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ABSTRACT

Accurate parameterization for both diffusivity and turbulent kinetic en-
ergy (TKE) dissipation rate is important for the simulation of reactive trac-
ers such as cohesive sediments. We implemented a second-order closure pa-
rameterization for mixing in ocean surface boundary layer in the Coupled
Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model. The pa-
rameterization is more suitable than the existing parameterizations in the
COAWST model for the modeling of cohesive sediments: It includes the
wave-driven Langmuir turbulent effect, a more complete pressure strain co-
variance parameterization in the eddy viscosity and diffusivity, and also TKE
dissipation rate. Solutions using a one-dimensional configuration are com-
pared to solutions using a three-dimensional model that simulates the ocean
surface boundary layer turbulence and size distributions of flocs of different
sizes. The result shows that the simulation using the newly implemented

parameterization reproduces fairly well the profiles of vertical eddy viscosity,
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TKE dissipation rate, total mass concentration of suspended sediment, and
mass averaged settling velocity in wave-driven Langmuir turbulence. The
water depth dependence of floc size distribution is also reproduced in the
one-dimensional model. In addition, the result based on the standard k£ — w
model mostly underestimates (up to ~90%) the averaged settling velocity
of suspended sediments in the water column. The result also suggests that
misrepresentation of Langmuir turbulence effect in vertical mixing parame-
terization could cause substantial biases in the forecast/hindcast transport

model for cohesive sediment.

1. Introduction

Turbulent mixing in the ocean surface boundary layer (OSBL), a thin
(usually tens to a few hundred meters deep) buffer layer between the atmo-
sphere and ocean interior, mediates the air-sea exchange of momentum, heat,
and gas fluxes, and is critical for the global climate and marine ecosystem.
It greatly influences the upper ocean dynamics and is essential for altering
the large-scale ocean circulation, the distribution of temperature and salinity,
and the dispersion and transportation of materials with different buoyancy
(e.g. Smith et al., 2016; Liang et al., 2018; Kukulka, 2020). Therefore, an
accurate prediction of the role of the upper ocean under a changing climate
and the influence of anthropogenic activities requires a better representation

of turbulent mixing in the OSBL.
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In the earth system model and operational ocean model, however, vertical
mixing is generally not resolved explicitly but parameterized, i.e. represented
by a physics-based mathematical model dependent on flow variables and sur-
face forcing with a small number of empirical parameters, because of three
main reasons as follows. Firstly, it is not feasible to resolve all the scales for
computation of turbulent flows in the climate model and hindcast /forecast
model under the present technique condition in the most state-of-the-art
High-Performance Computing systems (Fox-Kemper et al., 2014, 2019). As
a result, most realistic ocean models have a grid resolution coarser than the
one required for simulating OSBL turbulence. Secondly, even in a high-
resolution version of a small computational domain, the hydrostatic approxi-
mation applied in these models prevents their capabilities of simulating three-
dimensional turbulence. Thirdly, these models which use finite-difference or
finite-volume schemes have advantages of efficiency and flexibility in realistic
oceanic applications, nevertheless, they are less accurate in calculating the
horizontal gradients than the pseudo-spectral models commonly utilized in
the turbulence computing model in the OSBL (e.g. Sullivan and McWilliams,
2010).

The OSBL turbulence is predominantly driven by meteorological condi-
tions near the ocean surface, including winds, heating and cooling, and sur-
face gravity waves (e.g. D’Asaro, 2014). It is also modulated by the earth’s
rotation (e.g. Liu et al., 2018), horizontal density stratification (e.g. Fan et al.,
2018), and horizontal currents (e.g. Yuan and Liang, 2021). Particularly,
the interaction between surface gravity waves and wind-driven mean current

drives Langmuir turbulence, which is characterized by the counter-rotating
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vortices roughly aligned with the downwind direction and often marked by
the surface congregated zone (windrows) of sargassum, droplets, and gas
bubbles. In the coastal oceans and continental shelf regions, Langmuir tur-
bulence can extend throughout the water column, sweeping the non-attached
macroalgae into streaks near the seabed in the shelf region and is also respon-
sible for suspension events of sediments by observations (e.g. Gargett et al.,
2004; Dierssen et al., 2009). During the suspension of the sediments, water-
column turbulence also alters the size and spatial distributions of cohesive
sediments through flocculation processes (Liu et al., 2019).

The flocculation process includes aggregation and breakup of cohesive
sediments (fine-grained compound containing silt, clay, fine sand, and or-
ganic substance), through which sediment flocs (an agglomeration of min-
eral/organic matter) of different sizes are constructed and demolished (see a
two-dimensional schematic for flocculation processes in Langmuir turbulence
in Fig. 1). Aggregation refers to the process during which smaller aggre-
gates and primary mineral particles bond together forming flocs (e.g. Mehta,
2013; Strom and Keyvani, 2016), and its rate varies with particle size, salin-
ity, pH, and the particle collision frequency (e.g. Winterwerp, 1998; Burd and
Jackson, 2009; Mietta et al., 2009). Breakup refers to the process that parent
flocs are separated into smaller daughter flocs (or primary particles) by inter-
particle collision (Dyer, 1989) or turbulent shear. Flocculation processes not
only add more uncertainties in determining the properties of cohesive sedi-
ments, such as the settling velocity, shape, size, composition, and density, of
cohesive sediment (e.g. Liss et al., 2004; Strom and Keyvani, 2011; Mehta,

2013), but also play an important role in modulating the concentration of
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suspended sediments carried by turbulent eddies (e.g. Droppo et al., 1998;
Verney et al., 2011; Sherwood et al., 2018; Liu et al., 2019).

Through a series of laboratory and field experiments (e.g. Braithwaite
et al., 2012; Keyvani and Strom, 2014; Strom and Keyvani, 2016), progress
has been made in understanding the relationship between flocculation pro-
cesses and the turbulent shear rate (defined as G = \/e/_u =v/n?, with € the
turbulent kinetic energy dissipation rate, v the kinematic viscosity, and 7
the Kolmogorov length scale (Kolmogorov, 1941)). Turbulence enhances the
growth and breakup rate of flocs by increasing inter-particle collision and
increasing the shear stress exerted on the floc, respectively. This means ac-
curate information of turbulent mixing is necessary to better understand the
cohesive sediment transport associated with flocculation processes. Recently,
using a numerical model that simultaneously computes turbulence and flocs
of different sizes, Liu et al. (2019) showed that Langmuir turbulence suspends
and organizes flocs of different sizes in the water column. It also increases
the aggregation and breakup rates of flocs that are located in similar regions
with high turbulent dissipation rates and restrains those of others. They
also showed that floc size distribution varies with depth and floc mass con-
centration profiles change with floc size in wave-driven Langmuir turbulence.
Although there is no doubt that Langmuir turbulence plays an important role
in modulating the transport of cohesive sediments, such turbulence-resolving
simulations are computationally prohibitive in sediment transport models
for realistic oceans (e.g. Fox-Kemper et al., 2019) and the effect of boundary
layer turbulence on vertical mixing has to be parameterized in those models.

There are two classes of vertical mixing parameterizations: first-order clo-
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sure and second-order closure. One of the commonly used first-order closures
is the K-profile parameterization (KPP) proposed by Large et al. (1994). In
the KPP, the eddy viscosity and diffusivity are modeled as the product of a
dimensionless shape function, a length scale that represents boundary layer
depth, and a turbulent velocity scale in the boundary layer. Sinha et al.
(2015) proposed a modified KPP for shallow seas, by replacing the constant
velocity scale in the KPP with a new velocity scale that is a function of di-
mensionless vertical coordinate, in addition to a counter-gradient term that
accounts for nonlocal transport. It is convenient to implement the KPP in
forecast /hindcast models since there is no additional prognostic equation to
solve. However, neither the KPP nor its modified variants (e.g. Sinha et al.,
2015) provides direct information on the turbulent kinetic energy dissipa-
tion rate, which is an important factor in modeling flocculation processes
(e.g. Liu et al., 2019). Therefore it is not suitable for a cohesive sediment
transport model that incorporates the flocculation model. One of the popu-
lar second-order closure, also called second-moment closure (SMC), schemes
is the one proposed by Mellor and Yamada (1982) (referred to as MY2.5
hereafter). The MY2.5 parameterization and its variants (e.g. Umlauf et al.,
2003) are also widely used in regional ocean circulation models. This model
adds two prognostic equations, including one for turbulent kinetic energy and
the other for the product of turbulent kinetic energy and turbulent length
scale, to determine the eddy viscosity and diffusivity. The drawback of the
MY2.5 model is that it does not consider the enhancement in vertical mix-
ing due to Langmuir turbulence. Kantha and Clayson (2004) (referred to
as KC04 hereafter) proposed a modified MY2.5 model that incorporates the
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effect of Langmuir turbulence in the transport equations of turbulent kinetic
energy and turbulent length scale, by adding a Stokes production term that
is the product of the Reynolds stress and the Stokes drift shear. But the
KC04 model does not consider the effect of Craik-Leibovich (CL) vortex
force on stability functions. Harcourt (2013, 2015) rederived the Reynolds
transport equations for turbulent momentum flux and buoyancy flux from
the Boussinesq Navier-Stokes equation that includes the CL vortex force.
In their models, an additional component of vertical momentum flux that
is directed down the gradient of the Stokes drift is added to the algebraic
Reynolds stress model. However, the examination of the performance by the
modified SMC models was usually for stably stratified conditions in deep wa-
ter, and their performance in the neutrally stratified shallow ocean is not yet
clear. Another drawback in MY2.5 model is the incomplete parameterization
of pressure covariance (e.g. Canuto et al., 2001). Recently, Yu et al. (2018)
proposed a modified SMC model (k—w model) that includes the influence
of Langmuir turbulence in the transport equations of turbulent kinetic en-
ergy and turbulent frequency as well as stability functions, in addition to a
modification on the pressure covariance.

Recently, turbulence parameterizations have been examined using pro-
files of currents, temperature, and salinity (Van Roekel et al., 2018; Li et al.,
2019; Liang et al., 2022), but not for reactive tracers such as cohesive sed-
iments. In particular, to our best knowledge, no study has examined the
performance of vertical mixing parameterization of Langmuir turbulence in
modeling cohesive sediment transport with flocculation processes. The spe-

cific objectives of this study are (1) to develop a one-dimensional vertical
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(1DV) sediment transport model, which resolves the floc size and concentra-
tion distributions in the water column, and (2) to assess the accuracy of a
modified vertical mixing parameterization that includes the effect of Lang-
muir turbulence in cohesive sediment transport. Since direct observational
evaluation of the vertical mixing parameterization of Langmuir turbulence
on the cohesive sediment transport is currently lacking, we conduct coupled-
turbulence-sediment simulation using a large-eddy simulation model (LES)
embedded with a size-resolved floc model for cohesive sediment transport
under the same initial and forcing condition as applied in the 1DV model.
A Large eddy simulation model resolves the large-scale turbulent structure
and parameterizes subgrid-scale motions since most of the energy and tur-
bulent fluxes in the flow is contained in the former (Sullivan et al., 1994).
The LES model used in this study is the National Center for Atmospheric
Research Large Eddy Simulation model, which has been widely applied to
study OSBL turbulence driven by different atmospheric and wave conditions
(e.g. Sullivan and McWilliams, 2010). The flocculation model embeded in
the LES model has been verified with the published laboratory experiment
data and more details including the description of the LES model can be
found in Liu et al. (2019). Since LES models resolve OSBL turbulence yet
excludes all other larger-scale processes, their solutions are commonly used
as the truth to develop and improve parameterizations for vertical mixing
in the OSBL (e.g. Van Roekel et al., 2012; Reichl et al., 2016) and air-sea
fluxes (e.g. Liang et al., 2013). The rest of the paper is organized as follows.
Section 2 describes the 1DV model and its configuration. Section 3 presents

the results of a benchmark model run using 1DV model, which includes floc-
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culation processes, the effect of wave-driven Langmuir turbulence, and wave
breaking. The comparison of solutions between 1DV and LES model is also

discussed, with the conclusions drawn in Section 4.

2. Model description and configuration

2.1. Model description

The three-dimensional transport equation for the mass concentration

(unit: gL.™!) of suspended sediments is as follows

80,— o OUOZ I (%C,— + 8’[1)07, - 8’(11577;07; 4 Q(K 801)
ot oz | Oy 0z 0z | 0z Yoz

flocculation processes ( 1)
7\

N

Gy (i) + Gos (i) + Goeli) — Lag(i) — Los (1) — Luo(i),

where the first three terms on the RHS of equation (1) indicate the ad-
vection terms along the three directions (z, vy, 2), respectively, with (u,v,w)
the corresponding velocity components. The fourth and fifth terms on the
RHS describe the temporal variation in mass concentration due to turbulent
diffusion and settling of sediment, respectively; C; and ws, are the mass con-
centration and settling velocity of sediment in size class i, respectively; and
K¢ is the vertical eddy diffusivity of sediment. The last six terms on the
RHS indicate the changes due to flocculation processes (G and L represent

the gain and loss of mass, respectively), where ag, bs, and bc denote the
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processes of aggregation, breakup due to turbulent shear, and breakup due
to collision, respectively.
By assuming horizontal homogeneity and negelecting the vertical advec-

tion, equation (1) could be reduced to the following one-dimensional format:

ot 0z 0z ‘0

) + flocculation processes, (2)

where the implementation of flocculation processes shown in the last term
on the RHS of equation (2) was based on a population balance model, the
FLOCMOD (Verney et al., 2011), in the Coupled Ocean-Atmosphere-Wave-
Sediment Transport (COAWST) modeling framework, following Sherwood
et al. (2018). The vertical eddy diffusivity of suspended sediment (K() is
computed based on a modified k— w model for vertical mixing, which con-
sidered the effect of Langmuir turbulence (Yu et al., 2018), as described in

the following section.

2.2. Modified turbulence second-moment closure model

The effect of Langmuir turbulence on vertical mixing is incorporated by
adding a production term related to the shear of Stokes drift in the transport
equations of turbulent kinetic energy and turbulent frequency, in addition to
a modification on pressure covariance when deriving stability functions (Yu

et al., 2018). The transport equation of turbulent kinetic energy is calculated

as follows:
ok 0 Ky 0k — Ju ot v O0vY ;
a—a—z(a—ka—z)—(uw(a—z‘F 5, ) TV o)) twb—e  (3)
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where k= %(F + 2+ W) is the turbulent kinetic energy, Kj; is the eddy
viscosity, oy is the Schmidt number for turbulent kinetic energy, and € is the
turbulent kinetic energy dissipation rate.

The transport equation of turbulence frequency is calculated as follows:

K _
o Bl

ou —0v, /_8u5t ot
&%—Uu/&)—l—cw(uu/ az

ot 0z o, 0z

(1)
where w is the characteristic turbulence frequency (Kolmogorov, 1941), and
0, is the Schmidt number for turbulent frequency. In this study, we use
or=0,=2.0, c,, =19, c,,, =3.1, and ¢, =4.1. It should be noted that the
values of ¢, , co,, and ¢, in Yu et al. (2018) are different from the ones used
in this study, which are obtained through trial and error with the best match
of eddy viscosity profile to the LES solution. The buoyancy production terms
in equations (3) and (4) are ignored in this study since the focus is on the
neutrally stratified condition following Liu et al. (2019).

The turbulent momentum fluxes, buoyancy flux, and sediment flux are

computed as

— ou g 0ut
W = — (K- + K3 ), (5)
— v ot
v = —(Kup Kfja—% (6)
OB
/ — _K e
w'b NG (7)
— oC
’U]IC - _KC'E7 <8>
with
KM = ]{ZTSM, <9>
Ky = krSyy, (10)

11

+1/uf —— ))co, Wb —c,e,
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Ky = k7S, (11)
KC = kTSC, (12>

where 7 =k/e is the eddy turnover time, K, and K5t are the eddy viscosity
for mean flow and Stokes drift, respectively, and Ky and K¢ are the eddy
diffusivities for scalars and sediment concentration, respectively. The calcu-
lation of dimensionless numbers including SM,Sﬁ, Sy, and S¢ is included in

the appendix.
2.3. Model configuration

The 1DV model was implemented on a 4 by 4 grid in the horizontal
direction, with 80 grids in the vertical direction. Spatially uniform forcing
was applied on the top of the computational domain, along with doubly
periodic open boundary conditions. The water depth (k) is 15 m.

At the bottom, the seabed is assumed erodible. Erosion flux (Es;) is

calculated following Ariathurai and Arulanandan (1978):

Esi :E0(1—¢)M,lfTsf >Tcr,i (13)

9
cry

where for each floc size bin i, E is the surface erosion mass flux (kgm=2s71),
Ej is the bed erodibility (kgm™2s71), ¢ is the porosity, 7., is the critical shear
stress (Pa) calculated following Soulsby et al. (1997), and 74 is the total skin
friction bottom stress (Pa) calculated following Warner et al. (2008). The
fraction of each sediment class is evaluated from published in-situ observation

in an inner-shelf region (Law et al., 2008), and interpolated into each size bin.

12
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At the ocean surface, the wind speed at 10m above the surface is 10ms™!,

corresponding to a wind stress of 0.159 Nm~2, and a surface friction velocity
(u.) of 0.0126 ms™'.

The Stokes drift u%(z) is calculated based on linear wave theory (Lentz
and Fewings, 2012). A series of simulations are conducted to assess the effect
of different vertical parameterizations on floc size and spatial distributions
and are summarized in Table 1. The benchmark experiment (Case 1DVa)
includes flocculation processes and is driven by surface wind stress. The
effect of Langmuir turbulence is included by implementing a modified k— w
model for vertical mixing (section 2.2). The effect of wave breaking is also
incorporated using the parameterization by Craig and Banner (1994). Cases
1DVb and 1DVc are the experiments using standard k—w model (Umlauf
et al., 2003) following the implementation by Warner et al. (2005), with and
without wave breaking, respectively. Case 1DVd has the same setup with
the benchmark experiment but excludes the flocculation processes. Fifteen
cohesive sediment classes were included on a logarithmic equal-distance grid,
ranging from 4.0 um to 2048.0 um (19 size classes), with the fractal dimension
N;=2.0. These flocs had densities ranging from 2600.0 kgm™ to 1028.1
kgm™3 and settling velocities ranging from 0.013 mm s~ to 6.86 mms™! (see
Table 2). The initial concentration of sediment is zero for all size classes. All

the simulations start from a spin-up run without sediment.

3. Model results

13
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The effect of boundary layer turbulence on vertical mixing is represented
by eddy viscosity (K) in forecast/hindcast ocean models. By assuming a
constant Schmidt number, the eddy diffusivity for sediments can be obtained
if eddy viscosity is given. In addition, the turbulent shear rate (G), which
controls the aggregation and breakup rate of flocs, is dependent on turbulent
kinetic energy dissipation rate (¢) (Sherwood et al., 2018; Liu et al., 2019).
Therefore, the improvement in the prediction of cohesive sediment transport
in turbulent flows needs accurate modeling of eddy viscosity and dissipation
rate, if turbulence is not resolved. In this section, the solutions from the
1DV model were compared to those from the LES model (Liu et al., 2019)
to assess the applicability of the 1DV model.

The profile of eddy viscosity from the LES solution is diagnosed as follows,
(]
10:(uf)|’

(14)

where (ujw) is the Reynolds stress and (uﬁ> = (uy) + <uﬁt> is the Lagrangian
mean velocity. The subscript || denotes the horizontal components.

Fig. 2 shows the vertical profiles of normalized eddy viscosity (K/(u.|h|))
and normalized turbulent kinetic energy dissipation rate (e/(u.|h|)) in the
1DV model and the LES model. The K profile diagnosed from the LES
model is approximately symmetric about z/|h| =-0.6, and has a longer tail
near the sea surface than that near the seabed (Fig. 2a). The magnitude
of eddy viscosity in Case 1DVa is twice as large as that in the LES model
above z/|h|=-0.4 and below z/|h|=-0.7, and the location of the maximum
K is similar in both models. However, when using the empirical parameters
(¢y, = oy =0.555, and ¢, =0.833) suggested by Yu et al. (2018), the mag-
nitude of K in the 1DV model is much smaller than that in the LES model

14
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throughout the water column (not shown). The magnitude of maximum K
in Cases 1DVb and 1DVe is only 25% of that in the LES model, despite that
the magnitude of K near both boundaries is similar. The presence of wave
breaking greatly increases the turbulent dissipation rate (€) near the surface
(Fig. 2b). The magnitude of € in Case 1DVa is slightly larger than that in the
LES model, and € decays more slowly in the former than that in the latter.

Fig. 3 shows the vertical profiles of normalized mean horizontal veloc-
ity (U/u,) and normalized total floc mass concentration (Cs/Cs,, where Cj
is the total mass concentration of sediments and subscript v denotes the
vertical average) in the 1DV model and the LES model. The normalized
mean horizontal velocity in Case 1DVa is larger than that in the LES model
near the surface (z/|h| >-0.2) and the seabed (z/|h| <-0.9) (Fig. 3a). In con-
trast, the normalized mean horizontal velocity in Cases 1DVb and 1DVec is
larger than that in the LES model throughout the water column. In addi-
tion, the normalized mean horizontal velocity in the 1DV models decreases
with depth. This is different from the velocity profile in the LES model,
where there is a slight increase in the normalized mean horizontal velocity
in the middle of the water column. As explained in Tejada-Martinez and
Grosch (2007), the increase in alongwind velocity with depth in the middle
of the water column is the combined effect of a thinner bottom boundary
in the downwelling branch of Langmuir circulations (LCs) and the thicker
bottom boundary in upwelling branches of LCs. The lack of representation
of the upwelling/downwelling branches of LCs is likely the cause that along
wind velocity decrease monotonically water depth in all the 1DV simulations.

Without flocculation processes, the normalized total floc mass concentration

15
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(Cs/Cs,) in Case 1DV (Fig. 3b) is vertically more uniform compared to
those in other cases. With flocculation processes, the normalized total floc
mass concentration in the benchmark run (Case 1DVa) is more uniform than
those in Case 1DVb and 1DVe¢, which has a much larger value near the seabed
than that in the LES model.

The vertical profile of floc mass density is shown in Fig. 4. In the bench-
mark run (Case 1DVa), the median floc size in the middle of the water column
is larger than that near the surface and seabed (Fig. 4a), due to the relatively
low dissipation rate (Fig. 2b), which is also reported in the LES model result
by Liu et al. (2019). In addition, due to stronger simulated vertical mixing
(Fig. 2a), the mass concentration in the middle of the water column in Case
1DVa is larger than those in Cases 1DVb (Fig. 4b) and 1DVe (Fig. 4c). It is
also obvious that the median floc size reduces near the surface in Case 1DVc
(Fig. 4c) compared to that in Case 1DVb (Fig. 4b) since wave breaking is
included in the former. This is also observed in the LES model result by
Liu et al. (2019). Without flocculation processes, there is no mass exchange
across sediment of different size classes (Case 1DVd, Fig. 4d).

Fig. 5 shows the vertical profiles of normalized floc mass concentration
(Ci/(C;y)) in individual size bin in the 1DV model and the LES model. For
D=4.0 ym, the profile of normalized floc mass concentration in Cases 1DVb
and 1DVec is larger than that in Case 1DVa near the seabed (Fig. 5a), but
is smaller than that in Case 1DVa in the upper column. For D=128.0 um,
the lower value of normalized floc mass concentration in Cases 1DVb and
1DVe compared to that in Case 1DVa (Fig. 5b) is because less sediments are

transported to the surface due to relative weak vertical mixing in the former.
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For D=1024.0 um, the normalized floc mass concentration in Cases 1DVb
and 1DVc has a local peak near the seabed (Fig. 5¢) while it is larger in the
middle of the water column in Case 1DVa. The results suggest inaccurate
vertical mixing parameterization causes large biases in vertical profiles of floc
mass concentration in individual size bin.

Settling velocity is one of the key factors in cohesive sediment transport
modeling (e.g. Dyer, 1989; Sherwood et al., 2018). It also determines the
residence time of sediment particles in the water column (Burd and Jackson,
2009). Different from the noncohesive sediment of which settling velocity is
primarily affected by the physical properties including particle size, shape,
and density (e.g. Dietrich, 1982; Rubey, 1933; Ferguson and Church, 2004),
settling velocity of cohesive sediment is also modulated by the flocculation
processes. In order to examine the effect of different vertical mixing param-
eterizations on the settling velocity of total suspended sediment, fig. 6 shows
the comparison of mass weighted settling velocity W; (see equation (21) in
Liu et al., 2019) between the 1DV model and the LES model. Among all
the cases, the result based on the modified k—w model (case 1DVa) overall
performs better than the others in terms of capturing the shape and mag-
nitude of W, profile compared to the LES solution, although all the 1DV
cases underestimate the W, in the middle of the water column. There is
also a substantial decrease in Wy near the surface in Cases 1DVb and 1DVe,
which is also indicated by the less concentration of larger flocs near the sur-
face (z/|h| >-0.2) in Fig. 4b,c. In contrast, without flocculation processes,
W, is more uniform throughout the water column. In addition, the result

based on the standard k£ — w model (case 1DVDb) suggests that if applied in
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a forecast/hindcast transport model for cohesive sediment, it’s likely that
the averaged setting velocity of suspended sediment will be largely under-
estimated, which leads to a longer residence time of suspended sediment in
the water column and a much longer distance for transport by horizontal
currents. The result also suggests that the misrepresentation of vertical mix-
ing parameterization leads to substantial errors (as much as ~50% in the
mid-depth and ~90% near the surface under the simulated condition) in the

averaged settling velocity.

4. Conclusions

In this study, we implement an improved vertical mixing parameteriza-
tion for OSBL mixing, based on a second-moment closure (k — w) model
that accounts for the effect of Langmuir turbulence (Yu et al., 2018), in the
COAWST modeling framework (Sherwood et al., 2018) with the addition
of a size-based flocculation model (FLOCMOD, Verney et al., 2011). The
model is applied in a one-dimensional (1DV) setting to simulate the vertical
transport of cohesive sediment in wave-driven Langmuir turbulence, with a
benchmark run that includes nineteen size classes of cohesive sediment with
the inclusion of flocculation processes and wave breaking. By comparing the
solutions between the 1DV model and solutions from a Large Eddy Sim-
ulation (LES) model (Liu et al., 2019) under the same initial and forcing

condition, the performance of vertical mixing parameterization for vertical
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transport of cohesive sediment is evaluated. The major findings of this study
are summarized as follows:

(1) The results show that the 1DV model with the modified £ —w model
based on Yu et al. (2018) reasonably regenerates the profiles of vertical eddy
viscosity and dissipation rate in wave-driven Langmuir turbulence, with a
more uniform profile of total floc mass concentration compared to that in
the LES model.

(2) The 1DV model using the standard k — w model for vertical mixing
overall underestimates (up to 90%) the average settling velocity of cohesive
sediment compared to that in the LES model under the simulated condition.

(3) The water depth dependence of the floc size distribution is also ob-
served in the 1DV model, similar to that reported in the turbulence-resolving
floc simulation study (Liu et al., 2019).

(4) The results also show that inaccurate modeling of vertical mixing
causes substantial biases in the floc size distribution, vertical profile of floc
mass concentration, and averaged settling velocity. Therefore, the effect
of Langmuir turbulence needs to be considered and incorporated into fore-
cast/hindcast models for cohesive sediment transport to accurately represent
the size and concentration distribution of the cohesive sediments in the water
column.

There are a few interesting directions for future research that require more
collaborative effort in the modeling community. For example, the evaluation
of existing vertical mixing parameterizations of Langmuir turbulence for co-
hesive sediment transport has not been conducted in a three-dimensional

configuration but is essential to a complete assessment of mixing schemes.
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Three-dimensional heterogeneous turbulence can redistribute the cohesive
sediments in both horizontal and vertical directions and modify their setting
velocity and size distribution by modulating the flocculation processes (Liu
et al., 2019). In addition, the winds and waves are assumed in the same
direction in this study, and the misalignment between the two observed in
the real ocean (e.g. Yoshikawa et al., 2018; McWilliams et al., 2014) is not
considered. Although not considered in the modified k —w model by Yu et al.
(2018), this can be improved by including the effect of misaligned wind and
wave on the profile of eddy viscosity in the vertical mixing parameterization
following the recent practice in the KPP model (Solano and Fan, 2022). Fi-
nally, while the 1DV model in this study is tested for cohesive sediment with
flocculation processes, the same modeling framework can also be applied to
study other reactive tracers, e.g. spilled oil (e.g. Aiyer et al., 2019; Cui et al.,
2021) and gas bubbles (e.g. Liang et al., 2012), whose physical properties
(e.g. size, shape, and density) are also modulated by the similar aggrega-
tion and breakup processes due to turbulent shear, and relevant assessment
of existing vertical mixing parameterization is needed and critical to better

constrain the associated transport modeling.
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Appendix A Parameters

in the modified &k — w model

The dimensionless stability functions used to determine the vertical eddy

viscosity and diffusivity in equations (9)-(12) are calculated as follows

Sy = §186 + 284
E3&6 — &85
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§10
where
A Ao + 3\ X + A
&1 =?1+)\4( 2—2 & + 6—; 7)SNGN7

1
&= |

(A3 — 9A3) Gy + (A3 + 18XA3 + 9)3)Gs],

(A1)

(A.2)

(A.3)

(A4)

(A.5)

1 1 1
£ =1-MG —g()\g—B)\g)GM—E(7A§+18>\2)\3+15)\§)GV—Z(A%—A%)Gg,

§a=— + Ml

2

)\2—3)\3+)\6—)\7

1
& = 73108 = 180 + 925 Gar + (A3 — 9X) Gy,

1 1
£ =1-N\Gn— 5@3 —A3) G — E(?A% — 1823+ 15)3) Gy

Ag — A A2 — 3A
58:(6 T 3

1
3

2
57257
)\6—1-)\7_'_)\2—0—3)\3

2 3
o= (

)\6—/\7+)\2—3)\3

)G+ (

2 3 )GVa

)\6+>\7+>\2+3)\3

)Gy + ( )Gs,

2 3

4 1
§io=1-— (5/\4+)\8)GN — 4_1(

2 3

1
Ao — A2)(Gu + Gs) — 5()\% + A7) Gy.

21

(A.6)
(A7)

(A.8)

(A3—3X3)Gs,

(A.9)
(A.10)

(A.11)
(A.12)

(A.13)



w5 For more details on the derivation of stability functions and coefficients, the
w6 reader is referred to appendix B in Yu et al. (2018).
497 The dimensionless shear number (Gy, Gg, Gy) and buoyancy number

ws  (Gy) are given as follows (Yu et al., 2018):
ou v,

Gu="1[(=)+ = A4
=70+ S (A14)
e o St o St
u v
Gs = 7°(( 5, )2+W)2]’ (A.15)
500
onoust  0vov
Gy = 1= —_—— A.16
o =T [82 0z - 0z 0z l ( )
Gy = —7°N?, (A.17)
sz where N? = %—f is the square of the buoyancy frequency. Other parameters
s3 used in equations (A.4)-(A.13) include \; = 40%, Ay = 2%, A3 = %, Ay = 40%,
o0 >\6:%7)\7:iﬁ,Ch:%-%2,0,2:1—%,(],3:1—%7@4:%—657

505 (p1 — 1-— Cp2, Ap2 — 1-— Cp3, Up3 = 27 Apy — 2(1 - Cb5), Cc1 = 50, Cy — 06983,
sos 3 = 1.9664, ¢y = 1.094, c5 = 0.495, ¢p1 = 5.6, cpe = 0.6, cp3 = 1, cpy = 0, and
507 Cpy — 0.3333.

508
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Table 1: Model configuration for 1DV model simulations. Hyphen (—) denotes processes
that are excluded.

Case SMC Model Wave breaking Flocculation Processes
1DVa modified £—w (Yu et al., 2018) Included Included

1DVb  standard k—w (Umlauf et al., 2003) Included Included

1DVce  standard k—w (Umlauf et al., 2003) — Included

1DVd modified £—w (Yu et al., 2018) Included —
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Table 2: Parameters of sediment flocs used in the model.

Class of Flocs

Diameter [pm]

Density [kgm ™

Settling velocity [mms™|

4.0
5.7
8.0
11.3
16.0
22.6
32.0
45.3
64.0
90.5
128.0
181.0
256.0
362.0
512.0
724.1
1024.0
1448.2
2048.0

2600.0
2138.7
1812.5
1581.8
1418.8
1303.4
1221.9
1164.2
1123.4
1094.6
1074.2
1059.8
1049.6
1042.4
1037.3
1033.7
1031.2
1029.4
1028.1

0.0134
0.0189
0.0268
0.0379
0.0536
0.0758
0.1072
0.1516
0.2144
0.3032
0.4288
0.6064
0.8575
1.2127
1.7151
2.4255
3.4302
4.8510
6.8603
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ments in Langmuir turbulence.
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Figure 2: Vertical profiles of (a) normalized eddy viscosity (K/(u«|h|)) and (b) normalized
turbulent kinetic energy dissipation rate (e|h|/u3) from: LES (red solid), Case 1DVa (black
dashed), Case 1DVb (magenta dotted), and Case 1DVc (blue dash-dotted).
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Figure 3: Vertical profiles of (a) normalized mean horizontal velocity (U/u,) and (b)
normalized total floc mass concentration (Cs/(Cs,,)) from: LES (red solid), Case 1DVa
(black dashed), Case 1DVb (magenta dotted), Case 1DVc¢ (blue dash-dotted), and Case

1DVd (cyan dashed).
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Figure 4: Vertical profiles of floc mass density [gL = (In(Dg41) — In(Dy))~!, where Dy, is
the diameter of floc in size class k] in 1DV model: (a) Case 1DVa, (b) Case 1DVb, (c)
Case 1DVc, and (d) Case 1DVd.
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Figure 5: Vertical profiles of normalized floc mass concentration (C;/(C;,)) of size (a)
D=4.0pm, (b) D=128.0 ym, and (¢) D=1024.0 um from: LES (red solid), Case 1DVa
(black dashed), Case 1DVb (magenta dotted), and Case 1DVe (blue dash-dotted)
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Figure 6: Comparison of vertical profiles of mass weighted settling velocity (W, [mms™!])
between LES model (red solid) and 1DV model (black dashed).
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