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A B S T R A C T   

The popularity of context-aware services is improving the quality of life, while raising serious privacy issues. In 
order for users to receive quality service, they are at risk of leaking private information by adversaries that are 
possibly eavesdropping on the data and/or by the untrusted service platform selling off its data to adversaries. 
Game theory has been utilized as a powerful tool to achieve privacy preservation by strategically balancing the 
trade-off between profit (service) and cost (data leakage) for the user. However, most of the existing schemes 
cannot fully exploit the power of game theory, as they fail to depict the mutual relationship between any two (of 
the three) parties involved: user, platform, and adversary. Existing schemes are also not always able to provide 
specific guidance for a user to reduce the impact of the joint threats from the platform and adversary. In this 
paper, we design a privacy-preserving game to quantify the three parties’ concerns and capture interactions 
between any two of them. We also identify the best strategy for each party at a fine-grained level, i.e. specific 
settings, not simply binary choices. We validate the performance of our proposed game model through both a 
theoretical analysis and experiments.   

1. Introduction 

Thanks to the rapid development and popularity of context-aware 
services, such as recommendation, navigation, and social association, 
individuals’ lives have become more comfortable and convenient than 
ever before (Zheng and Cai, 2020; Cheng et al., 2021). We can use Yelp 
to find a popular restaurant, use Facebook to keep up with our friends, 
and use Google Maps to find the way to a destination. When enjoying 
such personalized services, we need to provide these service/application 
platforms with our personal data, e.g., location, weight, age, and in
come. Unfortunately, service platforms cannot always be trusted by 
users raising serious privacy issues, which lies in two aspects. On one 
hand, more personal data is needed to acquire higher quality of service, 
resulting in that even more private/sensitive information could be 
inferred from our submitted data. On the other hand, users’ personal 
data may be shared or resold by service platforms to adversaries, as is 
common practice (Cai et al., 2018; Armstrong, 2016; Cai and He, 2019). 
Besides having a risk of leaking personal data via the platform, the data 
may be captured via malicious attacks, such as eavesdropping by an 

adversary. According to the statistics from (Wang et al., 2016), 55% of 
iOS applications and 59.7% of Android applications surreptitiously leak 
user’s personal data. 

Based on this, users are suffering joint threats of privacy leakage from 
untrusted platforms as well as adversaries, which we depict in Fig. 1. There 
is no doubt that, in the era of information, the collection and the use of 
personal data are major privacy concerns for individuals (Kokolakis, 
2017), and such concerns will only grow over time (TRUSTe/NCSA, 
2016). Thus, the ongoing progress of context-aware services, the increasingly 
serious privacy leakage, and the growing privacy concern together make data 
privacy preservation imperative for users. 

In the past years, privacy-preserving mechanisms have received a lot 
of attention from researchers. Besides cryptography, game theory has 
been widely applied as a strategic methodology to search for optimal 
strategies balancing the trade-off between the benefit of sharing data 
and cost of privacy disclosure (Sfar et al., 2017; Wu et al., 2017; Hussain 
et al., 2018). Note that most of the existing research only focuses on the 
interaction between two opposite parties (Shokri et al., 2017), i.e., using 
a defender-attacker game model. In (Li et al., 2018; Vakilinia et al., 
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2017), various three-party game models are proposed. But, the game 
models of (Wang et al., 2017a, 2017b) are not “real” three-party models, 
because they fail to depict the interaction between any two of the three 
parties, i.e. they considered either data resale by the platform or attacks 
by the adversary. Additionally, the schemes in (Wang et al., 2017a, 
2017b; KarimiAdl et al., 2012) only provide a binary solution. Specif
ically, the schemes only determine whether the user should submit their 
data to receive services (and risk loss of privacy) or not submit any data 
(and risk poor, to no quality of service). 

Further exploring the mutual relationships among user, platform, 
and adversary would be more helpful for the user to defend against both 
the untrusted platform and the adversary. Moreover, it would be bene
ficial to produce a more fine-grained solution, so that a user could have 
the option to provide obscured data and still receive adequate service. 
For this purpose, this paper aims to design a three-party game model among 
the three antithetic parties for users to simultaneously protect their privacy 
from untrusted service platforms and adversaries. Such a realistic and 
complicated game model challenges us in the following aspects: (i) 
Complicated game structure. As shown in Fig. 1, the interaction occurs 
between any two of the three parties, increasing the difficulty in 
addressing the three parties’ individual concerns – how does the user 
assess the potential risk of privacy loss and determine the granularity 
when submitting personal data; how does the platform determine data 
resale with consideration of the risk of reputation loss; and how does the 
adversary make a choice between purchase and eavesdropping? (ii) Joint 
threats. In such a complicated game, the user has to defend the joint 
threats from both the platform and the adversary, which may be hard to 
accomplish. (iii) Multiple data attributes. For many services, it is common 
that users need to submit multiple data attributes that could be corre
lated together. Any obscurity applied to one attribute would need to be 
correlated accordingly. (iv) Theoretical analysis & solution. Designing, 
analyzing, and solving the proposed three-party game are destined to be 
difficult due to the complexity of the game structure and correlated data 
attributes. 

Our research endeavor to overcome the above challenges is briefly 
introduced as follows. Firstly, in our game model, we link the three 
parties by elaborately quantifying their concerns and mutual in
teractions, such that they are inseparable. Secondly, based on our game 
model, we perform a theoretical analysis to rigorously prove the optimal 
strategies of the three parties, including the optimal data release gran
ularity for the user, the optimal data resale strategy for the platform, and 
the optimal probability to purchase data (or launch an attack) for the 
adversary. Finally, we conduct simulations with abstracted privacy 
protection settings from surveys to validate the effectiveness of our 
proposed game model. 

To the best of our knowledge, we are the first to provide a fine- 
grained analysis on the behaviors and interactions for the user, 

platform, and adversary with considering resistance to the joint threats. 
Our major contributions are summarized as below: 

• We design a three-party game to capture the complicated in
teractions among the user, platform, and adversary, with a goal to 
defend against the joint threats to the user’s privacy from both 
untrusted platform and adversary.  

• We present an in-depth theoretical analysis to identify the best 
strategy of each of the three parties: user, platform and adversary.  

• We perform comprehensive simulations with abstracted privacy 
protection settings from surveys to evaluate the performance of our 
game model, regarding the optimal strategy, cost, and utility for each 
of the three parties. 

The rest of the paper is organized as follows. Section 2 summarizes 
the related work. Our game model is introduced in Section 3. The 
optimal strategy of each party and the performance of our game are 
analyzed in Section 4 and Section 5, respectively. Finally, Section 6 
briefly concludes this paper and discusses our future work. 

2. Related work 

Game theory is a popular and efficient methodology to capture 
interaction between defender and adversary. In this section, we mainly 
summarize the most related literature in the area of game-theoretical 
privacy preservation, in which according to the type of game model, 
the existing work can be classified into two major categories, i.e., two- 
party and three-party game. 

Most of the existing work investigates the interaction between two 
parties: user/data owner and adversary. In (Chorppath and Alpcan, 
2013; Shokri et al., 2012, 2017; Rottondi et al., 2017; Sfar et al., 2017), 
games are based on a two-player model, i.e., one-against-one. When 
there are multiple users trying to maintain a certain privacy preserving 
level, the user-adversary game can be modeled as an n-player game (Wu 
et al., 2017; Liu et al., 2013; Freudiger et al., 2013; Ma et al., 2017; Ying 
and Nayak, 2017; Xu et al., 2017), but with the drawback that all users 
must have the same settings. Another drawback is that the two-party 
game cannot depict the interactions among three antithetic parties. 

Recently, three-party game models have been proposed to study 
complicated privacy issues among user/data owner, service provider/ 
data requester, and adversary. In (Li et al., 2018), Li et al. designed a 
hierarchical game, incorporating a user-service provider game and a 
user-attacker game, to maximize the service provider’s utility while 
assisting the user in defending the attacker. Adl et al. (KarimiAdl et al., 
2012) proposed a three-party sequential game to analyze the in
teractions among a data provider, a data collector, and a data user (i.e., 
the adversary), which can guide the data provider and the data collector 
to find the optimal strategies deciding whether to cooperate with the 
data user. In (Wang et al., 2017a, 2017b), Wang et al. studied the in
teractions among a user, an application, and an adversary to answer two 
questions: whether the user should submit data and whether the appli
cation should resell the user’s data? To resolve the trade-off between 
sharing advantages and privacy exposure of cybersecurity information 
exchange system, Vakilinia et al. (Vakilinia et al., 2017) designed a 
three-party game for privacy-preserving cybersecurity information ex
change framework consisting of an attacker, an organization, and a 
cybersecurity information exchange system. However, the three-party 
games in (Li et al., 2018; KarimiAdl et al., 2012; Wang et al., 2017a, 
2017b; Vakilinia et al., 2017) fail to build the mutual interaction be
tween any two of the three parties, and the strategy of each party in 
(KarimiAdl et al., 2012; Wang et al., 2017a, 2017b) is coarse-grained, or 
binary, by indicating “whether to cooperate with opponents or not”. 

Contrasting from the existing work, we establish a three-party game 
to capture the mutual interaction between any two of the three anti
thetic parties (including user/data owner, service provider/data 
requester, and adversary) and aim to identify their strategies on 

Fig. 1. Structure of thee-party game.  
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“whether and how to defend (or cooperate with) others”, which can offer 
fine-grained guidance to the three parties. 

3. Three-party game model 

In this section, the interaction among user, platform, and adversary is 
modeled as a three-party game, in which their strategies, benefits, and 
costs are mathematically formulated. 

3.1. User model 

We consider the following scenario: a user submits personal dataset, 
denoted by D ​ = ​ {d1, d2, …, dn}, to a platform to acquire data-based 
service, where the dataset could contain one or more attributes and di 
(1 ​ ≤ ​ i ​ ≤ ​ n) is the data of attribute i. Due to privacy concerns, the user 
may report data attributes with different data release granularity. 
Formally, the data release granularity of attribute i is defined as gi ​ ∈ ​ [0, 
1], and the corresponding data granularity set is G ​ = ​ {g1, g2, …, gi, …, 
gn}. Specifically, with a larger gi, the data of attribute i is less obscured, 
revealing more personal/sensitive information; for examples, gi ​ = ​ 0 if 
di does not contain any personal data, and gi ​ = ​ 1 if di is fully accurate. 
For example, when the user provides age information to the platform. It 
can use the age range instead of the exact range. If the user (assume age 
24) sets the granularity to 0, the user will provide its age range 1–100. 
The provided user information actually provides no personal age in
formation. If the user sets the granularity to 0.9, the user will provide an 
age range of 10, like 20–29 years old. If the user sets the granularity to 1, 
the user will provide the accurate age 24 to the platform. In this paper, 
we use data granularity as a measurement of data quality/obscurity. 

As the data release granularity increases, the quality of user’s 
requested service is increased with diminishing marginal benefit (Xu 
et al., 2015). Suppose that the quality of attribute i-based service can 
achieve a maximum value qi when gi ​ = ​ 1. Then, the relationship be
tween the quality of attribute i-based service and data release granu
larity gi can be formulated to be 2qigi − qi(gi)

2. In addition, any two data 
attributes may correlate with each other, and such correlation can be 
exploited to infer more sensitive information (Zhu et al., 2015; Zhang 
et al., 2016). Let eij represent the correlation between attribute i and 
attribute j. Due to correlations among data attributes, the data of attri
bute i not only contributes to the quality of attribute i-based service, but 
also contributes to the quality of attribute j-based service. Thus, given 
the user’s dataset D, data release granularity set G, and data correlation 
{eij}, the overall service quality can be estimated as follows. 

∑n

i=1

(

1 +
∑n

j=1,j∕=i

eijgj

)
(
2qigi − qi(gi)

2)
(1) 

While enjoying the service provided by the platform, privacy leakage 
incurred by data submission brings privacy loss to the user. One possible 
method for this privacy loss could be due to a malicious attack by an 
adversary that eavesdrops on the data submitted by the user. In real- 
world scenarios, the working efficiency of information retrieval is 
restricted by many factors, such as equipment performance and retrieval 
technique. Different adversaries may have different work efficiency and 
different type of work efficiency. For example, when an adversary 
cannot always succeed when they launch an attack, the work efficiency 
could be the success rate. In another scenario, an adversary cannot ac
quire all the data in an attack. The work efficiency can be the expected 
percentage in an attack. The working efficiency of eavesdropping at the 
adversary side is denoted by φ ​ ∈ ​ [0, 1], so the granularity of eaves
dropped data is φgi. Assume the adversary purchases data from the 
platform with probability b and the probability of eavesdropping is 
1 ​ − ​ b. Then, the expected cost due to eavesdropping of dataset D is 
defined as 

(1 − b)
∑n

i=1
ciφgi,

where ci is the unit privacy cost when gi ​ = ​ 1. 
Another possible method for privacy loss could be that the user’s 

submitted data is resold by the platform to a third-party (e.g., adversary) 
for more profit. To avoid too much sensitive information been sold, the 
platform will add noise or use privacy project techniques such as θ-dif
ferential privacy or k-anonymity before they sell the data. In this sce
nario, the selling strategy of the platform is the privacy protection level θ 
of differential privacy or 1

k of k-anonymity. We define the set of plat
form’s resale strategy as S ​ = ​ {s1, s2, …, sn}, where si ​ ∈ ​ [0, 1] and sigi is 
the resold data granularity of attribute i. The platform does not resell di if 
si ​ = ​ 0 but resell all collected di if si ​ = ​ 1. The expected privacy cost due 
to data resale at the platform side can be computed by 

b
∑n

i=1
cisigi.

By combining the received service quality and the experienced pri
vacy cost, the user’s utility can be calculated in Eq. (2). 

Uu = λ
∑n

i=1

(

1 +
∑n

j=1,j∕=i
eijgj

)
(
2qigi − qi(gi)

2)

−(1 − b)
∑n

i=1
ciφgi − b

∑n

i=1
cisigi,

(2)  

where λ is the convention rate between service quality and privacy cost, 
i.e., one unit of privacy cost is equivalent to λ units of service quality 
loss. Moreover, λ is also used to measure the user’s privacy preference; 
that is, the user would care more about privacy cost than service quality 
if λ is large, and the service quality outweighs the privacy cost if λ is 
small. 

In our proposed three-party game, the user aims to maximize its 
utility by balancing the trade-off between service quality and privacy 
cost by strategically setting the granularity set G. Accordingly, the 
optimization problem at the user side is 

max
G

Uu,

s.t. gi ∈ [0, 1], i ∈ [1, n].

3.2. Platform model 

The platform provides users with requested services based on their 
submitted data. For instance, Google provides navigation service to 
users based on their input location. 

While providing service to the user, the platform has its private 
valuation, defined to be Vp, for the collected data from the user. With 
user’s data, the platform can obtain profit from data-based production, 
such as data statistic analysis and new product development. From the 
viewpoint that data is a type of potential productivity, the value of data 
can be computed according to the standard form of Cobb-Douglas pro
duction function (Meeusen and van Den Broeck, 1977) as 

θp

(
∑n

i=1
gi

)ζp

,

where θp is the total value productivity of the platform, and ζp ​ ∈ ​ (0, 1) is 
the platform’s value output elasticities of G. 

To get extra benefits, the platform may resell the collected data to a 
third party (i.e., the adversary). Assume that pi is the unit data price of 
attributes i with gi ​ = ​ 1, so the expected payment received from the 
adversary is 
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b
∑n

i=1
pisigi, (3)  

in which b is the adversary’s purchase probability and si represents the 
platform’s resale strategy. 

However, reselling the user’s data may cause the risk of reputation 
loss at the user side and/or in public. According to the instantaneous risk 
function (Fershtman and Kamien, 1987; Hu et al., 2015), we can define 
the risk of reputation loss due to data resale of attribute i as 

l1sigi + l2(sigi)
2
,

where l1 and l2 are constant parameters of the risk estimation function. 
Since there may exist a correlation between two data attributes, the 
adversary can infer more personal/sensitive information from one data 
attribute to another, leading to an increase in the reputation loss at the 
platform side. Accordingly, the risk of reputation loss can be estimated 
as 

∑n

i=1

(

1 +
∑n

j=1,j∕=i

eijsjgj

)
(
l1sigi + l2(sigi)

2 )

In addition, there exists a data processing cost cp at the platform side. 
Since the data processing cost may be determined by the processing 
technology, which is out of the scope of this paper, we assume cp is a 
system parameter for simplicity. Therefore, the platform’s utility, 
denoted by Up, can be defined to be 

Up = b
∑n

i=1
pisigi + θp

(
∑n

i=1
gi

)ζp

− cp

−
∑n

i=1

(

1 +
∑n

j=1,j∕=i
eijsjgj

)
(
l1sigi + l2(sigi)

2 )
(4) 

One can see that the platform faces a struggle between benefit and 
reputation cost from data resale. More specifically, reselling more ac
curate data can enhance the profit while damaging reputation, but 
reselling less accurate data can reduce reputation loss while losing 
attractiveness of data resale. Thus, to improve utility via balancing the 
trade-off between benefit and cost, the platform needs to choose a 
proper resale strategy S. Formally, the optimization problem of the 
platform is formulated as 

max
S

Up,

s.t. si ∈ [0, 1], i ∈ [1, n].

3.3. Adversary model 

To retrieve the user’s private information, the adversary could pur
chase data from the platform with probability b or eavesdrop on the 
communication between the user and the platform with probability 
1 ​ − ​ b. With respect to each data attribute i, the granularity of pur
chased data is sigi, and that of the eavesdropped data is φgi. 

The adversary also has private valuation for the obtained data. With 
the analysis similar to that in Section 3.2, we can utilize Cobb-Douglas 
production function (Meeusen and van Den Broeck, 1977) to compute 
adversary’s private valuation as 

bθa

∑n

i=1
(sigi)

ζa + (1 − b)θa

∑n

i=1
(φgi)

ζa ,

where θa is the data productivity of the adversary and ζa ∈ (0, 1) is the 
adversary’s value output elasticities of data. 

We suppose that the adversary can obtain all the data in D through 
eavesdropping at a cost (e.g., equipment and time) that can be quanti
fied by a quadratic cost function(Osborne, 2009; Mohsenian-Rad et al., 
2010), i.e., 

σ1(1 − b)
2

+ σ2(1 − b) + σ3,

where σ1 ​ > ​ 0, σ2 ​ ≥ ​ 0, and σ3 ​ ≥ ​ 0 are constant parameters of the 
quadratic cost function. Note that when the adversary does not eaves
drop, there still is a cost because it needs to purchase equipment and 
resources for eavesdropping. If the adversary chooses to purchase data 
from the platform, the expected payment paid to the platform is 
formulated in Eq. (3). 

To sum up, the utility of the adversary, denoted by Ua, can be 
computed to be 

Ua = bθa

(
∑n

i=1
sigi

)ζa

+ (1 − b)θa

(
∑n

i=1
φgi

)ζa

− b
∑n

i=1
pisigi

−
(
σ1(1 − b)

2
+ σ2(1 − b) + σ3

)
(5)  

In the three-party game, the adversary faces the trade-off between data 
purchase and data eavesdropping, i.e., the probability to purchase/ 
eavesdrop data. Therefore, to improve utility, the adversary has to 
choose a proper purchase probability b to maximize its utility, which can 
be formulated as the following optimization problem. 

max
b

Ua,

s.t. b ∈ [0, 1].

4. Nash Equilibrium analysis 

In this section, we conduct in-depth theoretical analysis of the three 
parties’ strategies and the relationships among their strategies. 

4.1. Nash Equilibrium 

In game theory, a Nash equilibrium is a strategy profile E* with the 
property that no party can unilaterally do better by choosing an action 
different from E*, given that other parties adhere to E* (Osborne, 2009). 
Accordingly, the Nash equilibrium of our proposed three-party game can 
be defined in Definition 1. 

Definition 1. A strategy profile E* = (G*, S*, b*) is called Nash Equi
librium for the proposed three-party game if the following properties simul
taneously hold: 

Uu(G*, S*, b*) ≥ Uu(G, S*, b*);

Up(G*, S*, b*) ≥ Up(G*, S, b*);

Ua(G*, S*, b*) ≥ Ua(G*, S*, b).

4.2. Strategy analysis of user 

To solve the optimization problem of the user, we analyze the con
cavity of its utility function. The first-order partial derivative and the 
second-order partial derivatives of Eq. (2) are obtained, respectively. 

∂
∂gi

Uu = −(1 − b)ciφ − bcisi + λ
∑n

j=1,j∕=i

eij
(

− qj(gj)
2

+ 2qjgj
)

+λ

(

1 +
∑n

j=1,j∕=i
eijgj

)

( − 2qigi + 2qi)

∂2

∂g2
i
Uu = −2qiλ

(

1 +
∑n

j=1,j∕=i

eijgj

)

∂2

∂gigj
Uu = λeij

(
− 2qjgj + 2qj

)
+ λeij( − 2qigi + 2qi)

To find the maximum value, we need to solve the following system of 
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equations. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂g1

Uu = 0;

∂
∂g2

Uu = 0;

…

∂
∂gn

Uu = 0.

(6) 

All the solutions of the system of equations are the extreme points of 
user’s utility. To find the global maximum value, we create the corre
sponding Hessian matrix: 

Hu =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∂2

∂g1
2Uu

∂2

∂g1∂g2
Uu …

∂2

∂g1∂gn
Uu

∂2

∂g2∂g1
Uu

∂2

∂g2
2Uu …

∂2

∂g2∂gn
Uu

⋮ ⋮ … ⋮;

∂2

∂gn∂g1
Uu

∂2

∂gn∂g2
Uu …

∂2

∂gn
2Uu

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

The user has a maximum utility only if the matrix is a negative 
definite matrix. When either of the following two conditions holds, a 
matrix is negative definite (Horn and Johnson, 2012): (1) all its eigen
values are less than 0; and (2) the even order principal minors are larger 
than 0 and odd order principal minors are less than 0. In other words, 
when the Hessian matrix of the user’s utility function can meet anyone 
of the above two conditions, the user’s optimal strategy can be found by 
solving Eq. (6). 

We take the scenario where eij ​ = ​ 0 for i, j ​ ∈ ​ [1, n] as an illustrative 
example. In this scenario, the first-order partial derivative and the 
second-order partial derivatives of the utility function are as follows. 

∂
∂gi

Uu = λ( − 2qigi + 2qi) − (1 − b)ciφ − bcisi.

∂2

∂g2
i
Uu = −2qiλ.

∂2

∂gigj
Uu = 0.

Then we derive the corresponding Hessian matrix, i.e., 

Hu =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

−2q1λ 0 … 0
0 −2q2λ … 0
⋮ ⋮ … ⋮
0 0 … −2qnλ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Because the even order principal minors are larger than 0 and the odd 
order principal minors are less than 0, the matrix Hu is a negative defi
nite matrix. Therefore, the utility function has a maximum value and the 
maximum points can be calculated by solving Eq. (6), i.e., 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 =
−c1φ + (φ − s1)bc1 + 2q1λ

2q1λ
;

g2 =
−c2φ + (φ − s2)bc2 + 2q2λ

2q2λ
;

…

gn =
−cnφ + (φ − sn)bcn + 2qnλ

2qnλ
.

(7) 

Since gi ​ ∈ ​ [0, 1], the best data release granularity for attribute i is 

g*
i = max{min{gi,1},0}. 

From the results, to preserve data privacy, the user should decrease 
the data granularity gi of attribute i if the platform increases data resale 
strategy si. 

4.3. Strategy analysis of platform 

We can compute the Hessian matrix to analyze the concavity of the 
platform’s utility function as follows. 

Hp =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∂2

∂s1
2Up

∂2

∂s1∂s2
Up …

∂2

∂s1∂sn
Up

∂2

∂s2∂s1
Up

∂2

∂s2
2Up …

∂2

∂s2∂sn
Up

⋮ ⋮ … ⋮

∂2

∂sn∂s1
Up

∂2

∂sn∂s2
Up …

∂2

∂sn
2Up

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

where 

∂2

∂si
2Up = −2l2g2

i

(

1 +
∑n

j=1,j∕=i

eijsjgj

)

,

and 

∂2

∂si∂gj
Up = −eijgj

(
l1gi + 2l2g2

i si
)

− eijgi

(
l1gj + 2l2g2

j sj

)

The platform has a maximum utility only if the Hessian matrix is a 
negative definite matrix that can satisfy either of the following two 
conditions (Horn and Johnson, 2012): 

(1) all eigenvalues of Hp are less than 0; and (2) the even order 
principal minors of Hp are larger than 0 and odd order principal minors 
of Hp are less than 0. 

If the maximum value exists, we can find the best strategy of the 
platform by solving the system of equations as shown below. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂s1

Up = 0;

∂
∂s2

Up = 0;

…

∂
∂sn

Up = 0.

(8) 

In Eq. (8), we have 

∂
∂si

Up = bpigi −

(

1 +
∑n

j=1,j∕=i

eijsjgj

)
(
l1gi + 2l2g2

i si
)

−
∑n

j=1,j∕=i
eijgi

(
l1sjgj + l2

(
sjgj

)2
)

We use the scenario when eij ​ = ​ 0 (i, j ​ ∈ ​ [0, 1]) as an example for 
demonstration. In this scenario, the first-order partial derivative and the 
second-order partial derivatives of the utility function are obtained in 
the following. 

∂
∂si

Up = bpigi − l1gi − 2l2g2
i si.

∂2

∂si
2Up = −2l2g2

i .
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∂2

∂si∂gj
Up = 0.

Then we derive the Hessian matrix as: 

Hu =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

−2l2g2
1 0 … 0

0 −2l2g2
2 … 0

⋮ ⋮ … ⋮

0 0 … −2l2g2
n

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Because the even order principal minors are larger than 0 and the 
odd order principal minors are less than 0, the matrix Hp is a negative 
definite matrix. Thus, the platform’s utility function has a maximum 
value and the maximum points can be calculated by solving Eq. (8), i.e., 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 =
bp1 − l1

2l2g1
;

s2 =
bp2 − l1

2l2g2
;

…

sn =
bpn − l1

2l2gn
.

(9) 

As si ​ ∈ ​ [0, 1], the best resale strategy for attribute i is s*
i = max{min{

si,1},0}. 
According to the above analysis, to avoid too much reputation loss, 

the platform should decrease the value of si if the user increases gi. 
Nevertheless, the granularity of resold data, sigi, may be increased, 
bringing a profit increase to the platform. On the other hand, if the 
adversary prefers to purchase data rather than eavesdropping (i.e., 
enhance purchase probability b to a sufficiently large value), the plat
form can increase the value of si to earn more profit, in which the 
reputation loss maybe compensated by the payment from the adversary. 

4.4. Strategy analysis of adversary 

To maximize the utility, the adversary has to find the best strategy 
b*. The first-order partial derivative and the second-order partial de
rivative of U with respect to b are respectively calculated by 

dUa

db
= θa

(
∑n

i=1
sigi

)ζa

− θa

(
∑n

i=1
φgi

)ζa

−
∑n

i=1
pisigi − σ1(2b − 2) + σ2  

and 

d2Ua

db2 = −2σ1.

Since d2Ua
db2 = − 2σ1 < 0, the utility function of the adversary is a 

concave function, which means the maximum value is achievable when 
dUa
db = 0. Thus, by setting dUa

db = 0, the solution is 

b =

θa

(
∑n

i=1
sigi

)ζa

− θa

(
∑n

i=1
φgi

)ζa

−
∑n

i=1
pisigi + 2σ1 + σ2

2σ1
.

Because b ​ ∈ ​ [0, 1], the best purchase probability is b* ​ = ​ max{ min{b, 
1}, 0}. 

According to the above result, one can find that the purchase prob
ability b is reduced when the working efficiency of eavesdropping φ 
and/or data price pi increases. This is because the adversary prefers to 
eavesdrop rather than buying data for cost reduction if the granularity of 
eavesdropped data is higher than that of the purchased data. However, 
the relationship between the adversary’s strategy and the platform’s 
strategy and the relationship between the adversary’s strategy and the 

user’s strategy are not straightforward, because the purchase probability 
is also affected by the working efficiency φ, the price pi for attribute i, the 
data productivity of the adversary θa, and the data value output elas
ticities of adversary ζa. These complicated relationships will be inves
tigated in our simulations. 

4.5. Deployment in realistic scenario 

The theoretical NE analysis provides general guidance for all realistic 
context-aware services. To deploy the proposed framework in a realistic 
scenario, we suggest following these steps. Step 1 - Data collection. 
When any role wants to use this framework, it should collect data of all 
the other roles as background knowledge to set up the parameters. Step 
2 - Parameter setting. The collected data will be used to calculate the 
actual parameters by using linear regression. Step 3 - Check the NE 
conditions. We analyze the conditions that make sure NE exists. The 
parameters will be used to check the conditions to make sure NE exists in 
the specific scenario. Step 4 - Calculate the optimal strategy. If the NE 
exists in the specific scenario, the optimal strategy can be calculated by 
following Eqs. (4.2) and (4.3). 

5. Simulation 

In this section, we study the interactions among the user, the plat
form, and the adversary via intensive simulations. In this paper, we 
assume that the user has multiple attributes in its dataset. However, in 
some cases, the user’s dataset has only one attribute. To provide a 
detailed simulation result, we study the interactions among three parties 
in two scenarios: i) the user has one attribute in its dataset; ii) the user 
has more than one attribute in its dataset. 

5.1. Interactions among three parties with one attribute 

We first discuss the interaction among the three parties when the 
user’s dataset has only one attribute, D ​ = ​ {d1}. The default settings of 
the parameters are as follows. These value are selected because these 
parameters can provide better analysis that visualizing the theoretical 
NE analysis. 

The granularity of d1 is g1 ​ = ​ 0.6. The unit privacy cost due to 
leakage of d1 is c1 ​ = ​ 3. Based on d1, the user can get maximum service 
quality q1 ​ = ​ 50. The convention rate λ of the user is 0.1. The platform 
resells d1 by using reselling strategy s1 ​ = ​ 0.6 with the price p1 ​ = ​ 20. 
The other parameters in the platform’s utility function are: θp ​ = ​ 15, 
ζp ​ = ​ 0.6, l1 ​ = ​ 5, l2 ​ = ​ 10, cp ​ = ​ 1. The adversary has a purchase 
probability b ​ = ​ 0.6 and working efficiency φ ​ = ​ 0.2. The other pa
rameters in the adversary’s utility function are: σ1 ​ = ​ 1.5, σ2 ​ = ​ 1, 
σ3 ​ = ​ 1, θa ​ = ​ 15, ζa ​ = ​ 0.6. 

The simulations that follow depict different strategies by varying 
certain parameters from the perspective of each of the three parties. 

5.1.1. Simulation result of User’s utility and optimal strategy 
The utility and optimal response of the user are investigated in this 

subsection. Figs. 2–4 reveal the simulation result of the user. 
The results of the user’s utility are presented in Figs. 2 and 3, from 

which we observe that the utility increases at first and then decreases as 
the granularity increases. The reason lies in two aspects: (i) when the 
granularity g1 increases from 0 to a certain value (e.g., 3.46 in line 
s1 ​ = ​ 0.8 of Fig. 2 and 3.55 in line b1 ​ = ​ 0.8 of Fig. 3), the increase rate 
of privacy cost is smaller than that of received service quality, therefore 
the utility increases; and (ii) when g1 continues increasing from such a 
certain value, the increase rate of privacy cost is larger than that of 
received service quality, leading to a decrease in the utility. In fact, such 
a certain value corresponds to the optimal granularity. 

Besides, as shown in Fig. 2, the user’s utility Uu decreases as the 
platform increases the value of its reselling strategy s1. This is because 
when the platform increases the value of reselling strategy s1, the 
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granularity of the reselling data increases. That increases user’s privacy 
cost, resulting in decreasing of user’s utility. 

Furthermore, the user’s utility Uu also decreases as adversary in
creases its purchase probability as shown in Fig. 3. Because the pur
chased data of the adversary has a higher granularity than eavesdropped 

data, when the adversary increases the probability of purchase and de
creases the probability of eavesdropping, the user has more privacy cost, 
leading to a decrease in the user’s utility. 

Fig. 4 states the optimal strategy of the user. We can see that the user 
decreases data granularity if the platform increases the value of reselling 
strategy s1. When the platform increases the value of reselling strategy 
s1, the granularity of the reselling data increases, thus increasing user’s 
privacy cost. To reduce privacy cost, the user should decrease data 
granularity as shown in Fig. 4. 

Fig. 4 also reveals how the user adjusts its strategy when the ad
versary uses different strategies. In Fig. 4, we can see that the three lines 
(b1 ​ = ​ 0.4, b1 ​ = ​ 0.6, and b1 ​ = ​ 0.8) intersect at the point where 
s1 ​ = ​ φ ​ = ​ 0.2. When s1 ​ = ​ φ, the adversary’s purchased data has the 
same data granularity with eavesdropped data, the user has the same 
privacy cost no matter what the adversary prefers, purchase or eaves
dropping. Thus, the user does not need to change its data granularity as 
the adversary change its strategy when s1 ​ = ​ φ. 

Fig. 4 shows that the user adjusts its strategy according to the 
adversary’s strategy as well as the platform’s strategy: (i) the user de
creases the granularity of the data as the adversary decreases the 
probability of data purchase and increases the probability of eaves
dropping when the platform resells data with strategy s1 ​ < ​ φ. (ii) the 
user decreases the granularity of the data as the adversary increases the 
probability of data purchase and decreases the probability of eaves
dropping when the platform resells data with strategy s1 ​ > ​ φ. The 
reason lies in two aspects: (i) when s1 ​ < ​ φ, the adversary’s eaves
dropped data has a higher granularity than purchased data. Thus, the 
eavesdropping causes more privacy cost than data reselling to the user. 
To decrease privacy cost, the user should decrease the data granularity if 
the adversary increases the probability of eavesdropping and decreases 
the probability of data purchase. 

(ii) On the contrary, when s1 ​ > ​ φ, the adversary’s purchased data 
has a higher granularity than eavesdropped data. Thus, the data resell
ing causes more privacy cost than eavesdropping to the user. To 
decrease privacy cost, the user should decrease the data granularity if 
the adversary decreases the probability of eavesdropping and increases 
the probability of data purchase. 

5.1.2. Simulation result of Platform’s utility and optimal strategy 
We then study the utility and best response of the platform. The 

result is shown in Figs. 5 and 6. 
From Fig. 5, we can tell that the platform’s utility increases at first 

and then decreases over the increase of reselling strategy S ​ = ​ {s1}. 
When s1 increases from 0 to a certain value (e.g., 13.34 in line g1 ​ = ​ 0.8), 
the increase rate of the cost is smaller than that of the profit, resulting in 
an improvement of utility; however, when s1 continues increasing from 

Fig. 2. Utility of user under various G and S.  

Fig. 3. Utility of user under various G and b1.  

Fig. 4. Optimal strategy of user under various S and b1.  

Fig. 5. Utility of platform under various S and G.  
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such a certain value, the increase rate of the cost is larger than that of the 
profit, further reducing the utility. In other words, there is an optimal 
value of s1 for the platform to balance the profit of data resale and cost of 
reputation loss. 

In Fig. 5, when the data granularity g1 increases, the granularity of 
reselling data increases and brings more profit to the platform, leading 
to the increase of utility of the platform. 

Fig. 6 reveals how the platform adjusts its optimal strategy when the 
user and adversary choose different strategies. When the user’s granu
larity increases, the optimal strategy of the platform decreases. Both the 
profit and the reputation loss increase if the user increases granularity. 
However, the higher profit cannot make up the increased reputation 
loss. Thus, the platform should decrease the value of s1 to reduce 
reputation loss. 

Moreover, Fig. 6 reveals that the optimal strategy of the platform 
increases if the adversary increases its purchase probability b and de
creases its eavesdropping probability 1 ​ − ​ b. When the adversary in
creases the purchase probability b, the expected payment to the platform 
increases. Thus, to earn more profit, the platform increases the value of 
s1 as the adversary increases the purchase probability b, as shown in 
Fig. 6. 

5.1.3. Simulation result of Adversary’s optimal strategy 
The study of the adversary’s optimal strategy is shown in Fig. 7. From 

this figure, we can see that the optimal strategy of the adversary de
creases as the user increases the granularity g1 or the platform increases 
the value of its reselling strategy s1. When the user increases the 

granularity g1 or the platform increases the value of its reselling strategy 
s1, the granularity of reselling data increases correspondingly, resulting 
in the increasing of data’s price. To decrease the payment, the adversary 
decreases the probability of data purchase (which also increases the 
probability of eavesdropping) when the user increases the granularity 
g1, or the platform increases the value of its reselling strategy s1 as shown 
in Fig. 7. 

5.2. Interactions among three parties with multiple attributes 

According the aforementioned analysis, the theoretical optimal 
strategies of the user and the platform may not always exist. For 
computation feasibility, we utilize a parallel machining learning algo
rithm termed Particle Swarm Optimization (PSO) (Eberhart and Ken
nedy, 1995), to find the quazi-optimal strategies for the user and the 
platform, which is performed in the following manner: (i) we run the 
simulation 100 times; (ii) in each time, each initial strategy and the 
update vector in each iteration are randomly generated. and (iii) we use 
the strategy which has the largest utility as the final output. The results 
derived from PSO are consistent with that in single attribute scenario, 
thus validating the simulation result. For more details about the 
implementation of PSO, please refer to (Github). 

We use abstracted privacy protection settings from surveys as the 
inputs of the user and platform. More specifically, based on the privacy 
survey published by IBM (IBM, 1999) and Data Protection Survey pub
lished by SANA (Filkins, 2017), we extract four user’s strategies and four 
platform’s strategies. As shown in Table 1, Gr, Gh, Gg, and Gf, are the 
user’s strategies used for Retail applications, Healthcare applications, 
Government applications, and Financial applications, respectively. 
Correspondingly, in Table 1, Sr, Sh, Sg, and Sf are the strategies of Retail 
platforms, Healthcare platforms, Government platforms, and Financial 
platforms, respectively. 

Each extracted strategy contains three data attributes, including in
come, age, and race. We set the correlation coefficient between income 
and age as 0.1, the correlation coefficient between income and race as 
0.01, and the correlation coefficient between age and race as 0. For the 
three data attributes, the values of maximum service quality are 
q1 ​ = ​ 60, q2 ​ = ​ 50, and q3 ​ = ​ 40, the unit privacy costs are c1 ​ = ​ 15, 
c2 ​ = ​ 10, and c3 ​ = ​ 5, and the unit data prices are p1 ​ = ​ 20, p2 ​ = ​ 15, 
and p3 ​ = ​ 10. The convention rate λ in Eq. (2) is 0.1. The other pa
rameters in the platform’s utility function are: θp ​ = ​ 15, ζp ​ = ​ 0.6, 
l1 ​ = ​ 5, l2 ​ = ​ 10, and cp ​ = ​ 1. The adversary has a purchase probability 
b ​ = ​ 0.6 and working efficiency φ ​ = ​ 0.2. The other parameters in the 
adversary’s utility function are: σ1 ​ = ​ 1.5, σ2 ​ = ​ 1, σ3 ​ = ​ 1, θa ​ = ​ 15, 
and ζa ​ = ​ 0.6. 

The simulations that follow depict different strategies by varying 
certain parameters from the perspective of each of the three parties. 

5.2.1. Results of User’s utility and optimal strategy 
The utility and optimal response of the user are investigated through 

Figs. 8–10 in this subsection. 
We analyze user’s utility by using real platform’s strategy Sr, Sh, Sg, 

and Sf and increasing the granularity of each attribute from G0 to G8 as 
shown in Table 2. The results of the user’s utility are presented in Fig. 8, 
from which we observe that the utility increases at first and then de
creases as the granularity increases. The reason lies in two aspects: (i) 
when the granularity of each attribute in user’s granularity set G 

Fig. 6. Optimal strategy of platform under various G and b1.  

Fig. 7. Optimal strategy of adversary under various G and b1.  

Table 1 
Extracted strategies.  

Application Strategy setting of {Income, Age, Race} 

Retail Gr ​ = ​ {0.2, 0.3, 0.4}, Sr ​ = ​ {0.5, 0.7, 0.8} 
Healthcare Gh ​ = ​ {0.3, 0.4, 0.5}, Sh ​ = ​ {0.4, 0.6, 0.7} 
Government Gg ​ = ​ {0.4, 0.5, 0.7}, Sg ​ = ​ {0.3, 0.5, 0.6} 
Financial Gf ​ = ​ {0.6, 0.7, 0.8}, Sf ​ = ​ {0.2, 0.4, 0.5}  
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increases from G0 to a certain granularity set (e.g., G6 in line S = Sg), the 
increase rate of privacy cost is smaller than that of received service 
quality, therefore the user’s utility increases; and (ii) when the granu
larity of each attribute in user’s granularity set G continues increasing 
from such a certain strategy set, the increase rate of privacy cost is larger 
than that of received service quality, leading to a decrease in the utility. 

In fact, such a certain granularity set corresponds to the optimal gran
ularity set among granularity sets from G0 to G8. 

Also, as shown in Fig. 8, the user’s utility Uu decreases as the plat
form increases the value of resale strategy of each attribute from Sr to Sf. 
This is because when the platform increases the value of resale strategy, 
the granularity of the resale data increases, enhancing user’s privacy 
cost and reducing user’s utility. In particular, the user can gain a larger 
utility when using Financial Application than other applications because 
Financial Platform resells user’s data with the lowest granularity. 

The user’s best strategies defending against the platform’s different 
strategies and adversary’s different strategies are respectively shown in 
Figs. 9 and 10, where each line indicates the user’s optimal data release 
granularity for one attribute. The results of Fig. 9 are obtained when the 
platform uses the strategies s1 ​ = ​ 0.2, s2 ​ = ​ 0.4, and s3 ​ = ​ 0.6. The 
results of Fig. 10 are obtained when the adversary adopts the data resale 
strategies b ​ = ​ 0.2, 0.4, 0.6. 

Fig. 9 shows that the user decreases data release granularity to 
protect data privacy as the platform increases the data resale granularity 
from S0 to S8. On the other hand, when the value of resale strategy is 
small (e.g., S0, S1, S2), the user’s optimal release granularity of data 
attribute 1 (corresponding to g1) is larger than those of attributes 2 and 3 
(corresponding to g2 and g3, respectively). Since data attribute 1 has the 
largest service quality value q1, the user can get more profit from sub
mitting data attribute 1, which can compensate the cost of privacy loss. 
On the contrary, when the value of resale strategy becomes large (e.g., 
S3, S4, S5, S6, S7, S8), releasing attribute 1 causes more privacy cost as 
data attribute 1 has the largest unit privacy cost c1. As a result, to reduce 
privacy cost, the user releases less information regarding data attribute 
1, i.e., the optimal release granularity of attribute 1 is less than those of 
other two attributes. 

From Fig. 10, we can see that the optimal release granularity g1 does 
not change as the adversary changes its strategy, and the optimal release 
granularities g2 and g3 decreases when the adversary increases the data 
purchase probability and decreases the eavesdropping probability. 

When the platform resells attribute 1 (i.e., the line corresponds to g1), 
the platform uses resale strategy s1 ​ = ​ 0.2 that is the same as the 
working efficiency of eavesdropping φ. This means the granularity of 
purchased data and that of eavesdropped data are equal at the adversary 
side. Thus, the change of the adversary’s strategy will not affect the 
user’s utility. This is the reason why the best release granularity of data 
attribute 1 does not change when the adversary changes its strategy b 
under the scenario s1 ​ = ​ φ as we discussed for Fig. 4. 

On the other hand, the adversary can get higher data granularities of 
attribute 2 and 3 (corresponding to g2 and g3, respectively) via pur
chasing rather than eavesdropping because s2 ​ > ​ φ and s3 ​ > ​ φ. Thus, 
the data resale from the platform causes more privacy cost than eaves
dropping to the user. As a result, the best data release granularities g2 
and g3 decreases as the adversary increases the data purchase proba
bility and decreases the eavesdropping probability. 

The changes of user’s optimal release strategies in Figs. 9 and 10 
confirms that data release strategy is also affected by data diversity (e.g., 
different data attributes have different privacy costs and resale prices). 

Fig. 8. Utility of user under various G and S.  

Fig. 9. Optimal strategy of user under various S.  

Fig. 10. Optimal strategy of user under various b.  

Table 2 
Strategy simulation setting.  

Notation Strategy Setting 

G0, S0 {0.0, 0.1, 0.2} 
G1, S1 {0.1, 0.2, 0.3} 
G2, S2 {0.2, 0.3, 0.4} 
G3, S3 {0.3, 0.4, 0.5} 
G4, S4 {0.4, 0.5, 0.6} 
G5, S5 {0.5, 0.6, 0.7} 
G6, S6 {0.6, 0.7, 0.8} 
G7, S7 {0.7, 0.8, 0.9} 
G7, S7 {0.8, 0.9, 1.0}  
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5.2.2. Results of Platform’s utility and optimal strategy 
Fig. 11 reports the results of the platform’s utility, in which the 

platform’s strategies are set to be S0 to S8 according to Table 2 with 
user’s strategy being Gr, Gh, Gg, and Gf as listed in Table 1. From Fig. 11, 
we can tell that the platform’s utility increases at first and then decreases 
over the increase of the value of user’s data release granularity, as we 
discussed for Fig. 5. When the data resale granularity of each attribute 
increases from the value in S0 to the value in a certain resale strategy set 
(e.g., S2 in line G ​ = ​ Gg), the increase rate of the cost is smaller than that 
of the profit, resulting in an improvement of utility to the platform; 
however, when the data resale granularity of each attribute continues 
increasing from the value in such a certain strategy set, the increase rate 
of the cost is larger than that of the profit, further reducing the plat
form’s utility. In other words, there is an optimal resale strategy set for 
the platform to balance the profit of data resale and cost of reputation 
loss. 

Besides, the platform’s utility increases as the user increases the 
release granularity of each attribute from Gr to Gf. This is because the 
platform can get more accurate data and more resale profit if the user 
increases the data release granularity. Particularly, the Financial plat
form can the highest utility because the user submits data with higher 
granularity to the Financial platform than other three platforms. 

The optimal strategy for reselling each data attribute at the platform 
side are drawn in Fig. 12, from which one can observe that the optimal 
resale granularity of each attribute decreases when the corresponding 
data release granularity rises. Notice that as the data release granularity 
of each attribute increases, the growth rate of reputation cost from data 
resale becomes larger than the growth rate of the profit from data resale. 
Therefore, to reduce reputation cost, the platform decreases the resale 
granularity of each attribute. 

Fig. 13 presents the changes of platform’s strategy when the adver
sary enhances the purchase probability. We can see that the optimal 
resale strategy for each attribute increases as the purchase probability is 
increased (i.e., the eavesdropping probability is reduced). When the 
adversary increases the probability of purchase (decreases the proba
bility of eavesdropping), the increase rate of data resale profit is larger 
than the cost of reputation loss. Thus, to get more profit, the platform 
increases the data resale granularity. 

In Figs. 12 and 13, the value of optimal resale strategy of attribute 1 
is higher than that of other attributes, for which the reasons lie in two 
aspects: (i) more information regarding data attribute 1 is released from 
the user (see Fig. 10), indicating that less obscured data is available for 
resale; and (ii) the unit price of attribute 1 is larger than those of other 
two attributes, implying that more payment can be received by reselling 
data of attribute 1. These results reflect the fact that a platform may 
adopt different resale strategies for different data attributes due to data 

diversity. 

5.2.3. Simulation result of Adversary’s optimal strategy 
Fig. 14 shows the adversary’s optimal strategy when the user and the 

platform use the strategies from Table 1. As shown in Fig. 14, the ad
versary decreases the data purchase probability (i.e., increases the 

Fig. 11. Utility of platform under various S and G.  

Fig. 12. Optimal strategy of platform under various G.  

Fig. 13. Optimal strategy of platform under various b.  

Fig. 14. Optimal strategy of adversary under various G and b.  
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eavesdropping probability) when the user increases the data release 
granularity of each attribute in the dataset from Gr to Gf, or the platform 
increases the data resale strategy of each attribute in the dataset from Sf 
to Sr. The increase of data release/resale granularity will raise the data 
price, so the adversary need to decreases the data purchase probability 
to save cost, which is the same as shown in Fig. 7. 

5.2.4. Comparison with two-party game 
In this subsection, a comparison between our proposed three-party 

game and the existing two-party game is performed. According to cur
rent research (Chorppath and Alpcan, 2013; Shokri et al., 2012, 2017; 
Rottondi et al., 2017; Sfar et al., 2017), there are two types of platforms 
in two-party game: (i) trusted platform that never resells user’s data, and 
(ii) untrusted platform that resells all collected data. 

Figs. 15 and 16 show the user’s utilities and costs, respectively. On 
one hand, the user has the highest utility and the lowest cost when the 
platform is trusted because the potential privacy risk of data resale is 
ignored and the privacy cost is underestimated. On the other hand, the 
user has the lowest utility and highest cost when the platform is 
untrusted because the untrusted platform resells all its collected data 
and brings more privacy loss to the user. However, the trusted platform 
is an ideal model, and the untrusted platform, which sells off all data is 
rare in real life. A more realistic model is a platform that chooses the 
optimal strategy by balancing the tradeoff between profit and cost. Our 
three-party game model, captures the actions of this more realistic 
model. 

From the comparison of platform’s utility in Fig. 17, it can be seen 
that a platform can get the highest utility by adaptively reselling user’s 
data; specifically, by adaptively reselling user’s data, a platform can get 
more profit than the trusted platform and suffers less reputation cost 
than the untrusted platform. This is consistent with the fact that a 
platform usually owns the ability to adjust its strategy for enhancing 
profit, further confirming the effectiveness of our proposed game model. 

6. Conclusion and future work 

This paper studies privacy preservation for context-aware services. 
To provide realistic optimal strategies for both the user and the platform, 
we propose a three-party game model that captures the interactions be
tween any two of the parties: user, platform and adversary. Interactions 
include privacy leakage and data resale at the platform side, as well as 
malicious attacks at the adversary side. Our solution determines an 
optimal fine-grained strategy for the user and platform, so that the user can 
choose an optimal data granularity to balance service quality and pri
vacy leakage and that the platform can choose the optimal reselling 
strategy to balance profit and reputation loss. Our model also accounts 

for the correlations between multiple data attributes provided by a user. 
To find out the best strategy for each party, we conduct a rigorous 

theoretical analysis. We also perform simulations using abstracted pri
vacy protection settings from surveys to validate the effectiveness of our 
proposed game model. 

We plan to extend this work to an m-user scenario, where the 
interconnected behaviors of the multiple users, the platform, and the 
adversary become more complex than the proposed model. This exten
sion will also need to involve another layer of interactions between the 
users themselves, further complicating the model. 
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