
Contents lists available at ScienceDirect

Journal of theMechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

Elastomers filled with liquid inclusions: Theory, numerical

implementation, and some basic results

Kamalendu Ghosh a, Oscar Lopez-Pamies a,b,∗

a Department of Civil and Environmental Engineering, University of Illinois, Urbana–Champaign, IL 61801, USA
b Département de Mécanique, École Polytechnique, 91128 Palaiseau, France

A R T I C L E I N F O

Keywords:
Elastomers

Fillers

Finite deformation

Homogenization

Size effects

A B S T R A C T

Experimental and theoretical results of late have pointed to elastomers filled with various

types of liquid inclusions as a promising new class of materials with unprecedented properties.

Motivated by these findings, the first of two objectives of this paper is to formulate the

homogenization problem that describes the macroscopic mechanical response of elastomers

filled with liquid inclusions under finite quasistatic deformations. The focus is on the non-

dissipative case when the elastomer is a hyperelastic solid, the liquid making up the inclusions

is a hyperelastic fluid, the interfaces separating the solid elastomer from the liquid inclusions

feature their own hyperelastic behavior (which includes surface tension as a special case), and

the inclusions are initially spherical in shape. The macroscopic behavior of such filled elastomers

turns out to be that of a hyperelastic solid, albeit one that depends directly on the size of

the inclusions and the constitutive behavior of the interfaces. It is hence characterized by an

effective stored-energy function 𝑊 (𝐅) of the macroscopic deformation gradient 𝐅. Strikingly, in
spite of the fact that there are local residual stresses within the inclusions (due to the presence

of initial interfacial forces), the resulting macroscopic behavior is free of residual stresses, that

is, 𝜕𝑊 (𝐈)∕𝜕𝐅 = 0. What is more, in spite of the fact that the local moduli of elasticity in the

bulk and the interfaces in the small-deformation limit do not possess minor symmetries (due to

the presence of residual stresses and initial interfacial forces), the resulting effective modulus

of elasticity does possess the standard minor symmetries, that is, 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑗𝑖𝑘𝑙 = 𝐿𝑖𝑗𝑙𝑘, where

𝐿𝑖𝑗𝑘𝑙 ∶= 𝜕2𝑊 (𝐈)∕𝜕𝐹 𝑖𝑗𝜕𝐹 𝑘𝑙. The second objective of this paper is to implement and deploy a

finite-element scheme to numerically generate solutions for the macroscopic response of a basic

class of elastomers filled with liquid inclusions, that of isotropic suspensions of incompressible

liquid inclusions of monodisperse size embedded in incompressible Neo-Hookean elastomers

wherein the interfaces feature a constant surface tension. With guidance from the numerical

solutions, the last part of this paper is devoted to proposing a simple explicit approximation

for the effective stored-energy function 𝑊 (𝐅).

1. Introduction

Over the past few years, a series of experimental and theoretical investigations have pointed to elastomers filled with liquid

inclusions – ranging from ionic liquids, to liquid metals, to ferrofluids – as a promising new class of materials with unique

combinations of mechanical and physical properties; see, e.g., the works of Lopez-Pamies (2014), Style et al. (2015a), Bartlett

et al. (2017), Lefèvre et al. (2017), and Yun et al. (2019). The reason behind such novel properties is twofold.
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On one hand, the addition of liquid inclusions to elastomers increases the overall deformability. This is in contrast to the addition

of conventional fillers, which, being typically made of stiff solids, decreases deformability. Magnetorheological elastomers (MREs)

are a class of materials that distinctly exemplifies this dichotomy. For instance, while MREs filled with iron particles are able to

undergo very modest deformations even when subjected to large magnetic fields, MREs filled with ferrofluid inclusions are able to

undergo significant deformations when subjected to modest magnetic fields thanks to the increased deformability afforded by the

ferrofluid inclusions compared to that of iron particles (Lefèvre et al., 2017).

On the other hand, the mechanics and physics of the interfaces separating a solid elastomer from embedded liquid inclusions,

while negligible when the inclusions are ‘‘large’’, may have a significant and even dominant impact on the macroscopic response

of the material when the inclusions are ‘‘small’’. The experiments of Style et al. (2015a) on silicone elastomers filled with glycerol

droplets provide a beautiful example of this size-dependent phenomenon. These authors showed – via indentation experiments with

a cylindrical indenter – that the addition of glycerol droplets of approximately monodisperse radius 𝐴 ≈ 1 μm to a silicone elastomer

with initial shear modulus 𝜇𝚖 = 33 kPa led to a macroscopic response of the resulting composite material that was softer than that
of the silicone elastomer itself. By contrast, the same addition of droplets to a softer silicone elastomer with initial shear modulus

𝜇𝚖 = 1 kPa led to a macroscopic response that was stiffer than that of the elastomer without inclusions. Given that Style et al.
(2015a) estimated the initial surface tension 𝛾̂0 = 0.014 N∕m at the silicone/glycerol interfaces to be approximately the same for

both types of filled elastomers, the drastically different macroscopic responses can be explained qualitatively as follows. The interface

stiffness 𝛾̂0∕2𝐴 ≈ 7 kPa is significantly smaller than the bulk stiffness 𝜇𝚖 = 33 kPa of the stiffer elastomer, but larger than the bulk
stiffness 𝜇𝚖 = 1 kPa of the softer one. As a result, the inclusions embedded in the stiffer silicone elastomer pose little resistance to
deformation and hence lead to the softening of the macroscopic response. By contrast, the inclusions embedded in the softer silicone

elastomer pose significant resistance to deformation, behave effectively as stiff inclusions, and hence lead to the stiffening of the

macroscopic response. This type of competition between interface and bulk stiffnesses is commonly referred to as elasto-capillarity;

see, e.g., Andreotti et al. (2016), Bico et al. (2018), and references therein.

In this paper, we strive to gain insight into the above-outlined phenomena by constructing a general framework, alongside some

basic results, that describes the macroscopic mechanical behavior of elastomers filled with liquid inclusions directly in terms of their

microscopic behavior.

We begin in Section 2 by formulating the homogenization problem that describes the macroscopic mechanical response of such

filled elastomers under finite quasistatic deformations. The focus is on the non-dissipative case when the elastomer is a hyperelastic

solid, the liquid making up the inclusions is a hyperelastic fluid, the interfaces separating the solid elastomer from the liquid

inclusions feature their own hyperelastic behavior, which may possibly include the presence of initial interfacial forces such as

surface tension, and the inclusions are initially spherical in shape. For clarity of presentation, prior to the formulation of the

homogenization problem per se in Section 2.6, we devote Sections 2.1 through 2.3 to spelling out separately the relevant ingredients
of:

• bulk and interface kinematics,

• bulk, surface, and interface forces, and

• bulk and interface hyperelastic constitutive behaviors.

The combination of these ingredients leads to the governing equations at large – not just those of homogenization – for elastomers

filled with liquid inclusions undergoing finite quasistatic deformations. These equations are presented in Section 2.4. In Section

Section 2.5, we discuss the key roles that the residual stresses in the bulk resulting from the presence of initial interfacial forces

(in particular, an initial surface tension) as well as the initial shape of the inclusions play in the formulation. All the material in

Sections 2.1–2.5 follows in the footstep of the pioneering work of Gurtin and Murdoch (1975a,b) on elastic material surfaces.

We proceed in Section 3 by presenting the specialization of the general homogenization problem formulated in Section 2 to

the limit of small deformations, where some analytical treatment is possible. There, in Remark 15, we also introduce a number of

explicit solutions for special classes of microstructures. In Section 4, we present a finite-element (FE) scheme to solve numerically the

homogenization problem at finite deformations. We deploy the scheme in Sections 5 and 6 to generate solutions for a basic class of

elastomers filled with liquid inclusions, that of isotropic suspensions of incompressible liquid inclusions of identical or monodisperse

size embedded in incompressible Neo-Hookean elastomers wherein the interfaces feature a constant surface tension. The results in

Section 5 pertain to suspensions with a dilute volume fraction 𝑐 ↘ 0 of inclusions, while Section 6 presents results for suspensions
with finite volume fractions in the range 𝑐 ∈ [0, 0.25]. Both sections include comparisons with the experiments of Style et al. (2015a)
whenever possible. They include as well a simple explicit approximation of the numerical solutions. We conclude in Section 7 by

summarizing the main contributions of this work and by recording a number of final comments.

At the close of this introduction, it is fitting to make explicit mention of a number of related investigations on the macroscopic

manifestation of interfaces on the mechanics of heterogeneous materials at large. This has been an active research topic for decades

now, albeit one that has been mostly focused on solid–solid – as opposed to solid–liquid – interfaces and on asymptotically small –

as opposed to finite – deformations.

Among the first related works in the context of asymptotically small deformations, Sharma et al. (2003), Sharma and Ganti

(2004), and Duan et al. (2005a) revisited the fundamental Eshelby matrix/single-inclusion problem and accounted for an interface

that features its own elasticity, this in the absence of surface tension. Duan et al. (2005b) exploited their generalized Eshelby

analysis to formally define the effective modulus of elasticity of particulate composites with elastic matrix/inclusions interfaces.

Their definition applies strictly to material systems wherein, again, there is no surface tension at the interfaces and hence no residual

stresses in the bulk. Later, motivated by the experiments of Style et al. (2015a,b) worked out the solution for the Eshelby problem
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incorporating now the presence of an initial surface tension at the matrix/inclusion interface. In an effort to consider the finite

volume fraction of inclusions in the experiments of Style et al. (2015a), Mancarella et al. (2016) generalized the classical solution

of Christensen and Lo (1979) to also account for the presence of an interfacial surface tension. Both of these solutions apply strictly

to the case when the inclusions are made of an incompressible liquid and their initial shape is spherical, which imply a hydrostatic

residual stress within the inclusions. Recently, Krichen et al. (2019) have presented a more general analysis of the macroscopic

response of particulate composites containing initially spherical inclusions with interfaces that feature their own elasticity as well

as an initial surface tension.

In the context of finite deformations, we are aware of only two related works, those of Wang and Henann (2016) and Zafar and

Basu (2022). The former considers the problem of a unit cell, comprised of a nearly incompressible Neo-Hookean matrix embedding

either one or two monodisperse spherical cavities whose boundaries are endowed with tangential and normal tractions that model

the presence of a constant surface tension and the effect of a pressurized liquid, subjected to periodic boundary conditions with

a prescribed average deformation gradient. The latter considers an analogous unit-cell problem in 2D with circular cavities whose

boundaries feature tangential tractions that model the presence of a constant surface tension as well as interfacial elasticity. Both

works present FE solutions for such problems and appear to identify the average of the stress in the bulk as the macroscopic measure

of stress. Section 2.6 below deals in depth with this topic and shows that the macroscopic measure of stress for elastomers filled

with liquid inclusions is actually more involved, as it contains contributions from the averages of the bulk stresses as well as from

the interface stresses.

2. The problem

2.1. Initial configuration and kinematics

Consider a body made of𝑀 liquid inclusions fully embedded in an elastomeric matrix that in its initial configuration occupies the

open domain1 𝛺0 ⊂ R3, with boundary 𝜕𝛺0 and outward unit normal 𝐍. Denote by 𝛺𝚖
0 the subdomain occupied by the matrix and by

𝛺
𝚒,𝑗
0 𝑗 = 1, 2,… ,𝑀 that occupied by the 𝑗th inclusion. The inclusions are separated from the matrix by smooth interfaces, denoted by

𝛤
𝑗

0 for the 𝑗th inclusion, with unit normal 𝐍̂ pointing outwards from the inclusions towards the matrix, so that 𝛺0 = 𝛺𝚖
0
⋃

𝛤0
⋃

𝛺𝚒
0 ,

where 𝛤0 =
⋃𝑀

𝑗=1 𝛤
𝑗

0 and 𝛺𝚒
0 =

⋃𝑀
𝑗=1 𝛺

𝚒,𝑗
0 . We identify material points in the body by their initial position vector

𝐗 ∈ 𝛺0

and denote by 𝜃
𝚒,𝑗
0 (𝐗) and 𝜃𝚒0 (𝐗) the characteristic or indicator functions describing the individual and collective spatial locations

occupied by the inclusions in 𝛺0, that is,

𝜃
𝚒,𝑗
0 (𝐗) =

{
1 if 𝐗 ∈ 𝛺

𝚒,𝑗
0

0 otherwise
𝑗 = 1, 2,… ,𝑀 and 𝜃𝚒0 (𝐗) =

𝑀∑
𝑗=1

𝜃
𝚒,𝑗
0 (𝐗). (1)

As will become apparent below, it is convenient to single out the material points on the interfaces with their own labeling. We write

𝐗̂ = 𝐗 when 𝐗 ∈ 𝛤0.

Fig. 1(a) shows a schematic of the body in its initial configuration with all the pertinent geometric quantities depicted.

In response to the body, surface, and interfacial forces to be described below, the position vector 𝐗 of a material point may

occupy a new position 𝐱 specified by a continuous,2 invertible, orientation-preserving mapping 𝐲 from𝛺0 to the current configuration

𝛺 = 𝛺𝚖 ⋃𝛤
⋃

𝛺𝚒 ⊂ R3, where, in direct analogy with their initial counterparts, 𝛺𝚖, 𝛺𝚒, and 𝛤 denote the subdomains occupied by

the matrix and the inclusions and the interfaces separating them; by the same token, the notation 𝐧, 𝜃𝚒,𝑗 , and 𝜃𝚒 is used to denote

the counterparts of 𝐍̂, 𝜃𝚒,𝑗0 , and 𝜃𝚒0 in the current configuration. We write

𝐱 = 𝐲(𝐗).

Singling out again the material points on the interfaces with their own labeling, we also write

𝐱̂ = 𝐲(𝐗̂).

We denote the deformation gradient at 𝐗 ∈ 𝛺0 by

𝐅(𝐗) = ∇𝐲(𝐗) = 𝜕𝐲
𝜕𝐗

(𝐗)

1 For notational simplicity, we present the problem in the setting of 𝑛 = 3 space dimensions. However, as elaborated in the companion paper (Ghosh et al.,
2022), the problem in 𝑛 ≥ 2 space dimensions is not fundamentally different and the pertinent formulation can be inferred form the formulation presented here.

2 The assumption of continuity at 𝛤 corresponds physically to a no-slip condition at the matrix/inclusions interfaces. The fact that we also assume continuity

of deformation in 𝛺𝚒
0 is inconsequential from a physical point of view while, at the same time, is convenient from a mathematical one. This is because the

focus of this work in on quasi-static deformations and for those the only aspect that matters within the inclusions is their pressure, which only depends on the

volumetric part of their deformation.
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Fig. 1. Schematics of (a) the initial and (b) the current configurations of a body made of an elastomeric matrix filled with liquid inclusions.

and the interface deformation gradient at 𝐗̂ ∈ 𝛤0 by

𝐅̂(𝐗̂) = ∇̂𝐲(𝐗̂) = 𝐅(𝐗̂)̂𝐈, (2)

where 𝐈̂ stands for the projection tensor

𝐈̂ = 𝐈 − 𝐍̂⊗ 𝐍̂.

The notation (2) merits some clarification. Assuming sufficient regularity away from the interfaces, the requirement that the

deformation field 𝐲(𝐗) be continuous implies the Hadamard jump condition

[[𝐅(𝐗̂)]]̂𝐈 = 𝟎 with [[𝐅(𝐗̂)]] ∶= 𝐅𝚒(𝐗̂) − 𝐅𝚖(𝐗̂), (3)

where 𝐅𝚒 (𝐅𝚖) denotes the limit of 𝐅 when approaching 𝛤0 from 𝛺𝚒
0 (𝛺

𝚖
0). Although 𝐅𝚒 ≠ 𝐅𝚖 at 𝛤0, 𝐅𝚒 𝐈̂ = 𝐅𝚖 𝐈̂, and it is for this reason

that, with some abuse of notation, we do not include the label }𝚒’ or }𝚖’ in the right-hand side of (2).
The interested reader is referred to, for instance, do Carmo (2016), Weatherburn (2016), Gurtin et al. (1998), and Javili et al.

(2013) for a thorough description of differential operators defined on surfaces embedded in R3 and of the kinematics of interfaces.
For our purposes here, it suffices to make explicit mention of some of the properties of the interface deformation gradient (2). In

direct analogy with the transformation rules for material line elements d𝐗 in the bulk, material line elements d𝐗̂ on the interfaces

transform according to the rules

d𝐱̂ = 𝐅̂d𝐗̂ and d𝐗̂ = 𝐅̂−1d𝐱̂.

Owing to its rank deficiency, the inverse 𝐅̂−1 of the interface gradient deformation 𝐅̂ is defined implicitly by the relations

𝐅̂−1𝐅̂ = 𝐈̂ and 𝐅̂𝐅̂−1 = 𝐢̂.

where

𝐢̂ = 𝐈 − 𝐧⊗ 𝐧 with 𝐧 = 1|𝐽𝐅−𝑇 𝐍̂|𝐽𝐅−𝑇 𝐍̂.

That is

𝐅̂−1 = 𝐅−1 𝐢̂.

In these last expressions, we have made use of the standard notation 𝐽 = det 𝐅 for the determinant of the deformation gradient 𝐅
and exploited the facts that 𝐽 𝚒𝐅𝚒−𝑇 𝐍̂ = 𝐽 𝚖𝐅𝚖−𝑇 𝐍̂ and 𝐅𝚒−1 𝐢̂ = 𝐅𝚖−1 𝐢̂, thanks to (3), to simply write, with the same abuse of notation
as in (2), 𝐽𝐅−𝑇 𝐍̂ and 𝐅−1 𝐢̂ without the label }𝚒’ or }𝚖’. Furthermore, the area d𝐴 of material surface elements 𝐍̂d𝐴 on the interfaces

transforms according to the rule

d𝑎 = 𝐽d𝐴 with 𝐽 = |𝐽𝐅−𝑇 𝐍̂|.
This transformation rule also serves to define the interface determinant operator d̂et 𝐅̂ = 𝐽 . Finally, we note that material curve

elements 𝐌̂ d𝐿 on the interfaces transform according to the rule

𝐦̂ d𝑙 = 𝐽 𝐅̂−𝑇 𝐌̂ d𝐿,

where 𝐌̂ is a unit vector that is tangential to 𝛤0 and normal to the curve d𝐿. Fig. 1(b) provides a schematic of the body in its current
configuration with all the above geometric quantities depicted.
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Fig. 2. Schematic of a subdomain of the current configuration  ⊂ 𝛺, with boundary 𝜕 and outward unit normal 𝐧, indicating the body force 𝐛(𝐱), surface
force 𝐭(𝐱,𝐧), and interfacial force 𝐭̂(𝐱̂, 𝐦̂) that is subjected to.

2.2. Equilibrium equations and the concepts of bulk and interface stresses

In any given subdomain of the current configuration  ⊂ 𝛺, with boundary 𝜕 and outward unit normal3 𝐧, we consider that
there may be three types of forces present, to wit, a body force per unit current volume

𝐛(𝐱), 𝐱 ∈ ,

a surface force per unit current area, or surface traction,

𝐭(𝐱,𝐧), 𝐱 ∈ 𝜕,

and an interfacial force per unit current length, or interfacial traction,

𝐭̂(𝐱̂, 𝐦̂), 𝐱̂ ∈ 𝜕 ,

acting on the boundary 𝜕 of any subsurfaces of the interfaces  ⊂ 𝛤 that the subdomain  may contain. The first two of these

forces are standard. The third one accounts for the possibility of additional forces at the matrix/inclusions interfaces, such as, for

instance, surface tension and Marangoni forces; see, e.g., Popinet (2018) and references therein. Within such interfacial forces, we

shall restrict attention to tangential forces in the sense that

𝐢̂ 𝐭̂ = 𝐭̂. (4)

Note that Cauchy’s fundamental postulate has been tacitly assumed to apply, thus the dependencies of the surface traction 𝐭 on 𝐧
and of the interfacial traction 𝐭̂ on 𝐦̂, which, again, stands for the outward unit normal to 𝜕. Fig. 2 shows a schematic of a generic
subdomain  with all three types of forces depicted.

Absent inertia, granted the above-described types of forces, balance of linear momentum reads

∫ 𝐛 (𝐱) d𝐱 + ∫𝜕
𝐭
(
𝐱,𝐧

)
d𝐱 + ∫𝜕

𝐭̂
(
𝐱̂, 𝐦̂

)
d𝐱̂ = 𝟎. (5)

Assuming that 𝐭 and 𝐭̂ are continuous in 𝜕 ⧵ 𝜕 and 𝜕, respectively, if follows from (5) that

𝐭(𝐱,𝐧) = 𝐓(𝐱)𝐧, 𝐱 ∈  ⧵  , 𝐭̂(𝐱̂, 𝐦̂) = 𝐓̂(𝐱̂)𝐦̂, 𝐱̂ ∈  , (6)

where 𝐓 is the standard Cauchy stress tensor in the bulk while 𝐓̂ is the interface Cauchy stress tensor. The former is continuous in
 ⧵  but may have a jump at , while the latter is continuous on  and, by virtue of (4), is a tangential tensor in the sense that
𝐢̂𝐓̂̂𝐢 = 𝐓̂. Making use of relations (6), the bulk and interface divergence theorems,4 and the fact that 𝐓̂ is a superficial tensor in the
sense that 𝐓̂̂𝐢 = 𝐓̂, the balance of linear momentum (5) can be rewritten as

∫ 𝐛 (𝐱) d𝐱 + ∫⧵
div𝐓 d𝐱 − ∫ [[𝐓]]𝐧 d𝐱̂ + ∫ d̂iv 𝐓̂ d𝐱̂ = 𝟎,

3 For clarity, we make use of the notation ⋅̃ (in contrast to the notation ⋅̂ used for interfacial quantities) to refer to quantities on the boundary 𝜕 of arbitrary

subdomains  ⊂ 𝛺, which may or may not contain interfaces.
4 For convenience, we recall here that the bulk divergence theorem for a second-order tensor 𝐀 (smooth in  except possibly at ) reads, in indicial notation

with respect to a Cartesian frame of reference, ∫⧵ 𝜕𝐴𝑖𝑗∕𝜕𝑥𝑘 d𝐱 = ∫
𝜕 𝐴𝑖𝑗𝑛𝑘 d𝐱+ ∫ [[𝐴𝑖𝑗 ]]𝑛𝑘 d𝐱, while the interface divergence theorem for a second-order tensor 𝐀̂

(smooth in  but not necessarily superficial) reads ∫ (𝜕𝐴𝑖𝑗∕𝜕𝑥𝑙) 𝑖̂𝑘𝑙 d𝐱 = ∫
𝜕 𝐴𝑖𝑗 𝑚̂𝑘 d𝐱 + ∫ (𝜕𝑛𝑝∕𝜕𝑥𝑞 ) 𝑖̂𝑝𝑞𝐴𝑖𝑗𝑛𝑘 d𝐱.
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from which one can readily determine the localized form{
div 𝐓 + 𝐛 = 𝟎, 𝐱 ∈ 𝛺 ⧵ 𝛤

d̂iv 𝐓̂ − [[𝐓]]𝐧 = 𝟎, 𝐱 ∈ 𝛤
. (7)

In these expressions, [[𝐓(𝐱̂)]] = 𝐓𝚒(𝐱̂) − 𝐓𝚖(𝐱̂), where 𝐓𝚒 (𝐓𝚖) denotes the limit of 𝐓 when approaching 𝛤 from 𝛺𝚒 (𝛺𝚖), div is
the standard divergence operator in the bulk, and d̂iv stands for the interface divergence operator, that is, div𝐓 = 𝜕𝐓∕𝜕𝐱 ⋅ 𝐈 and
d̂iv 𝐓̂ = 𝜕𝐓̂∕𝜕𝐱 ⋅ 𝐢̂ (in indicial notation, 𝜕𝑇𝑖𝑗∕𝜕𝑥𝑘 𝛿𝑗𝑘 and 𝜕𝑇𝑖𝑗∕𝜕𝑥𝑘 𝑖̂𝑗𝑘).

In turn, balance of angular momentum reads

∫ 𝐱 ∧ 𝐛 (𝐱) d𝐱 + ∫𝜕
𝐱 ∧ 𝐭

(
𝐱,𝐧

)
d𝐱 + ∫𝜕

𝐱̂ ∧ 𝐭̂
(
𝐱̂, 𝐦̂

)
d𝐱̂ = 𝟎,

from which, making use of (6) and (7), one can deduce the localized form{
𝐓𝑇 = 𝐓, 𝐱 ∈ 𝛺 ⧵ 𝛤

𝐓̂𝑇 = 𝐓̂, 𝐱 ∈ 𝛤
. (8)

Eqs. (7) and (8) constitute the equilibrium equations for the body in Eulerian (spatial) form. For computational purposes, we

shall find it more convenient to deal with them in their Lagrangian (material) form{
Div 𝐒 + 𝐁 = 𝟎, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

D̂iv 𝐒̂ − [[𝐒]]𝐍̂ = 𝟎, 𝐗 ∈ 𝛤0
(9)

and {
𝐒𝐅𝑇 = 𝐅𝐒𝑇 , 𝐗 ∈ 𝛺0 ⧵ 𝛤0

𝐒̂𝐅̂𝑇 = 𝐅̂𝐒̂𝑇 , 𝐗 ∈ 𝛤0
, (10)

where 𝐒 = 𝐽𝐓𝐅−𝑇 is the standard first Piola–Kirchhoff stress tensor in the bulk, 𝐁 = 𝐽𝐛, and 𝐒̂ = 𝐽 𝐓̂𝐅̂−𝑇 stands for the interface first
Piola–Kirchhoff stress tensor. It follows from the connection 𝐅̂−𝑇 = 𝐢̂𝐅̂−𝑇 𝐈̂ that the interface first Piola–Kirchhoff stress 𝐒̂ is a superficial
tensor in the sense that 𝐒̂̂𝐈 = 𝐒̂. Contrary to 𝐓̂, however, 𝐒̂ is not a tangential tensor since, in general, 𝐈̂𝐒̂̂𝐈 ≠ 𝐒̂. The notation utilized
here for the bulk divergence, interface divergence, and jump operators is entirely analogous to that employed in (7) and (8), that

is, Div 𝐒 = 𝜕𝐒∕𝜕𝐗 ⋅ 𝐈 (𝜕𝑆𝑖𝑗∕𝜕𝑋𝑘 𝛿𝑗𝑘), D̂iv 𝐒̂ = 𝜕𝐒̂∕𝜕𝐗 ⋅ 𝐈̂ (𝜕𝑆𝑖𝑗∕𝜕𝑋𝑘 𝐼𝑗𝑘), and [[𝐒(𝐗̂)]] = 𝐒𝚒(𝐗̂) − 𝐒𝚖(𝐗̂). A direct derivation of (9) and (10)
starting from (7)–(8) is included in Appendix A for completeness.

2.3. Constitutive behaviors of the bulk and the interfaces

Constitutive behavior of the elastomeric matrix. The focus of this work is on material systems wherein the underlying elastomeric

matrix is presumed to behave mechanically as an isotropic hyperelastic solid. In particular, we consider that the mechanical behavior

of the elastomeric matrix is characterized by a stored-energy function

𝑊𝚖 = 𝑊𝚖(𝐅) ≥ 0 (11)

that satisfies the standard constraints of objectivity and material isotropy 𝑊𝚖(𝐐𝐅𝐊) = 𝑊𝚖(𝐅) for all 𝐐,𝐊 ∈ 𝑆𝑂(3) and linearizes
according to

𝑊𝚖(𝐅) = 𝜇𝚖 tr 𝐄2 +
𝛬𝚖
2
(tr 𝐄)2 + 𝑂(‖𝐅 − 𝐈‖3) (12)

in the limit of small deformations as 𝐅 → 𝐈, where 𝐄 = (𝐇 +𝐇𝑇 )∕2 with 𝐇 = 𝐅 − 𝐈. The material constants 𝜇𝚖 > 0 and 𝛬𝚖 > 0 in the
linearized expression (12) denote the initial shear modulus and first Lamé constant of the elastomer. In the sequel, for definiteness

and clarity of presentation, we will begin by restriction attention to the basic Neo-Hookean stored-energy function

𝑊𝚖(𝐅) =
𝜇𝚖
2

[𝐅 ⋅ 𝐅 − 3] − 𝜇𝚖 ln 𝐽 +
𝛬𝚖
2
(𝐽 − 1)2. (13)

Remark 1. Here, it is important to emphasize that the use of stored-energy functions (11) with (12) implies that, in its initial

configuration, the elastomeric matrix is stress free. In other words, we are assuming that there are no pre-stresses or residual stresses
in the elastomeric matrix. Depending on the fabrication process of the filled elastomer of interest, however, this assumption may not

be appropriate. As elaborated below in Section 2.5, this assumption is indeed appropriate for the prototypical case when the liquid

inclusions are initially spherical in shape. In this work, we shall focus on elastomers filled with initially spherical liquid inclusions.

Constitutive behavior of the liquid inclusions. Granted the absence of inertia, the liquid making up the inclusions is presumed to

behave as a hyperelastic fluid; see, e.g., Wang and Truesdell (1973). Precisely, we consider that the mechanical behavior of the

liquid inclusions is characterized by the stored-energy functions

𝑊
𝑗
𝚒 (𝐗, 𝐽 ) = 𝑟

𝑗
𝚒(𝐗)𝐽 +

𝛬𝚒
2
(𝐽 − 1)2 𝑗 = 1, 2,… ,𝑀, (14)
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where, as will become apparent below in Section 2.5, 𝑟
𝑗
𝚒(X) shall stand for the pressure – which is not necessarily zero due to the

possible presence of initial interfacial forces – that the liquid within the 𝑗th inclusion is subjected to in the initial configuration,

when 𝐅 = 𝐈, and 𝛬𝚒 ≥ 0 denotes the initial first Lamé constant of the liquid and thus serves to quantify its compressibility. The case
of an incompressible liquid is recovered by setting 𝛬𝚒 = +∞.

Remark 2. All 𝑀 inclusions are assumed to be made of the same liquid, thus the unique value of 𝛬𝚒 in (14). However, because

each inclusion is allowed to have its own initial geometry, and thus its own initial size, the term 𝑟
𝑗
𝚒(𝐗) in (14) describing the residual

stress within the inclusions may be different for each inclusion. As explained below in Section 2.5, such a residual stress is not

arbitrary but it must comply with the governing equations of equilibrium.

Pointwise constitutive behavior of the bulk. Given the indicator functions (1) for the inclusions and the stored-energy functions (13) and

(14) for the elastomeric matrix and the inclusions, the pointwise stored-energy function for the bulk of the body can be compactly

written as

𝑊 (𝐗,𝐅) = 𝑟𝚒(𝐗)𝐽 + 𝜇(𝐗)
2

[𝐅 ⋅ 𝐅 − 3] − 𝜇(𝐗) ln 𝐽 + 𝛬(𝐗)
2

(𝐽 − 1)2 , (15)

where

𝑟𝚒(𝐗) =
𝑀∑
𝑗=1

𝜃
𝚒,𝑗
0 (𝐗)𝑟𝑗𝚒(𝐗), 𝜇(𝐗) =

(
1 − 𝜃𝚒0 (𝐗)

)
𝜇𝚖, 𝛬(𝐗) =

(
1 − 𝜃𝚒0 (𝐗)

)
𝛬𝚖 + 𝜃𝚒0 (𝐗)𝛬𝚒. (16)

It then follows that the first Piola–Kirchhoff stress tensor 𝐒 at any material point in the bulk reads

𝐒(𝐗) = 𝜕𝑊

𝜕𝐅
(𝐗,𝐅) = 𝑟𝚒(𝐗)𝐽𝐅−𝑇 + 𝜇(𝐗)

(
𝐅 − 𝐅−𝑇 ) + 𝛬(𝐗)(𝐽 − 1)𝐽𝐅−𝑇 , 𝐗 ∈ 𝛺0 ⧵ 𝛤0. (17)

Remark 3. In the limit of small deformations as 𝐅 → 𝐈, granted the linearized behavior (12) of the elastomer, the constitutive
response (17) reduces asymptotically to

𝐒(𝐗) = 𝑟𝚒(𝐗)𝐈 − 𝑟𝚒(𝐗)𝐇𝑇 + 𝑟𝚒(𝐗)(tr 𝐄)𝐈 + 2𝜇(𝐗)𝐄 + 𝛬(𝐗)(tr 𝐄)𝐈 + 𝑂(‖𝐅 − 𝐈‖2), (18)

where, again, 𝐇 = 𝐅 − 𝐈 and 𝐄 = (𝐇 +𝐇𝑇 )∕2 is the infinitesimal strain tensor. The corresponding Cauchy stress tensor 𝐓 = 𝐽−1𝐒𝐅𝑇

is given by

𝐓(𝐱) = 𝑟𝚒(𝐱)𝐈 + 2𝜇(𝐱)𝐄 + 𝛬(𝐱)(tr 𝐄)𝐈 + 𝑂(‖𝐅 − 𝐈‖2). (19)

Three key features are now immediate. First, in the initial configuration, when 𝐱 = 𝐗, 𝐅 = 𝐈, and 𝐇 = 𝐄 = 𝟎, the stress measures
(18) and (19) reduce to

𝐒(𝐗) = 𝑟𝚒(𝐗)𝐈 and 𝐓(𝐱) = 𝑟𝚒(𝐱)𝐈,

which indicate that the inclusions, but not the matrix, have a hydrostatic residual stress. Second, the stress (18) is not symmetric
as it does not depend only on the symmetric part 𝐄 of 𝐇, but also on 𝐇 itself. Third, the first Piola–Kirchhoff stress (18) does not
coincide with the Cauchy stress (19) to 𝑂(‖𝐅− 𝐈‖). As elaborated below, these three non-standard features are direct consequences
of the presence of a residual stress, which in turn is a direct consequence of the presence of interfacial forces.

Remark 4. The bulk constitutive response (18) in the limit of small deformations can be rewritten as

𝐒(𝐗) = 𝑟𝚒(𝐗)𝐈 + 𝐋(𝐗)𝐇 + 𝑂(‖𝐅 − 𝐈‖2)
with

𝐋(𝐗) = 𝑟𝚒(𝐗) +
(
2𝜇(𝐗) − 𝑟𝚒(𝐗)

)
 +

(
2𝜇(𝐗) + 2𝑟𝚒(𝐗) + 3𝛬(𝐗)

)
 , (20)

where

𝑖𝑗𝑘𝑙 =
1
2
(𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑙𝛿𝑗𝑘), 𝑖𝑗𝑘𝑙 =

1
2

(
𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −

2
3
𝛿𝑖𝑗𝛿𝑘𝑙

)
, 𝑖𝑗𝑘𝑙 =

1
3
𝛿𝑖𝑗𝛿𝑘𝑙. (21)

From these, it is straightforward to verify that 𝐿𝑖𝑗𝑘𝑙(𝐗) exhibits major symmetry, 𝐿𝑖𝑗𝑘𝑙(𝐗) = 𝐿𝑘𝑙𝑖𝑗 (𝐗), but not minor symmetries,
𝐿𝑖𝑗𝑘𝑙(𝐗) ≠ 𝐿𝑗𝑖𝑘𝑙(𝐗) ≠ 𝐿𝑖𝑗𝑙𝑘(𝐗). It is also a simple matter to verify that the tensors , , and  satisfy the orthonormality properties

 =  =  =  =  =  = 𝟎,  = ,  = ,   =  ,

and hence that (20) is the spectral representation of the initial modulus of elasticity 𝐋(𝐗) for the bulk. Due to the lack of minor
symmetry of , the tensor (20) does not posses the typical pointwise positive definiteness of the initial modulus of elasticity of
standard elastic materials. We will come back to this important point in Remark 14.

Remark 5. Thanks to the objectivity of the stored-energy functions (13) and (14), the constitutive relation (17) satisfies

automatically the balance of angular momentum (10)1 in the bulk.
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Pointwise constitutive behavior of the interfaces. We now turn to the constitutive description of the interfaces. Similar to the elastomeric

matrix and liquid inclusions, we also consider that under the quasistatic deformations of interest here any interfacial dissipative

phenomena is negligible and presume the interfaces to exhibit an isotropic hyperelastic behavior. Specifically, we consider that the

interface first Piola–Kirchhoff stress tensor 𝐒̂ is given by a relation of the form

𝐒̂(𝐗) = 𝜕𝑊

𝜕𝐅̂
(𝐅̂), 𝐗 ∈ 𝛤0 (22)

in terms of a suitably well-behaved interface stored-energy function 𝑊 (𝐅̂). In the sequel, for definiteness and clarity of presentation,
we will begin by making use of the Neo-Hookean-type stored-energy function

𝑊 (𝐅̂) = 𝛾̂0 𝐽 + 𝜇

2

[
𝐅̂ ⋅ 𝐅̂ − 2

]
− 𝜇 ln 𝐽 + 𝛬

2
(𝐽 − 1)2. (23)

Here, as elaborated in the next remark, the material constant 𝛾̂0 ≥ 0 describes the surface tension on the interfaces in the initial
configuration. On the other hand, 𝜇 ≥ 0 and 𝛬 ≥ 0 can be viewed as the interface Lamé constants in the same initial configuration.
All three material constants 𝛾̂0, 𝜇, 𝛬 have units of 𝑓𝑜𝑟𝑐𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ. Making use of the relations 𝜕𝐽∕𝜕𝐅̂ = 𝐽 𝐅̂−𝑇 and 𝜕(𝐅̂ ⋅ 𝐅̂)∕𝜕𝐅̂ = 2𝐅̂, it
is straightforward to show that the interface first Piola–Kirchhoff stress tensor (22) associated with the stored-energy function (23)

is given by

𝐒̂(𝐗) = 𝛾̂0 𝐽 𝐅̂−𝑇 + 𝜇(𝐅̂ − 𝐅̂−𝑇 ) + 𝛬(𝐽 − 1)𝐽 𝐅̂−𝑇 , 𝐗 ∈ 𝛤0. (24)

Remark 6. The interface Cauchy stress tensor 𝐓̂ = 𝐽−1𝐒̂𝐅̂𝑇 associated with the stored-energy function (23) reads

𝐓̂(𝐱) = 𝛾̂0 𝐢̂ + 𝜇(𝐽−1𝐅̂𝐅̂𝑇 − 𝐢̂) + 𝛬(𝐽 − 1)̂𝐢, 𝐱 ∈ 𝛤 . (25)

This expression makes it plain that the constitutive relation (24) utilized here to describe the mechanical behavior of the interfaces

generalizes in two counts the basic constitutive relation of constant surface-tension stress

𝐓̂(𝐱) = 𝛾̂0 𝐢̂.

Specifically, the constitutive relation (25) includes Neo-Hookean-type deviatoric elasticity, via the term 𝜇(𝐽−1𝐅̂𝐅̂𝑇 − 𝐢̂), and not
just surface tension. It also accounts for a surface tension that is not necessarily a constant but instead one that depends on the

deformation of the interface via the term 𝛬(𝐽−1)̂𝐢. At present, very little is known from direct observations about what the mechanical

behavior of interfaces between elastomers and liquids looks like, especially at finite deformations. The constitutive relation (24)

should be hence regarded as a simple plausible generalization of the basic concept of constant surface tension. We will introduce

another generalization in the latter part of Section 7.

Remark 7. In the limit of small deformations as 𝐅 → 𝐈, so that 𝐅̂ → 𝐈̂, the constitutive response (24) reduces asymptotically to

𝐒̂(𝐗) = 𝛾̂0 𝐈̂ + 𝛾̂0𝐇̂ + 2(𝜇 − 𝛾̂0)𝐄̂ + (𝛬 + 𝛾̂0)(tr𝐄̂)̂𝐈 + 𝑂(‖𝐅 − 𝐈‖2), (26)

where 𝐄̂ = (̂𝐈𝐇̂ + 𝐇̂𝑇 𝐈̂)∕2 with 𝐇̂ = 𝐅̂ − 𝐈̂. The corresponding interface Cauchy stress tensor (25) reduces in turn to

𝐓̂(𝐱) = 𝛾̂0 𝐈̂ + 2𝜇𝐄̂ + 𝛬(tr𝐄̂)̂𝐈 + 𝑂(‖𝐅 − 𝐈‖2). (27)

The asymptotic results (26) and (27) were originally introduced by Gurtin and Murdoch (1975a,b). Of note here is that, in the

presence of an initial surface tension when 𝛾̂0 > 0, the interface first Piola–Kirchhoff stress (26) is not symmetric and does not
coincide with the interface Cauchy stress (27) to 𝑂(‖𝐅 − 𝐈‖).
Remark 8. The interface constitutive response (26) in the limit of small deformations can be rewritten as

𝐒̂(𝐗) = 𝛾̂0 𝐈̂ + 𝐋̂𝐇̂ + 𝑂(‖𝐅 − 𝐈‖2)
with

𝐋̂ = 𝛾̂0̂ +
(
2𝜇 − 𝛾̂0

)
̂ +

(
2𝜇 + 𝛾̂0 + 2𝛬

)
̂ , (28)

where

̂𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝐼𝑗𝑙 −
1
2

(
𝐼𝑖𝑘𝐼𝑗𝑙 + 𝐼𝑖𝑙𝐼𝑗𝑘

)
, ̂𝑖𝑗𝑘𝑙 =

1
2

(
𝐼𝑖𝑘𝐼𝑗𝑙 + 𝐼𝑖𝑙𝐼𝑗𝑘 − 𝐼𝑖𝑗𝐼𝑘𝑙

)
, ̂𝑖𝑗𝑘𝑙 =

1
2
𝐼𝑖𝑗𝐼𝑘𝑙.

In complete analogy to its bulk counterpart (20), 𝐿̂𝑖𝑗𝑘𝑙 = 𝐿̂𝑘𝑙𝑖𝑗 but 𝐿̂𝑖𝑗𝑘𝑙 ≠ 𝐿̂𝑗𝑖𝑘𝑙 ≠ 𝐿̂𝑖𝑗𝑙𝑘, the tensors ̂, ̂, and ̂ satisfy the

orthonormality properties

̂̂ = ̂̂ = ̂̂ = ̂ ̂ = ̂̂ = ̂ ̂ = 𝟎, ̂̂ = ̂, ̂̂ = ̂, ̂ ̂ = ̂ ,

and hence (28) is the spectral representation of the initial modulus of elasticity 𝐋̂ for the interfaces. In this regard, note that (28)

is not positive definite (as a fourth-order tensor acting on superficial second-order tensors 𝐇̂ = 𝐇̂ 𝐈̂) when 𝛾̂0 > 𝜇.

Remark 9. Thanks to the objectivity of the interface stored-energy function (23), the constitutive relation (24) satisfies automatically

the balance of angular momentum (10)2 on the interfaces.
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2.4. Governing equations

We are now in a position to write down the governing equations for our problem by combining the above deformation, force,

and constitutive ingredients. Considering that 𝐲(𝐗) is the given deformation applied on the part of the boundary 𝜕𝛺
0 and that 𝐬(𝐗)

is the given nominal traction applied on the complementary part of the boundary 𝜕𝛺
0 = 𝜕𝛺0 ⧵𝜕𝛺

0 , substitution of the constitutive

relations (17) and (24) for the bulk and interfaces in the equilibrium equations (9) yields the following governing equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Div
[
𝑟𝚒(𝐗)𝐽∇𝐲−𝑇 + 𝜇(𝐗)

(
∇𝐲 − ∇𝐲−𝑇

)
+ 𝛬(𝐗)(𝐽 − 1)𝐽∇𝐲−𝑇

]
+ 𝐁 = 𝟎, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

D̂iv
[
𝛾̂0 𝐽 ∇̂𝐲−𝑇 + 𝜇(∇̂𝐲 − ∇̂𝐲−𝑇 ) + 𝛬(𝐽 − 1)𝐽 ∇̂𝐲−𝑇

]
−[[

𝑟𝚒(𝐗)𝐽∇𝐲−𝑇 + 𝜇(𝐗)
(
∇𝐲 − ∇𝐲−𝑇

)
+ 𝛬(𝐗)(𝐽 − 1)𝐽∇𝐲−𝑇

]]
𝐍̂ = 𝟎, 𝐗 ∈ 𝛤0

𝐲(𝐗) = 𝐲(𝐗), 𝐗 ∈ 𝜕𝛺
0[

𝜇𝚖
(
∇𝐲 − ∇𝐲−𝑇

)
+ 𝛬𝚖(𝐽 − 1)𝐽∇𝐲−𝑇

]
𝐍 = 𝐬(𝐗), 𝐗 ∈ 𝜕𝛺

0

(29)

for the deformation field 𝐲(𝐗); recall that the balance of angular momentum (10) is automatically satisfied. These equations constitute

a generalization of the classical elastostatics equations for heterogeneous Neo-Hookean materials that accounts for: (𝑖) the presence

of residual stresses (in the inclusions) and (𝑖𝑖) a jump condition across material (matrix/inclusions) interfaces that is not simply

given by the continuity of tractions but by a more complex condition due to the presence of interfacial forces. At present, as is

the case for the simpler classical elastostatics equations (Lefèvre et al., 2022), there is still no existence theorem of solutions for

(29). Be that as it may, for suitably well-behaved residual stresses 𝑟𝚒(𝐗), body forces 𝐁(𝐗), and boundary data 𝐲(𝐗) and 𝐬(𝐗), the
expectation is that a unique solution for 𝐲(𝐗) exists5 in the limit of small deformations, which may bifurcate into multiple solutions
at sufficiently large deformations (Healey and Simpson, 1998).

2.5. Residual stresses

In the initial configuration, prior to the application of the external body force 𝐁(𝐗) in the bulk and the boundary data 𝐲(𝐗) and
𝐬(𝐗), the deformation field 𝐲(𝐗) = 𝐗 and hence the governing equations (29) reduce to{

Div
[
𝑟𝚒(𝐗)𝐈

]
= 𝟎, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

𝛾̂0 D̂iv 𝐈̂ −
[[
𝑟𝚒(𝐗)

]]
𝐍̂ = 𝟎, 𝐗 ∈ 𝛤0

, (30)

which can be viewed as the definition of the hydrostatic residual stress 𝑟𝚒(𝐗) within the inclusions required to balance out the
interfacial forces. Recognizing that

[[
𝑟𝚒(𝐗)

]]
= 𝑟𝚒(𝐗) and that

D̂iv 𝐈̂ = −∇(𝐍̂⊗ 𝐍̂) ⋅ 𝐈̂ = −(̂𝐈 ⋅ ∇𝐍̂)𝐍̂ = −(tr ∇̂𝐍̂)𝐍̂ = 2𝜅𝐍̂

in terms of the mean curvature 𝜅 = −tr ∇̂𝐍̂∕2 of the interfaces, Eqs. (30) can be rewritten more explicitly as{
∇𝑟𝚒(𝐗) = 𝟎, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

𝑟𝚒(𝐗) = 2𝜅𝛾̂0, 𝐗 ∈ 𝛤0
. (31)

Now, the PDE (31)1 states that the hydrostatic residual stress 𝑟𝚒(𝐗) must be constant – possibly a different constant – within each
inclusion. In view of the boundary condition (31)2, which is nothing more than the standard Young–Laplace equation, a solution

to the boundary-value problem (31) then only exists for the case when all 𝑀 inclusions have shapes of constant mean curvature
(Kenmotsu, 2003), for only then (31)2 is consistent with (31)1. Physically, as alluded to in Remark 1, this result implies that to deal

with liquid inclusions of general initial shape, one would have to account for residual stresses in the elastomeric matrix and not

just within the inclusions.

Henceforth, we shall restrict attention to the prototypical case of elastomers filled with liquid inclusions that are initially spherical
in shape and thus have constant mean curvature. For these, the solution to (31) simply reads

𝑟𝚒(𝐗) = −
𝑀∑
𝑗=1

𝜃
𝚒,𝑗
0 (𝐗)

2 𝛾̂0
𝐴𝑗

, (32)

where 𝐴𝑗 denotes the initial radius of the 𝑗th inclusion. The more general case of elastomers filled with liquid inclusions of arbitrary

initial shape will be considered in future work.

2.6. Macroscopic or homogenized response of elastomers filled with spherical liquid inclusions

The governing equations (29) with (32) apply to elastomers filled with any arbitrary number of spherical liquid inclusions of any

size and spatial distribution. In this work, we wish to restrict attention to elastomers filled with liquid inclusions wherein the latter

are not only initially spherical in shape but they are also of much smaller size than the size of the body and are as well distributed

uniformly in space.

5 In point of fact, explicit solutions can be readily worked out in terms of spherical harmonics for some special cases; see, for instance, Sharma et al. (2003),

Duan et al. (2005a), Style et al. (2015b), and Appendix D.
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2.6.1. The formal view
Based on elementary intuition, and more so on experimental observations (Style et al., 2015a), the expectation is that

elastomers filled with a statistically uniform spatial distribution of liquid inclusions that are of much smaller size than 𝛺0 behave

macroscopically as homogeneous nonlinear elastic materials, their elasticity being characterized by the relation between the

macroscopic first Piola–Kirchhoff stress

𝐒 ∶= 1|𝛺0| ∫𝜕𝛺0

𝐒𝐍⊗ 𝐗 d𝐗 (33)

and the macroscopic deformation gradient tensor

𝐅 ∶= 1|𝛺0| ∫𝜕𝛺0

𝐲 ⊗ 𝐍 d𝐗 (34)

when, neglecting body forces, they are subjected to affine boundary conditions (Hill, 1972).

Remark 10. Granted the continuity of the deformation field 𝐲(𝐗), it follows from the bulk divergence theorem that

𝐅 = 1|𝛺0| ∫𝛺0

𝐅(𝐗) d𝐗. (35)

On the other hand, granted the balance of linear momentum (9) with body force 𝐁 = 0 and the fact that 𝐒̂ is a superficial tensor, it
follows from the bulk and interface divergence theorems that

𝐒 = 1|𝛺0|
(
∫𝛺0

𝐒(𝐗) d𝐗 + ∫𝛤0

𝐒̂(𝐗) d𝐗
)

. (36)

In contrast to the macroscopic deformation gradient tensor (34), which turns out to be equal to the volume average (35) of the local

deformation gradient tensor 𝐅(𝐗), the macroscopic stress (33) is not equal to the volume average of the local first Piola–Kirchhoff
stress 𝐒(𝐗). Instead, as indicated by relation (36), it contains an additional contribution given by the average of the interface stress
𝐒̂(𝐗). The derivation of the results (35) and (36) is presented in Appendix B.

For affine deformations, when 𝐅 is prescribed, the problem amounts to solving the boundary-value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

Div
[
𝑟𝚒(𝐗)𝐽∇𝐲−𝑇 + 𝜇(𝐗)

(
∇𝐲 − ∇𝐲−𝑇

)
+ 𝛬(𝐗)(𝐽 − 1)𝐽∇𝐲−𝑇

]
= 𝟎, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

D̂iv
[
𝛾̂0 𝐽 ∇̂𝐲−𝑇 + 𝜇(∇̂𝐲 − ∇̂𝐲−𝑇 ) + 𝛬(𝐽 − 1)𝐽 ∇̂𝐲−𝑇

]
−[[

𝑟𝚒(𝐗)𝐽∇𝐲−𝑇 + 𝜇(𝐗)
(
∇𝐲 − ∇𝐲−𝑇

)
+ 𝛬(𝐗)(𝐽 − 1)𝐽∇𝐲−𝑇

]]
𝐍̂ = 𝟎, 𝐗 ∈ 𝛤0

𝐲(𝐗) = 𝐅𝐗, 𝐗 ∈ 𝜕𝛺0

(37)

for the deformation field 𝐲(𝐗) and then computing the resulting average (33), or equivalently (36), for the macroscopic first Piola–
Kirchhoff stress; in these equations, recall that the material parameters 𝜇(𝐗) and 𝛬(𝐗) are given by (16)2,3 and the residual stress
𝑟𝚒(𝐗) by (32). Akin to the classical case when there are no residual stresses nor interfacial forces (Ogden, 1974), the constitutive
relationship between (33) and (34) turns out to be hyperelastic. That is, there is an effective stored-energy function, 𝑊 = 𝑊 (𝐅)
say, whose derivative with respect to the macroscopic deformation gradient 𝐅 yields the macroscopic first Piola–Kirchhoff stress 𝐒.
Precisely, as elaborated in Appendix C to avoid loss of continuity,

𝐒 = 𝜕𝑊

𝜕𝐅
(𝐅) with 𝑊 (𝐅) = 𝑊 0 +

1|𝛺0|
(
∫𝛺0

𝑊 (𝐗,∇𝐲) d𝐗 + ∫𝛤0

𝑊 (∇̂𝐲) d𝐗
)

. (38)

In this last expression, the constant

𝑊 0 = − 1|𝛺0|
(
∫𝛺0

𝑊 (𝐗, 𝐈) d𝐗 + ∫𝛤0

𝑊 (̂𝐈) d𝐗
)

is introduced for the convenience of having 𝑊 (𝐈) = 0, the deformation field 𝐲(𝐗) is solution6 to (37), and we recall that the
local stored-energy functions for the bulk 𝑊 and the interfaces 𝑊 are given by (15) and (23). A simple change of variables

(𝐲,𝐅) ↦ (𝐐
𝑇
𝐲,𝐐𝐅) in (37) suffices to establish that the effective stored-energy function (38)2 satisfies the condition

𝑊 (𝐐𝐅) = 𝑊 (𝐅) for all 𝐐 ∈ SO(3) (39)

and hence that it satisfies macroscopic material frame indifference. As a result, the macroscopic stress (33) and deformation gradient

tensor (34) automatically satisfy the macroscopic balance of angular momentum

𝐒𝐅
𝑇
= 𝐅𝐒

𝑇
. (40)

6 As already pointed out in the context of the general governing equations (29) above, at sufficiently large deformations, Eqs. (37) may admit multiple

solutions 𝐲(𝐗). The evaluation of (38)2 should be carried out for the solution 𝐲(𝐗) that is realized physically, which typically corresponds to the solution with
lowest energy.
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Fig. 3. Schematics of an elastomer filled with a periodic distribution of spherical liquid inclusions in the initial configuration 𝛺0, of size 𝐿 = 1, its defining unit
cell 0 = (0,𝓁)3, and the homogenization limit 𝛿 = 𝓁∕𝐿 ↘ 0. For simplicity, the schematic shown here is for a unit cell that contains only 𝑀♯ = 2 inclusions.
Fig. 8 shows one of the actual unit cells, wherein 𝑀♯ = 30, that is used to generate the results presented in Section 6.

2.6.2. The rigorous view

The above definition of homogenized response is purely formal. To make it precise, consider elastomers filled with liquid

inclusions that, as schematically depicted by Fig. 3, are periodically distributed over periods of size 𝓁 in the initial configuration

𝛺0. Denote the length scale of 𝛺0 by 𝐿, define the ratio of length scales 𝛿 = 𝓁∕𝐿, and, for convenience, choose units so that 𝐿 = 1
and hence 𝛿 = 𝓁. In this setting, the collective indicator function (1)2 for the inclusions is taken to be of the form

𝜃𝚒0 (𝐗) = 𝜃
♯𝚒
0 (𝛿−1𝐗),

where 𝜃
♯𝚒,𝑗
0 (𝐘) is a 0-periodic function with 0 = (0,𝓁)3, that is, 𝜃♯𝚒0 (𝐘+𝓁 𝐙) = 𝜃

♯𝚒
0 (𝐘) for all 𝐘 ∈ 0 and any 𝐙 ∈ Z3. It follows that

the material parameters (16)2,3 and the residual stress (32) are also 0-periodic. We write

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇(𝐗) = 𝜇♯(𝛿−1𝐗) with 𝜇♯(𝛿−1𝐗) =
(
1 − 𝜃

♯𝚒
0 (𝛿−1𝐗)

)
𝜇𝚖

𝛬(𝐗) = 𝛬♯(𝛿−1𝐗) with 𝛬♯(𝛿−1𝐗) =
(
1 − 𝜃

♯𝚒
0 (𝛿−1𝐗)

)
𝛬𝚖 + 𝜃

♯𝚒
0 (𝛿−1𝐗)𝛬𝚒

𝑟𝚒(𝐗) = 𝑟
♯
𝚒(𝛿

−1𝐗) with 𝑟
♯
𝚒(𝛿

−1𝐗) = −
𝑀♯∑
𝑗=1

𝜃
♯𝚒,𝑗
0 (𝛿−1𝐗)

2 𝛾̂0
𝐴𝑗

, (41)

where 𝑀♯ stands for the number of inclusions within the unit cell 0 while 𝜃
♯𝚒,𝑗
0 (𝐘) denotes the indicator function describing the

initial spatial locations that they occupy in 0.

For a fixed value of the ratio of length scales 𝛿, neglecting body forces and using a superscript 𝛿 to denote dependence on this

parameter explicitly, the general governing equations (29) specialize to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Div
[
𝑟
♯
𝚒(𝛿

−1𝐗)𝐽𝛿∇𝐲𝛿−𝑇 + 𝜇♯(𝛿−1𝐗)
(
∇𝐲𝛿 − ∇𝐲𝛿−𝑇

)
+ 𝛬♯(𝛿−1𝐗)(𝐽𝛿 − 1)𝐽𝛿∇𝐲𝛿−𝑇

]
= 𝟎, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

D̂iv
[
𝛾̂0 𝐽

𝛿∇̂𝐲𝛿−𝑇 + 𝜇(∇̂𝐲𝛿 − ∇̂𝐲𝛿−𝑇 ) + 𝛬(𝐽𝛿 − 1)𝐽𝛿∇̂𝐲𝛿−𝑇
]
−[[

𝑟
♯
𝚒(𝛿

−1𝐗)𝐽𝛿∇𝐲𝛿−𝑇 + 𝜇♯(𝛿−1𝐗)
(
∇𝐲𝛿 − ∇𝐲𝛿−𝑇

)
+ 𝛬♯(𝛿−1𝐗)(𝐽𝛿 − 1)𝐽𝛿∇𝐲𝛿−𝑇

]]
𝐍̂ = 𝟎, 𝐗 ∈ 𝛤0

𝐲𝛿(𝐗) = 𝐲(𝐗), 𝐗 ∈ 𝜕𝛺
0[

𝜇𝚖

(
∇𝐲𝛿 − ∇𝐲𝛿−𝑇

)
+ 𝛬𝚖(𝐽𝛿 − 1)𝐽𝛿∇𝐲𝛿−𝑇

]
𝐍 = 𝐬(𝐗), 𝐗 ∈ 𝜕𝛺

0

(42)

for the deformation field 𝐲𝛿(𝐗). The expectation is that one can pass to the limit as 𝛿 ↘ 0 in (42) and show that the deformation

field 𝐲𝛿(𝐗) converges to a macroscopic deformation field 𝐲(𝐗) solution of the elastostatics equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Div
[
𝜕𝑊

𝜕𝐅
(∇𝐲)

]
= 𝟎, 𝐗 ∈ 𝛺0

𝐲(𝐗) = 𝐲(𝐗), 𝐗 ∈ 𝜕𝛺
0[

𝜕𝑊

𝜕𝐅
(∇𝐲)

]
𝐍 = 𝐬(𝐗), 𝐗 ∈ 𝜕𝛺

0

(43)
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for a homogeneous hyperelastic solid.7 Moreover, based on the classical homogenization result of Braides (1985) and Müller (1987)
for hyperelastic solids without residual stresses and interfacial forces, the expectation is that the effective stored-energy function 𝑊

in (43) is given by the formula

𝑊 (𝐅) = 𝑊
♯

0 +
1|𝐤
0 |

(
∫𝐤

0

𝑊 ♯(𝐘,∇𝝌) d𝐘 + ∫𝐤0
𝑊 (∇̂𝝌) d𝐘

)
, (44)

where the constant

𝑊
♯

0 = − 1|𝐤
0 |

(
∫𝐤

0

𝑊 ♯(𝐘, 𝐈) d𝐘 + ∫𝐤0
𝑊 (̂𝐈) d𝐘

)
is introduced for the convenience of having 𝑊 (𝐈) = 0, and where

𝑊 ♯(𝐘,𝐅) = 𝑟
♯
𝚒(𝐘)𝐽 + 𝜇♯(𝐘)

2
[𝐅 ⋅ 𝐅 − 3] − 𝜇♯(𝐘) ln 𝐽 + 𝛬♯(𝐘)

2
(𝐽 − 1)2 ,

we recall that the material parameters 𝜇♯(𝐘) and 𝛬♯(𝐘) and the residual stress 𝑟
♯
𝚒(𝐘) are given by (41), the local stored-energy

function for the interface 𝑊 is given by (23), 𝐤 ∈ N3, 𝐤
0 ∶= 𝐤0, 0 (𝐤0) denotes the domain occupied by the interfaces in the unit

cell 0 (super cell 𝐤
0 ), and 𝝌(𝐘) is the field

𝝌(𝐘) = 𝐅𝐘 + 𝐮(𝐘) with 𝐤
0 −periodic f luctuation 𝐮(𝐘) (45)

defined as the solution of the super-cell problem⎧⎪⎪⎨⎪⎪⎩
Div

[
𝑟
♯
𝚒(𝐘)∇𝝌−𝑇 + 𝜇♯(𝐘)

(
∇𝝌 − ∇𝝌−𝑇 ) + 𝛬♯(𝐘)( − 1)∇𝝌−𝑇

]
= 𝟎, 𝐘 ∈ 𝐤

0 ⧵ 𝐤0
D̂iv

[
𝛾̂0 ̂ ∇̂𝝌−𝑇 + 𝜇(∇̂𝝌 − ∇̂𝝌−𝑇 ) + 𝛬(̂ − 1)̂ ∇̂𝝌−𝑇

]
−[[

𝑟
♯
𝚒(𝐘)∇𝝌−𝑇 + 𝜇♯(𝐘)

(
∇𝝌 − ∇𝝌−𝑇 ) + 𝛬♯(𝐘)( − 1)∇𝝌−𝑇

]]
𝐍̂ = 𝟎, 𝐘 ∈ 𝐤0

(46)

with  = det ∇𝝌 and ̂ = d̂et∇̂𝝌 .
We emphasize that the size of the super cell in (44)–(46), as characterized by the vector 𝐤, is not known a priori. Due to the

possibility of bifurcations at sufficiently large deformations, one has to identify the period 𝐤0 of the solution that is preferred

by the filled elastomer at hand – typically, the solution with lowest energy – thereby determining the appropriate value of 𝐤; see,
e.g., Geymonat et al. (1993). In direct analogy with the average relation (36), as shown in Appendix C, we note that

𝐒 = 𝜕𝑊

𝜕𝐅
(𝐅) = 1|𝐤

0 |
(
∫𝐤

0

𝐒♯(𝐘) d𝐘 + ∫𝐤0
𝐒̂(𝐘) d𝐘

)
, (47)

where 𝐒♯(𝐘) = 𝜕𝑊 ♯(𝐘,𝐅)∕𝜕𝐅. In analogy with (39)–(40), we also note that the effective stored-energy function (44) satisfies the
condition of macroscopic material frame indifference 𝑊 (𝐐𝐅) = 𝑊 (𝐅) for all 𝐐 ∈ SO(3) and that, as a result, the macroscopic
stress (47) and macroscopic deformation gradient tensor 𝐅 automatically satisfy the macroscopic balance of angular momentum

𝐒𝐅
𝑇
= 𝐅𝐒

𝑇
.

The definition (44) for the effective stored-energy function 𝑊 (𝐅) for filled elastomers with periodic microstructures is entirely
consistent with the formal definition (38). Their computation amounts to solving the nonlinear boundary-value problem (37),

or equivalently (46), and carrying out the appropriate averages. In general, these equations can only be solved numerically. As

announced in the Introduction, one of the objectives of this work is to put forth a FE scheme to construct numerical solutions for

such a type of equations. For definiteness, we focus on the Eqs. (46) for materials with periodic microstructures and present the

corresponding FE scheme in Section 4. As elaborated prior to that in Section 3, nevertheless, Eqs. (46) admit great simplification in

the limit of small deformations and thus permit further analytical treatment which is insightful spelling out.

3. The homogenized response in the small-deformation limit

In the limit of small deformations as ‖𝐅 − 𝐈‖ → 0, the nonlinear elastostatics super-cell problem (46) reduces asymptotically to

a linear elastostatics unit-cell problem, albeit a non-standard one with residual stresses and a non-standard jump condition across
material interfaces due to the presence of interfacial forces. It follows that the resulting macroscopic constitutive response (47)

reduces to one of linear elasticity. The derivation of this asymptotic result goes as follows.
Introduce the macroscopic deformation measure 𝐇 = 𝐅 − 𝐈 and consider solutions to (46) of the asymptotic form

𝝌(𝐘) = 𝐘 +𝐇𝐘 + 𝐮(𝐘) + 𝑂(‖𝐇‖2) with 𝑢𝑖(𝐘) = 𝜔𝑖𝑗𝑘(𝐘)𝐻𝑗𝑘 where 𝝎(𝐘) is 0−periodic

7 Passing to the limit rigorously in (42) is currently out of reach. In the more tractable asymptotic setting of small deformations, however, passing to the

limit rigorously should be possible, as the companion two-scale asymptotic analysis of Ghosh et al. (2022) suggests.
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in the limit as ‖𝐇‖ → 0. The tensor 𝝎 quantifying the linearity of the displacement field 𝐮(𝐘) in 𝐇 is the so-called ‘‘concentration’’

tensor. By making explicit use of this ansatz, standard calculations show that the Eqs. (46) reduce to 𝑂(‖𝐇‖) to the unit-cell problem
⎧⎪⎨⎪⎩
Div

[
𝐋♯(𝐘)(𝐇 + ∇𝐮)

]
= 𝟎, 𝐘 ∈ 0 ⧵ 0

D̂iv
[̂
𝐋(𝐇 + ∇𝐮)̂𝐈

]
−

[[
𝐋♯(𝐘)(𝐇 + ∇𝐮)

]]
𝐍̂ = 𝟎, 𝐘 ∈ 0

(48)

for the displacement field 𝐮(𝐘). In these equations,

𝐋♯(𝐘) = 𝑟
♯
𝚒(𝐘) +

(
2𝜇♯(𝐘) − 𝑟

♯
𝚒(𝐘)

)
 +

(
2𝜇♯(𝐘) + 2𝑟♯𝚒(𝐘) + 3𝛬♯(𝐘)

)
 , (49)

where we recall that , ,  are the orthonormal tensors (21), 𝐋̂ is given by (28), and critical use has been made of the fact that

the residual stress and the initial surface tension are self-equilibrated, that is, Div[𝑟♯𝚒(𝐘)𝐈] = 𝟎 and 𝛾̂0D̂iv 𝐈̂ − [[𝑟♯𝚒(𝐘)]]𝐍̂ = 𝟎. When
written explicitly in terms of the concentration tensor 𝝎(𝐘), upon removing the common factor 𝐇, the unit-cell problem (48) reads⎧⎪⎪⎨⎪⎪⎩

𝜕

𝜕𝑌𝑗

[
𝐿

♯
𝑖𝑗𝑘𝑙

(𝐘)
(
𝛿𝑘𝑚𝛿ln +

𝜕𝜔𝑘𝑚𝑛

𝜕𝑌𝑙
(𝐘)

)]
= 0, 𝐘 ∈ 0 ⧵ 0

𝜕

𝜕𝑌𝑞

[
𝐿̂𝑖𝑗𝑘𝑙

(
𝛿𝑘𝑚𝐼𝑛𝑙 + 𝐼𝑝𝑙

𝜕𝜔𝑘𝑚𝑛

𝜕𝑌𝑝
(𝐘)

)]
𝐼𝑞𝑗 −

[[
𝐿

♯
𝑖𝑗𝑘𝑙

(𝐘)
(
𝛿𝑘𝑚𝛿ln +

𝜕𝜔𝑘𝑚𝑛

𝜕𝑌𝑙
(𝐘)

)]]
𝑁̂𝑗 = 0, 𝐘 ∈ 0

. (50)

By the same token, it is not difficult to deduce that in the limit as ‖𝐇‖ → 0 the macroscopic constitutive response (47) reduces
to 𝑂(‖𝐇‖) to the linear relation

𝐒 = 𝐋𝐇 + 𝑂(‖𝐇‖2) (51)

with

𝐿𝑖𝑗𝑘𝑙 =
1|0|

(
∫0

𝐿
♯
𝑖𝑗𝑚𝑛(𝐘)

(
𝛿𝑚𝑘𝛿𝑛𝑙 +

𝜕𝜔𝑚𝑘𝑙

𝜕𝑌𝑛
(𝐘)

)
d𝐘 + ∫0 𝐿̂𝑖𝑗𝑚𝑛

(
𝛿𝑚𝑘𝐼𝑛𝑙 + 𝐼𝑝𝑛

𝜕𝜔𝑚𝑘𝑙

𝜕𝑌𝑝
(𝐘)

)
d𝐘

)
, (52)

where 𝝎(𝐘) is the solution to the unit-cell problem (50). The following remarks are in order.

Remark 11 (Existence of Solution for the Unit-Cell Problem (50)). Given that the pointwise moduli of elasticity (49) and (28) for the

bulk and the interfaces are not positive definite in general, the standard argument based on the Lax–Milgram theorem does not
apply to prove existence of solution for the unit-cell problem (50). We are currently working on a proof of existence that we shall

present elsewhere.

Remark 12 (Absence of a Macroscopic Residual Stress). The macroscopic constitutive response (51) is free of residual stresses, this in
spite of the fact that there is a local residual stress within the inclusions and an initial surface tension on the elastomer/inclusions

interfaces. The reason behind this result is that the average of the local residual stress and initial surface tension cancel each other

out. Precisely,

∫0

𝑟
♯
𝚒(𝐘)𝐈 d𝐘 + ∫0 𝛾̂0 𝐈̂ d𝐘 =

𝑀♯∑
𝑗=1

(
−4
3
𝜋𝐴3

𝑗

2 𝛾̂0
𝐴𝑗

+ 4𝜋𝐴2
𝑗 𝛾̂0 −

4
3
𝜋𝐴3

𝑗

𝛾̂0
𝐴𝑗

)
𝐈 = 𝟎. (53)

Remark 13 (Symmetries of the Effective Modulus of Elasticity 𝐋). Remarkably, the effective modulus of elasticity (52) satisfies the
major and minor symmetries

𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑘𝑙𝑖𝑗 and 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑗𝑖𝑘𝑙 = 𝐿𝑖𝑗𝑙𝑘

of a conventional homogeneous elastic solid, this in spite of the fact that the local moduli of elasticity 𝐋♯(𝐘) and 𝐋̂ for the bulk and
the interfaces do not possess minor symmetries.

The major symmetry 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑘𝑙𝑖𝑗 is a direct consequence of the fact that the macroscopic constitutive response (51) is

hyperelastic. Indeed, the formula (52) can be rewritten in the equivalent form

𝐿𝑖𝑗𝑘𝑙 =
1|0|

(
∫0

(
𝛿𝑚𝑖𝛿𝑛𝑗 +

𝜕𝜔𝑚𝑖𝑗

𝜕𝑌𝑛
(𝐘)

)
𝐿♯

𝑚𝑛𝑝𝑞(𝐘)
(
𝛿𝑝𝑘𝛿𝑞𝑙 +

𝜕𝜔𝑝𝑘𝑙

𝜕𝑌𝑞
(𝐘)

)
d𝐘+

∫0
(
𝛿𝑚𝑖𝐼𝑛𝑗 + 𝐼𝑟𝑛

𝜕𝜔𝑚𝑖𝑗

𝜕𝑌𝑟
(𝐘)

)
𝐿̂𝑚𝑛𝑝𝑞

(
𝛿𝑝𝑘𝐼𝑞𝑙 + 𝐼𝑠𝑞

𝜕𝜔𝑝𝑘𝑙

𝜕𝑌𝑠
(𝐘)

)
d𝐘

)
,

from which it is trivial to establish that 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑘𝑙𝑖𝑗 since 𝐿
♯
𝑚𝑛𝑝𝑞(𝐘) = 𝐿

♯
𝑝𝑞𝑚𝑛(𝐘) and 𝐿̂𝑚𝑛𝑝𝑞 = 𝐿̂𝑝𝑞𝑚𝑛.
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The minor symmetries 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑗𝑖𝑘𝑙 and 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑖𝑗𝑙𝑘, on the other hand, are a direct consequence of the macroscopic material

frame indifference of the effective stored-energy function (44), which implies macroscopic balance of angular momentum, and the

absence (53) of a macroscopic residual stress. Indeed, after recognizing that

∫0

𝑟
♯
𝚒(𝐘)

(
𝛿𝑖𝑙𝛿𝑗𝑘 +

𝜕𝜔𝑗𝑘𝑙

𝜕𝑌𝑖
(𝐘)

)
d𝐘 + ∫0 𝛾̂0

(
𝛿𝑗𝑘𝐼𝑖𝑙 + 𝐼𝑖𝑝

𝜕𝜔𝑗𝑘𝑙

𝜕𝑌𝑝
(𝐘)

)
d𝐘 = 0,

it is straightforward to show that the formula (52) can be rewritten as

𝐿𝑖𝑗𝑘𝑙 =
1|0|

(
∫0

(
𝐿

♯
𝑖𝑗𝑚𝑛(𝐘) + 𝑟

♯
𝚒(𝐘)𝛿𝑖𝑛𝛿𝑗𝑚

)(
𝛿𝑚𝑘𝛿𝑛𝑙 +

𝜕𝜔𝑚𝑘𝑙

𝜕𝑌𝑛
(𝐘)

)
d𝐘+

∫0
(
𝐿̂𝑖𝑗𝑚𝑛 + 𝛾̂0𝛿𝑗𝑚𝐼𝑖𝑛

)(
𝛿𝑚𝑘𝐼𝑛𝑙 + 𝐼𝑝𝑛

𝜕𝜔𝑚𝑘𝑙

𝜕𝑌𝑝
(𝐘)

)
d𝐘

)
,

from which it is trivial to establish that 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑗𝑖𝑘𝑙 since 𝐿
♯
𝑖𝑗𝑚𝑛(𝐘) + 𝑟

♯
𝚒(𝐘)𝛿𝑖𝑛𝛿𝑗𝑚 and 𝐿̂𝑖𝑗𝑚𝑛 + 𝛾̂0𝛿𝑗𝑚𝐼𝑖𝑛 possess minor symmetries.

Minor symmetries in the last two indices 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑖𝑗𝑙𝑘 can be established by exploiting the major symmetry 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑘𝑙𝑖𝑗 and then

following the same steps as above.

Remark 14 (Positive Definiteness of 𝐋). Physically, for suitably well-behaved residual stresses 𝑟𝚒(𝐗), the expectation is that the
effective modulus of elasticity (52) be positive definite. However, given that the pointwise moduli of elasticity (49) and (28) for

the bulk and the interfaces are not positive definite in general, the standard argument based on pointwise positive energy density
(see, e.g., Section 2.3 of Chapter 1 in the monograph by Bensoussan et al., 2011) to prove so does not apply here. This difficulty is
intimately related to the difficulty of proving existence for the unit-cell problem (50) noted in Remark 11. We shall address both of

these issues in a future contribution.

Remark 15 (Computation of 𝐋). In general, the solution to the unit-cell problem (50) for the concentration tensor 𝝎(𝐘) required to
compute the effective modulus of elasticity (52) can only be generated numerically. In this work, as elaborated in the next section

within the more general setting of finite deformations, we put forth a FE scheme to solve such a type of unit-cell problems.

Dilute microstructures. Nonetheless, there are classes of microstructures of practical interest that do admit analytical solutions for

(50). The most fundamental among these is that of a dilute volume fraction of inclusions, when

𝑐 ↘ 0, 𝑐 ∶= 1|0| ∫0

𝜃
♯𝚒
0 (𝐘) d𝐘,

that are all of monodisperse size 𝐴𝑗 = 𝐴, for which 𝝎(𝐘) can be explicitly determined in terms of spherical harmonics; see

Appendix D. For instance, the resulting effective modulus of elasticity (52) for the physically relevant case of a dilute suspension of

incompressible liquid inclusions with interfaces that only exhibit surface tension, when 𝛬𝚒 = +∞ and 𝜇 = 𝛬 = 0, reads

𝐋 = 2𝜇 dil
 +

(
2𝜇 dil + 3𝛬

dil)
 + 𝑂(𝑐2)

with

𝜇
dil = 𝜇𝚖 +

15𝜇𝚖(2𝜇𝚖 + 𝛬𝚖)
(

𝛾̂0
2𝐴

− 𝜇𝚖

)
𝜇𝚖(14𝜇𝚖 + 9𝛬𝚖) +

𝛾̂0
2𝐴

(34𝜇𝚖 + 15𝛬𝚖)
𝑐 (54)

and

𝛬
dil

= 𝛬𝚖 +
3(2𝜇𝚖 + 𝛬𝚖)

(
𝛬𝚖

(
6𝜇𝚖 + 5

𝛾̂0
𝐴

)
+ 8𝜇𝚖

(
2𝜇𝚖 +

𝛾̂0
𝐴

))
2𝜇𝚖(14𝜇𝚖 + 9𝛬𝚖) +

𝛾̂0
𝐴
(34𝜇𝚖 + 15𝛬𝚖)

𝑐. (55)

For incompressible elastomers, when 𝛬𝚖 = +∞, the effective shear and first Lamé moduli (54)–(55) further specialize to

𝜇
dil,inc = 𝜇𝚖 +

5
(

𝛾̂0
2𝐴

− 𝜇𝚖

)
𝜇𝚖

3𝜇𝚖 + 5
𝛾̂0
2𝐴

𝑐 and 𝛬
dil,inc

= +∞. (56)

As first recognized by Style et al. (2015a), the simple result (56) serves to bring front and center the effect that interface mechanics

can have in the macroscopic behavior of elastomers filled with liquid inclusions. For small surface-tension-to-inclusion-size ratio

𝛾̂0∕2𝐴 relative to the shear modulus of the matrix 𝜇𝚖, the effective shear modulus (56)1 reduces to the classical result of Eshelby and

thus states that the presence of liquid inclusions leads to the softening of the response of the material in the sense that 𝜇 dil,inc
< 𝜇𝚖.

For large 𝛾̂0∕2𝐴 relative to 𝜇𝚖, on the other hand, the result (56)1 indicates that 𝜇
dil,inc

> 𝜇𝚖. That is, the presence of liquid inclusions

leads to the stiffening of the response of the material. This can be understood at once by recognizing that initially spherical liquid
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inclusions with large 𝛾̂0∕2𝐴 pose great resistance to deformation and hence de facto behave like stiff inclusions. The transition from
softening to stiffening occurs at the equality 𝛾̂0∕2𝐴 = 𝜇𝚖, which, rather interestingly, results in the presence of liquid inclusions

going unnoticed8 in the sense that 𝜇
dil,inc = 𝜇𝚖. This transition prompts the definition of the elasto-capillary number

𝑒𝐶𝑎 ∶=
𝛾̂0

2𝜇𝚖𝐴
, (57)

in terms of which the effective shear modulus (56)1 can be rewritten as

𝜇
dil,inc = 𝜇𝚖 +

5 (𝑒𝐶𝑎 − 1)
3 + 5 𝑒𝐶𝑎

𝜇𝚖 𝑐. (58)

Here, it is important to emphasize that the definition (57) is only meaningful as an elasto-capillary number within the asymptotic

setting of infinitesimally small deformations. Another interesting observation is that, in the limit as 𝛾̂0∕2𝐴 → +∞, the effective shear
modulus (56)1 reduces to 𝜇

dil,inc = 𝜇𝚖 + 𝜇𝚖 𝑐, which is significantly smaller than the corresponding Einstein’s result for spherical

rigid inclusions 𝜇
dil,rig = 𝜇𝚖 + (5∕2)𝜇𝚖 𝑐. The reason for this (factor of 2.5) difference is that the forces at a matrix/liquid-inclusion

interface featuring surface tension are different from those at a matrix/rigid-inclusion interface, even in the limit as 𝛾̂0∕2𝐴 → +∞.

Iterative microstructures. Other classes of microstructures that admit analytically tractable solutions beyond the dilute limit are those

that can be constructed via iterative homogenization (Bruggeman, 1935; Norris, 1985; Avellaneda, 1987). For example, in the

footstep of Christensen and Lo (1979), several authors (Duan et al., 2005b; Mancarella et al., 2016) have worked out solutions for

the so-called differential-coated-sphere (DCS) assemblages; see also Krichen et al. (2019).

As recently discussed by Lefèvre and Lopez-Pamies (2022), many other iterative microstructures beyond DCS assemblages with

different percolation thresholds allow for analytical solutions as well. The simplest among these is the one that results from the

standard differential scheme (Bruggeman, 1935) for which the effective modulus of elasticity 𝐋 = 𝐋(𝑐) is implicitly defined by the
solution to the initial-value problem⎧⎪⎨⎪⎩

(1 − 𝑐) d𝐋
d𝑐

(𝑐) −

{
𝐋;𝜇𝚒, 𝛬𝚒, 𝐋̂

}
= 0

𝐋(0) = 𝐋𝚖 = 2𝜇𝚖 +
(
2𝜇𝚖 + 3𝛬𝚖

)


, (59)

where {𝐋;𝜇𝚒, 𝛬𝚒, 𝐋̂} is the tensor function such that 𝐋 = 𝐋𝚖 +

{
𝐋𝚖;𝜇𝚒, 𝛬𝚒, 𝐋̂

}
𝑐 + 𝑂(𝑐2) in the dilute limit of inclusions.

When considering the physically relevant case of suspensions of incompressible liquid inclusions embedded in an incompressible

elastomer with interfaces that only exhibit surface tension, it follows immediately from (56) and (57) that the tensor function 

specializes to



{
𝐋𝚖; 0,+∞, 𝐋̂

}
= 5 (𝑒𝐶𝑎 − 1)

3 + 5 𝑒𝐶𝑎
𝜇𝚖  +∞ .

The resulting initial-value problem (59) for the effective modulus of elasticity can be readily solved in closed form yielding the

simple formula

𝐋 = 2𝜇DS
 +

(
2𝜇DS + 3𝛬

DS)


with

𝜇
DS =

𝜇𝚖

(1 − 𝑐)
5(𝑒𝐶𝑎−1)
3+5𝑒𝐶𝑎

and 𝛬
DS

= +∞. (60)

By construction, the result (60) corresponds to the exact effective elastic constants of an incompressible elastomer filled with an
isotropic distribution of initially spherical inclusions of infinitely many radii that are scaled in a manner such that they all have

identical elasto-capillary number (57) and are distributed in a manner such that they can fill the entire space, thus their percolation

at 𝑐 = 1.
As revealed by the comparisons with the numerical solutions presented in Section 6 below, the formula (60)1 has the added

merit of being accurately descriptive of isotropic suspensions of liquid inclusions of monodisperse size for volume fractions in the

small-to-moderate9 range, up to roughly 𝑐 = 0.20. It is also worth remarking that, much like its asymptotic counterpart (58) for dilute
suspensions, 𝜇

DS
< 𝜇𝚖 for 𝑒𝐶𝑎 < 1, 𝜇DS

> 𝜇𝚖 for 𝑒𝐶𝑎 > 1, and 𝜇
DS = 𝜇𝚖 for 𝑒𝐶𝑎 = 1. That is, irrespectively of their volume fraction

𝑐, inclusions with elasto-capillary number 𝑒𝐶𝑎 < 1 lead to the softening of the response of the material, while those with 𝑒𝐶𝑎 > 1
lead to stiffening. Precisely at 𝑒𝐶𝑎 = 1, the presence of inclusions goes unnoticed in the sense that 𝜇DS = 𝜇𝚖. Moreover, in the limits

as 𝑒𝐶𝑎 ↘ 0 and 𝑒𝐶𝑎 → +∞, the effective shear modulus (60) reduces to 𝜇
DS = 𝜇𝚖∕(1 − 𝑐)−5∕3 and 𝜇

DS = 𝜇𝚖∕(1 − 𝑐), respectively.
The former, of course, agrees identically with the classical differential-scheme result for suspensions of spherical incompressible

liquid inclusions (Roscoe, 1973). The latter, interestingly, is significantly smaller than the corresponding result due to Brinkman

8 In other words, the value 𝛾̂0∕2𝐴 = 𝜇𝚖 leads to the ‘‘cloaking’’ of the homogenized response; see, e.g., Yavari and Golgoon (2019) and references therein for

a detailed account of cloaking phenomena in mechanics.
9 In view of the recent work of Lefèvre and Lopez-Pamies (2022) on suspensions of monodisperse spherical rigid inclusions, the construction of an iterative-

homogenization solution that remains accurately descriptive over the entire range of volume fractions of monodisperse spherical liquid inclusions – from the

dilute limit 𝑐 ↘ 0 to the percolation threshold 𝑐 ↗ 𝑐𝑝 ≈ 0.64 (Scott, 1960) – is most certainly viable.
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(1952) and Roscoe (1952) for spherical rigid inclusions 𝜇
DS,rig = 𝜇𝚖∕(1 − 𝑐)5∕2. Again, the reason for this significant difference is

that the forces at a matrix/liquid-inclusion interface are different from those at a matrix/rigid-inclusion interface, even in the limit

as 𝑒𝐶𝑎 → +∞.

4. The homogenized response at finite deformations

When considering arbitrary macroscopic deformation gradients 𝐅, as already pointed out above, the super-cell problem (46)

defining the macroscopic response (47) can only be solved numerically. In this section, we present a robust FE scheme to generate

solutions for (46) that is specifically designed to deal with the inherent challenges of (𝑖) large deformations, (𝑖𝑖) the typical near

or complete incompressibility of the elastomeric matrix and liquid inclusions, and (𝑖𝑖𝑖) the coupling of the interface PDE (46)2
with the bulk PDE (46)1. We begin in Section 4.1 by reformulating the governing equations (46) into an equivalent hybrid set

of equations wherein the deformation field and a pressure field – as opposed to just the deformation field – are the independent

functions to be solved for. Subsequently, in Sections 4.2 and 4.3, we spell out the weak form of the these hybrid equations and their

FE discretization.

4.1. A hybrid set of governing equations

We wish to be able to deal with compressible as well as with nearly or completely incompressible materials. For the latter group,

to which typical elastomers and liquids pertain, Eqs. (46) cannot be utilized directly. This difficultly can be handled by reformulating

(46) as an alternative equivalent set of equations wherein a pressure field – and not just the deformation field – is also an unknown.

Much like in the simpler setting of hyperelasticity without residual stresses and interfacial forces, as elaborated in Appendix E,

such a reformulation hinges on the introduction of an appropriate Legendre transform. The resulting alternative equivalent set of

governing equations reduces to the super-cell problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

Div
[
𝜇♯(𝐘)∇𝝌 + 𝑝∇𝝌−𝑇 ] = 𝟎, 𝐘 ∈ 𝐤

0 ⧵ 𝐤0
det ∇𝝌 − 1 +

𝛬♯(𝐘) + 𝑟
♯
𝚒(𝐘) − 𝑝 −

√
4𝛬♯(𝐘)𝜇♯(𝐘) + (𝛬♯(𝐘) − 𝑟

♯
𝚒(𝐘) + 𝑝)2

2𝛬♯(𝐘)
= 0, 𝐘 ∈ 𝐤

0 ⧵ 𝐤0
D̂iv

[
𝛾̂0 ̂ ∇̂𝝌−𝑇 + 𝜇(∇̂𝝌 − ∇̂𝝌−𝑇 ) + 𝛬(̂ − 1)̂ ∇̂𝝌−𝑇

]
−

[[
𝜇♯(𝐘)∇𝝌 + 𝑝∇𝝌−𝑇 ]] 𝐍̂ = 𝟎, 𝐘 ∈ 𝐤0

(61)

for the deformation field 𝝌(𝐘), still of the form (45), and a 𝐤
0 -periodic pressure field 𝑝(𝐘).

4.2. Weak form

When written in weak form, the hybrid set of governing equations (61) amount to finding 𝝌(𝐘) ∈  and 𝑝(𝐘) ∈  such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫𝐤
0

[
𝜇♯(𝐘)∇𝝌 + 𝑝∇𝝌−𝑇

]
⋅ ∇𝐰 d𝐘+

∫𝐤0
[
𝛾̂0 ̂ ∇̂𝝌−𝑇 + 𝜇(∇̂𝝌 − ∇̂𝝌−𝑇 ) + 𝛬(̂ − 1)̂ ∇̂𝝌−𝑇

]
⋅ ∇̂𝐰 d𝐘 = 0, ∀𝐰 ∈ 0

∫𝐤
0

⎡⎢⎢⎢⎣det ∇𝝌 − 1 +
𝛬♯(𝐘) + 𝑟

♯
𝚒(𝐘) − 𝑝 −

√
4𝛬♯(𝐘)𝜇♯(𝐘) + (𝛬♯(𝐘) − 𝑟

♯
𝚒(𝐘) + 𝑝)2

2𝛬♯(𝐘)

⎤⎥⎥⎥⎦ 𝑞 d𝐗 = 0, ∀𝑞 ∈ 

. (62)

In these expressions,  and  stand for sufficiently large sets of admissible deformation fields 𝝌(𝐘) of the form (45) and pressure

fields 𝑝(𝐘) that are 𝐤
0 -periodic, respectively. Similarly, 0 stands for a sufficiently large space of vector fields 𝐰(𝐘) that are

𝐤
0 -periodic.

4.3. Discretization: conforming Crouzeix–Raviart finite elements

Having determined the weak form (62), we now turn to its discretization. To efficiently deal with the initial spherical shape of the

inclusions and with the coupling between the bulk and interface terms in (62)1, it is convenient to consider partitions
ℎ𝐤

0 =
⋃𝙽𝑒

𝑒=1  (𝑒)

of the super cell 𝐤
0 that comprise 𝙽𝑒 non-overlapping quadratic simplicial volume elements  (𝑒) that are exclusively contained either

within the matrix or within the inclusions so as to have a space discretization that is entirely conforming with the microstructure.

Given this partition, we look for approximate solutions ℎ
𝝌(𝐘) and ℎ𝑝(𝐘) of the deformation field 𝝌(𝐘) and the pressure field 𝑝(𝐘)

in the finite dimensional subspace of quadratic Crouzeix–Raviart conforming finite elements; see, e.g., Chapter II in Girault and

Raviart (1986), Chapter 8 in Boffi et al. (2012). These subspaces have been established – via extensive numerical studies (Lefèvre

and Lopez-Pamies, 2017a,b; Lefèvre et al., 2017) – to be stable and convergent in nonlinear elastostatics, without the presence of

interfacial forces, as well as in other related settings for material behaviors of arbitrary compressibility, including incompressible

behaviors, thus their use here.
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As detailed in the Appendix in Lefèvre and Lopez-Pamies (2017b) within the related setting of periodic homogenization of

nonlinear electro-elastostatics, it follows that ℎ
𝝌(𝐘) and ℎ𝑝(𝐘) admit the representations

ℎ
𝝌(𝐘) =

𝙽𝑛∑
𝑛=1

ℎ𝑁
(𝑛)
𝐶𝑅

(𝐘)𝝌 (𝑛) and ℎ𝑝(𝐘) =
4𝙽𝑒−1∑
𝑙=0

ℎ𝑁
(𝑙)
𝑃
(𝐘)𝑝(𝑙) (63)

in terms of the global degrees of freedom 𝝌
(𝑛) and 𝑝(𝑙) and associated global shape functions ℎ𝑁

(𝑛)
𝐶𝑅

(𝐘) and ℎ𝑁
(𝑙)
𝑃
(𝐘) that result

from the assembly process, where 𝙽𝑛 stands for the total number of nodes in the partition ℎ𝐤
0 of the super cell 𝐤

0 . Here, it

is important to emphasize that the assembly process – while algorithmically standard thanks to the use of a space discretization

that is conforming with the microstructure – it includes the contributions from the interfacial forces described by the interface

integral in (62)1. Physically, 𝝌
(𝑛) corresponds to the deformation field ℎ

𝝌(𝐘) at node (𝑛), whereas 𝑝(𝑙) corresponds to the value

of the pressure ℎ𝑝(𝐘) at the barycenters of the elements and the three components of its gradient. Note hence that the interface
integral in (62)1 involves directly the nodal displacements 𝝌

(𝑛) at the matrix/inclusions interfaces. By contrast, it involves the entire

FE discretization (63)2 of the pressure field since the barycenters of the elements lie strictly within the volume of the elements and

not on the matrix/inclusions interfaces.

By making use of the representation (63), analogous ones for the test functions 𝐰 and 𝑞, and enforcing the pertinent periodicity

conditions, Eqs. (62) reduce to a system of nonlinear algebraic equations for the degrees of freedom 𝝌
(𝑛) and 𝑝(𝑙). These equations

can be solved by means of a Newton-like nonlinear method together with direct or iterative solvers for the resulting saddle-point

linear system of equations at each Newton iteration.

Application to isotropic suspensions of monodisperse liquid inclusions. In the next two sections, we deploy the above-outlined FE scheme

to construct numerical solutions for the effective stored-energy function (44) and associated macroscopic stress-deformation response

(47) of elastomers filled with isotropic distributions of spherical liquid inclusions of monodisperse size. In both sections, we restrict
attention to the basic case of incompressible elastomers, incompressible liquid inclusions, and interfaces that only feature surface

tension, to wit,

𝐴𝑗 = 𝐴 𝑗 = 1, 2,… ,𝑀♯, 𝛬𝚖 = 𝛬𝚒 = +∞, and 𝜇 = 𝛬 = 0. (64)

Consistent with the bifurcation analysis of Michel et al. (2010) for filled elastomers with isotropic microstructures, we have not
encountered any evidence of bifurcations of short wavelength. Accordingly, all the results that are presented below correspond to

solutions with 𝐤 = (1, 1, 1), that is, solutions that are 0-periodic. Complementary to the numerical solutions, we also put forth

an explicit approximation for (44) and, whenever possible, present direct comparisons with the experimental results of Style et al.

(2015a) on three types of soft silicone elastomers filled with either ionic-liquid or glycerol droplets.

5. Results for suspensions of monodisperse liquid inclusions at dilute volume fractions

We begin by presenting results for elastomers filled with liquid inclusions at dilute volume fractions in the limit as 𝑐 ↘ 0. Because
of the overall geometric isotropy and the overall constitutive incompressibility and isotropy of the problem, the resulting effective

stored-energy function (44) admits the asymptotic representation

𝑊 (𝐅) =
{

𝛹
dil,inc

(𝐼1, 𝐼2) + 𝑂(𝑐2) if det 𝐅 = 1
+∞ otherwise

with 𝛹
dil,inc

(𝐼1, 𝐼2) =
𝜇𝚖
2

[
𝐼1 − 3

]
+(𝐼1, 𝐼2)𝑐 (65)

in terms of the principal invariants 𝐼1 = tr 𝐂 = 𝐅 ⋅ 𝐅 and 𝐼2 = ((tr 𝐂)2 − tr 𝐂
2
)∕2 = 𝐅

−1
⋅ 𝐅

−1
of the macroscopic right Cauchy–Green

deformation tensor 𝐂 = 𝐅
𝑇
𝐅. The problem thus amounts to computing the effective function (𝐼1, 𝐼2) in the term of 𝑂(𝑐) in (65).

5.1. Numerical results

The effective function (𝐼1, 𝐼2). In order to generate a numerical solution for the effective function (𝐼1, 𝐼2), we adopt the strategy
followed by Lopez-Pamies et al. (2013a) for dilute suspensions of spherical rigid inclusions. Precisely, we first consider that the

unit cell 0 contains only one inclusion, 𝑀
♯ = 1, located at its geometric center and that the volume fraction of the inclusions 𝑐 is

sufficiently small in the sense that the terms of 𝑂(𝑐2) and of higher order in (65) can be neglected. For the problem at hand here,

a parametric study indicates that the value

𝑐 = 4𝜋𝐴3

3𝓁3 = 10−3

is sufficiently small in that sense. This implies that for a given radius 𝐴 of the inclusions, the length of the unit cell 𝓁 ≈ 16𝐴. As a
second step, we parameterize the applied macroscopic deformation gradient in the form

𝐅 = 𝜆1𝐞1 ⊗ 𝐞1 + 𝜆2𝐞2 ⊗ 𝐞2 +
1

𝜆1𝜆2
𝐞3 ⊗ 𝐞3 with 𝜆1 = 𝜆, 𝜆2 = 𝜆𝑚, 𝜆 ≥ 1, 𝑚 ∈

[
−1
2
, 1

]
, (66)

where 𝜆1, 𝜆2, 𝜆3 = (𝜆1 𝜆2)−1 and {𝐞1, 𝐞2, 𝐞3} stand, respectively, for the macroscopic principal stretches and the Cartesian principal
axes of the unit cell 0; see Fig. 3. This parametrization is convenient because it fully exploits the overall incompressibility and
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Fig. 4. The effective function (𝐼1 , 𝐼2), normalized by the shear modulus of the elastomeric matrix 𝜇𝚖, for dilute suspensions of monodisperse spherical liquid

inclusions with two values of the dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴. (a, b) 3D plots of (𝐼1 , 𝐼2)∕𝜇𝚖 in the entire space of principal stretches (𝜆1 , 𝜆2). (c, d)
Plots of (𝐼1 , 𝐼2)∕𝜇𝚖 as a function of 𝜆1 for 𝜆2 = 𝜆

−0.5
1 and 𝜆2 = 𝜆1. For direct comparison, the plots in (c, d) include the results (dashed lines) based on the

approximation (69).

isotropy of the filled elastomer. To see this, recall the elementary identities 𝐼1 = 𝜆
2
1 + 𝜆

2
2 + 𝜆

−2
1 𝜆

−2
2 and 𝐼2 = 𝜆

−2
1 + 𝜆

−2
2 + 𝜆

2
1 𝜆

2
2 ,

introduce ̆(𝜆1, 𝜆2) = (𝐼1, 𝐼2), and note that the overall incompressibility and isotropy imply the symmetries ̆(𝜆1, 𝜆2) = ̆(𝜆2, 𝜆1) =̆(𝜆1, (𝜆1 𝜆2)−1) = ̆((𝜆1 𝜆2)−1, 𝜆1) = ̆(𝜆2, (𝜆1 𝜆2)−1) = ̆((𝜆1 𝜆2)−1, 𝜆2). It follows that macroscopic deformation gradients of the
form (66) suffice to fully characterize the effective function (𝐼1, 𝐼2). Lastly, we solve numerically the governing equations (62)
for applied macroscopic deformation gradients (66) with the discretized set of values 𝑚 ∈ {−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1} and then
compute the resulting effective stored-energy function 𝛹

dil,inc
(𝐼1, 𝐼2) from which we finally determine the effective function (𝐼1, 𝐼2)

by solving for it in (65), namely,

(𝐼1, 𝐼2) =
1
𝑐

(
𝛹

dil,inc
(𝐼1, 𝐼2) −

𝜇𝚖
2

[
𝐼1 − 3

])
.

Fig. 4 shows the numerical results obtained for the effective function (𝐼1, 𝐼2), normalized by the shear modulus of the

elastomeric matrix 𝜇𝚖, for the two values of the dimensionless parameter, or initial elasto-capillary number, 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882
and 0.1985. The reason behind these specific values is twofold. On one hand, they are consistent with two of the experimental

measurements reported by Style et al. (2015a) on a silicone elastomer, with shear modulus 𝜇𝚖 = 566.67 Pa, filled with ionic-liquid
droplets of several initial radii including 𝐴 = 2 and 16 μm, and silicone/ionic-liquid interfaces featuring an estimated initial surface
tension of 𝛾̂0 = 0.0036 N∕m. On the other hand, based on the formula (56)1 for the effective shear modulus in the small-deformation
limit, the value 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882 > 1 is expected to be representative of a case where the presence of inclusions leads to stiffening,
while the value 𝛾̂0∕2𝜇𝚖𝐴 = 0.1985 < 1 is expected to be representative of a case where the presence of inclusions leads to softening.

Specifically, Figs. 4(a) and 4(b) show the normalized effective function (𝐼1, 𝐼2)∕𝜇𝚖 in the entire space of principal stretches
(𝜆1, 𝜆2) for 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882 and 0.1985, respectively. To aid the quantitative visualization, Figs. 4(c, d) show (𝐼1, 𝐼2)∕𝜇𝚖 for
both 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882 and 0.1985 as a function of 𝜆1 with 𝜆2 = 𝜆

−0.5
1 in Fig. 4(c) and 𝜆2 = 𝜆1 in Fig. 4(d); note that the results

with 𝜆2 = 𝜆
−0.5
1 correspond to uniaxial tension, while those with 𝜆2 = 𝜆1 correspond to equibiaxial tension. For direct comparison,

Figs. 4(c, d) also display the results based on the approximation (69) introduced in the next subsection.
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Fig. 5. The effective function (𝐼1 , 𝐼2), normalized by the shear modulus of the elastomeric matrix 𝜇𝚖, for dilute suspensions of monodisperse spherical liquid

inclusions with dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 1.

There are two main observations from Fig. 4. First, consistent with the asymptotic behavior in the small-deformation limit,

(𝐼1, 𝐼2) ≥ 0 for 𝛾̂0∕2𝐴𝜇𝚖 = 1.5882 and (𝐼1, 𝐼2) ≤ 0 for 𝛾̂0∕2𝜇𝚖𝐴 = 0.1985 indicating that the presence of liquid inclusions leads to
the stiffening (softening) of the material when the surface-tension-to-inclusion-size ratio 𝛾̂0∕2𝐴 is sufficiently large (small) relative

to the elasticity of the underlying elastomeric matrix, even at finite deformations. Second, the proposed analytical approximation

(69) is in good quantitative agreement with the numerical solution for (𝐼1, 𝐼2).
The fact that (𝐼1, 𝐼2) ≥ 0 for 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882 > 1 and (𝐼1, 𝐼2) ≤ 0 for 𝛾̂0∕2𝜇𝚖𝐴 = 0.1985 < 1 prompts the question of whether

the value 𝛾̂0∕2𝜇𝚖𝐴 = 1 leads to (𝐼1, 𝐼2) = 0 for all deformations as it does in the small-deformation limit; see Remark 15. The
numerical solution for(𝐼1, 𝐼2) for 𝛾̂0∕2𝜇𝚖𝐴 = 1 plotted in Fig. 5 reveals that the answer to this question is negative. Notwithstanding
that the effective function (𝐼1, 𝐼2) does not remain identically zero at finite deformations when 𝛾̂0∕2𝜇𝚖𝐴 = 1, its magnitude|(𝐼1, 𝐼2)| is significantly smaller than that of the corresponding elastic energy (𝜇𝚖∕2)[𝐼1 − 3] of the elastomeric matrix and hence
it is practically negligible. The construction of the simple approximation (69) for (𝐼1, 𝐼2) below exploits this very trait.

The deformation in and around the liquid inclusions. To gain further insight into the macroscopic response of dilute suspensions,

Fig. 6(a) presents the numerical results obtained for the aspect ratio

𝑎1
𝑎2

∶=
𝜒1

(
𝓁
2
+ 𝐴,

𝓁
2
,
𝓁
2

)
𝜒2

(
𝓁
2
,
𝓁
2
+ 𝐴,

𝓁
2

) (67)

of the inclusions in the deformed configuration when the applied macroscopic stretch 𝜆2 = 1.24 − 0.24𝜆1 with 𝜆1 ≥ 1, which is
roughly the loading for which Style et al. (2015a) reported experimental measurements in Fig. 2 of their work. The results are

shown as a function of 𝜆1 for the same two values of the dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882 and 0.1985 considered in
Fig. 4, as well as for the intermediate value 𝛾̂0∕2𝜇𝚖𝐴 = 0.5294. The figure includes the aforementioned experimental results (solid
circles) of Style et al. (2015a) for ionic-liquid droplets of initial radii 𝐴 = 2, 6, 16 μm embedded in a silicone elastomer, which

correspond, respectively, to the values 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882, 0.5294, 0.1985. To illustrate the importance of finite deformations, the
figure also includes the asymptotic results (dotted lines) obtained from the linearized theory in the limit of small deformations as

𝜆1, 𝜆2 → 1:

𝑎1
𝑎2

= 1 +
5
(
𝜆1 − 𝜆2

)
3 +

5 𝛾̂0
2𝜇𝚖𝐴

+ 𝑂
(
(𝜆1 − 1)2

)
+ 𝑂

(
(𝜆1 − 1)(𝜆2 − 1)

)
+ 𝑂

(
(𝜆2 − 1)2

)
. (68)

To further highlight the importance of finite deformations, Fig. 6(b) presents the contour plots in the deformed configuration of the

component 𝐹11(𝐗) of the local deformation gradient in the elastomer around the inclusions for the three values of the dimensionless
parameter 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882, 0.5294, 0.1985 at two applied macroscopic stretches, 𝜆1 = 1.2 and 1.4. To aid the visualization of the
deformation of the inclusions, the figure displays as well their undeformed shape when 𝜆1 = 1.

Three observations are particularly noteworthy from Fig. 6. First, larger values of the dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 lead

to smaller deformations of the inclusions. Stated differently, once more, inclusions with larger 𝛾̂0∕2𝜇𝚖𝐴 pose a larger resistance to

deformation and hence are bound to lead to stiffer macroscopic responses as indeed observed in Fig. 4. Second, the deformation of the

elastomeric matrix around the inclusions can be significantly larger than the applied macroscopic deformation which, as expected,

makes the accounting for finite kinematics essential. Third, the theoretical results for the aspect ratio 𝑎1∕𝑎2 of the inclusions are
in good agreement with the experimental measurements of Style et al. (2015a) up to a macroscopic stretch of about 𝜆 = 1.1. For
larger stretches, the theory deviates from the reported measurements, more so for the two smaller values of 𝛾̂0∕2𝜇𝚖𝐴. A possible

explanation for this difference is that the surface tension at the silicone/ionic-liquid interfaces is not a constant – as assumed by
the model (24) with (64)3 used in the theoretical calculations – but rather a function of deformation. Since the deformation of the
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Fig. 6. The deformation in and around monodisperse spherical liquid inclusions in dilute suspensions, for three values of the dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴,

subjected to the macroscopic stretch 𝜆2 = 1.24−0.24𝜆1 with 𝜆1 ≥ 1. (a) The aspect ratio (67) of the inclusions as a function of the applied macroscopic stretch 𝜆1.

For direct comparison, the experimental measurements (solid circles) of Style et al. (2015a) on ionic-liquid droplets of initial radii 𝐴 = 2, 6, 16 μm embedded in a

silicone elastomer – corresponding to 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882, 0.5294, 0.1985 – are also plotted, as well as the asymptotic result (68) from the linearized small-deformation

theory (dotted lines). (b) Contour plots (in the deformed configuration) of the component 𝐹11(𝐗) of the local deformation gradient in the elastomer around the
inclusions at two macroscopic stretches 𝜆1.

elastomer around the inclusions is very significant, it is indeed likely that one has to account for a deformation-dependent surface

tension in the theory to be able to explain the experimental observations of Style et al. (2015a). We will come back to this important

point in the final section of the paper.

5.2. A simple explicit approximation

In general, the homogenized behavior of a hyperelastic heterogeneous solid without residual stresses and interfacial forces is

characterized by an effective stored-energy function that is functionally very different from the stored-energy functions that describe

the underlying hyperelastic constituents. Based on a wide range of analytical and numerical results that have appeared over the

past two decades, as well as some new results, Lefèvre et al. (2022) have conjectured that the case of isotropic incompressible Neo-

Hookean materials in 2D is a rare exception to this general rule. Precisely, these authors have conjectured that the homogenized

behavior of an isotropic hyperelastic solid comprised of incompressible Neo-Hookean materials is itself exactly Neo-Hookean. From
the work of Lopez-Pamies et al. (2013a) on suspensions of rigid inclusions in rubber, we know that the same conjecture cannot

possibly hold in 3D. However, from the same and ensuing works (Goudarzi et al., 2015; Lefèvre and Lopez-Pamies, 2017a,b), we also

know that in 3D the homogenized behavior of an isotropic hyperelastic solid comprised of incompressible Neo-Hookean materials is

approximately Neo-Hookean— that is, the resulting effective stored-energy function is approximately linear in 𝐼1 and independent

of 𝐼2. Interestingly, the same turns out to be true in the present more general setting of isotropic incompressible Neo-Hookean

materials with residual stresses and interfacial forces wherein, again, the underlying bulk and interface stored-energy functions are

given by (15) and (23) with (64)2,3. To see this for the dilute suspensions of liquid inclusions of interest in the section, it suffices

to plot (𝐼1, 𝐼2) as a function of the invariants 𝐼1 and 𝐼2. Fig. 7 presents representative examples of such plots for the case when

𝛾̂0∕2𝜇𝚖𝐴 = 1.5882. Specifically, Fig. 7(a) presents results for (𝐼1, 𝐼2)∕𝜇𝚖 as a function of 𝐼1 for the two fixed values of 𝐼2 = 3.5 and
4, while Fig. 7(b) presents results for (𝐼1, 𝐼2)∕𝜇𝚖 as a function of 𝐼2 for the four fixed values of 𝐼1 = 3.5, 4, 4.5. Clearly, (𝐼1, 𝐼2)
is approximately linear in 𝐼1 and independent of 𝐼2.

In view of the above observation, heeding the small-deformation result (56)1 for the effective shear modulus of dilute suspensions,

we can readily identify

(𝐼1, 𝐼2) =
5
(

𝛾̂0
2𝐴

− 𝜇𝚖

)
𝜇𝚖

2
(
3𝜇𝚖 + 5

𝛾̂0
2𝐴

) [
𝐼1 − 3

]
(69)

as a simple approximation (which neglects the small nonlinearity in 𝐼1 and the small dependence on 𝐼2 of the exact solution) for

the effective function (𝐼1, 𝐼2) that has the merit of being exact to 𝑂(‖𝐅− 𝐈‖2) in the limit of small deformations as 𝐅 → 𝐈. At finite
deformations, while not exact beyond 𝑂(‖𝐅 − 𝐈‖2), the comparisons with the numerical solutions in Figs. 4 and 7 illustrate that
the approximation (69) remains fairly accurate. Given (69), the corresponding approximate solution for the effective stored-energy
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Fig. 7. The effective function (𝐼1 , 𝐼2), normalized by the shear modulus of the elastomeric matrix 𝜇𝚖, for dilute suspensions of monodisperse spherical liquid

inclusions with the dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 1.5882. (a) (𝐼1 , 𝐼2)∕𝜇𝚖 as a function of 𝐼1 for two fixed values of 𝐼2. (b) (𝐼1 , 𝐼2)∕𝜇𝚖 as a function of

𝐼2 for three fixed values of 𝐼1. For direct comparison, the plots include the results (dashed lines) based on the approximation (69).

function (65) reads simply as

𝑊 (𝐅) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇𝚖
2

[
𝐼1 − 3

]
+

5
(

𝛾̂0
2𝐴

− 𝜇𝚖

)
𝜇𝚖

2
(
3𝜇𝚖 + 5

𝛾̂0
2𝐴

) [
𝐼1 − 3

]
𝑐 + 𝑂(𝑐2) if det 𝐅 = 1

+∞ otherwise

. (70)

6. Results for isotropic suspensions of monodisperse liquid inclusions at finite volume fractions

We proceed with the results for isotropic suspensions of monodisperse liquid inclusions at finite volume fractions. In the footstep

of a now well-established practice in infinitesimal and finite elasticity alike (Gusev, 1997; Lopez-Pamies et al., 2013b), such

suspensions can be efficiently described as infinite media made out of the periodic repetition of a unit cell containing a random

distribution of a finite number 𝑀♯ of inclusions that is sufficiently large so that the resulting macroscopic response is isotropic to

within a high degree of accuracy. Obviously, a critical point in this approach is to determine what that sufficiently large number

Fig. 8. Representative unit cell 0 containing 𝑀♯ = 30 randomly distributed monodisperse spherical liquid inclusions at volume fraction 𝑐 = 0.15 and its FE

discretization ℎ0 with 609,061 elements.



K. Ghosh and O. Lopez-Pamies

𝑀♯ is. For the range 𝑐 ∈ [0, 0.25] of volume fractions of inclusions for which we present results in this section, a parametric study
reveals that 𝑀♯ = 30 suffices.10

In order to construct unit cells 0 with 𝑀♯ = 30 randomly distributed inclusions, we make use of the algorithm introduced by

Lubachevsky et al. (1991). For their FE discretization, we employ the open-source mesh generator code NETGEN (Schöberl, 1997).

Fig. 8 shows a representative unit cell at volume fraction 𝑐 = 0.15 alongside its FE discretization with 609,061 elements; meshes
with about 600,000 elements were checked to be refined enough to deliver accurate solutions for the problems at hand here, at

least up to the deformations that we considered.

6.1. Numerical results

6.1.1. Results in the small-deformation limit
Focusing first on the initial response at small deformations, Fig. 9 presents results for the effective shear modulus of the

suspensions in the small-deformation limit, as defined by the isotropic projection (see the Appendix in Spinelli et al., 2015)

𝜇 = 1
10

 ⋅ 𝐋 = 𝑖𝑗𝑘𝑙𝐿𝑖𝑗𝑘𝑙 =
1
20

(
𝐿𝑖𝑗𝑖𝑗 + 𝐿𝑖𝑗𝑗𝑖 −

2
3
𝐿𝑖𝑖𝑗𝑗

)
(71)

of the effective modulus of elasticity (52). While Fig. 9(a) shows the effective shear modulus (71), normalized by the shear modulus

of the elastomeric matrix 𝜇𝚖, as a function of the volume fraction 𝑐 of inclusions for the three values of the dimensionless parameter

𝛾̂0∕2𝜇𝚖𝐴 = 7, 1, 0.2, Fig. 9(b) shows 𝜇∕𝜇𝚖 as a function of 𝛾̂0∕2𝜇𝚖𝐴 for 𝑐 = 0.05, 0.15, 0.25. These specific values are consistent with the
experiments reported by Style et al. (2015a) – and included in both figures (solid circles) for direct comparison – on two silicone

elastomers, with initial shear moduli 𝜇𝚖 = 33 kPa and 1 kPa, filled with glycerol droplets with initial radii of about 𝐴 = 1 μm
at volume fractions in the range 𝑐 ∈ [0.04, 0.2], and silicone/glycerol interfaces featuring an estimated initial surface tension of
𝛾̂0 = 0.014 N∕m. Both figures also display the results (solid lines) for the effective shear modulus (60)1.

As anticipated at the end of Remark 15, a quick glance suffices to recognize that the formula (60)1 is in good agreement.
11

with all the numerical results presented in Fig. 9 Accordingly, the numerical results indicate that the presence of inclusions with

dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 0.2 < 1 leads to softening, more so the larger the volume fraction 𝑐 of inclusions. By the

same token, the presence of inclusions with 𝛾̂0∕2𝜇𝚖𝐴 = 7 > 1 leads to stiffening, more so the larger the value of 𝑐. Irrespectively
of 𝑐, furthermore, the transition from softening to stiffening occurs at 𝛾̂0∕2𝜇𝚖𝐴 = 1. It is also of note from Fig. 9 that there are

some appreciable differences between the theoretical results and the experiments. These may be due to the fact that the reported

value 𝛾̂0 = 0.014 N∕m for the initial surface tension of the silicone/glycerol interfaces is just a rough estimate and/or that the size

polydispersity of the inclusions in the specimens is not negligible.

Fig. 9. The effective shear modulus 𝜇, normalized by the shear modulus of the elastomeric matrix 𝜇𝚖, for isotropic suspensions of monodisperse spherical liquid

inclusions. (a) 𝜇∕𝜇𝚖 as a function of the volume fraction 𝑐 of inclusions for three values of the dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴. (b) 𝜇∕𝜇𝚖 as a function of

𝛾̂0∕2𝜇𝚖𝐴 for three values of 𝑐. For direct comparison, the plots include the results (solid lines) for the effective shear modulus (60)1, as well as the experiments

(solid circles) of Style et al. (2015a) on two different silicone elastomers filled with glycerol droplets of initial radii 𝐴 ≈ 1 μm.

10 We emphasize, nevertheless, that suspensions with volume fractions 𝑐 ≥ 0.25 and/or bulk and interface constitutive behaviors different from (17) and (24)

may require significantly more than 𝑀♯ = 30 inclusions per unit cell to yield sufficiently isotropic responses; see Section 3 in Ghosh et al. (2022).
11 This agreement should not be taken as a forgone outcome because, again, the effective shear modulus (60)1 is an exact result not for isotropic suspensions

of monodisperse spherical liquid inclusions but for isotropic suspensions of polydisperse spherical liquid inclusions with radii that are suitably scaled so that they
all have the same initial elasto-capillary number 𝛾̂0∕2𝜇𝚖𝐴 as the inclusions in the monodisperse suspensions.
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6.1.2. Results at finite deformations

We now turn to the response of the suspensions at finite deformations. Fig. 10 presents representative results for the macroscopic

stress-deformation response (47) of suspensions, with the same three values of dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 7, 1, 0.2

considered in Fig. 9 and with volume fraction of inclusions 𝑐 = 0.15, under uniaxial tension when

𝐅 = 𝜆𝑢𝑛𝐞1 ⊗ 𝐞1 + 𝜆
−1∕2
𝑢𝑛 (𝐞2 ⊗ 𝐞2 + 𝐞3 ⊗ 𝐞3) with 𝜆𝑢𝑛 ≥ 1 and 𝐒 = 𝑆𝑢𝑛𝐞1 ⊗ 𝐞1

Fig. 10. Macroscopic stress-deformation response (47) of isotropic suspensions of monodisperse spherical liquid inclusions under: (a), (c), (e) uniaxial tension

and (b), (d), (f) equibiaxial tension. Results are shown for the uniaxial 𝑆𝑢𝑛 and biaxial 𝑆𝑏𝑖 nominal stresses, normalized by the shear modulus of the elastomeric

matrix 𝜇𝚖, as functions of the applied uniaxial 𝜆𝑢𝑛 and biaxial 𝜆𝑏𝑖 stretches for volume fraction 𝑐 = 0.15 of inclusions and three values of the dimensionless

parameter 𝛾̂0∕2𝜇𝚖𝐴. For direct comparison, the plots include the results (dashed lines) based on the approximation (72) and those (dotted lines) for the elastomeric

matrix itself without inclusions.
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in parts (a), (c), (e), and under equibiaxial tension when

𝐅 = 𝜆𝑏𝑖(𝐞1 ⊗ 𝐞1 + 𝐞2 ⊗ 𝐞2) + 𝜆
−2
𝑏𝑖 𝐞3 ⊗ 𝐞3 with 𝜆𝑏𝑖 ≥ 1 and 𝐒 = 𝑆𝑏𝑖(𝐞1 ⊗ 𝐞1 + 𝐞2 ⊗ 𝐞2)

in parts (b), (d), (f). In terms of the effective stored-energy function (44), remark that the uniaxial 𝑆𝑢𝑛 and biaxial 𝑆𝑏𝑖 nominal

stresses are given by the relations 𝑆𝑢𝑛 = 𝜕𝑊 (𝐅)∕𝜕𝜆𝑢𝑛 and 𝑆𝑏𝑖 = (1∕2)𝜕𝑊 (𝐅)∕𝜕𝜆𝑏𝑖.
Specifically, Figs. 10(a), (c), (e) show results for the uniaxial nominal stress 𝑆𝑢𝑛, normalized by the shear modulus of the

elastomeric matrix 𝜇𝚖, as a function of the applied uniaxial stretch 𝜆𝑢𝑛, while Figs. 10(b), (d), (f) show results for the normalized

biaxial nominal stress 𝑆𝑢𝑛∕𝜇𝚖 as a function of the applied biaxial stretch 𝜆𝑏𝑖. For direct comparison, all plots include (dashed lines)

the results 𝑆𝑢𝑛 = 𝜕𝑊 (𝐅)∕𝜕𝜆𝑢𝑛 = 𝜇 (𝜆𝑢𝑛 − 𝜆
−2
𝑢𝑛 ) and 𝑆𝑏𝑖 = (1∕2)𝜕𝑊 (𝐅)∕𝜕𝜆𝑏𝑖 = 𝜇 (𝜆𝑏𝑖 − 𝜆

−5
𝑏𝑖 ) based on the approximation (72) introduced

in the next subsection. All plots display (dotted lines) as well the corresponding results 𝑆𝑢𝑛 = 𝜕𝑊𝚖(𝐅)∕𝜕𝜆𝑢𝑛 = 𝜇𝚖 (𝜆𝑢𝑛 − 𝜆
−2
𝑢𝑛 ) and

𝑆𝑏𝑖 = (1∕2)𝜕𝑊𝚖(𝐅)∕𝜕𝜆𝑏𝑖 = 𝜇𝚖 (𝜆𝑏𝑖 − 𝜆
−5
𝑏𝑖 ) for the elastomeric matrix, when 𝑐 = 0. Since Style et al. (2015a) restricted their study to

small deformations, no experimental data is plotted in these figures.

Consistent with all the asymptotic results (in the limits of small volume fractions or small deformations) examined above

in Figs. 4 and 9, it is plain from Fig. 10 that the suspension wherein the liquid inclusions feature a dimensionless parameter

𝛾̂0∕2𝜇𝚖𝐴 < 1 exhibits a softer response than that of the elastomeric matrix, while the suspension wherein the liquid inclusions feature
a dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 > 1 exhibits a stiffer response. What is more, even for the moderate values of dimensionless
parameter 𝛾̂0∕2𝜇𝚖𝐴 = 7, 0.2, volume fraction 𝑐 = 0.15 of inclusions, and finite stretches 𝜆𝑢𝑛, 𝜆𝑏𝑖 ∈ [1, 2] considered here, such
softening and stiffening can be very significant. For instance, at the uniaxial stretch of 𝜆𝑢𝑛 = 2, the uniaxial stress 𝑆𝑢𝑛∕𝜇𝚖 = 1.50 for
the suspension with 𝛾̂0∕2𝜇𝚖𝐴 = 0.2, while 𝑆𝑢𝑛∕𝜇𝚖 = 2.00 for the suspension with 𝛾̂0∕2𝜇𝚖𝐴 = 7.

Consistent too with the above asymptotic results is the fact that the macroscopic response of the suspension wherein the liquid

inclusions feature the dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 1 is essentially the same as that of the elastomeric matrix. That is, the
presence of such inclusions – even at the volume fraction 𝑐 = 0.15 and at finite stretches 𝜆𝑢𝑛, 𝜆𝑏𝑖 ∈ [1, 2] – has little effect in the
macroscopic response.

We close the discussion of Fig. 10 by noting that the results based on the proposed analytical approximation (72), which we

take on next, are in good quantitative agreement with the numerical results.

6.2. A simple explicit approximation

As anticipated in Section 5.2, much like for isotropic hyperelastic solids comprised of incompressible Neo-Hookean materials

without residual stresses and interfacial forces (Lopez-Pamies et al., 2013b; Goudarzi et al., 2015; Lefèvre and Lopez-Pamies,

2017a,b), all our numerical results indicate that the effective stored-energy function (44) for isotropic suspensions of monodisperse

spherical liquid inclusions characterized by bulk and interface stored-energy functions (15) and (23) with (64)2,3 is approximately
Neo-Hookean.

By way of an example, Fig. 11 shows results for the effective stored-energy function 𝑊 (𝐅), normalized by the shear modulus of
the elastomeric matrix 𝜇𝚖, for a suspension with dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 0.2 and volume fraction of inclusions 𝑐 = 0.15
as a function of the invariants 𝐼1 and 𝐼2. Specifically, Fig. 11(a) presents results for 𝑊 (𝐅)∕𝜇𝚖 as a function of 𝐼1 for the fixed values

Fig. 11. The effective stored-energy function 𝑊 (𝐅), normalized by the shear modulus of the elastomeric matrix 𝜇𝚖, for an isotropic suspension of monodisperse

spherical liquid inclusions at volume fraction 𝑐 = 0.15 with dimensionless parameter 𝛾̂0∕2𝜇𝚖𝐴 = 0.2. (a) 𝑊 (𝐅)∕𝜇𝚖 for fixed values of 𝐼2 as a function of 𝐼1. (b)

𝑊 (𝐅)∕𝜇𝚖 for fixed values of 𝐼1 as a function of 𝐼2. For direct comparison, the plots include the results (dashed lines) based on the approximation (72).
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𝐼2 = 3.5 and 4, while Fig. 11(a) presents results for 𝑊 (𝐅)∕𝜇𝚖 as a function of 𝐼2 for fixed 𝐼1 = 3.5, 4, and 4.5. Clearly, 𝑊 (𝐅) is
approximately linear in 𝐼1 and independent of 𝐼2.

Ergo, neglecting its small nonlinearity in 𝐼1 and the small dependence on 𝐼2, the effective stored-energy function (44) for isotropic

suspensions of monodisperse spherical liquid inclusions can be readily approximated by the effective Neo-Hookean stored-energy

function

𝑊 (𝐅) =
⎧⎪⎨⎪⎩

𝜇

2

[
𝐼1 − 3

]
if det 𝐅 = 1

+∞ otherwise
,

where 𝜇 is nothing more than the effective shear modulus (71) in the small-deformation limit. Now, as established in Section 6.1.1,

the formula (60)1 is accurately descriptive of the effective shear modulus (71) for suspensions with volume fractions of inclusions

in the small-to-moderate range 𝑐 ∈ [0, 0.20]. For those, we can then write the more explicit approximation

𝑊 (𝐅) =
⎧⎪⎨⎪⎩

𝜇𝚖

2(1 − 𝑐)
5(𝑒𝐶𝑎−1)
3+5𝑒𝐶𝑎

[
𝐼1 − 3

]
if det 𝐅 = 1

+∞ otherwise
with 𝑒𝐶𝑎 =

𝛾̂0
2𝜇𝚖𝐴

. (72)

This formula reduces to (70) in the dilute limit of inclusions as 𝑐 ↘ 0. For finite volume fractions 𝑐, the comparisons with the

numerical solutions in Figs. 10 and 11, and with others not included here for conciseness, indicate that the formula (72) remains a

fairly accurate approximation.

7. Summary and final comments

In this paper, we have formulated the homogenization problem that describes the mechanical response of elastomers filled with

liquid inclusions under finite quasistatic deformations. Specifically, neglecting dissipative phenomena, we have considered that the

elastomer making up the matrix is a hyperelastic solid, that the liquid making up the inclusions is a hyperelastic fluid, that the

interfaces separating the solid elastomer from the liquid inclusions are hyperelastic interfaces, possibly including initial interfacial

forces such as surface tension, and that the inclusions are spherical in shape in their ground state.

We have then shown that the resulting macroscopic behavior of such filled elastomers is that of a hyperelastic solid – distinctly,

one that depends directly on the size of the inclusions and the constitutive behavior of the interfaces – and hence that it is

characterized by an effective stored-energy function 𝑊 (𝐅) of the macroscopic deformation gradient 𝐅. For the case of filled
elastomers with periodic microstructures, moreover, we have provided a formula – given by Eq. (44) – for 𝑊 (𝐅).

The computation of 𝑊 (𝐅) amounts to solving a super-cell problem, that defined by Eqs. (46), which exhibits two non-standard
features: (𝑖) residual stresses (in the inclusions) and (𝑖𝑖) a non-standard jump condition across material (matrix/inclusions) interfaces

due to the presence of interfacial forces. These two features have profound implications not only on the mechanical response of

the material, but also on the mathematical analysis of the problem. The most notable for the latter is that in the limit of small

deformations, when the governing equations are linearized, the standard argument based on the Lax–Milgram theorem does not

apply to prove existence of solution because of the lack of pointwise positive definiteness of the moduli of elasticity for the bulk

(49) and the interfaces (28).

Strikingly, in spite of the fact that there are local residual stresses within the inclusions (due to the presence of initial interfacial

forces), the resulting macroscopic behavior turns out to be free of residual stresses, that is, 𝜕𝑊 (𝐈)∕𝜕𝐅 = 𝟎. What is more, in spite
of the fact that the local moduli of elasticity in the bulk (49) and the interfaces (28) in the small-deformation limit do not possess

minor symmetries (due to the presence of residual stresses and initial interfacial forces), the resulting effective modulus of elasticity

(52) does posses the standard minor symmetries, that is, 𝐿𝑖𝑗𝑘𝑙 = 𝐿𝑗𝑖𝑘𝑙 = 𝐿𝑖𝑗𝑙𝑘, where we recall that 𝐿𝑖𝑗𝑘𝑙 = 𝜕2𝑊 (𝐈)∕𝜕𝐹 𝑖𝑗𝜕𝐹 𝑘𝑙.

To gain quantitative insight, we have also introduced and made use of a FE implementation of the proposed general formulation

to work out numerical solutions for the macroscopic response of Neo-Hookean elastomers filled with random isotropic distributions

of incompressible liquid inclusions of monodisperse size and interfaces featuring a constant surface tension, which is arguably the

most basic class of elastomers filled with liquid inclusions. We have presented solutions both for elastomers filled with dilute volume

fractions of inclusions and with finite volume fractions. All of them turn out to be well approximated by the explicit effective

stored-energy function (72).

Notably, the solutions have shown that the presence of inclusions with large (small) surface-tension-to-inclusions-size ratio

relative to the shear stiffness of the underlying elastomer can lead to very significant stiffening (softening) of the macroscopic

response, more so the larger the volume fraction of inclusions and the larger the macroscopic deformation. This behavior – which

confirms previous experimental and theoretical results centered on small deformations – is due to the fact that inclusions with

a relatively surface-tension-to-inclusions-size ratio pose significant resistance to deformation and hence de facto behave like stiff
inclusions.

The solutions have also shown that locally the deformations in and around the inclusions can be large, even when the macroscopic

deformations are small. This, together with the comparisons of the solutions with the experimental measurements of Style et al.

(2015a) on ionic-liquid droplets presented in Fig. 6(a), suggests that the surface tension at elastomer/liquid-inclusion interfaces

should be assumed not to remain constant in general, but to be deformation dependent instead.
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Accounting for a nonlinear surface tension. Indeed, preliminary results that make use of an interface stored-energy function of the

form

𝑊 (𝐅̂) = 𝑔(𝐽 ), (73)

where 𝑔(𝐽 ) is a non-negative function of the interface determinant 𝐽 satisfying the conditions 𝑔(1) = 𝑔 ′(1) = 𝛾̂0 and 𝑔(𝐽 ) < 𝛾̂0𝐽 for

𝐽 ≫ 1, indicate that it is possible to have excellent agreement with the experiments of Style et al. (2015a) reproduced in Fig. 6(a).
The interface stored-energy function (73) is a natural generalization of the stored-energy function 𝑊 (𝐅̂) = 𝛾̂0𝐽 describing interfaces

with constant surface tension 𝛾̂0. The associated interface first Piola–Kirchhoff and Cauchy stress tensors read

𝐒̂ = 𝜕𝑊

𝜕𝐅̂
(𝐅̂) = 𝑔 ′(𝐽 )𝐽 𝐅̂−𝑇 and 𝐓̂ = 𝐽−1𝐒̂𝐅̂𝑇 = 𝑔 ′(𝐽 )̂𝐢

and so the derivative 𝑔 ′(𝐽 ) represents a nonlinear surface tension. It would be interesting to carry out experiments on a variety of
interfaces to gain insight into the physical implications and generality of models of the form (73).

Other generalizations. It would also be interesting to pursue several other generalizations of the analysis presented in this work,

both for fundamental and practical reasons. A generalization that is clear-cut is that of accounting for the non-Gaussian elasticity of

elastomers. Another straightforward one is that of considering spherical inclusions of polydisperse sizes. A far less straightforward

generalization is that of considering inclusions of arbitrary initial shape. As elaborated in Section 2.4, the presence of liquid inclusions

whose shapes do not have constant mean curvature entails residual stresses not only within the inclusions but also in the surrounding

elastomeric matrix. This complicates the analysis significantly. The study of applications involving liquid–metal and/or ferrofluid

inclusions requires extending the present analysis to the coupled realms of electro- and magneto-elastostatics. Another interesting

generalization that may be needed for certain applications is that of accounting for viscous dissipation in the bulk and interfaces.
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Appendix A. The equilibrium Eqs. (9)–(10) in Lagrangian form

On substitution of the definitions 𝐒 = 𝐽𝐓𝐅−𝑇 , 𝐒̂ = 𝐽 𝐓̂𝐅̂−𝑇 , and 𝐁 = 𝐽𝐛 in the Eulerian balance of linear momentum (7), we have

⎧⎪⎨⎪⎩
𝜕

𝜕𝑥𝑗

[
𝐽−1𝑆𝑖𝑘𝐹𝑗𝑘

]
+ 𝐽−1𝐵𝑖 = 0, 𝐱 ∈ 𝛺 ⧵ 𝛤

𝜕

𝜕𝑥𝑝

[
𝐽−1𝑆𝑖𝑘𝐹𝑗𝑘

]
𝑖̂𝑝𝑗 − [[𝐽−1𝑆𝑖𝑘𝐹𝑗𝑘]]𝑛𝑗 = 0, 𝐱 ∈ 𝛤

. (74)

Given that div
[
𝐽−1𝐅𝑇

]
= d̂iv

[
𝐽−1𝐅̂𝑇

]
= 𝟎, Eqs. (74) simplify to

⎧⎪⎪⎨⎪⎪⎩
𝐽−1 𝜕𝑆𝑖𝑘

𝜕𝑥𝑗

𝐹𝑗𝑘 + 𝐽−1𝐵𝑖 = 0, 𝐱 ∈ 𝛺 ⧵ 𝛤

𝐽−1 𝜕𝑆𝑖𝑘

𝜕𝑥𝑝

𝑖̂𝑝𝑗𝐹𝑗𝑘 − [[𝐽−1𝑆𝑖𝑘𝐹𝑗𝑘]]𝑛𝑗 = 0, 𝐱 ∈ 𝛤

.

By employing now the chain rule and the identities 𝐅̂−1 = 𝐅−1 𝐢̂ and 𝐧 = 𝐽−1 𝐽𝐅−𝑇 𝐍̂ together with the fact that 𝐽 𝚒𝐅𝚒−𝑇 𝐍̂ = 𝐽 𝚖𝐅𝚖−𝑇 𝐍̂,
we obtain⎧⎪⎪⎨⎪⎪⎩

𝜕𝑆𝑖𝑘

𝜕𝑋𝑝

𝐹−1
𝑝𝑗 𝐹𝑗𝑘 + 𝐵𝑖 = 0, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

𝜕𝑆𝑖𝑘

𝜕𝑋𝑞

𝐹−1
𝑞𝑗 𝐹𝑗𝑘 − [[𝑆𝑖𝑘]]𝑁̂𝑘 = 0, 𝐗 ∈ 𝛤0

.
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Finally, recognizing that 𝐅̂−1𝐅̂ = 𝐈̂, the balance of linear momentum in Lagrangian form (9) readily follows:⎧⎪⎪⎨⎪⎪⎩

𝜕𝑆𝑖𝑘

𝜕𝑋𝑘

+ 𝐵𝑖 = 0, 𝐗 ∈ 𝛺0 ⧵ 𝛤0

𝜕𝑆𝑖𝑘

𝜕𝑋𝑞

𝐼𝑞𝑘 − [[𝑆𝑖𝑘]]𝑁̂𝑘 = 0, 𝐗 ∈ 𝛤0

.

Given the definitions 𝐒 = 𝐽𝐓𝐅−𝑇 and 𝐒̂ = 𝐽 𝐓̂𝐅̂−𝑇 of the bulk and interface first Piola–Kirchhoff stress tensors, it is trivial to

deduce from the balance of angular momentum (8) in Eulerian form that the balance of angular momentum in Lagrangian form is

given by (10).

Appendix B. The average identities (35) and (36)

Making use of the bulk divergence theorem and the continuity of the deformation field 𝐲, it follows that

1|𝛺0| ∫𝜕𝛺0

𝑦𝑖𝑁𝑗 d𝐗 = 1|𝛺0|
(
∫𝛺0

𝜕𝑦𝑖
𝜕𝑋𝑗

d𝐗 − ∫𝛤0

[[
𝑦𝑖
]]
𝑁̂𝑗 d𝐗

)
= 1|𝛺0| ∫𝛺0

𝐹𝑖𝑗 d𝐗.

Similarly, making use of the bulk and interface divergence theorems, the facts that the bulk and interface stresses 𝐒 and 𝐒̂ satisfy
the balance of linear momentum (9) with zero body force 𝐁 = 𝟎 and that 𝐒̂ is a superficial tensor, it follows that

1|𝛺0| ∫𝜕𝛺0

𝑆𝑖𝑛𝑁𝑛𝑋𝑗 d𝐗 = 1|𝛺0|
(
∫𝛺0

𝜕

𝜕𝑋𝑛

(
𝑆𝑖𝑛𝑋𝑗

)
d𝐗 − ∫𝛤0

[[
𝑆𝑖𝑛

]]
𝑁̂𝑛𝑋𝑗 d𝐗

)

= 1|𝛺0|
(
∫𝛺0

𝑆𝑖𝑗 d𝐗 − ∫𝛤0

𝜕𝑆𝑖𝑛

𝜕𝑋𝑝

𝐼𝑝𝑛𝑋𝑗 d𝐗
)

= 1|𝛺0|
(
∫𝛺0

𝑆𝑖𝑗 d𝐗 − ∫𝛤0

𝜕

𝜕𝑋𝑝

(
𝑆𝑖𝑛𝑋𝑗

)
𝐼𝑝𝑛 d𝐗 + ∫𝛤0

𝑆𝑖𝑛𝐼𝑝𝑛
𝜕𝑋𝑗

𝜕𝑋𝑝

d𝐗
)

= 1|𝛺0|
(
∫𝛺0

𝑆𝑖𝑗 d𝐗 + ∫𝛤0

𝑆𝑖𝑗 d𝐗
)

.

Appendix C. The formulas (38) and (47) for the macroscopic constitutive response

Given the definition (38)2 for𝑊 (𝐅), making use of the bulk and interface divergence theorems, the continuity of the deformation
field 𝐲, the affine boundary condition 𝐲 = 𝐅𝐗, 𝐗 ∈ 𝜕𝛺0, and the facts that the bulk and interface stresses 𝐒 and 𝐒̂ satisfy the balance
of linear momentum (9) with zero body force 𝐁 = 𝟎, and that 𝐒̂ is a superficial tensor, it follows that

𝜕𝑊

𝜕𝐹 𝑖𝑗

(𝐅) = 1|𝛺0|
(
∫𝛺0

𝑆𝑚𝑛

𝜕2𝑦𝑚

𝜕𝐹 𝑖𝑗𝜕𝑋𝑛

d𝐗 + ∫𝛤0

𝑆𝑚𝑛
𝜕

𝜕𝐹 𝑖𝑗

(
𝜕𝑦𝑚
𝜕𝑋𝑝

𝐼𝑝𝑛

)
d𝐗

)

= 1|𝛺0|
(
∫𝛺0

𝜕

𝜕𝑋𝑛

(
𝑆𝑚𝑛

𝜕𝑦𝑚

𝜕𝐹 𝑖𝑗

)
d𝐗 − ∫𝛺0

𝜕𝑆𝑚𝑛

𝜕𝑋𝑛

𝜕𝑦𝑚

𝜕𝐹 𝑖𝑗

d𝐗+

∫𝛤0

𝜕

𝜕𝑋𝑝

(
𝑆𝑚𝑛

𝜕𝑦𝑚

𝜕𝐹 𝑖𝑗

)
𝐼𝑝𝑛 d𝐗 − ∫𝛤0

𝜕𝑆𝑚𝑛

𝜕𝑋𝑝

𝐼𝑝𝑛
𝜕𝑦𝑚

𝜕𝐹 𝑖𝑗

d𝐗
)

= 1|𝛺0|
(
∫𝛺0

𝜕

𝜕𝑋𝑛

(
𝑆𝑚𝑛

𝜕𝑦𝑚

𝜕𝐹 𝑖𝑗

)
d𝐗 − ∫𝛤0

𝜕𝑆𝑚𝑛

𝜕𝑋𝑝

𝐼𝑝𝑛
𝜕𝑦𝑚

𝜕𝐹 𝑖𝑗

d𝐗
)

= 1|𝛺0| ∫𝜕𝛺0

𝑆𝑚𝑛𝑁𝑛

𝜕𝑦𝑚

𝜕𝐹 𝑖𝑗

d𝐗

= 1|𝛺0| ∫𝜕𝛺0

𝑆𝑖𝑛𝑁𝑛𝑋𝑗 d𝐗

= 1|𝛺0|
(
∫𝛺0

𝑆𝑖𝑗 d𝐗 + ∫𝛤0

𝑆𝑖𝑗 d𝐗
)

.

Similarly, given the definition (44) for 𝑊 (𝐅), making use of the bulk and interface divergence theorems, the continuity of the
deformation field 𝝌 and its form (45), and the facts that the bulk and interface stresses 𝐒♯ and 𝐒̂ satisfy the super-cell problem (46),

and that 𝐒̂ is a superficial tensor, it follows that

𝜕𝑊

𝜕𝐹 𝑖𝑗

(𝐅) = 1|𝐤
0 |

(
∫𝐤

0

𝑆♯
𝑚𝑛

𝜕2𝜒𝑚

𝜕𝐹 𝑖𝑗𝜕𝑌𝑛

d𝐘 + ∫𝐤0
𝑆𝑚𝑛

𝜕

𝜕𝐹 𝑖𝑗

(
𝜕𝜒𝑚

𝜕𝑌𝑝
𝐼𝑝𝑛

)
d𝐘

)
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= 1|𝐤
0 |

(
∫𝐤

0

𝜕

𝜕𝑌𝑛

(
𝑆♯
𝑚𝑛

𝜕𝜒𝑚

𝜕𝐹 𝑖𝑗

)
d𝐘 − ∫𝐤

0

𝜕𝑆
♯
𝑚𝑛

𝜕𝑌𝑛

𝜕𝜒𝑚

𝜕𝐹 𝑖𝑗

d𝐘+

∫𝐤0
𝜕

𝜕𝑌𝑝

(
𝑆𝑚𝑛

𝜕𝜒𝑚

𝜕𝐹 𝑖𝑗

)
𝐼𝑝𝑛 d𝐘 − ∫𝐤0

𝜕𝑆𝑚𝑛

𝜕𝑌𝑝
𝐼𝑝𝑛

𝜕𝜒𝑚

𝜕𝐹 𝑖𝑗

d𝐘
)

= 1|𝐤
0 |

(
∫𝐤

0

𝜕

𝜕𝑌𝑛

(
𝑆♯
𝑚𝑛

𝜕𝜒𝑚

𝜕𝐹 𝑖𝑗

)
d𝐘 − ∫𝐤0

𝜕𝑆𝑚𝑛

𝜕𝑌𝑝
𝐼𝑝𝑛

𝜕𝜒𝑚

𝜕𝐹 𝑖𝑗

d𝐘
)

= 1|𝐤
0 | ∫𝜕𝐤

0

𝑆♯
𝑚𝑛𝑁

𝐤
𝑛

𝜕𝜒𝑚

𝜕𝐹 𝑖𝑗

d𝐘

= 1|𝐤
0 |

(
∫𝜕𝐤

0

𝑆
♯
𝑖𝑛𝑁

𝐤
𝑛 𝑌𝑗 d𝐘 + ∫𝜕𝐤

0

𝑆♯
𝑚𝑛𝑁

𝐤
𝑛

𝜕𝑢𝑚

𝜕𝐹 𝑖𝑗

d𝐘
)

= 1|𝐤
0 | ∫𝜕𝐤

0

𝑆
♯
𝑖𝑛𝑁

𝐤
𝑛 𝑌𝑗 d𝐘

= 1|𝐤
0 |

(
∫𝐤

0

𝑆
♯
𝑖𝑗 d𝐘 + ∫𝐤0

𝑆𝑖𝑗 d𝐘
)

,

where 𝐍𝐤 denotes the outward unit normal to the super-cell 𝐤
0 .

Appendix D. A derivation of the dilute solution (54) and (55)

In this appendix, we present the derivation of the effective shear modulus 𝜇
dil
and the effective first Lamé modulus 𝛬

dil
of an

isotropic elastomer filled with a dilute volume fraction of spherical liquid inclusions of monodisperse radius 𝐴. For completeness,

we do so for the general case when the bulk and interface moduli of elasticity are given by (20) and (28) and only at the end of

the derivation we will choose 𝛬𝑖 = +∞, 𝜇 = 𝛬 = 0 to come to the expressions (54) and (55) given in the main body of the text.
In the footstep of a well-settled approach, we do not deal directly with the unit-cell problem (48) but, instead, consider the

boundary-value problem of a body that occupies the spherical domain 𝛺0 = {𝐗 ∶ |𝐗| < 𝐵}, contains a single inclusion, and is
subjected to the affine displacement boundary condition 𝐮(𝐗) = 𝐇𝐗, |𝐗| = 𝐵. Precisely, the body is made of a single liquid inclusion

of radius 𝐴 whose center coincides with that of the body and is surrounded by the elastomer. In the notation of Section 2, the

governing equations are thus given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Div
[
𝜇(𝐗)(∇𝐮 + ∇𝐮𝑇 ) +

2𝛾̂0
𝐴

𝜃𝚒0 (𝐗)∇𝐮
𝑇 +

(
𝛬(𝐗) −

2𝛾̂0
𝐴

𝜃𝚒0 (𝐗)
)
(tr ∇𝐮)𝐈

]
= 𝟎, 𝐗 ∈ 𝛺0 ⧵ Γ0

D̂iv
[
𝛾̂0 𝐈̂ + 𝛾̂0∇𝐮 𝐈̂ + (𝜇 − 𝛾̂0)

(
𝐈̂∇𝐮 𝐈̂ + 𝐈̂∇𝐮𝑇 𝐈̂

)
+ (𝛬 + 𝛾̂0)tr

(
𝐈̂∇𝐮 𝐈̂

)
𝐈̂
]
−[[

𝜇(𝐗)(∇𝐮 + ∇𝐮𝑇 ) +
2𝛾̂0
𝐴

𝜃𝚒0 (𝐗)∇𝐮
𝑇 +

(
𝛬(𝐗) −

2𝛾̂0
𝐴

𝜃𝚒0 (𝐗)
)
(tr ∇𝐮)𝐈

]]
𝐗 = 𝟎, 𝐗 ∈ Γ0

𝐮(𝐗) = 𝐇𝐗, |𝐗| = 𝐵

, (75)

where Γ0 = {𝐗 ∶ |𝐗| = 𝐴} and 𝜃𝚒0 (𝐗) = 1 if |𝐗| < 𝐴 and 𝜃𝚒0 (𝐗) = 0 otherwise.
In the limit of separation of length scales as 𝑐 = 𝐴3∕𝐵3 ↘ 0, the solution of the single-inclusion boundary-value problem (75)

is expected to reduce (up to its periodic repetition) to the solution of the unit-cell problem (48) up to 𝑂(𝑐) and, in consequence,
can be used to determine the effective modulus of elasticity 𝐋 of an isotropic elastomer filled with a dilute volume fraction of

monodisperse spherical liquid inclusions up to 𝑂(𝑐); see, e.g., the works of Sanchez-Palencia (1985), Duerinckx and Gloria (2021),
and references therein. The usefulness of the alternative problem (75) is that its solution can be expediently constructed in terms

of spherical harmonics. The construction of the solution goes as follows.

Begin by noting that, thanks to the overall (geometric and constitutive) isotropy of the problem, it suffices to consider an affine

‘‘uniaxial strain’’, 𝐇 = 𝐻33𝐞3 ⊗ 𝐞3 say, and that for this boundary condition the displacement field

𝑢1(𝐗) =𝜙1(|𝐗|)𝑋1 + 𝜙3(|𝐗|)𝑋1𝑋
2
3 ,

𝑢2(𝐗) =𝜙1(|𝐗|)𝑋2 + 𝜙3(|𝐗|)𝑋2𝑋
2
3 ,

𝑢3(𝐗) =𝜙2(|𝐗|)𝑋3 + 𝜙3(|𝐗|)𝑋2
3 (76)

with

𝜙1(|𝐗|) =⎧⎪⎨⎪⎩
−3𝛼1𝛬𝚖|𝐗|5 − 𝛼3(5𝜇𝚖 + 3𝛬𝚖) + 𝛼6(𝜇𝚖 + 𝛬𝚖)|𝐗|3(𝜇𝚖 + 𝛬𝚖)

− 𝛼2 +
3𝛼4
2|𝐗|5 + 𝛼5 if 𝐗 ∈ 𝛺𝚖

0

−3𝛽1|𝐗|2 − 𝛽2 + 𝛽5 if 𝐗 ∈ 𝛺𝚒
0

,

𝜙2(|𝐗|) =⎧⎪⎨⎪⎩
3𝛼1|𝐗|5(7𝜇𝚖 + 4𝛬𝚖) + 𝛼3(𝜇𝚖 − 3𝛬𝚖) + 𝛼6(𝜇𝚖 + 𝛬𝚖)|𝐗|3(𝜇𝚖 + 𝛬𝚖)

+ 2𝛼2 +
9𝛼4
2|𝐗|5 + 𝛼5 if 𝐗 ∈ 𝛺𝚖

0

12𝛽1|𝐗|2 + 2𝛽2 + 𝛽5 if 𝐗 ∈ 𝛺𝚒
0

,
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𝜙3(|𝐗|) =⎧⎪⎨⎪⎩
3
2

(
−
2𝛼1(7𝜇𝚖 + 2𝛬𝚖)

𝜇𝚖 + 𝛬𝚖
+

6𝛼3|𝐗|5 −
5𝛼4|𝐗|7

)
if 𝐗 ∈ 𝛺𝚖

0

−6𝛽1 if 𝐗 ∈ 𝛺𝚒
0

,

where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛽1, 𝛽2, 𝛽5 are constants, satisfies automatically the equilibrium equation (75)1.

Since the displacement field (76) must be continuous – that is, [[𝐮(𝐗)]] = 0, 𝐗 ∈ 𝛤0 – the constants 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛽1, 𝛽2, 𝛽5
are not independent from one another but satisfy the algebraic relations

⎧⎪⎪⎨⎪⎪⎩

3𝛼4
𝐴5 +

− 4𝛼3𝜇𝚖
𝜇𝚖+𝛬𝚖

−6𝛼3+2𝛼6
𝐴3 + 𝐴2

(
6𝛽1 −

6𝛼1𝛬𝚖
𝜇𝚖+𝛬𝚖

)
− 2𝛼2 + 2(𝛼5 + 𝛽2 − 𝛽5) = 0

− 15𝛼4
𝐴7 + 18𝛼3

𝐴5 + 6𝛼1
(
− 5𝜇𝚖

𝜇𝚖+𝛬𝚖
− 2

)
+ 12𝛽1 = 0

9𝛼4
𝐴5 + 2(𝛼3(𝜇𝚖−3𝛬𝚖)+𝛼6(𝜇𝚖+𝛬𝚖))

𝐴3(𝜇𝚖+𝛬𝚖)
+ 6𝐴2

(
𝛼1

(
3𝜇𝚖

𝜇𝚖+𝛬𝚖
+ 4

)
− 4𝛽1

)
+ 4𝛼2 + 2𝛼5 − 4𝛽2 − 2𝛽5 = 0

. (77)

Substitution of the displacement field (76) in the jump (75)2 and boundary (75)3 conditions yields the additional algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3𝐴7𝛼1𝜇𝚖𝛬𝚖 − 6𝐴6𝛽1(𝜇𝚖 + 𝛬𝚖)(2𝛾̂0 − 3(𝜇 + 𝛬)) + 𝐴5(𝜇𝚖 + 𝛬𝚖)(2𝛼2𝜇𝚖 − 2𝛼5𝜇𝚖 − 3𝛼5𝛬𝚖 + 3𝛽5𝛬𝚒)−
2𝐴4(𝜇𝚖 + 𝛬𝚖)(𝛽2(2𝛾̂0 − 𝜇 − 𝛬) + 𝛽5(𝛾̂0 − 2(𝜇 + 𝛬))) + 2𝐴2𝜇𝚖(2𝛼6(𝜇𝚖 + 𝛬𝚖) − 𝛼3(10𝜇𝚖 + 9𝛬𝚖))+
12𝛼4𝜇𝚖(𝜇𝚖 + 𝛬𝚖) = 0

𝐴7𝛼1𝜇𝚖(14𝜇𝚖 + 19𝛬𝚖) + 4𝐴6𝛽1(𝜇𝚖 + 𝛬𝚖)(3𝛾̂0 − 14𝜇 − 9𝛬) − 20𝛼4𝜇𝚖(𝜇𝚖 + 𝛬𝚖)+
4𝐴4𝛽2(𝜇𝚖 + 𝛬𝚖)(𝛾̂0 − 2𝜇 − 𝛬) + 24𝛼3𝜇𝚖(𝜇𝚖 + 𝛬𝚖) = 0

−3𝐴7𝛼1𝜇𝚖(14𝜇𝚖 + 17𝛬𝚖) − 12𝐴6𝛽1(𝜇𝚖 + 𝛬𝚖)(𝛾̂0 − 11𝜇 − 6𝛬) − 𝐴5(𝜇𝚖 + 𝛬𝚖)(4𝛼2𝜇𝚖 + 2𝛼5𝜇𝚖+
3𝛼5𝛬𝚖 − 3𝛽5𝛬𝚒) − 2𝐴4(𝜇𝚖 + 𝛬𝚖)(2𝛽2(𝛾̂0 − 5𝜇 − 2𝛬) + 𝛽5(𝛾̂0 − 2(𝜇 + 𝛬))) + 4𝐴2𝜇𝚖(𝛼6(𝜇𝚖 + 𝛬𝚖)−
𝛼3(8𝜇𝚖 + 9𝛬𝚖)) + 36𝛼4𝜇𝚖(𝜇𝚖 + 𝛬𝚖) = 0
−3𝛼1𝐵5𝛬𝚖−𝛼3(5𝜇𝚖+3𝛬𝚖)+𝛼6(𝜇𝚖+𝛬𝚖)

𝐵3(𝜇𝚖+𝛬𝚖)
− 𝛼2 +

3𝛼4
2𝐵5 + 𝛼5 = 0

𝛼1

(
− 10𝜇𝚖

𝜇𝚖+𝛬𝚖
− 4

)
+ 6𝛼3

𝐵5 − 5𝛼4
𝐵7 = 0

3𝛼1𝐵5(7𝜇𝚖+4𝛬𝚖)+𝛼3(𝜇𝚖−3𝛬𝚖)+𝛼6(𝜇𝚖+𝛬𝚖)
𝐵3(𝜇𝚖+𝛬𝚖)

+ 2𝛼2 +
9𝛼4
2𝐵5 + 𝛼5 −𝐻33 = 0

. (78)

Combined, Eqs. (77) and (78) constitute a system of nine linear algebraic equations for the nine constants 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6,

𝛽1, 𝛽2, 𝛽5, which can be readily solved in closed form; due to their bulkiness, we do not report their explicit solution here. These

last results establish then that the displacement field (76) with the constants defined uniquely by the system of linear algebraic

Eqs. (77)–(78) is the solution of the single-inclusion boundary-value problem (75).

Now, a standard calculation shows that the macroscopic stress (33) specializes in this case to

𝐒 = 𝑆 lat (𝐞1 ⊗ 𝐞1 + 𝐞2 ⊗ 𝐞2) + 𝑆 𝐞3 ⊗ 𝐞3

with

𝑆 lat = −42
5
𝛼1𝐵

2𝜇𝚖 − 2𝛼2𝜇𝚖 + 𝛼3

(
2𝜇2

𝚖

𝐵3(𝜇𝚖 + 𝛬𝚖)
+

18𝜇𝚖
5𝐵3

)
+ 𝛼5(2𝜇𝚖 + 3𝛬𝚖) −

4𝛼6𝜇𝚖
𝐵3

and

𝑆 = 84
5
𝛼1𝐵

2𝜇𝚖 + 4𝛼2𝜇𝚖 −
4𝛼3𝜇𝚖(14𝜇𝚖 + 9𝛬𝚖)

5𝐵3(𝜇𝚖 + 𝛬𝚖)
+

𝛼5
(
10𝐵3𝜇𝚖 + 15𝐵3𝛬𝚖

)
5𝐵3 −

4𝛼6𝜇𝚖
𝐵3 .

Since we also have

𝐒 = 𝜇
dil

(
𝐇 +𝐇

𝑇
)
+ 𝛬

dil
(tr𝐇)𝐈 + 𝑂(𝑐2)

in the limit as 𝑐 = 𝐴3∕𝐵3 ↘ 0, we can finally deduce that

𝜇
dil =

𝑆 − 𝑆 lat

2𝐻33
and 𝛬

dil
=

𝑆 lat

𝐻33

to 𝑂(𝑐) in the limit as 𝑐 ↘ 0. For the basic case when 𝛬𝑖 = +∞, 𝜇 = 𝛬 = 0, these equations yield the expressions (54) and (55) given
in the main body of the text.

Appendix E. The hybrid set of governing equations (61)

The derivation of the hybrid Eqs. (61) goes as follows. Introduce the function

𝛹 (𝐗,𝐅, J) = 𝑊 (𝐗,𝐅) when J = 𝐽 = det 𝐅
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alongside its partial Legendre transform

𝛹⋆(𝐗,𝐅, 𝑝) = sup
J

{𝑝(J − 1) − 𝛹 (𝐗,𝐅, J)} . (79)

Since 𝛹 (𝐗,𝐅, J) is convex in its third argument, it follows that

𝑊 (𝐗,𝐅) =
(
𝛹⋆

)⋆ (𝐗,𝐅, 𝐽 ) = sup
𝑝

{
𝑝(𝐽 − 1) − 𝛹⋆(𝐗,𝐅, 𝑝)

}
.

It turn, it follows that the first Piola–Kirchhoff stress tensor (17) in the bulk can be rewritten in terms of the dual function (79) as

𝐒(𝐗) = 𝜕𝑊

𝜕𝐅
(𝐗,𝐅) = − 𝜕𝛹⋆

𝜕𝐅
(𝐗,𝐅, 𝑝) + 𝑝𝐽𝐅−𝑇 with 𝐽 − 1 − 𝜕𝛹⋆

𝜕𝑝
(𝐗,𝐅, 𝑝) = 0. (80)

Making explicit use of the pointwise stored-energy function (15), we have that

𝛹⋆(𝐗,𝐅, 𝑝) = − 𝜇(𝐗)
2

[𝐅 ⋅ 𝐅 − 3] + 𝜇(𝐗) ln
[
𝛬(𝐗) − 𝑟𝚒(𝐗) + 𝑝 +

√
4𝛬(𝐗)𝜇(𝐗) + (𝛬(𝐗) − 𝑟𝚒(𝐗) + 𝑝)2

2𝛬(𝐗)

]
−

𝑟𝚒(𝐗) + 𝜇(𝐗)
2

− 1
4

(
𝛬(𝐗) + 2𝑝 −

√
𝛬2(𝐗) + 2𝛬(𝐗)(2𝜇(𝐗) − 𝑟𝚒(𝐗) + 𝑝) + (𝑝 − 𝑟𝚒(𝐗))2

)
+

𝑝 − 𝑟𝚒(𝐗)
4𝛬(𝐗)

(
𝑝 − 𝑟𝚒(𝐗) +

√
𝛬2(𝐗) + 2𝛬(𝐗)(2𝜇(𝐗) − 𝑟𝚒(𝐗) + 𝑝) + (𝑝 − 𝑟𝚒(𝐗))2

)
and hence that (80) specializes to

𝐒(𝐗) = 𝜇(𝐗)𝐅 + 𝑝𝐽𝐅−𝑇 with 𝐽 − 1 +
𝛬(𝐗) + 𝑟𝚒(𝐗) − 𝑝 −

√
4𝛬(𝐗)𝜇(𝐗) + (𝛬(𝐗) − 𝑟𝚒(𝐗) + 𝑝)2

2𝛬(𝐗)
= 0.

Given this last result, the governing equations (61) characterizing the macroscopic response of filled elastomers with periodic

microstructures are readily obtained.
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