-18, 2022, Washington, DC, USA

A SUPPLEMENTAL MATERIAL
A.1 Proof of Proposition 1

Proor.
_q Bz
BlLctozel = Bligrm DD L sm=tmasky) Vs It
s=1 t=1 i=1
x log softmax(fo (5S¢, 1i))]

IS| T ]
-1
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s=1 t=1 i=1
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Given that the temporal propensities s_y, ; cannot always be
equal to 1, V(Ss, I, t) € SXIx [1..T]. Thus, E[Lcjogze] # Li4¢2 . 0

Cloze’

Note that the proof relies on the probabilistic model of the inter-
action random variable that is proposed later in Definition 4.

A.2 Proof of Proposition 2
PrOOF.
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S| T 1
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x log softmax(fo (8¢, 1i))
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X ys, 1t log softmax(fo (¢4, 1i))
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055,11‘
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Note that the proof also relies on the probabilistic model of the
interaction random variable that is proposed later in Definition 4.

A.3 Proof of Proposition 3

ProOF.
I

T
Z Z L (sm=(masky}

s=1t=1 i=1
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Cs.1.+0s.1. ]
Ss.1ist GSS,I,,t YSs. It log softmax(fo (SZ},L-))
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Note that the proof assumes independence between exposure
and relevance. Also, it assumes that the outcome of the choice model
for an item is deterministic, which is reasonable if we assume a
rational user who tends to choose the most relevant item among
the exposed items.
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