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Abstract
Dynamical simulations of an externally harmonically driven model granular
metamaterial composed of four linearly and nonlinearly coupled granules show
that the nonlinear normal mode can be expressed in a linear normal mode
orthonormal basis with time dependent complex coefficients. These coefficients
form the components of a state vector that spans a 22 dimensional Hilbert space
parametrically with time. Local π jumps in the phase of these components
occurring periodically are indicative of topological features in the manifold
spanned by the geometric phase of the vibrational state of the metamaterial.
We demonstrate that these topological features can be exploited to realize high
sensitivity mass sensor. The effect of dissipation on sensitivity is also reported.
Nonlinear granularmetamaterials with very low dissipation could serve asmass
sensors with considerable sensitivity to small mass changes via large changes
in geometric phase.

Keywords: geometric phase, Hilbert space, nonlinear normal mode, granular
metamaterial, phase-based mass sensor

(Some figures may appear in colour only in the online journal)

Introduction

Most mechanical sensors rely on resonant processes whereby some component vibrates at
one of its eigen frequencies. This frequency is therefore sensitive to changes in the device
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component properties such as for instance its mass [1]. The sensitivity of the mass sensor
increases with the decreasing size of the device. The sensitivity of resonant mass sensors also
relies on the ability to measure small changes in resonant frequency. Resonant mechanical
sensors effectively measure changes in properties at the interface between the device and the
medium to be inspected. Phononic crystal (PnC) sensor also use mechanical resonance but
have the ability to sense changes in a bulk medium such as a fluid [2]. Here, the medium under
inspection is compartmentalized within the PnC affecting globally its resonant properties.
Metamaterial-based sensors may exploit local field enhancement associated with evanescent
modes and resonant characteristics to achieve high sensitivity [3]. Resonant sensors rely on
shifts in resonances commonly varying linearly with the magnitude of the mass or property
perturbations.

Topological attributes of waves such as exceptional points (EP) may also be employed for
high sensitivity sensing [4]. EP are degeneracies where eigen modes coalesce. Breaking of
system’s symmetry that leads to the EP as a result of some perturbation leads to the splitting
of the coincident resonant frequencies [5]. In contrast to conventional resonant sensors, this
splitting may scale super-linearly with the magnitude of the perturbation leading to enhance
sensitivity [6].

The geometric phase is another attribute of topological waves that has to date been excluded
from sensing approaches. The total phase of a wave is the sum of the dynamical phase and
the geometric wave. The former relates to the time it takes a wave to travel at its velocity
along some path in the space it propagates. But the geometric wave depends on the degrees
of freedom of this wave that form its abstract parameter space (i.e., the ‘space of states’ or
Hilbert space and not the actual space in which the wave propagates). The state of this wave
is a vector in the Hilbert space and the geometric phase depends on the direction of the state
vector. The geometric phase accumulated along a path in parameter space represents the change
in direction (or ‘angle’) of the vector state in the Hilbert space given by the Berry connection
[7]. External drivers can be used to control the path the state vector spans parametrically in the
Hilbert space. The variation of the state vector may be depicted as a geometric manifold whose
topology may not be conventional such as Moebius manifolds which exhibits features such as
twists. Perturbations such as imperfections, structural defects or simply local or global changes
in properties of the system/environment leads, due to scattering, to an additional rotation of
the state vector which will follow another parametric path and span a different part of the
topologicalmanifold of the wave. Regions of the manifold with sharp topological features such
as local twists (associated with sharp π changes in geometric phase) will offer high sensitivity
to the presence of perturbations. A recent study has demonstrated the application of geometric
phase of seismic waves to sensing changes in environments [8].

In this study, we present a modeling and dynamical simulation investigation of a mass
sensor that uses the geometric phase of nonlinear normal modes supported by a granular meta-
material system. An acoustic metamaterial based on coupled granular networks has been the
subject of numerous research fields. Impulsively excited acoustic metamaterials were theoret-
ically [9–11] and experimentally [12] studied to passively redirect propagating pulses from a
directly excited chain to a single chain or a collection of receiving chains, and to determine the
nonlinearmechanisms controlling these energy transfers. In the case of granular metamaterials
under harmonic excitations, nonlinear acoustic bands, i.e., pass and stop-bands, and propagat-
ing breathers similar to linear periodic systems have also been reported [13, 14]. In the current
study, we show that by using external driver that can be controlled through a number of param-
eters such as the frequency, magnitude and distribution of applied forces, we can express the
driven vibrational field of a coupled granular metamaterials in a normal mode orthonormal
basis with time dependent complex coefficients. These coefficients represent the components
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Figure 1. Schematic illustration of the coupled nonlinear granular network. The system
is composed of four granules arranged in two granular dumbbell networks. We will refer
to the top two granules and bottom two granules as being arranged ‘along’ the network.
The granules within the same dumbbell will be referred as being arranged across the
network. External harmonic driving displacements with different amplitudes but same
frequency, ωD, are applied on the left granules. The dynamical response of the system
is detected on the right. The granules along the network interact via nonlinear Hertzian
contact. The granules within a dumbbell interact via linear springs.

of a state vector in the Hilbert space of the granular network. Here, time permits the paramet-
ric exploration of paths within this Hilbert space. The time-evolution of the phase associated
with these components exhibit sharp feature taking the form of π jumps that can be visualized
as twists in the topological manifolds spanned parametrically by time. We show that we can
exploit these topological features to create a mass sensor with very high sensitivity. From an
experimental point of view, the sensitivity of this phase-based sensor will depend on the abil-
ity to accurately measure changes in phase. We also investigate the effect of dissipation on the
sensitivity of this metamaterial mass sensor.

1. Non-linear granular metamaterials model system and simulation method

We seek to explore the dynamical response of a metamaterial composed of coupled spherical
elastic granules subjected to an external harmonic loading. In a first stage, we consider the
granules to be identical. Later, we will address the case of defects in the mass of some of the
granules. We assume that all granules are initially in contact with their neighboring granules
(cf figure 1). We neglect the effects of gravity; however, the dissipative effect is considered
since dissipation is an integral part of any physical system. Due to a small relative displacement
of the granules, their rotational degrees of freedom are neglected, which is experimentally
feasible by restricting the translational and lateral motions of the granular network.

The general mathematical expression of the equations of motion of the externally driven
nonlinear granular network (figure 1), restricted to 1D displacements, reads:

mü1 = kNL[A1 sin(ωDt)− u1 + δ0]
3/2
+

+ η[A1ω cos(ωDt)− u̇1]H[A1 sin(ωDt)− u1 + δ0]

− kNL(u1 − u2 + δ0)
3/2
+ − η(u̇1 − u̇2)H(u1 − u2 + δ0)+ kL(u1 − v1)

+ η(u̇1 − v̇1)

mü2 = kNL(u1 − u2 + δ0)
3/2
+ + η(u̇1 − u̇2)H(u1 − u2 + δ0)

− kNL(u2 + δ0)
3/2
+ − ηu̇2H(u2 + δ0)+ kL(u2 − v2)+ η(u̇2 − v̇2)

3
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mv̈1 = kNL[A1 sin(ωDt)− v1 + δ0]
3/2
+

+ η[A1ω cos(ωDt)− v̇1]H[A1 sin(ωDt)− v1 + δ0]

− kNL(v1 − v2 + δ0)
3/2
+ − η(v̇1 − v̇2)H(v1 − v2 + δ0)+ kL(v1 − u1)

+ η(v̇1 − u̇1)

mv̈2 = kNL(v1 − v2 + δ0)
3/2
+ + η(v̇1 − v̇2)H(v1 − v2 + δ0)− kNL(v2 + δ0)

3/2
+

− ηv̇2H(v2 + δ0)+ kL(v2 − u2)+ η(v̇2 − u̇2). (1)

In equation (1), (α)+ = α for α � 0, (α)+ = 0 for α < 0 and H(·) is the Heaviside func-
tion. u1 and u2 are the displacements of mass 1 and 2 in the top two granules, respectively;
and v1 and v2 are the displacements of the bottom two granules 1 and 2. m is the mass of the
granules, the terms with dissipation coefficient, η, model the dissipative effects, and A1 and A2

represent the amplitudes of the applied input displacements, respectively. δ0 =
(
F0
A0

)3/2
is the

initial static pre-compressionvalue,whereF0 is the homogeneousstatic compression force, and
the parameter A0 contains the geometry and material property of the granules and has the form
A0 =

2E
√
R

3
√
2(1−ν2) [15]. kL and kNL represent the linear and nonlinear spring coefficients, respec-

tively. Since the strongly nonlinear coupling, kNL, is owing to Hertzian interactions between
granules in compression and to keep the dynamics of model (1) in the strongly nonlinear
regime, we have used kNL = 1 and kL = 0.01 for the current study.

If the linear coefficient and the static pre-compression are zero, i.e., kL = δ0 = 0, the system
becomes a strongly (essentially) nonlinear system with no linear term. Such a system has been
studied extensively by several researchers [15–17]. In particular, references [18–20] demon-
strated that such nonlinear systems possess standing modes, referred to as nonlinear normal
modes (NNMs). NNMs differ from linear normal modes (LNMs) since the granule oscilla-
tions in NNMS are not always synchronous, even though their frequencies are the same. Note
that in these previous studies, the systems were conservative. In practice, dissipation needs to
be considered. Hence, with the presence of damping, we seek the nonlinear normal modes of
the coupled network and excite the coupled network with out-of-phase (A1 = −A2) mode.

We solve the dynamical equation (1) employing molecular dynamics (MD) simulation and
have used Runge–Kutta (4) and (5) formula. In the MD simulation, total time-steps of 221 and
unit-steps of 0.01 were used to ensure conservation of the total energy with an accuracy better
than 1× 10−11%.

2. Numerical results on the nonlinear dynamics of the granular system

2.1. Nonlinear normal modes

In figure 2 we report the displacement of the four granules as a function of time when we
excite the first masses on the left of the network with the out-of-phase mode, i.e., A1 = −A2

(see figure caption for complete set of model parameters). The top and bottom two granules
vibrate out-of-phase. The two top or bottom two granules vibrate in-phase.

Since the coupling stiffness across the network is linear, the eigenstates across the network

can be written as EAc
1 = 1√

2

(
1
1

)
and EAc

2 = 1√
2

(
1
−1

)
, where the superscript Ac stands for

eigenstates across the network. These orthogonal states are mutually exclusive.
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Figure 2. Time series of the granule displacements of the NNM for the coupled
granular network. System parameters: A1 =

1
30 , η = 2

900 , δ0 = 0,ωD = 0.4241,A2 =
−A1, kNL = 1, kL = 0.01.

We would like to point out that several previous works on wave propagation in bi-modular
media, such as backwardpropagation [21], veering [22], and appearing crossing points between
different modes [23], have been published. However, those works could be resolved using
analytical approaches based on either continuous approximations or homogenization. On the
contrary, from figure 2, we observe that the current granular media dynamics are not only
strongly nonlinear (not even linearizable) but also involve both compression and separation
between adjacent granules. Hence, the dynamics must consider the non-smooth effects due to
the granule separation. The oscillation’s non-smooth effects are linked to granule responses’
silence intervals, i.e., to motion-phases in which a granule is stationary at a distance from the
equilibrium zero. As a result, the normal mode depicted in figure 2 is the mode that is most
influenced and driven by the granular system’s discrete nature. We will demonstrate how the
nonconservative discrete granular metamaterials dynamics’ discontinuous character gives rise
to intriguing features that will be used in conjunctionwith the nonseparable states and topology
to achieve a high sensitivity mass sensor. The concept of nonseparable states and topology has
implications in several branches of physics and has found applications in sensing, in particular
quantum sensing [24–27].

The displacement field in figure 2 is the Fourier sum of the linear and nonlinearmodes, each
with its characteristic frequency. This is revealed in figure 3 through the temporal Fourier trans-
formof the first top granule’s displacement. To identify the dominant characteristic frequencies
in the coupled network, we set a threshold of 1% of the maximum amplitude to eliminate
noise (dotted line in figure 3(a)). Moreover, we calculate the phase differences between gran-
ules along and across the network for each dominant characteristic frequency. For example,
in figure 3(b), we see that for the lowest dominant characteristic frequency of ω = ωD =
0.4241, corresponding to the driving frequency, the phase differences between granules are
ϕu1,u2 = ϕu1 − ϕu2 = ϕv1 − ϕv2 = ϕv1,v2 = 0 andϕu1,v1 = ϕu1 − ϕv1 = ϕu2 − ϕv2 = ϕu2,v2 =
π, where ϕu1 ,ϕu2 ,ϕv1 , and ϕv2 are the absolute phases of the granule displacements u1, u2, v1,
and v2. This implies that the displacement field of the granules’ network can be described

by the eigenstates: EAl
1 = 1√

2

(
1
1

)
and EAc

2 = 1√
2

(
1
−1

)
at the characteristic frequency ω. The

superscript Al stands for eigenstates characterizing modes along the network and Ac stands
for eigenstates characterizingmodes across the network. At the second higher harmonics, 2ωD,
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Figure 3. (a) Temporal Fourier transform of the first top granule’s displacement, and
(b) phase difference between granules at each of the dominant characteristic frequency.
In (a), we set a threshold value of 1% of the maximum amplitude (dotted line) to identify
the dominant characteristic frequencies.

we observe in figure 3(b) that the phase difference between granules along the network is π
while it is 0 across the network. Hence, at this other characteristic frequency, the displacement

field can be described by the eigenstates: EAl
2 = 1√

2

(
1
−1

)
and EAc

1 = 1√
2

(
1
1

)
.

It is emphasized that even though NNMs do not possess orthogonality properties (as do
the linear normal modes) [28–30], the combinations of EAl

1 and EAl
2 , and EAc

1 and EAc
2 form a

complete orthonormal basis for the system. Therefore, we can form a basis for the states of the
coupled granular network in the form of four tensor products:EAl

1 ⊗ EAc
1 ,EAl

1 ⊗ EAc
2 ,EAl

2 ⊗ EAc
1

and EAl
2 ⊗ EAc

2 . In this basis, for any specific characteristic frequency,ω, the displacement field
can be written as:

⎛
⎜⎜⎝
|C1|eiϕu1
|C2|eiϕv1
|C3|eiϕu2
|C4|eiϕv2

⎞
⎟⎟⎠eiωt =

(
A11E

Al
1 ⊗ EAc

1 + A12E
Al
1 ⊗ EAc

2 + A21E
Al
2 ⊗ EAc

1

+ A22E
Al
2 ⊗ EAc

2

)
eiωt,

6
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where Ci, i = 1, 2, 3, 4, are the amplitudes at each of the specific characteristic frequency ω.
Ai j, i, j = 1, 2, are the amplitude coefficients associated with each product state. Simplifying
the above equation leads to:

⎛
⎜⎜⎜⎜⎝

|C1|eiϕ1
|C2|eiϕ2

|C3|eiϕ3

|C4|eiϕ4

⎞
⎟⎟⎟⎟⎠ =

1
2

⎛
⎜⎜⎜⎜⎝

A11 + A12 + A21 + A22

A11 − A12 + A21 − A22

A11 + A12 − A21 − A22

A11 − A12 − A21 + A22

⎞
⎟⎟⎟⎟⎠. (2)

Using equation (2), we can calculate each product state’s amplitude coefficients, Ai j; i, j =
1, 2, associated with each dominant characteristic frequency. The amplitudes, Ai j, are complex
quantities. Hence, similarly to a quantum system, after normalization of equation (2), a unit
vector can be used to describe the state of the granular network in a complex vector space (or
inner product space), known as state space or Hilbert space. Moreover, the vectors EAl

1 and
EAl
2 are two mutually orthogonal eigenstates along the granular network and therefore, form an

orthonormalbasis for a two-dimensionalHilbert space,HEAl . Similarly, the vectorsEAc
1 andEAc

2
are two mutually orthogonal eigenstates across the network and hence form an orthonormal
basis for another two-dimensional Hilbert space, HEAc . Therefore, using an analogy with a
quantum system, we use the Dirac notation for vectors and apply it to the elastic states of the
coupled granular network by writing vectors in state space as:

⎛
⎜⎜⎝
|C1|eiϕ1

|C2|eiϕ2

|C3|eiϕ3

|C4|eiϕ4

⎞
⎟⎟⎠ =

(
A11

∣∣EAl
1

〉∣∣EAc
1

〉
+ A12

∣∣EAl
1

〉∣∣EAc
2

〉
+ A21

∣∣EAl
2

〉∣∣EAc
1

〉

+ A22

∣∣EAl
2

〉∣∣EAc
2

〉)
eiωt. (3)

By doing so, we define the orthonormal basis as |φ1〉 =
∣∣EAl

1

〉∣∣EAc
1

〉
, |φ2〉 =∣∣EAl

1

〉∣∣EAc
2

〉
, |φ3〉 =

∣∣EAl
2

〉∣∣EAc
1

〉
and |φ4〉 =

∣∣EAl
2

〉∣∣EAc
2

〉
, i.e., as products of eigenstates

along and across the granular network. Accordingly, |φ1〉, |φ2〉, |φ3〉 and |φ4〉 form the basis
of a four-dimensional Hilbert product space HEAl,EAc = HEAl ⊗ |HEAc , where HEAl is the space
associated with the degrees of freedom along the granular network with basis

{
EAl
1 ,EAl

2

}
, and

HEAc representing degrees of freedom across the network with basis
{
EAc
1 ,EAc

2

}
. The states

of the granular network can be thought of as the states of a two partite composite system
with one subsystem associated with the degrees of freedom along the network and the second
subsystem associated with the degrees of freedom across the network. Each subsystem is
effectively a two-level system. The dimension of the Hilbert space HEAl is 2. The space HEAc

is also two-dimensional. The dimension of the product space is therefore four-dimensional
22 = 4.

2.2. Time dependent complex amplitudes and phases of granule displacement

At each of the characteristic frequencies identified in figure 3(a), we write the displacement
field by using equation (3). Moreover, through construction, if we write the displacement field
as a tensor product of linear combinations of eigenstates, i.e., as a tensor product of the linear

7
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combination of eigenstates along and across the granular network, we obtain:⎛
⎜⎜⎜⎜⎝

|C1|eiϕ1

|C2|eiϕ2

|C3|eiϕ3

|C4|eiϕ4

⎞
⎟⎟⎟⎟⎠ =

[(
α
∣∣EAl

1

〉
+ β

∣∣EAl
2

〉)
⊗
(
γ
∣∣EAc

1

〉
+ δ

∣∣EAc
2

〉)]
eiωt (4)

this is only possible if αγ = A11,αδ = A12, βγ = A21, βδ = A22, where α, β, γ, δ ∈ R. In this
case, the state is a separable state. If the displacement field cannot be written as a product
of a linear combination of eigenstates along and across the granular network, the state is a
non-separable state. In analogy with quantum mechanics, this can be interpreted as classi-
cal ‘entanglement’ since it possesses the quantum mechanical feature of non-factorizability,
though it lacks non-locality [31–36].

The coefficients, Ai j, take on different values for each of the characteristic frequencies, ωn.
Hence, the total displacement field of the coupled granular network can be written as the linear
combination:

�U =
∑
n

⎛
⎜⎜⎜⎜⎝

|C1,n|eiϕ1,n

|C2,n|eiϕ2,n

|C3,n|eiϕ3,n

|C4,n|eiϕ4,n

⎞
⎟⎟⎟⎟⎠eiωnt

=
∑
n

(
A11,n

∣∣EAl
1

〉∣∣EAc
1

〉
+ A12,n

∣∣EAl
1

〉∣∣EAc
2

〉
+ A21,n

∣∣EAl
2

〉∣∣EAc
1

〉

+ A22,n

∣∣EAl
2

〉∣∣EAc
2

〉)
eiωnt

=
∑
n

(
A11,n eiωnt

)∣∣EAl
1

〉∣∣EAc
1

〉
+
∑
n

(
A12,n eiωnt

)∣∣EAl
1

〉∣∣EAc
2

〉

+
∑
n

(
A21,n e

iωnt
)∣∣EAl

2

〉∣∣EAc
1

〉
+
∑
n

(
A22,n e

iωnt
)∣∣EAl

2

〉∣∣EAc
2

〉
.

(5)

The total displacement field is now expanded on the basis of the product Hilbert space
HEAl,EAc with time dependent complex coefficients.

In that basis, the total displacement field can bewritten in the formof a columndisplacement
state vector, |ψ〉:

|ψ〉 =

⎛
⎜⎜⎜⎜⎝

ψ00

ψ01

ψ10

ψ11

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
n

A11,n eiωnt

∑
n

A12,n eiωnt

∑
n

A21,n e
iωnt

∑
n

A22,n eiωnt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

where, ψi j, i, j = 0, 1 are time dependent complex coefficients.
The simplest necessary condition for such a state to being classically entangled

(i.e., non-separable into a product) is
(∑

nA11,n eiωnt
)(∑

nA22,n eiωnt
)
�=

(∑
nA12,n eiωnt

)
(∑

nA21,n eiωnt
)
.

8
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Figure 4. (a) Time dependence of the modulus of the complex coefficients, ψi j, i, j =
0, 1, and (b) time evolution of the phase of the coefficients ψ01 and ψ10.

Equation (6) shows a rather interesting feature. For the case of a linear elastic system, it
is obvious that the resultant elastic mode frequency is the same as the parent mode (i.e., the
driving frequency). For such a system, n will be equal to 1 in equation (6) since no modal
mixing is possible in a linear system. Hence, the complex coefficients will be independent of
time. On the other hand, for the case of a nonlinear system, as is studied here, the complex
coefficients are time-dependent since nonlinear mode-mixing is possible.

Figure 4(a) shows the time dependence of the complex coefficients, ψi j, i, j = 0, 1 at steady
state. The components of ψ01 and ψ10 interact and exchange as time progress, however, the
components of ψ00 and ψ11 are very small. Moreover, since both the complex coefficients ψ00

and ψ11 are small, whenever ψ01 and ψ10 are equal, we expect at that instant the state is maxi-
mally entangled (i.e., non-separable). On the other hand, if either ψ01 or ψ10 are close to zero,
it is a separable state. From the phase values of ψ01 and ψ10 in figure 4(b), we observe a clear π
jump in the geometric phasewhenever the state becomes separable state. This evolution repeats
periodically in time. Therefore, time enables the system to span its Hilbert space parametri-
cally. The path the state vector |ψ〉 follows inHEAl,EAc is closed and periodic. The time evolution
of the state vector which represents the accumulation of geometric phase can be reframed as
the parallel transport of a vector [37] on a manifold constituted of a closed looped ribbon with
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a single twist, that is, a Moebius strip. The sharpness of the π jump in time indicates that the
twist is well localized along the strip.

3. Application to a phase-based mass sensor

We now investigate the influence of a mass defect on the time-dependent complex ampli-
tudes of the granular network. For this, we emphasize the region where the phase of the
complex amplitudes exhibits π jumps. We perturb the mass of the two granules forming
the dumbbell on the right side of the network. Each granule is assigned a defected mass:
mdefect = m

(
1− 7× 10−10

)
. We repeat the numerical experiment conducted in section 2 by

calculating the time-dependent phases of the complex amplitudes while leaving all other sys-
tem parameters the same.

We focus on the single time dependent complex component ψ01, since it best captures the
topology of the dynamics of the connected granular network. The phase of ψ01 (i.e., arg(ψ01))
with and without mass defect is shown in figure 5(a). The mass defect is attempting to flatten
the π jump. Effectively, it modifies the path the state vector |ψ〉 follows parametrically in the
granular network’s Hilbert space. This new path can be visualized as the parallel transport of a
vector along a Moebius strip which twist extends over a longer segment of the strip. The twist
associated with the defected system is more delocalized along the strip compared to that of the
undefected system. To visualize this effect more clearly, we proceed to calculate the phase dif-
ferenceΔ(arg(ψ01)) = arg (ψ01)with defect − arg (ψ01)without defect.Δ(arg(ψ01)) plot of figure 5(b)
shows odd function character that follows a continuous cotangent graph with period π/ωD and
has a finite amplitude.We will show next that the width ofΔ(arg(ψ01)) versus time comes from
the damping of the system, while the presence of the mass defect causes the magnitude of the
cotangent like graph to be finite. Since the integral of a cotangent function is the natural log of
a sine function, hence cumulative time-integral of the functionΔ(arg(ψ01)) (using cumulative
trapezoidal rule as is shown in figure 5(c)) shows behavior similar to the natural log of a sine
function. The influence of the mass defect causes a substantial fluctuation in the phases (in
radians) as seen in figure 5(c).

In the next case, we double the system’s damping parameter to better understand the
effect of the system characteristics on the phases of the complex amplitudes with mass
defect. Because the granular network under consideration is a highly nonlinear system,
we must first identify the driving frequency value for which we may observe nonlin-
ear eigen modes numerically, as shown in figure 2. This NNM frequency is found to be
ωD = 0.3667.

We now consider the influence of the larger damping coefficient η = 4
900 on the π jump

before introducingmass-defect at the driving frequencyωD = 0.3667. In figure 6(a), we exam-
ine the time dependence of the phase of the complex amplitude ψ01 (i.e., arg(ψ01)) with the
two distinct driving frequency-dampingcoefficient combinations: (ωD, η) =

(
0.4241, 2

900

)
and(

0.3667, 4
900

)
. However, as previously stated, we obtain identical NNMs for both of these

combinations of parameters (as shown in figure 2). Because the periods for these driving fre-
quencies differ, we normalize time with respect to the relevant period in figure 6(a) to better
contrast the results. Increasing damping reduces the sharpness of the π jump in figure 6(a). As
a result, we can anticipate that higher damping systems will be less sensitive to mass changes
than lower damping systems.

We now add a mass defect on the second dumbbell and calculate again the time depen-
dency of the phase of the complex amplitude ψ01 (arg(ψ01)), phase difference Δ(arg(ψ01)),
and cumulative time-integral of the function Δ(arg(ψ01)) and compare the results with the
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Figure 5. Time dependence of (a) the phase of the complex amplitude ψ01 i.e.,
arg(ψ01) with and without mass defect, (b) the phase difference Δ(arg(ψ01)) =
arg (ψ01)with defect − arg (ψ01)without defect, and (c) cumulative time-integral of the function
Δ(arg(ψ01)).

system without the mass defect. Figure 6(b) depicts the cumulative time-integral of the
function Δ(arg(ψ01)) for various mass defect levels. The figure clearly indicates that bigger
mass defects result in higher phase variations. However, comparing figures 5 and 6(b), we can
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Figure 6. (a) Normalized time dependence of the arg(ψ01) for two distinct driving fre-
quency and damping value combinations: (ωD, η) =

(
0.4241, 2

900

)
and

(
0.3667, 4

900

)

without the presence of a mass-defect, and (b) time dependence of the cumulative
time-integral of the function Δ(arg(ψ01)) for different values of the mass defect for
(ωD, η) =

(
0.3667, 4

900

)
, and with system parameters: A1 =

1
30 , δ0 = 0,A2 = −A1.

see that a lower damping value has a higher sensitivity, that is, it can detect much smaller
changes in mass.

4. Conclusions

We have conducted a modeling and dynamical simulation investigation of a nonlinear granu-
lar metamaterial composed of two pairs of granular dumbbells interacting linearly within the
dumbbells and nonlinearly between dumbbells. When driven externally at some specific fre-
quency, magnitude and distribution of applied forces, the nonlinear vibrational normal mode
can be expressed in a linear normalmode orthonormalbasis with time dependent complex coef-
ficients. These coefficients constitute the components of a state vector in the 22 dimensional
Hilbert space of the metamaterial and time enables the system to explore parametrically this
Hilbert space along closed periodic paths. Along these paths, the components exhibit π jumps
in the geometric phase that can be visualized as twists in the topological manifolds spanned
parametrically by time. We demonstrated that these topological features can be exploited to
realize mass sensor with very high sensitivity. The π jumps are extremely sensitive to the pres-
ence of mass defects. Mass flaws reduce the sharpness of the jumps as a function of time
leading to measurable changes in geometric phase. The width of the jumps increases as the
size of defects increases. As a result, there is no theoretical limit to the size of a defect that
can be detected but the ability to measure small variations in phase. Dissipation may reduce
the sensitivity of this metamaterial mass sensor. However, for metamaterials with very low
damping one expects that extremely slight changes in mass may cause considerable sensitivity
through large changes in geometric phase.
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