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Cognitive Workload Assessment of Prosthetic
Devices: A Review of Literature and Meta-Analysis

Junho Park

Abstract—Limb amputation can cause severe functional disabil-
ity for the performance of activities of daily living. Previous studies
have found differences in cognitive demands imposed by prosthetic
devices due to variations in their design. The objectives of this
article were to 1) identify the range of cognitive workload (CW)
assessment techniques used in prior studies comparing different
prosthetic devices, 2) identify the device configurations or features
that reduced CW of users, and 3) provide guidelines for designing
future prosthetic devices to reduce CW. A literature search was
conducted using Compendex, Inspec, Web of Science, Proquest,
IEEE, Engineering Research Database, PubMed, Cochrane, and
Google Scholar. Forty-three studies met the inclusion criteria.
Findings suggested that CW of prosthetic devices was assessed
using physiological, task performance, and subjective measures.
However, due to the limitations of these methods, there is a need
for more theoretical and model-based approaches to quantify CW.
Device configurations such as hybrid input signals and use of multi-
modal feedback can reduce CW of prosthetic devices. Furthermore,
to evaluate the effectiveness of a training strategy for reducing
CW and improving device usability, both task performance and
subjective measures should be considered. Based on the literature
review, a set of guidelines was provided to improve the usability of
future prosthetic devices and reduce CW.

Index Terms—Human-machine interface, literature review,
mental workload, meta-analysis, prosthesis.

1. INTRODUCTION

ORE than 2.1 million people with amputations live in the

USA and about 185 000 amputations occur each year [1],
[2]. Limb amputation can cause severe functional disability for
the performance of activities of daily living (ADLSs).

Amputees use prosthetic devices on a regular basis to perform
ADLs. Without these devices, ADLs may not be possible or may
require additional effort and time [3], [4]. However, existing de-
vices are often reported to be challenging to use, leading to poor
utilization and device rejection [5], [6]. In an article assessing
the usability of different prosthetic devices, it was found that
53% of passive hand users, 50% of body-powered hook users,
and 39% of myoelectric hand users rejected prosthetic hands.
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The main reasons for rejection were identified as poor dexterity,
glove durability, and lack of sensory feedback [7]-[9]. Other
articles indicated that 40% to 60% of amputees were not satisfied
with their lower-limb prostheses mainly due to issues such as
discomfort, excessive weight, difficulty of use, and pain [10],
[11]. Related to that, 31% of armed forces service members
with lower-limb amputations rejected their prosthesis due to the
lack of satisfaction and usability issues [12], [13].

Using prosthetic devices requires substantial amount of cog-
nitive resources [14]-[18], which can be an underlying cause
for device rejection. Previous articles have found that devices
that impose high cognitive workload (CW) can reduce task per-
formance, which can negatively affect user satisfaction, reduce
device usability, and ultimately might lead to frustration and
prosthetic device rejection [19]-[21]. These cognitive resources
are used to compensate for the loss of motor control and to
mitigate the loss of somatosensory feedback from the amputated
limb [16], [18], [22]-[25]. Therefore, using prostheses can cause
a lack of cognitive capacity available to conduct other mental
activities [16], [18]. High CW can also reduce primary task per-
formance [26]. For example, an amputee may find it difficult to
avoid obstacles or walk in uneven terrain. In case of upper-limb
amputation, most of the current control strategies use limited
information [i.e., shoulder movements or recorded electromyo-
graphy (EMG) signals] for activating several degrees of freedom
of the prosthetic devices, which is not intuitive and results in high
CW [27]. Assessment of CW can provide an understanding of
the underlying attentional resources that are engaged during task
execution and support the evaluation/development of prosthetic
devices [4].

A. Cognitive Workload Assessment Techniques

CW assessment techniques are typically categorized into three
broad categories including physiological measures, subjective
rating scales, and performance measures [28]. Physiological
measures (e.g., heart rate variability) allow the understanding of
physiological processes through their effect on body, rather than
through task performance or perceptual ratings [29]. Subjective
ratings quantify humans’ understanding and judgments of their
experienced demand. Performance measures are classified into
two major categories including primary and secondary task mea-
sures. Primary task measures evaluate operator’s performance
on the task of interest. Examples of primary task performance
measures of CW include speed, accuracy, reaction or response
times, and error rate. Secondary task measures provide an index
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of the remaining operator capacity while performing primary
tasks, and are more diagnostic than primary task performance
measures [29]. Examples of secondary tasks performance mea-
sures include n-back, verbal shadowing, and pursuit tracking
task.

Besides the conventional measures of CW, cognitive perfor-
mance modeling (CPM) technique is another approach to assess
or predict CW. CPM methods such as goals, operators, methods,
and selection rules (GOMS) can provide representations of
human performance, including learning time, execution time,
number of cognitive/perceptual/motor operators, and task errors
[30]. These models can predict the amount of time that an
expert need to retrieve information from memory, select from
decision options, and execute motor movements. These features
enhance the interpretability of CPM approaches as compared to
other CW measurement techniques such as physiological and
subjective measures [20]. Furthermore, as compared to some of
the physiological measures of CW [e.g., electroencephalogram
(EEG)], which are intrusive and can be contaminated by body
motion, CPM approaches are not intrusive and the models can
be modified and applied in different applications. CPMs can be
coded, compiled, and run using software applications such as
Cogulator and CogTool [31], [32].

B. Cognitive Workload Assessment of Prosthetic Devices

Prior articles have investigated CW of different prosthetic
devices using various physiological (e.g., EEG, heart rate, res-
piratory rate, and skin conductance) [33]-[35] or subjective
measures [e.g., NASA-Task Load Index (NASA-TLX)] [36],
[37]. However, there is a lack of a systematic review that
identifies what prosthetic design features or configurations lead
to the differences in CW. In addition, prior articles were only
focused on specific prosthetic device configurations. For exam-
ple, some articles were focused on direct control (DC) or pattern
recognition (PR) controllers [19]-[21], [38]-[43], whereas other
investigations were focused on assessing workload in hybrid
methods such as surface EMG with force myography (FMG)
[44], [45]. Other investigations compared different feedback
modalities in prosthetic devices such as auditory, visual, or
vibrotactile feedback [34], [35], [46]—[48]. Furthermore, some
articles assessed the impact of training on CW of prosthetic
users. However, these assessments were limited to specific
prosthetic configurations (e.g., body-powered or EMG-based
devices) [34], [49]-[51] or training duration [52], [S3]. Thus,
there is a need for an integrated analysis on the impact of training
on reducing CW of prosthetic users. Furthermore, only one
article used CPM approach to assess CW of prosthetic devices
although the method has been used extensively in other domains
such as driver workload assessment and usability evaluations
[20], [54].

The objectives of this review were to 1) identify the range
of CW assessment techniques used in prior articles comparing
different prosthetic devices, 2) identify the device configurations
or features that reduce CW of users, and 3) provide a set of
guidelines for designing future prosthetic devices to reduce CW.
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II. METHOD

The literature review was performed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [55]. The detailed description
of our method including search strategy, eligibility and selection
criteria, and data analysis is described below.

A. Information Sources and Search Strategy

A systematic literature search was conducted using Com-
pendex, Inspec, Web of Science, Proquest, IEEE, Engineering
Research Database, PubMed, Cochrane, and Google Scholar
databases. The search was completed in November, 2020. Man-
ual search was also conducted in Google Scholar, as it is the
most comprehensive search engine [56]-[59]. The search termi-
nologies included “workload AND prosth® AND limb.” In the
advanced setting, we limited the search to include only journal
articles, conference proceedings, and theses/dissertations.

B. Eligibility Criteria

To be included in this review, articles had to fulfill the follow-
ing criteria:

1) The article had to include quantitative information on

cognitive (or mental) workload.

2) The article had to meet the definition of prosthesis for this
review, i.e., “A device to replace missing upper or lower
limb functionality” [60], [61]. Limb functionality refers
to activities such as reaching, grasping, or walking (for
lower limb).

3) Study participants could be either amputees using actual
prosthetic devices or able-bodied participants using by-
pass prostheses.

4) The article had to be written in English.

5) The article should be published in or after 2005 for upper
limb (the year that Defense Advanced Research Projects
Agency started the Revolutionizing Prosthetics Program)
[62] and in or after 1999 for lower limb (the year that
fully microprocessor-controlled prosthesis made walking
with the prosthesis feel and look more natural and pro-
vided lower-limb amputees with a solution that was more
responsive to changes in walking speed) [63].

As shown in Table I, about 60% (26/43) of the articles
were conducted with able-bodied participants using bypass de-
vices. Approximately 12% (5/43) of the articles involved both
able-bodied and amputee participants. About 28% (12/43) of
the articles were conducted with amputees. For those articles
with able-bodied participants, bypass devices were developed
using various input signals such as EMG, inertial measurement
unit (IMU), FMG, and motion tracking. Also, bypass devices
were used to study effects of feedback modality and training
schedule on CW. Therefore, bypass devices with able-bodied
participants were included in the article as they are devices
that allow an able-bodied user to activate a terminal device
with similar controls that an amputee would use to operate a
custom-made prosthesis [90]. Furthermore, based on our review
and previous articles on prosthetic devices, recruiting amputee
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TABLE I

OVERVIEW OF REVIEWED STUDIES

Human-Machine Interface Configuration

CW Assessment Technique (significance)

Ref Location/ Prosthesis Input Signal Output Control
: articipant Type i i i
P P » EMG Braln Others Phys_1 cal Ylnual Physiological | Subjective Performance
Signal device environment
Primary task
v (DC Lo (Number of
[20] U/Amputee Actual /PR) v Pupil size (S) - ransported pins) (S),
CPM (S)
. HR, SC, ST Secondary cognitive
[34] L/Amputee Actual v/ (Passive) v (all N/A) NT (N/A) task
U/ Able- v/ (Tendon- Blink rate (S),
[35] bodied Bypass driven) v SC (3) NT (S) -
[38] l{)/oﬁgg' Bypass v v (3D) EEG (S) . .
v (DC Primary task (CRT,
[39] | U/Amputee  Actual fi v - . B&B, JHFT, SHAP,
) ACMC) (S)
v (DC Primary task (B&B,
[40] | U/Amputee  Actual v - - JHFT, SHAP, CRT)
/PR) ©)
v (DC Primary task (B&B,
[41] U/Amputee Actual PR v - - JHFT, SHAP, CRT,
) Cubbics) (N/A)
v (DC Primary task (B&B,
[42] U/Amputee Actual PR v - - JHFT, CRT, AM-
) ULA) (N/A)
o | U - owe
[65] [{)/o’sgg' Bypass v (IMU) . NT (S) .
[43] | UMixed Bypass v v (2D) EEG (S) NT (N/A) -
Primary task
[19] Li)/ojgitgg_ Bypass ‘7])(]2(: v Pupil size (S) - (Number of
) transported pins) (S)
Primary task
[21] [{)/oﬁgg_ Bypass ﬁlfgc v Pupil size (S) ; (Number of
) transported pins) (S)
[44] li)/o’;gg' Bypass v (FMG) v (2D) - NT (N/A) .
[45] [{)/oﬁibelg' Bypass v (FMG) - NT (N/A) -
EEG (S), HR
[46] li)/o’;gg' Bypass "éT_endon' v (S), HRV,SC,  NT(S) -
riven) RR (S)
U/ Able- v/ (Tendon-
[47] bodied Bypass driven) v - NT (N/A) -
[48] U/Amputee Actual v v - NT (S) -
U/ Able- v (Motion
[53] bodied Bypass tracking) v (2D) - NT (S) -
. Bypass/
[66] U/Mixed e | ver) v EEG (S) NT (N/A) -
[67] [{)/oﬁibelg_ Bypass v v(3D) EEG (S) ; ;
U/ Able- Gaze data (S),
[68] bodied Bypass v v EEG (S) - -
v (Energy
. Bypass/ storing Secondary cognitive
[69] L/Mixed o prostheri v EEG (S) NT (S) B
feet)
[70] | U/Mixed Bypass v v v (3D) EEG (S) NT (S) -
[71] [{)/oﬁibe'g' Bypass v v v(3D) EEG () : ;
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TABLE I
(CONTINUED.)
Human-Machine Interface Configuration . -
Ref Location/ Prosthesis Input Signal Output Control CW Assessment Technique (significance)
participant Type EMG ‘ ?ig;l:l Others Physical VE Physiological | Subjective Performance
. Secondary
[72] L/Amputee Actual v/ (Passive) v EEG NT (S) cognitive task
[73] L/Amputee Actual v/ (Passive) (4 EEG NT (S) -
. Bypass/
[74] U/Mixed Actual v v - NT (S) -
[75] U/Mixed i{f’;‘l?‘/ v v (IMU) v v (3D) . NT (N/A) .
U/ Able- v
[76] bodied Bypass (PR) v (2D) - NT (N/A) -
U/ Able- v/ (Motion
[77] bodied Bypass racking) v (2D) - NT (S) -
U/ Able- v/ (Motion Secondary
(78] bodied Bypass v tracking) v (2D) ) NT(S) cognitive task
U/ Able- v/ (Motion Primary task (Task
[79] bodied Bypass tracking) v ) NT () completion time)
U/ Able- v/ (Motion
[80] bodied Bypass tracking) v (D) - NT(®) ;
U/ Able- v/ (Motion
[81] bodied Bypass racking) v (2D) - NT (S) -
U/ Able- v/ (Motion
[82] bodied Bypass racking) v (D) - NT(S) -
Primary task (Task
[83] U/Amputee Actual v v (2D) - - compietion time)
v/ (Micro- Secondary
[84] L/Amputee Actual processor feet) cognitive task
Primary task (Task
[85] U/Amputee Actual v v - - completion time)
(S)
U/ Able-
[86] bodied Bypass - NT (S) -
U/ Able-
[87] bodied Bypass - NT (S) -
U/ Able-
[88] bodied Bypass - NT (S) -
v/ (Energy
(8] | L/Mixed  BYP3Y storing v EEG (S) ) Secondary
Actual . cognitive task
prosthetic feet)

*(Alphabetical order) ACMC: assessment for capacity of myoelectric control, AM-ULA: activities measure for upper limb amputees, B&B: box and block, BF: breathing
frequency, CRT: clothespin relocation task, EEG: electroencephalography, DC: direct control, FMG: force myography, HR: heart rate, HRV: heart rate variability, IMU: inertial
measurement unit, JHFT: Jebsen hand function test, L: lower limb, NT: NASA-TLX, N/A: descriptive data only, PR: pattern recognition, RFID: radio frequency identification,
RR: respiratory rate, S: significant, SC: skin conductance, SHAP: Southampton hand assessment procedure, ST: skin temperature, U: upper limb.* (Alphabetical order) EEG:
electroencephalography, IMU: inertial measurement unit, L: lower limb, NT: NASA-TLX, N/A: descriptive data only, PR: pattern recognition, S: significant, U: upper limb.

participants for human subject experiments are challenging and
therefore several articles used able-bodied participants to assess
the usability and CW of prosthetic devices. Thus, inclusion of
bypass devices in our article might be helpful in providing a more
comprehensive design guideline for assessing CW of prosthetic
devices. All publications including journal articles, conference
proceedings, and theses/dissertations were eligible.

C. Study Selection

Initially, the relevance of literature returned through the
searches was evaluated via a review of the titles. Literature
deemed relevant via title review was assessed for relevance again
via abstract review. Finally, the full text of literature deemed
relevant by both title and abstract were reviewed by the authors
(n = 159). Of the initial records found (n = 9261), 43 articles
were found to meet the eligibility criteria and were included in
this review per PRISMA methodology shown in Fig. 1. Among

the 43 articles, there were 32 journal articles, 7 conference
proceedings, and 4 Ph.D. or master theses.

The relevant articles were reviewed by the authors in order
to confirm relevance to the present article and to summarize the
findings. For each article, a structured summary was developed
including study citation, objective, methodology, findings, and
conclusions.

D. Data Extraction

The data extraction and variable coding for meta-analysis
were conducted based on the information provided in each article
(e.g., numbers, tables, or figures). Among the 43 articles, 25
articles were excluded due to lack of sufficient number of data
points (i.e., three data points per recommendations from [91])
for each comparison category such as PR vs. DC prosthetic
configurations. Therefore, the meta-analysis was conducted on
the remaining 18 articles.
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TABLE I
HYPOTHESES (HYPOTHESIS NUMBER IN PARENTHESES)

Input signal Output control Feedback modality Training Lower limb
Hybrid approach will Auditory feedback will .
reduce CW compared to the . . r§duce CW compared to the L . .
Use of virtual environments  visual feedback (H4) CW after trainingis  CW in seating

non-Hybrid approach (H1)

as an output control will lower than CW posture is lower
PR configuration will redu<.:e CcwW cpmpared to Multimodal (Auditgry + before training than .CW during
reduce CW compared to the physical devices (H3) Visual) feedback will (H6) walking (H7)
DC configuration (H2) reduce CW compared to the
visual feedback (HS5)

Studies identified from databases (n = 9,261)
=
‘% * Compendex (nl=15) * Engineering Research Database (n6=23)
!g * Inspec (n2=27) * PubMed Central (n7=867)
% * Web of Science (n3=67) * Cochrane (n8=15)
et * Proquest (n4=31) * Google Scholar (n9=8.177)
+ IEEE (n5=34)
— Articles that did not meet the inchision
criteria based on the Title and Abstract
(n=8.515)
o
'% Articles included in review (n = 159)
g * Compendex (nl=4) * Engineering Research Database (n6=0)
* Inspec (@2=0) + PubMed Central (n7=17)
* Web of Science (n3=6) * Cochrane (n8=0)
* Proquest (nd=0) * Google Scholar (n9=77)
— * IEEE (n5=0)
= Articles excluded after full-text review
@, (a=124)
53]
— Articles added via manual search of
< secondary citations (n=8)
B
5 Asticles inciuded in final review
= @=43)

Fig. 1. Literature review process based on PRISMA methodology.

For the overall NASA-TLX score, the average of six subdi-
mensions including mental demand, physical demand, temporal
demand, effort, performance, and frustration was calculated due
to the lack of reporting weights of each category in prior articles.
However, this procedure has been used and validated in previous
articles [92].

E. Hypotheses

Based on the literature review results, a list of hypotheses (H)
was formulated which is presented in Table II. For input signals,
it was hypothesized that the hybrid approach will generate lower
CW than the nonhybrid approach (H1) due to its versatility in
terms of sources of input. Hypothesis 2 (H2) was formulated
based on the findings of our prior article [19]. Multiple resource
theory (MRT) [93] was applied to formulate hypotheses 3-5.
Since virtual environments (VEs) can provide visual and/or au-
ditory feedback to participants, they might reduce CW compared
to physical devices. In addition, since prosthetic device users
use visual resources to interact with the device, using another
modality (i.e., auditory) could generate lower CW than visual
feedback. Hypotheses 6 and 7 were formulated to capture the

effect of training and posture in lower-limb prosthetic devices,
respectively.

F. Data Analysis Approach

The meta-analysis was conducted using Revman 5.3, a meta-
analysis software where we calculated heterogeneity (1*) for
each group of comparison (both within-subject design and
between-subject design). On average, I> was calculated as 38%,
which based on Cochrane’s guide [94], indicates that there was
no heterogeneity issue. The statistical test and procedures used
were based on [95] and were similar to the procedure used in
other meta-analysis articles [96]. The meta-analysis plot was
generated using MATLAB 2020.

A regression analysis was conducted on NASA-TLX scores of
20 upper-limb articles using JMP Pro 15.0.3. Box-Cox transfor-
mation on the dependent variable satisfied both normality and
equal variance assumption. To verify differences in levels of
significant effects, Tukey’s honest significant difference post-
hoc multiple comparison was applied. A significance level of
« = 0.05 was set as a criterion for the article.

III. RESULTS

A. Cognitive Workload Assessment Techniques in Previous
Articles

A review of literature on upper-limb articles revealed that
CW of prosthetic devices was assessed using a combination of
physiological, subjective, or task performance measures (Fig. 2).
Physiological measures included various types of brain activity
measures such as P200 (which represents some aspect of higher
order perceptual processing, modulated by attention), P300 (an
event-related potential component elicited in the process of
decision making), late positive potential (LPP, an event related
potential that reflects facilitated attention to emotional stimuli),
and frontal theta/parietal alpha (FT/PA) [35], [38], [43], [66]-
[68], [70], [71]. A few articles used cardiac [35], respiratory
[35], skin [35], and eye-tracking measurements [19]—-[21], [35].
Skin measurements included skin conductance and temperature.
Eye-tracking measures included blink rate and pupillometry
measures such as pupil diameter [19]-[21]. Among all the CW
measures, NASA-TLX was the most frequently used method
(28 out of 43 articles) [34], [35], [43]-[48], [53], [64]-[66],
[69], [70], [72]-[82], [86]—-[88]. The main reason for frequent
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Cognitive workload measurements in
prosthesis studies
[ | I
Physiological measures Subjective measures Performance measures
o Cardiac: heart rate, heart rate variability o NASA-TLX o Primary task: Task completion
o Respiratory: Respiratory rate or breathing o SUS time, number of transported
frequency items
o Skin: Conductance (Conductance o  Secondary cognitive task: N-
Response), temperature back task, semantic fluency,
o Brain activity: fNIRS, P200, P300, LPP, spatial working memory task
FT/PA, FT/FA o  Cognitive performance models
o  Eye tracking: Blink rate, pupillometry
Fig. 2. Cognitive workload assessment techniques in prosthesis studies.

use of NASA-TLX was determined as its capability to as-
sess CW in motor tasks [58], [66], [92] and consideration
of overall workload as well as the magnitude of each factor
[49], [50].

Primary and secondary task performance were used as CW
measures in 16 articles [19]-[21], [34], [39]-[42], [69], [72],
[78], [79], [83]-[85], [89]. Primary task measures were mainly
used when the participants performed ADL tasks and were
defined in terms of task completion time and the number of trans-
ported items [39]-[41], [79], [83], [85]. CW was also assessed
using secondary task performance measures when participants
were asked to perform verbal, semantic, or numerical cognitive
tasks along with the ADL tasks or other primary tasks during
the experiment (e.g., participants counted backward from 100 to
1 with three steps while they were moving an object with their
prosthetic device [42]).

Only one article used CPM approach to assess CW of pros-
thetic devices [20]. The finding of this article comparing DC
and PR control modes suggested that CPM approaches such as
GOMS models can be used to assess cognitive demands of using
upper-limb prostheses [20].

Six lower-limb articles met the criteria of this review [34],
[69], [72], [73], [84], [89]. Heart rate, skin conductance, skin
temperature [34], and EEG signals [69], [72], [73], [89] were
used as physiological measurement techniques in these articles.
In addition, some articles used NASA-TLX as a subjective
measure of CW [34], [69], [72], [73]. Secondary tasks or dual
tasks under walking or seating condition were also used in
few studies to assess CW [34], [69], [72], [84]. It was found
that participants prioritized between the difficulty of walking
(primary task) and the secondary cognitive tasks in different
environmental conditions (e.g., walking on uneven terrain).
Therefore, to reduce CW, not only secondary tasks but also
primary tasks and environments should be carefully designed
[34], [69], [84].

B. Prosthetic Device Configurations

We made a structure of human—machine interfaces for pros-
thetic devices based on reviewed articles. These interfaces can

be categorized in terms of input signals (signals captured from
human to control the device) and outputs controls (Fig. 3). In
terms of input signals, prosthetic devices can be controlled using
EMG signals, brain signals, and/or other methods. There are
various methods in “others” category such as body-powered
devices or devices controlled by FMG, IMU, or motion tracking.
Outputs can be generally categorized in two groups of physical
devices and VE. Most of the upper-limb articles used EMG as
an input signal for controlling the physical device. Lower-limb
prosthetic devices included passive, energy-storing prosthetic
feet, and microprocessor-controlled devices. In addition, some
articles used bypass input signals with sensors and displayed
virtual prosthesis motions on two-dimensional (2-D) or (3-D)
screens.

1) Inputs:

a) EMG signals: About 60% (26 out of 43 articles) of
the articles used EMG as an input signal, which was the most
frequently used input signal (Table II). This finding is consistent
with other articles [49], [97]-[99] that found myoelectric control
is an appropriate technique concerned with the detection, pro-
cessing, classification, and application of input signals to control
human-machine interfaces in rehabilitation. Most comparisons
of CW have been made between the DC and PR controllers. It
was found that the PR controller imposed less CW on the user as
compared to the DC mode due to intuitive muscle contractions
[20].

Various feedback modalities were combined with EMG-based
configurations to improve task performance and reduce CW. The
most heavily used feedback modality was vibrotactile feedback
[45], [48], [64], [65]. For example, participants received vibro-
tactile feedback that came from uniformly placed vibrotactors
providing information on contact, prosthesis state (active func-
tion), and grasping force. Auditory and visual modalities were
also used in a few articles [35], [46], [47]. For example, the
flexion of the fingers was divided into eight different positions,
which were identified by different piano major triads for the
palmar grasp. As a visual feedback, a green LED was used to
indicate when to start and finish each trial. The participant was
asked to open his hand completely and wait for the LED to turn
ON, then, start closing the hand until the bottle was fully grasped.
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Configurations of human-machine
interfaces for prosthetic devices
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Fig. 3. Configurations of human—machine interfaces for prosthetic devices.

b) Brain signal: EEG [43], [78] was used to provide input
signals to control non-EMG-based devices in order to perform
ADLs. However, using EEG as input signals was more cog-
nitively demanding and required higher effort (attention) than
manual control [100]. Furthermore, EEG signals are highly
susceptible to interference from skeletal muscle activity and
often require the application of elaborate filtering methods that
may result in loss of meaningful signal information. However,
articles that used the hybrid approach (i.e., combination of EEG
and EMG signals) found reduction in CW as compared to the
EEG or EMG signals alone [78].

c) Others: Body-powered prosthetic devices are con-
trolled by body movements. For example, upper-limb body-
powered devices, or cable-operated limbs, work with a harness
and a cable around the opposite shoulder of the injured arm.
The participant can pull the cable to open the prosthetic hand
(hook) by shoulder movements. Passive devices (for lower limb)
[34], [69], [72], [84], [89] were used in five articles to compare
their capabilities with other prosthetic devices or to compare
task performance or CW in various feedback modalities. Force
measurement unit and IMU were used with EMG signals as a
hybrid approach and generated lower CW as compared to EMG
control inputs [44], [45], [75].

Motion tracking was also used to control prosthesis and 2-D
or 3-D displays [53], [77], [78], [80]-[82]. Head movements
were classified as a gesture or pattern for controlling the device’s
movements and animations in the VE. In addition, using motion
capture systems was found to be a more appropriate approach
for capturing head movements instead of using skin attachments
[53], [81], [82]. Lower-limb articles used passive controllers

(i.e., prosthetic devices that look like a natural lower limb) [34],
[72], [73], energy storing prosthetic feet (i.e., devices that use
body weight and force as inputs) [69], [89], and microprocessor-
controlled devices (i.e., devices that sense users’ movement)
[84].

2) Outputs:

a) Physical device: About 77% of the articles (33/43)
used physical devices as an output (Table I). Major EMG-based
devices included DC or PR controllers. A few articles also used
ON/OFF threshold setup (i.e., a prosthetic hand that is operated
with a constant speed in clockwise and counterclockwise direc-
tions with a full stop). Some EMG-based devices used EMG
signals in combination with FMG [44], [45], RFID [75], IMU
[64], [65], [75], and vision module [75] as a hybrid method. The
findings indicated that CW in the hybrid approach was lower
than devices using EMG signals alone.

b) Virtual environment: About 35% of the articles (15/43)
used VE as an output. The articles with VE setup used nonim-
mersive (i.e., 2-D displays) [43], [44], [53], [76]-[78], [80]-[83]
or immersive systems (i.e., 3-D displays) [38], [67], [70], [71],
[75]. None of the articles used head-mounted displays. VE
could be used for testing the capability of human, through
practice, to acquire new sensorimotor mappings to adapt to novel
kinematics or dynamics as well as to learn how to manipulate
a device [82].

However, VE can be challenging for participants in that they
might be able to intentionally control the movements in pros-
thetic devices while allocating less attention to task performance,
which leads to high stability in prosthesis movements and low
task performance [68]. No lower-limb article used 2-D or 3-D
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Fig. 4. Meta-analysis results.

VE as an output. Instead, these investigations used passive or
active transfemoral or transtibial prosthesis devices.

C. Meta-Analysis

Fig. 4 summarizes the findings of meta-analysis. Black circles
represent the difference (D) in CW between the two conditions.
A negative D indicates that the CW of the former condition was
lower than the latter. The red square represents the average D
in each category, k represents the number of articles in each
category, and p indicates the p-value.

If the red square is on the left side of the vertical blue dotted
bar, it means that the former condition is better than the latter
in terms of CW. For example, in the first comparison, the red
square is on the left side, meaning that the CW of using a
hybrid approach is significantly lower than that of a nonhybrid
configuration.

1) Comparison of Different Prosthetic Device Configurations
in Terms of Input Signals: Based on the meta-analysis, it was
found that CW was significantly lower when hybrid signals were
used as an input as compared to the nonhybrid approach (p <
0.05). Hybrid configurations include a combination of EMG or
brain signals with other input signals such as EMG + IMU
[64], [65] and motion tracking + brain signal [78]. Hybrid input
signals were found to have lower CW than single input signals
(i.e., brain signal, EMG, and motion tracking only). Within the
EMGe-based interfaces, CW was significantly lower when the
PR controller was used as compared to the DC in performing
simulations of ADLs such as the clothespin relocation task,
Jebsen hand function test, and cubbies task (p < 0.05) [19]-[21],
[39], [41], [100].

2) Comparison of Feedback Modalities in Prosthetic De-
vices: The analysis on feedback modalities indicated that using
auditory feedback was less cognitively demanding as compared
to the visual feedback (p < 0.05) [35], [46], [47]. However,
using multimodal feedback (i.e., visual and auditory) was more
beneficial than using visual feedback alone (p < 0.05) [35], [46],
[47]. The feedback was provided on the task performance. For

TABLE III
STUDY VARIABLES AND LEVELS FOR REGRESSION ANALYSIS

Variable Levels

1. Tnput sienal Hybrid, EMG, EEG, Others (e.g., motion
- nput signa tracking)

2. Output control Physical prosthesis, Virtual environment

example, auditory feedback was provided to let the user know
whether he/she grasped the object with sufficient force [35].
Altogether, the comparison between different feedback modali-
ties suggests using multimodal visual and auditory feedback to
reduce CW.

3) Effect of Training on Cognitive Workload: Findings sug-
gested that upper-limb amputees experienced less CW after
continuous training for 4-6 weeks at home (p < 0.05) [39],
[41],[83] (Fig.4). These articles assessed participants’ cognitive
load before and after 4-6 weeks of training. Under 6 weeks of
training, participants were exposed to prosthetic devices for at
least 124 h. During four weeks of training, participants received
at least 38 h training on the devices.

4) Cognitive Workload Assessment in Lower-Limb Articles:
CW was higher in the walking condition than the seated condi-
tion (p < 0.05) [34], [69], [72]. However, there was no significant
difference in CW between the seated condition and seated con-
dition with secondary task (p > 0.05). The findings suggest that
walking requires substantial cognitive resources for amputees
with lower-limb prosthetic devices and performing difficult sec-
ondary tasks during this activity significantly increases CW.

D. Regression Analysis

The objective of this analysis was to identify the effect of
prosthetic device configurations on CW. Data coding for the
regression analysis is shown in Table III. Two variables were
identified based on the literature review including: 1) input
signals and 2) output controls. It is important to note that the
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TABLE IV
RESULTS OF REGRESSION ANALYSIS

Variable* p-value F ratio Level p-value (95% C.1) Parameter estimate

Hybrid .01 (-19.60, -2.04) -10.82

. EMG .82 (-7.91, 9.85) 0.97

*% —
Input signal .0005 F(3,37)=7.46 EEG 98 (-18.67, 18.12) 025
Others (ref)
Output _ Physical device 0.42 (-2.45,5.77) 1.66
control 42 F(1,37)=0.67 Virtual environment (ref)

*Input signals: Signals captured from human to control the device, Output control: including physical devices or virtual environment.**An o level of 0.05 was used to

determine statistical significance for the regression analysis.

TABLE V
SUMMARY OF HYPOTHESIS TESTS

Hypothesis Test Result Hypothesis Test Result

H1 Supported H5 Supported

H2 Supported H6 Supported

H3 Refuted H7 Supported

H4 Supported

TABLE VI
COMPARISON OF CW ASSESSMENT TECHNIQUES

Technique Pros Cons
Physiological Continuous & objective [20, 29] Intrusiveness, susceptible to temperature and humidity [110]
Subjective Have high face validity [20] Discrete, ability to predict task performance is uncertain [29,

Useful to test changes of CW using

Task performance direct modification on the task [20]

Cognitive performance

modeling in various situations) [112]

High interpretability, less intrusive, high
versatility (can be edited and embedded

111], recall bias, and individual differences [92]
Lack of interpretability [29], lack of scientific rigor, and
plausible compensatory effect [20]

Need time and effort to learn the modeling techniques, need
validation process with human data

feedback modality was initially included in the model; however,
it was removed due to the lack of sufficient number of obser-
vations. The analysis was focused only on upper-limb articles
as there were only six relevant lower-limb articles and their
workload measurements were heterogeneous. The overall CW
was determined based on the overall NASA-TLX score reported
in prior articles.

Based on Table IV, the type of input signal had a significant
impact on overall CW (p < 0.05). Among the input signals, the
hybrid approach significantly reduced CW (parameter estimate
= —10.82), while others significantly increased CW (parameter
estimate = 10.11). However, there was no effect of output control
on CW (p > 0.05). The model predicting the overall CW was
specified according to (1):

Overall cognitive workload = o + Bmput_Signal - INputsignal
(1)

where « is the intercept, Sinput_signal a0d Soutput_Control are the
parameters associated with the study variables listed in Table IV.

+ /BOUtputControl : OUtputCOHtrol

E. Summary of Hypothesis Tests

Table V illustrates the summary of hypothesis tests based
on meta-analysis and regression results. The results are further
discussed in the following section.

IV. DISCUSSION

This article identified the determinants of CW associated with
using prosthetic devices using two approaches including a meta-
analysis and regression analysis. The meta-analysis provided a
comparison between different variables in terms of CW. Fur-
thermore, the regression analysis reinforced the meta-analysis
results and revealed the impact of device configurations (input
and output) on CW. From this discussion, a set of guidelines was
formulated in Table VII.

A. CW Assessment Techniques

This review revealed that a majority of articles used EEG,
NASA-TLX, and task performance measures to assess CW of
prosthetic devices. EEG signals were used frequently to measure
CW since in most of the articles conducted with upper-limb
prosthetic devices; the participant was in a static posture without
any head or body movement. This static posture would be helpful
to gather and analyze EEG signals from participants as these
signals can be easily contaminated by head or body motion.
In terms of statistical analysis, it was hard to generalize or
elicit insights on CW due to various measurement techniques
such as P200, P300, LPP, FT/PA, FT/frontal alpha ratio, and
insufficient number of articles per each category to conduct
statistical analysis.
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TABLE VII
SUMMARY OF GUIDELINES FOR DESIGNING PROSTHETIC DEVICES WITH LOW COGNITIVE WORKLOAD

Issues Guideline

References

Input signal Upper limb
1. Use hybrid input signals including:
o EMG + IMU or EMG + FMG

2. Use PR instead of DC in EMG-based prosthesis

[44, 48, 64, 65]

[19-21, 39-42, 49, 86]

3. Avoid using motion tracking or tendon-driven devices alone to control

prosthetic devices. Instead, use them as a combination with other input signals

(e.g., EMG)

[35,46, 47, 53,77

4. Provide more degrees of freedom for wrist movement (flexion-extension,

radial-ulnar deviation, and rotation)

Output control
prosthetic devices

1. Use EMG-based physical devices instead of non-EMG based physical

[74,79]

[19-21, 39-42, 45, 48, 49, 64-66, 74, 79, 83, 85]
[118, 119]

2. Use VEs to provide adaptable and rich media for assessment and training of

motor deficits

Feedback modality Upper limb

1. Use multimodal feedback modality (Auditory + Visual) instead of unimodal

feedback (Visual)

Lower limb
1. Use vibrotactile feedback with visual feedback

Training strategy

1. To evaluate the effectiveness of a training strategy, consider both task

[35, 46, 47, 50]

[34]

[34, 49-53]

performance and subjective measures (e.g., NASA-TLX).

2. Provide training for at least four weeks.

[39-41, 76, 83]

Secondary tasks were frequently used in lower-limb articles
to assess CW of prosthetic devices while walking (i.e., primary
task). Use of secondary tasks in this condition is preferred over
physiological measures of CW since bio sensor signals might be
contaminated by whole body movement while walking. How-
ever, complexity of the secondary tasks or environmental condi-
tions can reduce the performance of walking, or the primary task
[84]. In addition, if the amputees are acclimated to the prosthesis
and the environment is stable, the impact of cognitive burden
can be limited, and therefore physiological measurements can
be used instead of task performance measurements to capture
subtle changes in CW under these conditions [101].

One possible alternative to assess CW is the CPM method.
Although CPM was used only in a case study with one amputee
participant under DC and PR conditions, the method has the
potential to be applied to other configurations and experimental
conditions, considering its capability to predict task performance
and calculate memory chunks [20]. The models can calculate
task performance, the number of cognitive/perceptual/motor
operators, and memory chunks to identify bottlenecks in the
task. These models have been widely applied to other domains
such as human—computer interaction research, aviation, health
care, usability testing, and cybersecurity [102]-[108]. However,
it is important to note that CPM approaches assume expert
performance, and therefore the methods might have limited
application to novice prosthetic users.

Advantages and limitations of each CW assessment technique
were summarized in Table VI. A detailed comparison of these
techniques based on sensitivity, intrusiveness, cost, and accu-
racy can be found in [109]. Physiological measures allow the
understanding of psychological processes through their effect
on the body, rather than through task performance or perceptual

ratings [29]. Therefore, the principal advantage of physiological
measures is that these measures are continuous and objective.
However, some signals can be contaminated by head or body
movements (e.g., neuroimaging or EEG measures), especially
in experiments using prosthetic devices or electrode caps [20].

Majority of articles used NASA-TLX to measure CW since
the method is unobtrusive and can be easily collected after the
experiment sessions. Subjective measurement techniques such
as NASA-TLX quantify humans’ understanding and judgments
of their experienced demand. While these methods have high
face validity, their interpretation, and ability to predict perfor-
mance is uncertain [29]. These measures also provide discrete
rather than continuous values, and prior articles have found dis-
sociation between subjective and performance measures [111].
Furthermore, subjective measures are limited due to recall bias
and substantial individual differences [92].

Performance measures are classified into two major cate-
gories, including primary and secondary task measures. Primary
task measures evaluate the operator’s performance on the task
of interest. Examples of primary task measures of workload
include speed, accuracy, reaction or response time, and error
rate. Secondary task measures provide an index of the remain-
ing operator capacity while performing primary tasks and are
more diagnostic than primary task measures [29]. Examples of
secondary tasks include n-back, verbal shadowing, and pursuit
tracking task. Performance measures have advantages in that
they evaluate participants’ performance on the task of interest
directly, and this is useful where the demands exceed operators’
capacity such that performance degrades from baseline or ideal
level [29]. However, they often lack scientific rigor, making
interpretation of the results difficult. Unknown or uncontrolled
factors may affect results rather than the intended manipulations
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in the article. Also, due to the protective (compensatory) effect
of increased effort in the task, measuring performance might
not be sufficient to evaluate the participant’s state. For example,
the performance does not reflect information about the costs
involved in the adaptive response to stress [29].

B. Device Configuration: Input Signals

Hybrid input configurations such as EMG signals in combi-
nation with IMU or FMG were less cognitively demanding as
compared to EMG or EEG input signals alone [64], [65], [75].
Combination of EMG and IMU reduced task completion time
since they were more intuitive than myocontrol configuration
alone. This active support can help the user perform a larger
set of tasks including easy (e.g., reaching or grasping an object)
and complex tasks (e.g., clothespin and cups relocation) while
decreasing the rejection rate of the device [113], [114]. Thus,
the combination of EMG and IMU can improve prosthetic
device usability in terms of effectiveness, satisfaction, and ef-
ficiency [115]. In addition, a combination of FMG and EMG
signals showed higher overall stability (i.e., lower variance)
over time than the EMG signals alone [44], [45]. Using the
hybrid configuration, participants did not have to memorize so
many different movement patterns in order to perform simple
tasks. Therefore, use of hybrid input methods can improve
prosthetic device usability and frequency of use by amputees to
perform ADLs [75]. Among the EMG-based controllers, the PR
mode was the least cognitively demanding prosthetic controller
[39]-[41], [83]. This was mainly because patterns are generated
from the user attempting an actual movement (e.g., forming a
fist). Thus, this identification of user intention can reduce CW,
which is not possible in other EMG-based controllers such as
DC. In terms of device usability, the PR mode is better than
the DC since it requires more natural arm gestures to control
the device, which requires PR rather than recall from memory
[116]. However, even in PR, unintentional hand movement can
occur [19]. Articles have identified errors related to the PR con-
trol, which resulted in unintentional prosthesis movement and
reduced device reliability [41], [83]. However, it was found that
these errors reduced by additional training and as the participants
learned to make more distinguishable movements [117].

C. Device Configuration: Output Control

Some articles found that non-EMG-based devices were signif-
icantly more cognitively demanding as compared to EMG-based
prosthesis. This was mainly due to the difference in eye-hand
coordination performance. The eyes fixate on a target to provide
spatial information before the hands are engaged in a movement
[118]. In EMG-based prosthetic devices, the output control is
attached close to the upper limb and its shape is similar to human
arm, which makes the movement more natural (less cognitively
demanding) for the participant. However, in non-EMG-based
devices such as EEG-based prostheses, the movement of the
device is not always similar to the actual limb because the input
signal location (head) and control location (hand) are separate
[43], [100]. Thus, the operator needs more attention (higher CW)
to move, control, and check the status of the arm. Therefore,

from the usability point of view, non-EMG-based devices need
to be more advanced to improve effectiveness, efficiency, and
satisfaction.

According to recent articles [119], [120], VE can provide
adaptable and rich media to create conditions for the assessment
and training of motor deficits. VEs can mimic arm extension,
flexion, supination, and pronation based on the input commands.
Furthermore, objects like a virtual ball and basket can be created
and placed within the VE [70]. The main advantage of the VE is
its rich and adaptive versatility in training and assessment [71].
Enhanced technology is currently being explored in prosthetic
limb training. It has been shown that VEs help users to form
a robust mental model to perform the ADLs [121], which are
especially important in the initial training phase of using a
myoelectric prosthesis. Since VEs can provide visual and/or
auditory feedback to participants, they can also help to reduce
CW [38], [50], [51], [67], [70], [71].

D. Device Configuration: Feedback Modality

Findings suggested that using combined auditory and visual
feedback modalities could reduce CW. Participants mainly rely
on their visual attention to control their prosthetic device [35],
[46], [47] and to perform ADLs. Based on MRT [93], additional
visual feedback in this situation can cause attentional overload.
For example, if only visual feedback is provided, participants
should visually focus on the task environment to perform the task
while continuously monitoring the visual display to check the
status of their performance. Thus, to avoid attentional resource
competition in the same modality, it is recommended to use
other modalities of information presentation (such as auditory or
vibrotactile [34], [50], [64], [65]) as task performance feedback
modality. Use of auditory feedback can also improve task perfor-
mance while reducing CW, which can increase device usability
[115], [122]. However, vibrotactile feedback should be used with
caution. Upper-limb prosthetic users slightly agreed with the
positive effect of vibrotactile feedback to improve performance
accuracy [50]. However, if the task required continuous visual
attention, there was no significant difference in CW (based on
eye-tracking measures) with or without the vibrotactile feedback
[85]. Some lower-limb articles found that using a combination of
vibrotactile and visual feedback was less cognitively demanding
than a single feedback modality [34]. Furthermore, a majority of
participants preferred mixed feedback modality instead of visual
feedback alone [50].

Another consideration is related to task complexity and train-
ing [113]. The feedback was beneficial only for complex tasks
such as clothespin and cups relocation task. After a participant
was sufficiently trained, he or she could develop a feedforward
strategy, thus, the feedback became redundant. This shows a
need for adaptive feedback based on the skill level of a prosthetic
device user.

E. Training

Participants perceived less CW after 4—6 weeks of training
with the prosthetic device. This might have been due to the
improvement in quality of control over the device and execution
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of movements, which led to less mental effort to perform the
ADLs [39], [42], [83]. However, this recommendation should
be stated with caution and requires additional context. First, our
meta-analysis was based on subjective measures of workload
(i.e., NASA-TLX) and did not include the findings of usability
evaluations. In some upper-limb articles, task performance and
error rate, and therefore device usability improved after four and
six weeks of training [41]. Other articles recommended training
duration of 30 days to determine device rejection rate [123]. Sec-
ond, it should be noted that there might be discrepancies between
participants’ self-report and objective task performance. For
example, although they perceived low CW based on subjective
measures after 4—6 weeks of training, they might not achieve
optimal task performance [39], [41], [49], [83].

F. Limitations

This article had some limitations. First, some reviewed articles
did not provide the exact descriptive statistics values (i.e., mean
and standard deviation). To resolve this issue, we contacted
the authors and could obtain some of those exact values [4],
[33], [39], [48], [49], [51], [52], [64], [65], [83], [100]. For the
articles that we could not find the exact values, the mean and
standard deviation of different conditions were extracted from
the figures [4], [43]-[45], [70], [101]. However, to ensure the
quality of data extraction based on graphs, we compared the
estimates with the exact values (for those articles that we had
the exact values) and the results were similar, which validated
our approach. The second limitation was that the meta-analysis
could not be performed on physiological measures due to the
lack of the number of articles with matched independent and
dependent variables.

Finally, this article included investigations which used bypass
prosthetic devices since a majority of prior articles used able-
bodied participants to assess the usability and CW of prosthetic
devices. However, there are many factors (e.g., device weight,
pain, motivation, perceived functional ability, and satisfaction
with device) that might influence amputees’ mental demands
on any given day. These factors cannot be replicated in bypass
device users, so the results obtained from this article should be
interpreted with caution to the actual population of interest.

V. CONCLUSION

The first objective of this article was to identify the range
of CW measures used in prior articles comparing different pros-
thetic devices. It was found that CW measures can be categorized
into physiological (e.g., heart rate and pupillometry data), and
subjective and task performance (i.e., primary and secondary
task). Among all the measures, the NASA-TLX questionnaire
was the most frequently used method to measure CW in using
prosthetic devices.

The second objective of the article was to identify the device
configurations or features that led to the lowest CW for the
users. It was found that the hybrid approach (e.g., EMG signals
in combination with other input signals) resulted in the lowest
CW as compared to other configurations (e.g., motion tracking)
or nonhybrid approaches. Regarding the feedback modality,
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multimodal feedback was the most effective feedback to reduce
CW, as compared to visual and auditory feedback modalities
alone. Although the use of vibrotactile feedback was found to
be effective in reducing CW of lower-limb prosthetic devices,
its advantages were not clear for upper limbs. In addition, to
evaluate the effectiveness of a training strategy for reducing
CW and improving device usability, both task performance and
subjective measures should be considered.

The final objective of the article was to provide a set of
guidelines for designing future prosthetic devices to reduce CW.
A set of guidelines (Table VII) was established based on the
findings to reduce CW with appropriate input signal, output
control, feedback modality, and training schedule.

The results of this article can be beneficial in design and
development process of future prosthetic devices in order to
reduce CW. By recognizing the identified issues in prosthetic
device configurations, feedback, and training, developers may
be better able to make appropriate design changes toward more
effective, efficient, and satisfying prosthesis use. In addition, the
guidelines might be beneficial in providing design recommen-
dations to improve the usability of prosthetic devices.
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