

1 An evaluation of vertical mixing parameterization of
2 ocean boundary layer turbulence for cohesive sediments

3 Jinliang Liu^a, Jianguo Yuan^a, Jun-Hong Liang^{a,b,c,*}

4 ^a*Department of Oceanography & Coastal Sciences, Louisiana State University, Baton
5 Rouge, 70803, LA, USA*

6 ^b*Center for Computation and Technology, Louisiana State University, Baton
7 Rouge, 70803, LA, USA*

8 ^c*Coastal Coastal Studies Institute, Louisiana State University, Baton
9 Rouge, 70803, LA, USA*

10 **ABSTRACT**

11

12 Accurate parameterization for both diffusivity and turbulent kinetic en-
13 ergy (TKE) dissipation rate is important for the simulation of reactive trac-
14 ers such as cohesive sediments. We implemented a second-order closure pa-
15 rameterization for mixing in ocean surface boundary layer in the Coupled
16 Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model. The pa-
17 rameterization is more suitable than the existing parameterizations in the
18 COAWST model for the modeling of cohesive sediments: It includes the
19 wave-driven Langmuir turbulent effect, a more complete pressure strain co-
20 variance parameterization in the eddy viscosity and diffusivity, and also TKE
21 dissipation rate. Solutions using a one-dimensional configuration are com-
22 pared to solutions using a three-dimensional model that simulates the ocean
23 surface boundary layer turbulence and size distributions of flocs of different
24 sizes. The result shows that the simulation using the newly implemented
25 parameterization reproduces fairly well the profiles of vertical eddy viscosity,

*Corresponding author: Jun-Hong Liang, jliang@lsu.edu
Preprint submitted to Deep-Sea Research Part II: Topical Studies in Oceanography August 26, 2022

26 TKE dissipation rate, total mass concentration of suspended sediment, and
27 mass averaged settling velocity in wave-driven Langmuir turbulence. The
28 water depth dependence of floc size distribution is also reproduced in the
29 one-dimensional model. In addition, the result based on the standard $k - \omega$
30 model mostly underestimates (up to $\sim 90\%$) the averaged settling velocity
31 of suspended sediments in the water column. The result also suggests that
32 misrepresentation of Langmuir turbulence effect in vertical mixing parame-
33 terization could cause substantial biases in the forecast/hindcast transport
34 model for cohesive sediment.

35

36

37 1. Introduction

38

39 Turbulent mixing in the ocean surface boundary layer (OSBL), a thin
40 (usually tens to a few hundred meters deep) buffer layer between the atmo-
41 sphere and ocean interior, mediates the air-sea exchange of momentum, heat,
42 and gas fluxes, and is critical for the global climate and marine ecosystem.
43 It greatly influences the upper ocean dynamics and is essential for altering
44 the large-scale ocean circulation, the distribution of temperature and salinity,
45 and the dispersion and transportation of materials with different buoyancy
46 (e.g. Smith et al., 2016; Liang et al., 2018; Kukulka, 2020). Therefore, an
47 accurate prediction of the role of the upper ocean under a changing climate
48 and the influence of anthropogenic activities requires a better representation
49 of turbulent mixing in the OSBL.

50 In the earth system model and operational ocean model, however, vertical
51 mixing is generally not resolved explicitly but parameterized, i.e. represented
52 by a physics-based mathematical model dependent on flow variables and sur-
53 face forcing with a small number of empirical parameters, because of three
54 main reasons as follows. Firstly, it is not feasible to resolve all the scales for
55 computation of turbulent flows in the climate model and hindcast/forecast
56 model under the present technique condition in the most state-of-the-art
57 High-Performance Computing systems (Fox-Kemper et al., 2014, 2019). As
58 a result, most realistic ocean models have a grid resolution coarser than the
59 one required for simulating OSBL turbulence. Secondly, even in a high-
60 resolution version of a small computational domain, the hydrostatic approxi-
61 mation applied in these models prevents their capabilities of simulating three-
62 dimensional turbulence. Thirdly, these models which use finite-difference or
63 finite-volume schemes have advantages of efficiency and flexibility in realistic
64 oceanic applications, nevertheless, they are less accurate in calculating the
65 horizontal gradients than the pseudo-spectral models commonly utilized in
66 the turbulence computing model in the OSBL (e.g. Sullivan and McWilliams,
67 2010).

68 The OSBL turbulence is predominantly driven by meteorological condi-
69 tions near the ocean surface, including winds, heating and cooling, and sur-
70 face gravity waves (e.g. D'Asaro, 2014). It is also modulated by the earth's
71 rotation (e.g. Liu et al., 2018), horizontal density stratification (e.g. Fan et al.,
72 2018), and horizontal currents (e.g. Yuan and Liang, 2021). Particularly,
73 the interaction between surface gravity waves and wind-driven mean current
74 drives Langmuir turbulence, which is characterized by the counter-rotating

75 vortices roughly aligned with the downwind direction and often marked by
76 the surface congregated zone (windrows) of sargassum, droplets, and gas
77 bubbles. In the coastal oceans and continental shelf regions, Langmuir tur-
78 bulence can extend throughout the water column, sweeping the non-attached
79 macroalgae into streaks near the seabed in the shelf region and is also respon-
80 sible for suspension events of sediments by observations (e.g. Gargett et al.,
81 2004; Dierssen et al., 2009). During the suspension of the sediments, water-
82 column turbulence also alters the size and spatial distributions of cohesive
83 sediments through flocculation processes (Liu et al., 2019).

84 The flocculation process includes aggregation and breakup of cohesive
85 sediments (fine-grained compound containing silt, clay, fine sand, and or-
86 ganic substance), through which sediment flocs (an agglomeration of min-
87 eral/organic matter) of different sizes are constructed and demolished (see a
88 two-dimensional schematic for flocculation processes in Langmuir turbulence
89 in Fig. 1). Aggregation refers to the process during which smaller aggre-
90 gates and primary mineral particles bond together forming flocs (e.g. Mehta,
91 2013; Strom and Keyvani, 2016), and its rate varies with particle size, salin-
92 ity, pH, and the particle collision frequency (e.g. Winterwerp, 1998; Burd and
93 Jackson, 2009; Mietta et al., 2009). Breakup refers to the process that parent
94 flocs are separated into smaller daughter flocs (or primary particles) by inter-
95 particle collision (Dyer, 1989) or turbulent shear. Flocculation processes not
96 only add more uncertainties in determining the properties of cohesive sedi-
97 ments, such as the settling velocity, shape, size, composition, and density, of
98 cohesive sediment (e.g. Liss et al., 2004; Strom and Keyvani, 2011; Mehta,
99 2013), but also play an important role in modulating the concentration of

100 suspended sediments carried by turbulent eddies (e.g. Droppo et al., 1998;
101 Verney et al., 2011; Sherwood et al., 2018; Liu et al., 2019).

102 Through a series of laboratory and field experiments (e.g. Braithwaite
103 et al., 2012; Keyvani and Strom, 2014; Strom and Keyvani, 2016), progress
104 has been made in understanding the relationship between flocculation pro-
105 cesses and the turbulent shear rate (defined as $G = \sqrt{\epsilon/\nu} = \nu/\eta^2$, with ϵ the
106 turbulent kinetic energy dissipation rate, ν the kinematic viscosity, and η
107 the Kolmogorov length scale (Kolmogorov, 1941)). Turbulence enhances the
108 growth and breakup rate of flocs by increasing inter-particle collision and
109 increasing the shear stress exerted on the floc, respectively. This means ac-
110 curate information of turbulent mixing is necessary to better understand the
111 cohesive sediment transport associated with flocculation processes. Recently,
112 using a numerical model that simultaneously computes turbulence and flocs
113 of different sizes, Liu et al. (2019) showed that Langmuir turbulence suspends
114 and organizes flocs of different sizes in the water column. It also increases
115 the aggregation and breakup rates of flocs that are located in similar regions
116 with high turbulent dissipation rates and restrains those of others. They
117 also showed that floc size distribution varies with depth and floc mass con-
118 centration profiles change with floc size in wave-driven Langmuir turbulence.
119 Although there is no doubt that Langmuir turbulence plays an important role
120 in modulating the transport of cohesive sediments, such turbulence-resolving
121 simulations are computationally prohibitive in sediment transport models
122 for realistic oceans (e.g. Fox-Kemper et al., 2019) and the effect of boundary
123 layer turbulence on vertical mixing has to be parameterized in those models.
124 There are two classes of vertical mixing parameterizations: first-order clo-

sure and second-order closure. One of the commonly used first-order closures is the K-profile parameterization (KPP) proposed by Large et al. (1994). In the KPP, the eddy viscosity and diffusivity are modeled as the product of a dimensionless shape function, a length scale that represents boundary layer depth, and a turbulent velocity scale in the boundary layer. Sinha et al. (2015) proposed a modified KPP for shallow seas, by replacing the constant velocity scale in the KPP with a new velocity scale that is a function of dimensionless vertical coordinate, in addition to a counter-gradient term that accounts for nonlocal transport. It is convenient to implement the KPP in forecast/hindcast models since there is no additional prognostic equation to solve. However, neither the KPP nor its modified variants (e.g. Sinha et al., 2015) provides direct information on the turbulent kinetic energy dissipation rate, which is an important factor in modeling flocculation processes (e.g. Liu et al., 2019). Therefore it is not suitable for a cohesive sediment transport model that incorporates the flocculation model. One of the popular second-order closure, also called second-moment closure (SMC), schemes is the one proposed by Mellor and Yamada (1982) (referred to as MY2.5 hereafter). The MY2.5 parameterization and its variants (e.g. Umlauf et al., 2003) are also widely used in regional ocean circulation models. This model adds two prognostic equations, including one for turbulent kinetic energy and the other for the product of turbulent kinetic energy and turbulent length scale, to determine the eddy viscosity and diffusivity. The drawback of the MY2.5 model is that it does not consider the enhancement in vertical mixing due to Langmuir turbulence. Kantha and Clayson (2004) (referred to as KC04 hereafter) proposed a modified MY2.5 model that incorporates the

150 effect of Langmuir turbulence in the transport equations of turbulent kinetic
151 energy and turbulent length scale, by adding a Stokes production term that
152 is the product of the Reynolds stress and the Stokes drift shear. But the
153 KC04 model does not consider the effect of Craik–Leibovich (CL) vortex
154 force on stability functions. Harcourt (2013, 2015) rederived the Reynolds
155 transport equations for turbulent momentum flux and buoyancy flux from
156 the Boussinesq Navier-Stokes equation that includes the CL vortex force.
157 In their models, an additional component of vertical momentum flux that
158 is directed down the gradient of the Stokes drift is added to the algebraic
159 Reynolds stress model. However, the examination of the performance by the
160 modified SMC models was usually for stably stratified conditions in deep wa-
161 ter, and their performance in the neutrally stratified shallow ocean is not yet
162 clear. Another drawback in MY2.5 model is the incomplete parameterization
163 of pressure covariance (e.g. Canuto et al., 2001). Recently, Yu et al. (2018)
164 proposed a modified SMC model ($k-\omega$ model) that includes the influence
165 of Langmuir turbulence in the transport equations of turbulent kinetic en-
166 ergy and turbulent frequency as well as stability functions, in addition to a
167 modification on the pressure covariance.

168 Recently, turbulence parameterizations have been examined using pro-
169 files of currents, temperature, and salinity (Van Roekel et al., 2018; Li et al.,
170 2019; Liang et al., 2022), but not for reactive tracers such as cohesive sed-
171 iments. In particular, to our best knowledge, no study has examined the
172 performance of vertical mixing parameterization of Langmuir turbulence in
173 modeling cohesive sediment transport with flocculation processes. The spe-
174 cific objectives of this study are (1) to develop a one-dimensional vertical

175 (1DV) sediment transport model, which resolves the floc size and concentra-
176 tion distributions in the water column, and (2) to assess the accuracy of a
177 modified vertical mixing parameterization that includes the effect of Lang-
178 muir turbulence in cohesive sediment transport. Since direct observational
179 evaluation of the vertical mixing parameterization of Langmuir turbulence
180 on the cohesive sediment transport is currently lacking, we conduct coupled-
181 turbulence-sediment simulation using a large-eddy simulation model (LES)
182 embedded with a size-resolved floc model for cohesive sediment transport
183 under the same initial and forcing condition as applied in the 1DV model.
184 A Large eddy simulation model resolves the large-scale turbulent structure
185 and parameterizes subgrid-scale motions since most of the energy and tur-
186 bulent fluxes in the flow is contained in the former (Sullivan et al., 1994).
187 The LES model used in this study is the National Center for Atmospheric
188 Research Large Eddy Simulation model, which has been widely applied to
189 study OSBL turbulence driven by different atmospheric and wave conditions
190 (e.g. Sullivan and McWilliams, 2010). The flocculation model embeded in
191 the LES model has been verified with the published laboratory experiment
192 data and more details including the description of the LES model can be
193 found in Liu et al. (2019). Since LES models resolve OSBL turbulence yet
194 excludes all other larger-scale processes, their solutions are commonly used
195 as the truth to develop and improve parameterizations for vertical mixing
196 in the OSBL (e.g. Van Roekel et al., 2012; Reichl et al., 2016) and air-sea
197 fluxes (e.g. Liang et al., 2013). The rest of the paper is organized as follows.
198 Section 2 describes the 1DV model and its configuration. Section 3 presents
199 the results of a benchmark model run using 1DV model, which includes floc-

200 culation processes, the effect of wave-driven Langmuir turbulence, and wave
 201 breaking. The comparison of solutions between 1DV and LES model is also
 202 discussed, with the conclusions drawn in Section 4.

203

204

205 **2. Model description and configuration**

206

207 *2.1. Model description*

208

209 The three-dimensional transport equation for the mass concentration
 210 (unit: g L^{-1}) of suspended sediments is as follows

$$\frac{\partial C_i}{\partial t} = \frac{\partial u C_i}{\partial x} + \frac{\partial v C_i}{\partial y} + \frac{\partial w C_i}{\partial z} - \frac{\partial w_{s,i} C_i}{\partial z} + \frac{\partial}{\partial z} (K_C \frac{\partial C_i}{\partial z}) \quad (1)$$

flocculation processes

$$+ \overbrace{\mathcal{G}_{ag}(i) + \mathcal{G}_{bs}(i) + \mathcal{G}_{bc}(i) - \mathcal{L}_{ag}(i) - \mathcal{L}_{bs}(i) - \mathcal{L}_{bc}(i)}^0,$$

211 where the first three terms on the RHS of equation (1) indicate the ad-
 212 vection terms along the three directions (x, y, z), respectively, with (u, v, w)
 213 the corresponding velocity components. The fourth and fifth terms on the
 214 RHS describe the temporal variation in mass concentration due to turbulent
 215 diffusion and settling of sediment, respectively; C_i and $w_{s,i}$ are the mass con-
 216 centration and settling velocity of sediment in size class i , respectively; and
 217 K_C is the vertical eddy diffusivity of sediment. The last six terms on the
 218 RHS indicate the changes due to flocculation processes (\mathcal{G} and \mathcal{L} represent
 219 the gain and loss of mass, respectively), where ag , bs , and bc denote the

220 processes of aggregation, breakup due to turbulent shear, and breakup due
221 to collision, respectively.

222 By assuming horizontal homogeneity and negelecting the vertical advec-
223 tion, equation (1) could be reduced to the following one-dimensional format:

$$\frac{\partial C_i}{\partial t} = -\frac{\partial w_{s,i} C_i}{\partial z} + \frac{\partial}{\partial z} (K_C \frac{\partial C_i}{\partial z}) + \text{flocculation processes}, \quad (2)$$

224 where the implementation of flocculation processes shown in the last term
225 on the RHS of equation (2) was based on a population balance model, the
226 FLOCMOD (Verney et al., 2011), in the Coupled Ocean-Atmosphere-Wave-
227 Sediment Transport (COAWST) modeling framework, following Sherwood
228 et al. (2018). The vertical eddy diffusivity of suspended sediment (K_C) is
229 computed based on a modified $k - \omega$ model for vertical mixing, which con-
230 sidered the effect of Langmuir turbulence (Yu et al., 2018), as described in
231 the following section.

232

233 2.2. Modified turbulence second-moment closure model

234

235 The effect of Langmuir turbulence on vertical mixing is incorporated by
236 adding a production term related to the shear of Stokes drift in the transport
237 equations of turbulent kinetic energy and turbulent frequency, in addition to
238 a modification on pressure covariance when deriving stability functions (Yu
239 et al., 2018). The transport equation of turbulent kinetic energy is calculated
240 as follows:

$$\frac{\partial k}{\partial t} = \frac{\partial}{\partial z} \left(\frac{K_M}{\sigma_k} \frac{\partial k}{\partial z} \right) - \left(\overline{u'w'} \left(\frac{\partial \bar{u}}{\partial z} + \frac{\partial u^{St}}{\partial z} \right) + \overline{v'w'} \left(\frac{\partial \bar{v}}{\partial z} + \frac{\partial v^{St}}{\partial z} \right) \right) + \overline{w'b'} - \epsilon, \quad (3)$$

241 where $k = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$ is the turbulent kinetic energy, K_M is the eddy
 242 viscosity, σ_k is the Schmidt number for turbulent kinetic energy, and ϵ is the
 243 turbulent kinetic energy dissipation rate.

244 The transport equation of turbulence frequency is calculated as follows:

$$\frac{\partial \omega}{\partial t} = \frac{\partial}{\partial z} \left(\frac{K_M}{\sigma_\omega} \frac{\partial \omega}{\partial z} \right) - \frac{\omega}{k} \left(c_{\hat{\omega}_1} \left(\overline{u'w'} \frac{\partial \bar{u}}{\partial z} + \overline{v'w'} \frac{\partial \bar{v}}{\partial z} \right) + c_{\hat{\omega}_4} \left(\overline{u'w'} \frac{\partial u^{St}}{\partial z} + \overline{v'w'} \frac{\partial v^{St}}{\partial z} \right) \right) + c_{\hat{\omega}_3} \overline{w'b'} - c_{\hat{\omega}_2} \epsilon, \quad (4)$$

245 where ω is the characteristic turbulence frequency (Kolmogorov, 1941), and
 246 σ_ω is the Schmidt number for turbulent frequency. In this study, we use
 247 $\sigma_k = \sigma_\omega = 2.0$, $c_{\hat{\omega}_1} = 1.9$, $c_{\hat{\omega}_2} = 3.1$, and $c_{\hat{\omega}_4} = 4.1$. It should be noted that the
 248 values of $c_{\hat{\omega}_1}$, $c_{\hat{\omega}_2}$, and $c_{\hat{\omega}_4}$ in Yu et al. (2018) are different from the ones used
 249 in this study, which are obtained through trial and error with the best match
 250 of eddy viscosity profile to the LES solution. The buoyancy production terms
 251 in equations (3) and (4) are ignored in this study since the focus is on the
 252 neutrally stratified condition following Liu et al. (2019).

253 The turbulent momentum fluxes, buoyancy flux, and sediment flux are
 254 computed as

$$\overline{u'w'} = - \left(K_M \frac{\partial \bar{u}}{\partial z} + K_M^{St} \frac{\partial u^{St}}{\partial z} \right), \quad (5)$$

$$\overline{v'w'} = - \left(K_M \frac{\partial \bar{v}}{\partial z} + K_M^{St} \frac{\partial v^{St}}{\partial z} \right), \quad (6)$$

$$\overline{w'b'} = - K_N \frac{\partial \bar{B}}{\partial z}, \quad (7)$$

$$\overline{w'C} = - K_C \frac{\partial \bar{C}}{\partial z}, \quad (8)$$

258 with

$$K_M = k\tau S_M, \quad (9)$$

$$K_M^{St} = k\tau S_M^{St}, \quad (10)$$

260

$$K_N = k\tau S_N, \quad (11)$$

261

$$K_C = k\tau S_C, \quad (12)$$

262 where $\tau = k/\epsilon$ is the eddy turnover time, K_M and K_M^{St} are the eddy viscosity
 263 for mean flow and Stokes drift, respectively, and K_N and K_C are the eddy
 264 diffusivities for scalars and sediment concentration, respectively. The calcu-
 265 lation of dimensionless numbers including S_M, S_M^{St}, S_N , and S_C is included in
 266 the appendix.

267

268 *2.3. Model configuration*

269

270 The 1DV model was implemented on a 4 by 4 grid in the horizontal
 271 direction, with 80 grids in the vertical direction. Spatially uniform forcing
 272 was applied on the top of the computational domain, along with doubly
 273 periodic open boundary conditions. The water depth (h) is 15 m.

274 At the bottom, the seabed is assumed erodible. Erosion flux ($E_{s,i}$) is
 275 calculated following Ariathurai and Arulanandan (1978):

$$E_{s,i} = E_0(1 - \phi) \frac{\tau_{sf} - \tau_{cr,i}}{\tau_{cr,i}}, \text{ if } \tau_{sf} > \tau_{cr,i} \quad (13)$$

276 where for each floc size bin i , E_s is the surface erosion mass flux ($\text{kg m}^{-2} \text{s}^{-1}$),
 277 E_0 is the bed erodibility ($\text{kg m}^{-2} \text{s}^{-1}$), ϕ is the porosity, τ_{cr} is the critical shear
 278 stress (Pa) calculated following Soulsby et al. (1997), and τ_{sf} is the total skin
 279 friction bottom stress (Pa) calculated following Warner et al. (2008). The
 280 fraction of each sediment class is evaluated from published in-situ observation
 281 in an inner-shelf region (Law et al., 2008), and interpolated into each size bin.

282 At the ocean surface, the wind speed at 10 m above the surface is 10 m s^{-1} ,
283 corresponding to a wind stress of 0.159 N m^{-2} , and a surface friction velocity
284 (u_*) of 0.0126 m s^{-1} .

285 The Stokes drift $u^{St}(z)$ is calculated based on linear wave theory (Lentz
286 and Fewings, 2012). A series of simulations are conducted to assess the effect
287 of different vertical parameterizations on floc size and spatial distributions
288 and are summarized in Table 1. The benchmark experiment (Case 1DVa)
289 includes flocculation processes and is driven by surface wind stress. The
290 effect of Langmuir turbulence is included by implementing a modified $k - \omega$
291 model for vertical mixing (section 2.2). The effect of wave breaking is also
292 incorporated using the parameterization by Craig and Banner (1994). Cases
293 1DVb and 1DVc are the experiments using standard $k - \omega$ model (Umlauf
294 et al., 2003) following the implementation by Warner et al. (2005), with and
295 without wave breaking, respectively. Case 1DVd has the same setup with
296 the benchmark experiment but excludes the flocculation processes. Fifteen
297 cohesive sediment classes were included on a logarithmic equal-distance grid,
298 ranging from $4.0 \mu\text{m}$ to $2048.0 \mu\text{m}$ (19 size classes), with the fractal dimension
299 $N_f = 2.0$. These flocs had densities ranging from 2600.0 kg m^{-3} to 1028.1
300 kg m^{-3} and settling velocities ranging from 0.013 mm s^{-1} to 6.86 mm s^{-1} (see
301 Table 2). The initial concentration of sediment is zero for all size classes. All
302 the simulations start from a spin-up run without sediment.

303

304

305 **3. Model results**

306

307 The effect of boundary layer turbulence on vertical mixing is represented
 308 by eddy viscosity (K) in forecast/hindcast ocean models. By assuming a
 309 constant Schmidt number, the eddy diffusivity for sediments can be obtained
 310 if eddy viscosity is given. In addition, the turbulent shear rate (G), which
 311 controls the aggregation and breakup rate of flocs, is dependent on turbulent
 312 kinetic energy dissipation rate (ϵ) (Sherwood et al., 2018; Liu et al., 2019).
 313 Therefore, the improvement in the prediction of cohesive sediment transport
 314 in turbulent flows needs accurate modeling of eddy viscosity and dissipation
 315 rate, if turbulence is not resolved. In this section, the solutions from the
 316 1DV model were compared to those from the LES model (Liu et al., 2019)
 317 to assess the applicability of the 1DV model.

318 The profile of eddy viscosity from the LES solution is diagnosed as follows,

$$K = \frac{|\langle u'_{\parallel} w \rangle|}{|\partial_z \langle u^L_{\parallel} \rangle|}, \quad (14)$$

319 where $\langle u'_{\parallel} w \rangle$ is the Reynolds stress and $\langle u^L_{\parallel} \rangle = \langle u_{\parallel} \rangle + \langle u^{St}_{\parallel} \rangle$ is the Lagrangian
 320 mean velocity. The subscript \parallel denotes the horizontal components.

321 Fig. 2 shows the vertical profiles of normalized eddy viscosity ($K/(u_*|h|)$)
 322 and normalized turbulent kinetic energy dissipation rate ($\epsilon/(u_*|h|)$) in the
 323 1DV model and the LES model. The K profile diagnosed from the LES
 324 model is approximately symmetric about $z/|h| = -0.6$, and has a longer tail
 325 near the sea surface than that near the seabed (Fig. 2a). The magnitude
 326 of eddy viscosity in Case 1DVa is twice as large as that in the LES model
 327 above $z/|h| = -0.4$ and below $z/|h| = -0.7$, and the location of the maximum
 328 K is similar in both models. However, when using the empirical parameters
 329 ($\hat{c}_{\omega_1} = \hat{c}_{\omega_4} = 0.555$, and $\hat{c}_{\omega_2} = 0.833$) suggested by Yu et al. (2018), the mag-
 330 nitude of K in the 1DV model is much smaller than that in the LES model

331 throughout the water column (not shown). The magnitude of maximum K
332 in Cases 1DVb and 1DVC is only 25% of that in the LES model, despite that
333 the magnitude of K near both boundaries is similar. The presence of wave
334 breaking greatly increases the turbulent dissipation rate (ϵ) near the surface
335 (Fig. 2b). The magnitude of ϵ in Case 1DVA is slightly larger than that in the
336 LES model, and ϵ decays more slowly in the former than that in the latter.

337 Fig. 3 shows the vertical profiles of normalized mean horizontal veloc-
338 ity (U/u_*) and normalized total floc mass concentration ($C_s/C_{s,v}$, where C_s
339 is the total mass concentration of sediments and subscript v denotes the
340 vertical average) in the 1DV model and the LES model. The normalized
341 mean horizontal velocity in Case 1DVA is larger than that in the LES model
342 near the surface ($z/|h| > -0.2$) and the seabed ($z/|h| < -0.9$) (Fig. 3a). In con-
343 trast, the normalized mean horizontal velocity in Cases 1DVb and 1DVC is
344 larger than that in the LES model throughout the water column. In addi-
345 tion, the normalized mean horizontal velocity in the 1DV models decreases
346 with depth. This is different from the velocity profile in the LES model,
347 where there is a slight increase in the normalized mean horizontal velocity
348 in the middle of the water column. As explained in Tejada-Martinez and
349 Grosch (2007), the increase in alongwind velocity with depth in the middle
350 of the water column is the combined effect of a thinner bottom boundary
351 in the downwelling branch of Langmuir circulations (LCs) and the thicker
352 bottom boundary in upwelling branches of LCs. The lack of representation
353 of the upwelling/downwelling branches of LCs is likely the cause that along
354 wind velocity decrease monotonically with water depth in all the 1DV simulations.
355 Without flocculation processes, the normalized total floc mass concentration

356 $(C_s/C_{s,v})$ in Case 1DVd (Fig. 3b) is vertically more uniform compared to
357 those in other cases. With flocculation processes, the normalized total floc
358 mass concentration in the benchmark run (Case 1DVa) is more uniform than
359 those in Case 1DVb and 1DVc, which has a much larger value near the seabed
360 than that in the LES model.

361 The vertical profile of floc mass density is shown in Fig. 4. In the bench-
362 mark run (Case 1DVa), the median floc size in the middle of the water column
363 is larger than that near the surface and seabed (Fig. 4a), due to the relatively
364 low dissipation rate (Fig. 2b), which is also reported in the LES model result
365 by Liu et al. (2019). In addition, due to stronger simulated vertical mixing
366 (Fig. 2a), the mass concentration in the middle of the water column in Case
367 1DVa is larger than those in Cases 1DVb (Fig. 4b) and 1DVc (Fig. 4c). It is
368 also obvious that the median floc size reduces near the surface in Case 1DVc
369 (Fig. 4c) compared to that in Case 1DVb (Fig. 4b) since wave breaking is
370 included in the former. This is also observed in the LES model result by
371 Liu et al. (2019). Without flocculation processes, there is no mass exchange
372 across sediment of different size classes (Case 1DVd, Fig. 4d).

373 Fig. 5 shows the vertical profiles of normalized floc mass concentration
374 $(C_i/(C_{i,v}))$ in individual size bin in the 1DV model and the LES model. For
375 $D=4.0\mu\text{m}$, the profile of normalized floc mass concentration in Cases 1DVb
376 and 1DVc is larger than that in Case 1DVa near the seabed (Fig. 5a), but
377 is smaller than that in Case 1DVa in the upper column. For $D=128.0\mu\text{m}$,
378 the lower value of normalized floc mass concentration in Cases 1DVb and
379 1DVc compared to that in Case 1DVa (Fig. 5b) is because less sediments are
380 transported to the surface due to relative weak vertical mixing in the former.

381 For $D = 1024.0 \mu\text{m}$, the normalized floc mass concentration in Cases 1DVb
382 and 1DVc has a local peak near the seabed (Fig. 5c) while it is larger in the
383 middle of the water column in Case 1DVa. The results suggest inaccurate
384 vertical mixing parameterization causes large biases in vertical profiles of floc
385 mass concentration in individual size bin.

386 Settling velocity is one of the key factors in cohesive sediment transport
387 modeling (e.g. Dyer, 1989; Sherwood et al., 2018). It also determines the
388 residence time of sediment particles in the water column (Burd and Jackson,
389 2009). Different from the noncohesive sediment of which settling velocity is
390 primarily affected by the physical properties including particle size, shape,
391 and density (e.g. Dietrich, 1982; Rubey, 1933; Ferguson and Church, 2004),
392 settling velocity of cohesive sediment is also modulated by the flocculation
393 processes. In order to examine the effect of different vertical mixing param-
394 eterizations on the settling velocity of total suspended sediment, fig. 6 shows
395 the comparison of mass weighted settling velocity W_s (see equation (21) in
396 Liu et al., 2019) between the 1DV model and the LES model. Among all
397 the cases, the result based on the modified $k - \omega$ model (case 1DVa) overall
398 performs better than the others in terms of capturing the shape and mag-
399 nitude of W_s profile compared to the LES solution, although all the 1DV
400 cases underestimate the W_s in the middle of the water column. There is
401 also a substantial decrease in W_s near the surface in Cases 1DVb and 1DVc,
402 which is also indicated by the less concentration of larger flocs near the sur-
403 face ($z/|h| > -0.2$) in Fig. 4b,c. In contrast, without flocculation processes,
404 W_s is more uniform throughout the water column. In addition, the result
405 based on the standard $k - \omega$ model (case 1DVb) suggests that if applied in

406 a forecast/hindcast transport model for cohesive sediment, it's likely that
407 the averaged setting velocity of suspended sediment will be largely under-
408 estimated, which leads to a longer residence time of suspended sediment in
409 the water column and a much longer distance for transport by horizontal
410 currents. The result also suggests that the misrepresentation of vertical mix-
411 ing parameterization leads to substantial errors (as much as $\sim 50\%$ in the
412 mid-depth and $\sim 90\%$ near the surface under the simulated condition) in the
413 averaged settling velocity.

414

415

416 4. Conclusions

417

418 In this study, we implement an improved vertical mixing parameteriza-
419 tion for OSBL mixing, based on a second-moment closure ($k - \omega$) model
420 that accounts for the effect of Langmuir turbulence (Yu et al., 2018), in the
421 COAWST modeling framework (Sherwood et al., 2018) with the addition
422 of a size-based flocculation model (FLOCMOD, Verney et al., 2011). The
423 model is applied in a one-dimensional (1DV) setting to simulate the vertical
424 transport of cohesive sediment in wave-driven Langmuir turbulence, with a
425 benchmark run that includes nineteen size classes of cohesive sediment with
426 the inclusion of flocculation processes and wave breaking. By comparing the
427 solutions between the 1DV model and solutions from a Large Eddy Sim-
428 ulation (LES) model (Liu et al., 2019) under the same initial and forcing
429 condition, the performance of vertical mixing parameterization for vertical

430 transport of cohesive sediment is evaluated. The major findings of this study
431 are summarized as follows:

432 (1) The results show that the 1DV model with the modified $k - \omega$ model
433 based on Yu et al. (2018) reasonably regenerates the profiles of vertical eddy
434 viscosity and dissipation rate in wave-driven Langmuir turbulence, with a
435 more uniform profile of total floc mass concentration compared to that in
436 the LES model.

437 (2) The 1DV model using the standard $k - \omega$ model for vertical mixing
438 overall underestimates (up to 90%) the average settling velocity of cohesive
439 sediment compared to that in the LES model under the simulated condition.

440 (3) The water depth dependence of the floc size distribution is also ob-
441 served in the 1DV model, similar to that reported in the turbulence-resolving
442 floc simulation study (Liu et al., 2019).

443 (4) The results also show that inaccurate modeling of vertical mixing
444 causes substantial biases in the floc size distribution, vertical profile of floc
445 mass concentration, and averaged settling velocity. Therefore, the effect
446 of Langmuir turbulence needs to be considered and incorporated into fore-
447 cast/hindcast models for cohesive sediment transport to accurately represent
448 the size and concentration distribution of the cohesive sediments in the water
449 column.

450 There are a few interesting directions for future research that require more
451 collaborative effort in the modeling community. For example, the evaluation
452 of existing vertical mixing parameterizations of Langmuir turbulence for co-
453 hesive sediment transport has not been conducted in a three-dimensional
454 configuration but is essential to a complete assessment of mixing schemes.

455 Three-dimensional heterogeneous turbulence can redistribute the cohesive
456 sediments in both horizontal and vertical directions and modify their setting
457 velocity and size distribution by modulating the flocculation processes (Liu
458 et al., 2019). In addition, the winds and waves are assumed in the same
459 direction in this study, and the misalignment between the two observed in
460 the real ocean (e.g. Yoshikawa et al., 2018; McWilliams et al., 2014) is not
461 considered. Although not considered in the modified $k - \omega$ model by Yu et al.
462 (2018), this can be improved by including the effect of misaligned wind and
463 wave on the profile of eddy viscosity in the vertical mixing parameterization
464 following the recent practice in the KPP model (Solano and Fan, 2022). Fi-
465 nally, while the 1DV model in this study is tested for cohesive sediment with
466 flocculation processes, the same modeling framework can also be applied to
467 study other reactive tracers, e.g. spilled oil (e.g. Aiyer et al., 2019; Cui et al.,
468 2021) and gas bubbles (e.g. Liang et al., 2012), whose physical properties
469 (e.g. size, shape, and density) are also modulated by the similar aggrega-
470 tion and breakup processes due to turbulent shear, and relevant assessment
471 of existing vertical mixing parameterization is needed and critical to better
472 constrain the associated transport modeling.

473

474 Acknowledgements

475 JY and JHL were supported by the National Science Foundation through
476 grant OCE-1945502. Computations were performed using supercomputers at
477 Louisiana State University, and at Louisiana Optical Network Infrastructure
478 (LONI).

479

480 **Appendix A Parameters in the modified $k - \omega$ model**

481 The dimensionless stability functions used to determine the vertical eddy
 482 viscosity and diffusivity in equations (9)-(12) are calculated as follows

$$483 \quad S_M = \frac{\xi_1 \xi_6 + \xi_2 \xi_4}{\xi_3 \xi_6 - \xi_2 \xi_5}, \quad (A.1)$$

$$484 \quad S_M^{St} = \frac{\xi_1 \xi_5 + \xi_3 \xi_4}{\xi_3 \xi_6 - \xi_2 \xi_5}, \quad (A.2)$$

$$485 \quad S_C = S_N = \frac{\xi_7 + \xi_8 S_M + \xi_9 S_M^{St}}{\xi_{10}}, \quad (A.3)$$

486 where

$$486 \quad \xi_1 = \frac{\lambda_1}{2} + \lambda_4 \left(\frac{\lambda_2 + 3\lambda_3}{3} + \frac{\lambda_6 + \lambda_7}{2} \right) S_N G_N, \quad (A.4)$$

$$487 \quad \xi_2 = \frac{1}{12} [(\lambda_2^2 - 9\lambda_3^2) G_V + (\lambda_2^2 + 18\lambda_2\lambda_3 + 9\lambda_3^2) G_S], \quad (A.5)$$

$$488 \quad \xi_3 = 1 - \lambda_4 G_N - \frac{1}{3}(\lambda_2^2 - 3\lambda_3^2) G_M - \frac{1}{12}(7\lambda_2^2 + 18\lambda_2\lambda_3 + 15\lambda_3^2) G_V - \frac{1}{4}(\lambda_2^2 - \lambda_3^2) G_S, \quad (A.6)$$

$$489 \quad \xi_4 = \frac{\lambda_1}{2} + \lambda_4 \left(\frac{\lambda_2 - 3\lambda_3}{3} + \frac{\lambda_6 - \lambda_7}{2} \right) S_N G_N, \quad (A.7)$$

$$490 \quad \xi_5 = \frac{1}{12} [(\lambda_2^2 - 18\lambda_2\lambda_3 + 9\lambda_3^2) G_M + (\lambda_2^2 - 9\lambda_3^2) G_V], \quad (A.8)$$

$$491 \quad \xi_6 = 1 - \lambda_4 G_N - \frac{1}{3}(\lambda_2^2 - \lambda_3^2) G_M - \frac{1}{12}(7\lambda_2^2 - 18\lambda_2\lambda_3 + 15\lambda_3^2) G_V - \frac{1}{3}(\lambda_2^2 - 3\lambda_3^2) G_S, \quad (A.9)$$

$$492 \quad \xi_7 = \frac{2}{3}, \quad (A.10)$$

$$493 \quad \xi_8 = \left(\frac{\lambda_6 - \lambda_7}{2} + \frac{\lambda_2 - 3\lambda_3}{3} \right) G_M + \left(\frac{\lambda_6 + \lambda_7}{2} + \frac{\lambda_2 + 3\lambda_3}{3} \right) G_V, \quad (A.11)$$

$$494 \quad \xi_9 = \left(\frac{\lambda_6 - \lambda_7}{2} + \frac{\lambda_2 - 3\lambda_3}{3} \right) G_V + \left(\frac{\lambda_6 + \lambda_7}{2} + \frac{\lambda_2 + 3\lambda_3}{3} \right) G_S, \quad (A.12)$$

$$495 \quad \xi_{10} = 1 - \left(\frac{4}{3}\lambda_4 + \lambda_8 \right) G_N - \frac{1}{4}(\lambda_6^2 - \lambda_7^2)(G_M + G_S) - \frac{1}{2}(\lambda_6^2 + \lambda_7^2) G_V. \quad (A.13)$$

495 For more details on the derivation of stability functions and coefficients, the
 496 reader is referred to appendix B in Yu et al. (2018).

497 The dimensionless shear number (G_M , G_S , G_V) and buoyancy number
 498 (G_N) are given as follows (Yu et al., 2018):

$$499 \quad G_M = \tau^2 \left[\left(\frac{\partial \bar{u}}{\partial z} \right)^2 + \left(\frac{\partial \bar{v}}{\partial z} \right)^2 \right], \quad (\text{A.14})$$

$$500 \quad G_S = \tau^2 \left[\left(\frac{\partial u^{St}}{\partial z} \right)^2 + \left(\frac{\partial v^{St}}{\partial z} \right)^2 \right], \quad (\text{A.15})$$

$$501 \quad G_V = \tau^2 \left[\frac{\partial \bar{u}}{\partial z} \frac{\partial u^{St}}{\partial z} + \frac{\partial \bar{v}}{\partial z} \frac{\partial v^{St}}{\partial z} \right], \quad (\text{A.16})$$

$$502 \quad G_N = -\tau^2 N^2, \quad (\text{A.17})$$

503 where $N^2 = \frac{\partial \bar{B}}{\partial z}$ is the square of the buoyancy frequency. Other parameters
 504 used in equations (A.4)-(A.13) include $\lambda_1 = \frac{4a_1}{c_1}$, $\lambda_2 = \frac{2a_2}{c_1}$, $\lambda_3 = \frac{2a_3}{c_1}$, $\lambda_4 = \frac{4a_4}{c_1}$,
 $\lambda_6 = \frac{a_{b1}}{c_{b1}}$, $\lambda_7 = \frac{a_{b2}}{c_{b1}}$, $a_1 = \frac{2}{3} - \frac{c_2}{2}$, $a_2 = 1 - \frac{c_3}{2}$, $a_3 = 1 - \frac{c_4}{2}$, $a_4 = \frac{1}{2} - \frac{c_5}{2}$,
 $a_{b1} = 1 - c_{b2}$, $a_{b2} = 1 - c_{b3}$, $a_{b3} = 2$, $a_{b4} = 2(1 - c_{b5})$, $c_1 = 5.0$, $c_2 = 0.6983$,
 $c_3 = 1.9664$, $c_4 = 1.094$, $c_5 = 0.495$, $c_{b1} = 5.6$, $c_{b2} = 0.6$, $c_{b3} = 1$, $c_{b4} = 0$, and
 $c_{b5} = 0.3333$.

508

509 **References**

510 Aiyer, A., Yang, D., Chamecki, M., Meneveau, C., 2019. A population
511 balance model for large eddy simulation of polydisperse droplet evolution.
512 *J. Fluid Mech.* 878, 700–739.

513 Ariathurai, R., Arulanandan, K., 1978. Erosion rates of cohesive soils. *J.*
514 *Hydraul. Div.* 104, 279–283.

515 Braithwaite, K., Bowers, D., Nimmo Smith, W., Graham, G., 2012. Controls
516 on floc growth in an energetic tidal channel. *J. Geophys. Res. Oceans* 117.

517 Burd, A.B., Jackson, G.A., 2009. Particle aggregation. *Annu. Rev. Mar. Sci.*
518 1, 65–90.

519 Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M., 2001. Ocean tur-
520 bulence. part i: One-point closure model—momentum and heat vertical
521 diffusivities. *J. Phys. Oceanogr.* 31, 1413–1426.

522 Craig, P.D., Banner, M.L., 1994. Modeling wave-enhanced turbulence in the
523 ocean surface layer. *J. Phys. Oceanogr.* 24, 2546–2559.

524 Cui, L., Harris, C.K., Tarpley, D.R., 2021. Formation of oil-particle-
525 aggregates: Numerical model formulation and calibration. *Front. Mar.*
526 *Sci.* 8, 629476.

527 D'Asaro, E.A., 2014. Turbulence in the upper-ocean mixed layer. *Annu.*
528 *Rev. Mar. Sci.* 6, 101–115.

529 Dierssen, H., Zimmerman, R.C., Drake, L.A., Burdige, D.J., 2009. Potential
530 export of unattached benthic macroalgae to the deep sea through wind-
531 driven langmuir circulation. *Geophys. Res. Lett.* 36.

532 Dietrich, W.E., 1982. Settling velocity of natural particles. *Water Resour.*
533 *Res.* 18, 1615–1626.

534 Droppo, I., Walling, D., Ongley, E., 1998. Suspended sediment structure:
535 implications for sediment and contaminant transport modelling. *IAHS-AISH*
536 publ. , 437–444.

537 Dyer, K., 1989. Sediment processes in estuaries: future research require-
538 ments. *J. Geophys. Res. Oceans* 94, 14327–14339.

539 Fan, Y., Jarosz, E., Yu, Z., Rogers, W.E., Jensen, T.G., Liang, J.H., 2018.
540 Langmuir turbulence in horizontal salinity gradient. *Ocean Model.* 129,
541 93–103. doi:<https://doi.org/10.1016/j.ocemod.2018.07.010>.

542 Ferguson, R., Church, M., 2004. A simple universal equation for grain settling
543 velocity. *J. Sediment. Res.* 74, 933–937.

544 Fox-Kemper, B., Adcroft, A., Böning, C.W., Chassignet, E.P., Curchitser,
545 E., Danabasoglu, G., Eden, C., England, M.H., Gerdes, R., Greatbatch,
546 R.J., Griffies, S.M., Hallberg, R.W., Hanert, E., Heimbach, P., Hewitt,
547 H.T., Hill, C.N., Komuro, Y., Legg, S., Le Sommer, J., Masina, S., Mars-
548 land, S.J., Penny, S.G., Qiao, F., Ringler, T.D., Treguier, A.M., Tsujino,
549 H., Uotila, P., Yeager, S.G., 2019. Challenges and prospects in ocean
550 circulation models. *Front. Mar. Sci.* 6. doi:10.3389/fmars.2019.00065.

551 Fox-Kemper, B., Bachman, S., Pearson, B., Reckinger, S., 2014. Principles and advances in subgrid modelling for eddy-rich simulations. *Clivar Exchanges* 19, 42–46.

554 Gargett, A., Wells, J., Tejada-Martinez, A., Grosch, C., 2004. Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. *Science* 306, 1925–1928.

557 Harcourt, R.R., 2013. A second-moment closure model of langmuir turbulence. *J. Phys. Oceanogr.* 43, 673–697.

559 Harcourt, R.R., 2015. An improved second-moment closure model of langmuir turbulence. *J. Phys. Oceanogr.* 45, 84–103.

561 Kantha, L.H., Clayson, C.A., 2004. On the effect of surface gravity waves on mixing in the oceanic mixed layer. *Ocean Model.* 6, 101–124.

563 Keyvani, A., Strom, K., 2014. Influence of cycles of high and low turbulent shear on the growth rate and equilibrium size of mud flocs. *Mar. Geol.* 354, 1–14.

566 Kolmogorov, A.N., 1941. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. *Cr Acad. Sci. URSS* 30, 301–305.

569 Kukulka, T., 2020. Horizontal transport of buoyant material by turbulent jets in the upper ocean. *J. Phys. Oceanogr.* 50, 827–843.

571 Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing:

572 A review and a model with a nonlocal boundary layer parameterization.
573 Rev. Geophys. 32, 363–403.

574 Law, B.A., Hill, P., Milligan, T., Curran, K., Wiberg, P., Wheatcroft, R.,
575 2008. Size sorting of fine-grained sediments during erosion: results from
576 the western gulf of lions. Cont. Shelf Res. 28, 1935–1946.

577 Lentz, S.J., Fewings, M.R., 2012. The wind-and wave-driven inner-shelf
578 circulation. Annu. Rev. Mar. Sci. 4, 317–343.

579 Li, Q., Reichl, B.G., Fox-Kemper, B., Adcroft, A.J., Belcher, S.E., Dan-
580 abasoglu, G., Grant, A.L., Griffies, S.M., Hallberg, R., Hara, T., et al.,
581 2019. Comparing ocean surface boundary vertical mixing schemes includ-
582 ing langmuir turbulence. J. Adv. Model. Earth Syst. 11, 3545–3592.

583 Liang, J.H., Deutsch, C., McWilliams, J.C., Baschek, B., Sullivan, P.P.,
584 Chiba, D., 2013. Parameterizing bubble-mediated air-sea gas exchange
585 and its effect on ocean ventilation. Glob. Biogeochem. Cycles. 27, 894–
586 905.

587 Liang, J.H., McWilliams, J.C., Sullivan, P.P., Baschek, B., 2012. Large
588 eddy simulation of the bubbly ocean: New insights on subsurface bubble
589 distribution and bubble-mediated gas transfer. J. Geophys. Res. Oceans
590 117.

591 Liang, J.H., Wan, X., Rose, K.A., Sullivan, P.P., McWilliams, J.C., 2018.
592 Horizontal dispersion of buoyant materials in the ocean surface boundary
593 layer. J. Phys. Oceanogr. 48, 2103–2125. doi:10.1175/JPO-D-18-0020.1.

594 Liang, J.H., Yuan, J., Wan, X., Liu, J., Liu, B., Jang, H., Tyagi, M., 2022.

595 Exploring the use of machine learning to parameterize vertical mixing in

596 the ocean surface boundary layer. *Ocean Model.* doi:10.1016/j.ocemod.

597 2022.102059.

598 Liss, S.N., Droppo, I.G., Leppard, G.G., Milligan, T.G., 2004. Flocculation

599 in natural and engineered environmental systems. CRC press.

600 Liu, J., Liang, J.H., McWilliams, J.C., Sullivan, P.P., Fan, Y., Chen, Q.,

601 2018. Effect of planetary rotation on oceanic surface boundary layer tur-

602 bulence. *J. Phys. Oceanogr.* 48, 2057–2080.

603 Liu, J., Liang, J.H., Xu, K., Chen, Q., Ozdemir, C.E., 2019. Modeling

604 sediment flocculation in langmuir turbulence. *J. Geophys. Res. Oceans*

605 124, 7883–7907. doi:<https://doi.org/10.1029/2019JC015197>.

606 McWilliams, J.C., Huckle, E., Liang, J., Sullivan, P.P., 2014. Langmuir

607 turbulence in swell. *J. Phys. Oceanogr.* 44, 870–890. doi:10.1175/

608 JPO-D-13-0122.1.

609 Mehta, A.J., 2013. An introduction to hydraulics of fine sediment transport.

610 volume 38. World Scientific Publishing Company.

611 Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model

612 for geophysical fluid problems. *Rev. Geophys.* 20, 851–875.

613 Mietta, F., Chassagne, C., Manning, A.J., Winterwerp, J.C., 2009. Influence

614 of shear rate, organic matter content, ph and salinity on mud flocculation.

615 *Ocean Dyn.* 59, 751–763.

616 Reichl, B.G., Wang, D., Hara, T., Ginis, I., Kukulka, T., 2016. Langmuir tur-
617 bulence parameterization in tropical cyclone conditions. *J. Phys. Oceanogr.*
618 46, 863–886.

619 Rubey, W.W., 1933. Settling velocity of gravel, sand, and silt particles. *Am.*
620 *J. Sci.* , 325–338.

621 Sherwood, C.R., Aretxabaleta, A.L., Harris, C.K., Rinehimer, J.P., Ver-
622 ney, R., Ferré, B., 2018. Cohesive and mixed sediment in the regional
623 ocean modeling system (roms v3. 6) implemented in the coupled ocean-
624 atmosphere-wave-sediment transport modeling system (coawst r1234).
625 *Geosci. Model Dev.* 11, 1849–1871.

626 Sinha, N., Tejada-Martínez, A.E., Akan, C., Grosch, C.E., 2015. Toward a k-
627 profile parameterization of langmuir turbulence in shallow coastal shelves.
628 *J. Phys. Oceanogr.* 45, 2869–2895. doi:10.1175/JPO-D-14-0158.1.

629 Smith, K.M., Hamlington, P.E., Fox-Kemper, B., 2016. Effects of subme-
630 soscale turbulence on ocean tracers. *J. Geophys. Res. Oceans* .

631 Solano, M., Fan, Y., 2022. A new k-profile parameterization for the ocean
632 surface boundary layer under realistic forcing conditions. *Ocean Model.* ,
633 101958.

634 Soulsby, R., Whitehouse, R., et al., 1997. Threshold of sediment motion
635 in coastal environments, in: *Pacific Coasts and Ports' 97: Proceedings*
636 of the 13th Australasian Coastal and Ocean Engineering Conference and
637 the 6th Australasian Port and Harbour Conference; Volume 1, Centre for
638 Advanced Engineering, University of Canterbury. p. 145.

639 Strom, K., Keyvani, A., 2011. An explicit full-range settling velocity equation
640 for mud flocs. *J. Sediment. Res.* 81, 921–934.

641 Strom, K., Keyvani, A., 2016. Flocculation in a decaying shear field and
642 its implications for mud removal in near-field river mouth discharges. *J.*
643 *Geophys. Res. Oceans* 121, 2142–2162.

644 Sullivan, P.P., McWilliams, J.C., 2010. Dynamics of winds and currents
645 coupled to surface waves. *Annu. Rev. Fluid Mech.* 42, 19–42.

646 Sullivan, P.P., McWilliams, J.C., Moeng, C.H., 1994. A subgrid-scale model
647 for large-eddy simulation of planetary boundary-layer flows. *Bound.-Layer*
648 *Meteorol.* 71, 247–276.

649 Tejada-Martinez, A., Grosch, C., 2007. Langmuir turbulence in shallow wa-
650 ter. part 2. large-eddy simulation. *J. Fluid Mech.* 576, 63–108.

651 Umlauf, L., Burchard, H., Hutter, K., 2003. Extending the $k-\omega$ turbulence
652 model towards oceanic applications. *Ocean Model.* 5, 195–218.

653 Van Roekel, L., Adcroft, A.J., Danabasoglu, G., Griffies, S.M., Kauffman,
654 B., Large, W., Levy, M., Reichl, B.G., Ringler, T., Schmidt, M., 2018. The
655 kpp boundary layer scheme for the ocean: Revisiting its formulation and
656 benchmarking one-dimensional simulations relative to les. *J. Adv. Model.*
657 *Earth Syst.* 10, 2647–2685.

658 Van Roekel, L., Fox-Kemper, B., Sullivan, P., Hamlington, P., Haney, S.,
659 2012. The form and orientation of langmuir cells for misaligned winds and
660 waves. *J. Geophys. Res. Oceans* 117.

661 Verney, R., Lafite, R., Brun-Cottan, J.C., Le Hir, P., 2011. Behaviour of a
662 floc population during a tidal cycle: laboratory experiments and numerical
663 modelling. *Cont. Shelf Res.* 31, S64–S83.

664 Warner, J.C., Sherwood, C.R., Arango, H.G., Signell, R.P., 2005. Perfor-
665 mance of four turbulence closure models implemented using a generic
666 length scale method. *Ocean Model.* 8, 81–113.

667 Warner, J.C., Sherwood, C.R., Signell, R.P., Harris, C.K., Arango, H.G.,
668 2008. Development of a three-dimensional, regional, coupled wave, current,
669 and sediment-transport model. *Comput. Geosci.* 34, 1284–1306.

670 Winterwerp, J.C., 1998. A simple model for turbulence induced flocculation
671 of cohesive sediment. *J. Hydraul. Res.* 36, 309–326.

672 Yoshikawa, Y., Baba, Y., Mizutani, H., Kubo, T., Shimoda, C., 2018. Ob-
673 served features of langmuir turbulence forced by misaligned wind and waves
674 under destabilizing buoyancy flux. *J. Phys. Oceanogr.* 48, 2737–2759.

675 Yu, W., Song, J.B., Cao, A.Z., Yin, B.S., Guan, S.D., 2018. An improved
676 second-moment closure model for langmuir turbulence conditions: Model
677 derivation and validation. *J. Geophys. Res. Oceans* 123, 9010–9037. doi:10.
678 1029/2018JC013878.

679 Yuan, J., Liang, J.H., 2021. Wind- and wave-driven ocean surface boundary
680 layer in a frontal zone: Roles of submesoscale eddies and ekman–stokes
681 transport. *J. Phys. Oceanogr.* 51, 2655–2680.

682 **List of Tables**

683 1	Model configuration for 1DV model simulations	32
684 2	Parameters of sediment flocs used in the model.	33

Table 1: Model configuration for 1DV model simulations. Hyphen (—) denotes processes that are excluded.

Case	SMC Model	Wave breaking	Flocculation Processes
1DVa	modified $k-\omega$ (Yu et al., 2018)	Included	Included
1DVb	standard $k-\omega$ (Umlauf et al., 2003)	Included	Included
1DVc	standard $k-\omega$ (Umlauf et al., 2003)	—	Included
1DVd	modified $k-\omega$ (Yu et al., 2018)	Included	—

Table 2: Parameters of sediment flocs used in the model.

Class of Flocs	Diameter [μm]	Density [kg m^{-3}]	Settling velocity [mm s^{-1}]
1	4.0	2600.0	0.0134
2	5.7	2138.7	0.0189
3	8.0	1812.5	0.0268
4	11.3	1581.8	0.0379
5	16.0	1418.8	0.0536
6	22.6	1303.4	0.0758
7	32.0	1221.9	0.1072
8	45.3	1164.2	0.1516
9	64.0	1123.4	0.2144
10	90.5	1094.6	0.3032
11	128.0	1074.2	0.4288
12	181.0	1059.8	0.6064
13	256.0	1049.6	0.8575
14	362.0	1042.4	1.2127
15	512.0	1037.3	1.7151
16	724.1	1033.7	2.4255
17	1024.0	1031.2	3.4302
18	1448.2	1029.4	4.8510
19	2048.0	1028.1	6.8603

685 **List of Figures**

686 1	Schematic for flocculation processes (aggregation + breakup) 687 of cohesive sediments in Langmuir turbulence.	35
688 2	Vertical profiles of (a) normalized eddy viscosity ($K/(u_* h)$) 689 and (b) normalized turbulent kinetic energy dissipation rate 690 ($\epsilon h /u_*^3$) from: LES (red solid), Case 1DVa (black dashed), 691 Case 1DVb (magenta dotted), and Case 1DVc (blue dash- 692 dotted).	36
693 3	Vertical profiles of (a) normalized mean horizontal velocity 694 (U/u_*) and (b) normalized total floc mass concentration ($C_s/(C_{s,v})$) 695 from: LES (red solid), Case 1DVa (black dashed), Case 1DVb 696 (magenta dotted), Case 1DVc (blue dash-dotted), and Case 697 1DVd (cyan dashed).	37
698 4	Vertical profiles of floc mass density [$\text{gL}^{-1}(\ln(D_{k+1}) - \ln(D_k))^{-1}$], 699 where D_k is the diameter of floc in size class k] in 1DV model: 700 (a) Case 1DVa, (b) Case 1DVb, (c) Case 1DVc, and (d) Case 701 1DVd.	38
702 5	Vertical profiles of normalized floc mass concentration ($C_i/(C_{i,v})$) 703 of size (a) $D = 4.0 \mu\text{m}$, (b) $D = 128.0 \mu\text{m}$, and (c) $D = 1024.0 \mu\text{m}$ 704 from: LES (red solid), Case 1DVa (black dashed), Case 1DVb 705 (magenta dotted), and Case 1DVc (blue dash-dotted)	39
706 6	Comparison of vertical profiles of mass weighted settling ve- 707 locity ($W_s [\text{mm s}^{-1}]$) between LES model (red solid) and 1DV 708 model (black dashed).	40

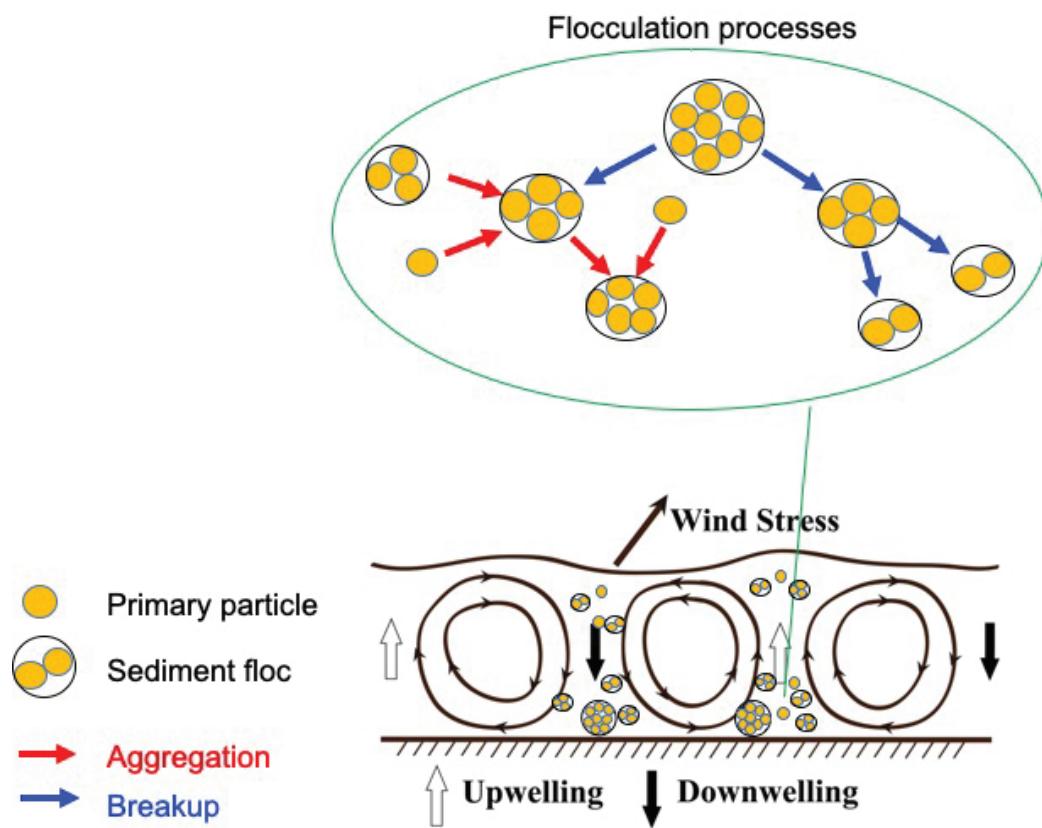


Figure 1: Schematic for flocculation processes (aggregation + breakup) of cohesive sediments in Langmuir turbulence.

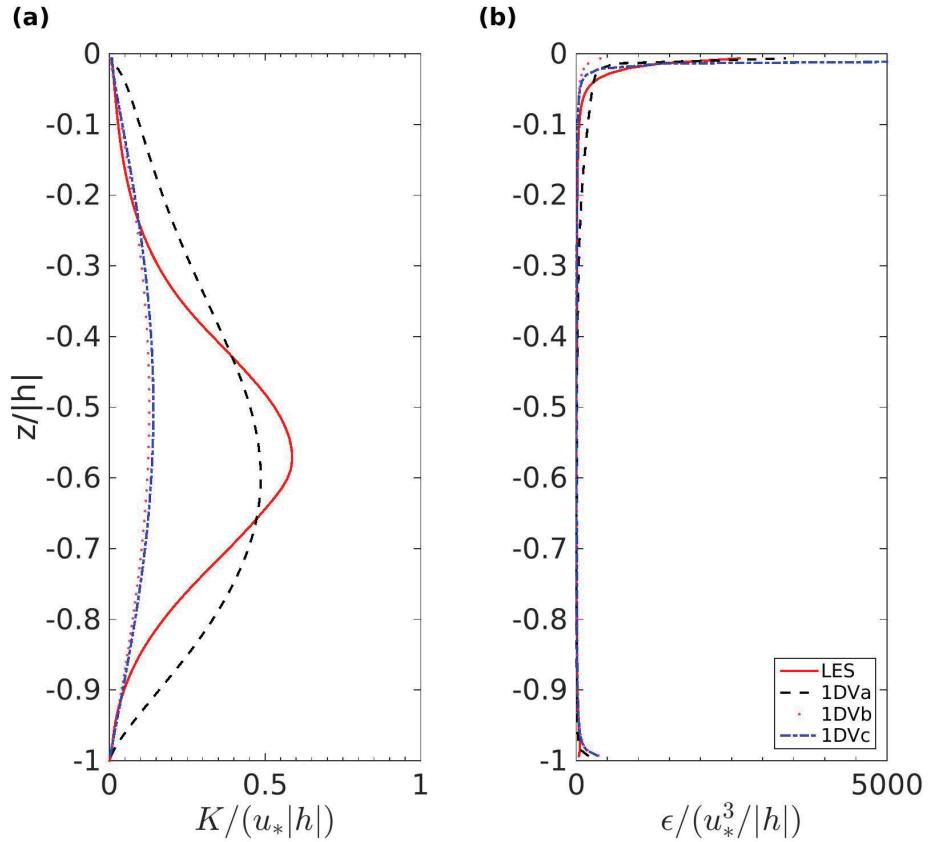


Figure 2: Vertical profiles of (a) normalized eddy viscosity ($K/(u_*|h|)$) and (b) normalized turbulent kinetic energy dissipation rate ($\epsilon|h|/u_*^3$) from: LES (red solid), Case 1DVa (black dashed), Case 1DVb (magenta dotted), and Case 1DVc (blue dash-dotted).

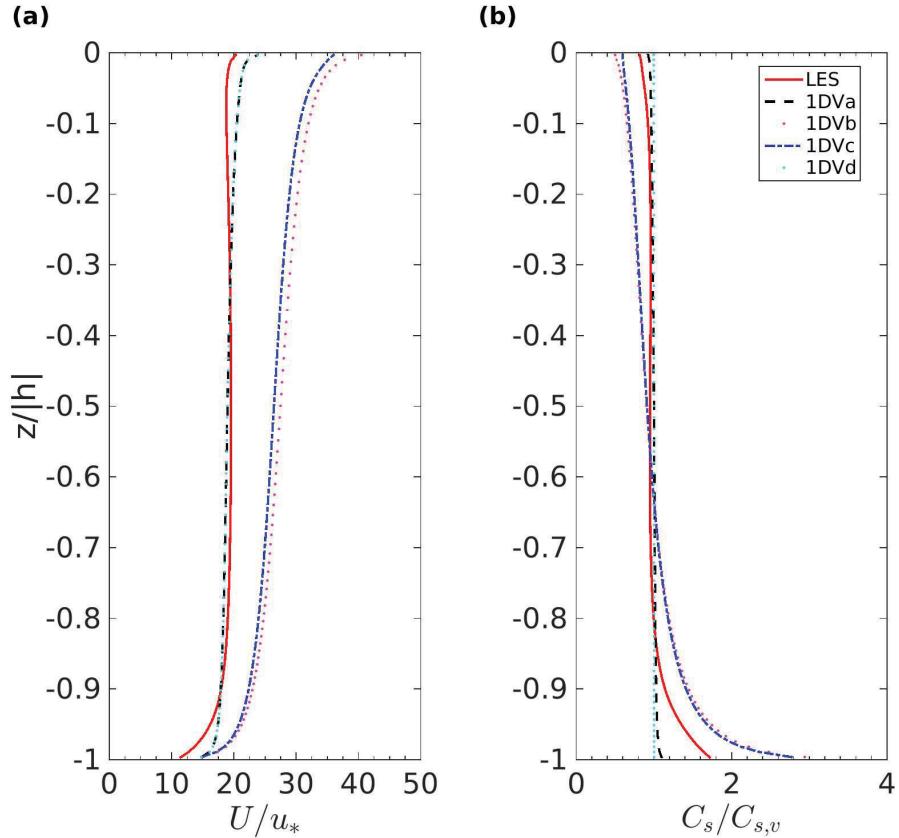


Figure 3: Vertical profiles of (a) normalized mean horizontal velocity (U/u_*) and (b) normalized total floc mass concentration ($C_s/(C_{s,v})$) from: LES (red solid), Case 1DVa (black dashed), Case 1DVb (magenta dotted), Case 1DVc (blue dash-dotted), and Case 1DVd (cyan dashed).

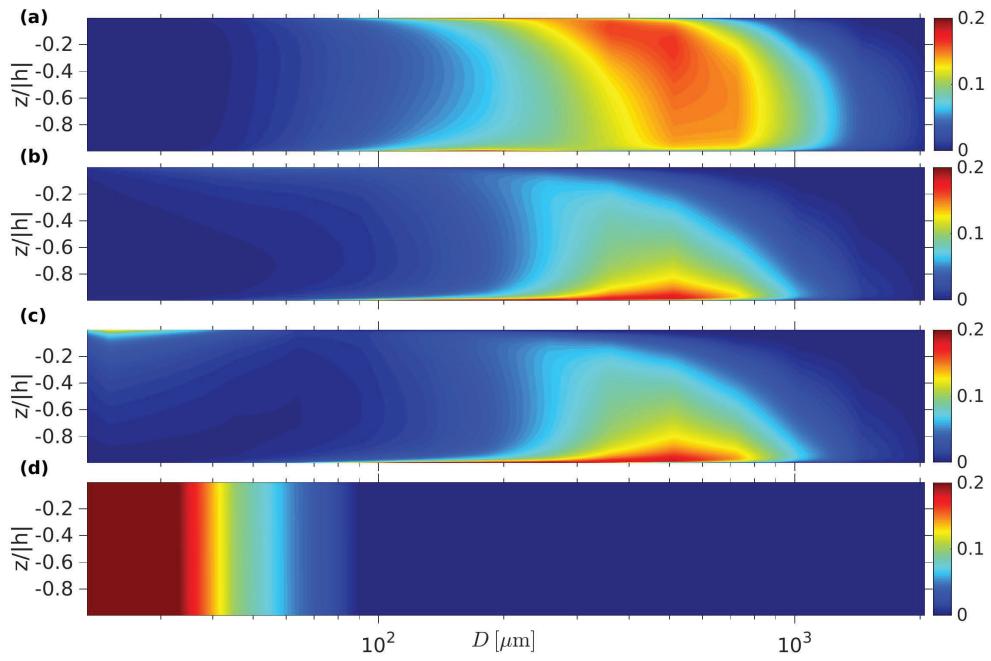


Figure 4: Vertical profiles of floc mass density $[\text{gL}^{-1}(\ln(D_{k+1}) - \ln(D_k))^{-1}$, where D_k is the diameter of floc in size class k] in 1DV model: (a) Case 1DVa, (b) Case 1DVb, (c) Case 1DVc, and (d) Case 1DVd.

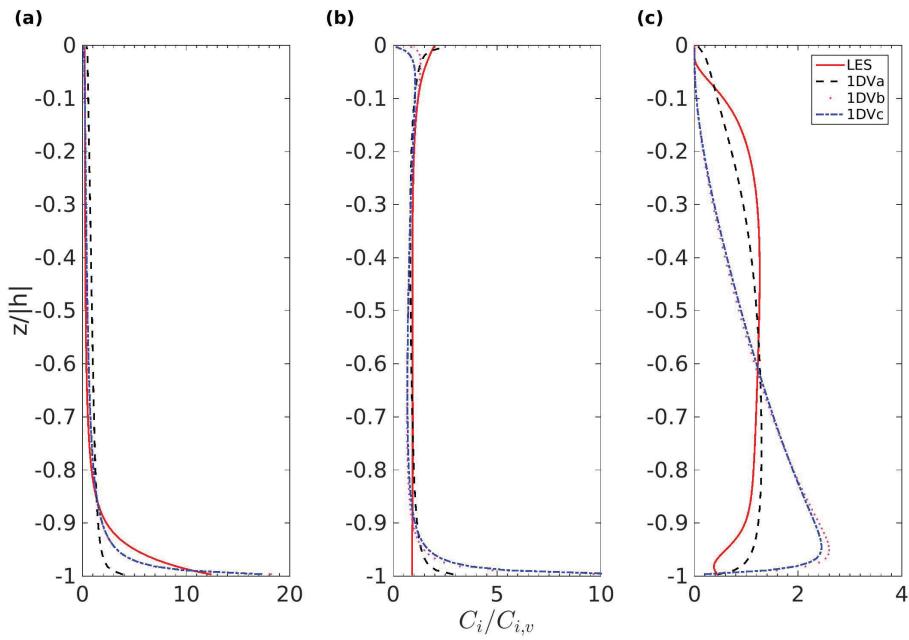


Figure 5: Vertical profiles of normalized floc mass concentration ($C_i/(C_{i,v})$) of size (a) $D = 4.0 \mu\text{m}$, (b) $D = 128.0 \mu\text{m}$, and (c) $D = 1024.0 \mu\text{m}$ from: LES (red solid), Case 1DVa (black dashed), Case 1DVb (magenta dotted), and Case 1DVc (blue dash-dotted)

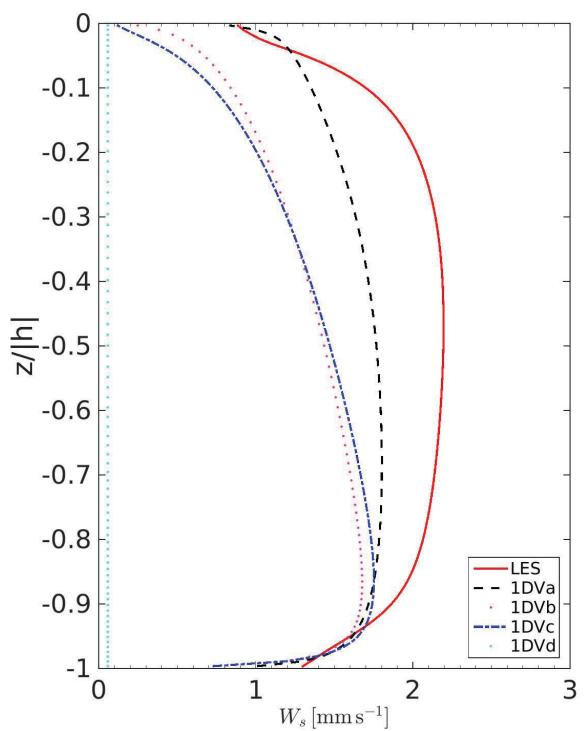


Figure 6: Comparison of vertical profiles of mass weighted settling velocity (W_s [mm s⁻¹]) between LES model (red solid) and 1DV model (black dashed).