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Globally-Attractive Logarithmic Geometric
Control of a Quadrotor for Aggressive
Trajectory Tracking

Jacob C. Johnson

Abstract—We present a new quadrotor geometric control
scheme that is capable of tracking highly aggressive tra-
jectories. Our geometric controller uses the logarithmic
map of SO(3) to express rotational error in the Lie alge-
bra, and we show that it is globally attractive without
requiring a complicated hybrid switching scheme. We show
the performance of our controller against highly aggres-
sive trajectories in simulation experiments. Additionally, we
present an adaptation of this controller that allows us to
interface effectively with the angular rate controllers on
an onboard flight control unit and show the ability of this
adapted control scheme to track aggressive trajectories on
a quadrotor hardware platform.

Index Terms—Attitude control, multirotor aircraft, flight
control, unmanned aerial vehicle.

[. INTRODUCTION

LARGE number of quadrotor control methods have been
presented in the literature. These methods can be sorted

into three general categories: those that are linear, those that
are nonlinear and non-geometric, and those that are geometric.
Linear control methods neglect or approximate the nonlinear
dynamics of the quadrotor by linearizing about an equilibrium
point and treating the resulting dynamics as if they were the
true dynamics of the system. These methods perform well as
long as the state of the system remains near the equilibrium,
but fail when the state leaves the resulting region of attraction.
Nonlinear non-geometric control methods [1] compensate
for certain nonlinearities in the dynamics of the quadrotor
and have large regions of attraction. However, they neglect
the fact that the rotation states of the quadrotor belong to
the special orthogonal group SO(3). These control methods
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Fig. 1. Time lapse image of our proposed geometric control scheme
tracking a flipping loop trajectory.

usually approximate the rotation states as a vector of Euler
angles, resulting in poor performance when the rotation of the
quadrotor approaches the associated singularities, or as a unit
quaternion, resulting in possible unwinding phenomena [2].

Geometric control methods correctly model the rotation
states on SO(3) and are derived using methods from differ-
ential geometry. They do not have singularities and avoid the
unwinding phenomena. The performance of a geometric con-
troller is dependent on the choice of error representation used.
The popular controller of [3] uses the Frobenius norm of the
difference between the identity matrix and the error rotation
matrix as a Lyapunov function, resulting in an error repre-
sentation that performs poorly when the error is high (i.e.,
near 180 degrees). This issue was acknowledged in [4] and
a new error representation was proposed. However, the rep-
resentation in [4] seems to lack motivation from the physics
or dynamics of the system. Another representation uses the
logarithmic map of SO(3) to express error in the Lie algebra
s50(3) [5]. The logarithm maps geodesics, or shortest paths,
on SO(3) to straight lines in s0(3), so we believe this is the
most natural way to express rotational error. The logarithmic
error representation has been used in several prior quadrotor
controllers [6], [7].

It is well-known that no smooth control law on a com-
pact manifold can be globally stable [2]. For this reason the
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above-mentioned controllers are almost globally stable, i.e.,
there is a set of initial rotations (where the body rotation is
exactly 180 degrees from the desired rotation) that are not
in the region of attraction. Several non-smooth hybrid con-
trol schemes have been proposed to address this issue [8], [9],
and global stability is proven. However, hybrid controllers
have complicated implementations, and the resulting jump
dynamics often introduce undesirable non-smooth responses.

In this letter, we present a new geometric controller and
implement it in a full trajectory tracking quadrotor control
scheme. Our controller uses the logarithmic map to express
the rotation error in s0(3), and we show that this controller is
globally asymptotically stable. Our controller is discontinuous
on the set where the rotation error is exactly 180 degrees, and
so the results of [2] do not apply, but it is not hybrid, so it has
a simpler implementation and more smooth dynamic response
than, e.g., [8]. Our controller is similar to the one presented
in [9], where the stronger condition of global exponential sta-
bility is proven. However, our formulation does not require
describing the dynamics as a hybrid system on s0(3), and our
proof is simpler. Additionally, we develop an adaptation to
our controller that allows it to interface with the angular rate
controllers that run at very high frequency on off-the-shelf
onboard flight control units (FCUs), and we present highly
aggressive trajectory tracking results on a hardware platform.

Il. PRELIMINARIES

We use the vector notation t /b € R3 to denote a value t
(e.g., position, velocity) of coordinate frame a with respect
to frame b expressed in frame c. Thus ¢t b = -t Ja and
ta» = RCt, ;. where R is a rotation matrix that re-expresses
vectors from frame ¢ in frame a. The set of all 3D rotation
matrices is isomorphic to the special orthogonal group, which

can therefore be expressed as
SO(3) = {R e R¥3 |RTR = I, det(R) = 1}, 1)

equipped with the group action of matrix multiplication. This
set satisfies the group axioms and forms a smooth manifold,
making SO(3) a Lie group. The Lie algebra of SO(3) (denoted
50(3)) is the set of 3 x 3 skew-symmetric matrices and is
isomorphic to R? under the hat map A: ¢ € R — ¢ €
50(3). Skew-symmetric matrices can be mapped back to R3
using the vee map (¢")Y = ¢. For R € SO(3), RP)" =
R¢"RT, and for a,b € R3, a"b = —b"a.
The exponential map

Exp(¢) = I+ sin(¢p)u” + (1 — cos(¢))u”u”, ()
where ¢ = ¢u and u € R? is a unit vector, can be used to
map from R to SO(3). Its inverse is the logarithmic map

A 1
Log(R) = ¢u = 2sinc(¢/2) cos(¢/2)

L(tr(R) — 1
(")

where sinc(x) 2 sin(x)/x is nonzero for x € (—m, w) and so
sinc(¢/2) is nonzero for ¢ € (—2m,2xw). If ¢ = £ as com-
puted from Equation (3b) then Equation (3a) is not defined,

(R—R")Y, (3a)

¢ = cos™ (3b)

however from Equation (2) we have that Ru = u and therefore
u can be computed using an eigen-decomposition, implying
that Log(R) is well defined on SO(3). Additionally, we will
make use of the left Jacobian of SO(3)

Ji(@) =1 + sin(¢/2)sinc(¢/2)u”

and its inverse

@) =1— ‘;’ A+<1—

+ (1 — sinc(¢p))u”u” (4)

cos(¢/2) )u/\uA 5)

sinc(¢/2)

where we note that J;(¢p) and J;~ l((j)) are well defined on ¢ €
[—m, ].

II. QUADROTOR DYNAMICS

The state of the quadrotor is given by the tuple x =
(pz/i, ny/iv R;;, “’Z/i)’ where pz/i, vz/i € R3 are the position
and velocity of the body frame (the coordinate system whose
origin lies at the center of mass of the vehicle, with the i and
Jj axes pointing out the front and right sides of the vehicle and
the k axis pointing out its underside) expressed in some north-
east-down inertial frame, Rﬁ, € SO(3) is the rotation from the
body frame to the inertial frame, and “’Z ; € R3 is the angular
velocity of the body frame expressed in the body frame.

We model the dynamics of the quadrotor using the
equations [10]

f’Z/i = VZ/i’ (6a)

- T i

Vi = 8€3 — —Rbe3, (6b)

R} = RZwb/l ; (6¢)
Joy ;= —w), Ja)b/i + 7?, (6d)

where g is the gravitational constant, m is the mass of the
vehicle, J € R3*3 is the inertia matrix, T is the total force
produced by the rotors, 77 € R? is the total moment vector
produced bqy the rotors expressed in the body frame, and e3 =
[O 0 1] . Motor throttles § € R*, §; € [0, 1] can be mapped
to a total thrust and moment vector using the linear relationship

T
7]

where M € R*** is an invertible constant mixing matrix
that captures vehicle-specific configuration details, such as the
position of each rotor with respect to the center of mass, the
amount of thrust and torque a single rotor is able to produce,
etc. See [10] for more details.

)

IV. CONTROLLER ARCHITECTURE

The architecture of the proposed controller is shown in
Figure 2. We aim to follow three-times-differentiable tra-
jectories, along with a desired heading and heading rate.
The trajectory generator block provides the desired tra-
Jectory parameters at time 7, represented by the tuple
L@ = @i, Pa®), Pa(0), Pd(t) Ya(), Va(t)), where
pa(t), Pa(®), Pa(t), Pa(t) € R3 are respectively the desired
position, velocity, acceleration and jerk of the body frame with
respect to the inertial frame expressed in the inertial frame,
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Fig. 2. The architecture of the proposed control scheme.

and Y4(t), ¥q() € R are the desired heading and heading
rate. A trajectory-following LQR controller uses the desired
trajectory and the current state to produce a desired force vec-
tor f; € R, Using the fact that quadrotors are only capable
of producing force along the body k-axis, a desired rotation
matrix Ril € SO(3) and angular rate (og ; are computed so
that the desired k-axis aligns with the desired force f;. A geo-
metric controller on SO(3) uses these desired rotation states
in addition to the current vehicle state to compute the torque
the rotors must produce in order to drive the rotational error
to zero. The required forces and torques are then mixed using
the inverse of (7) to find the required motor throttles, which
are then saturated between 0 and 1 before they are fed to the
motors on the quadrotor.

Prior works [3], [9] prove the stability of the coupled
translational and rotational dynamics given certain initial
conditions. We will not do so in this letter given space
limitations.

V. TRAJECTORY-FOLLOWING LQR CONTROL

We begin by assuming that the quadrotor is able to produce
any desired force f; € R® (we will relax this assumption in
the next section). The velocity dynamics then become v}, i =

ges + %fd. Define the error states

€ ZPZ/i_Pda evzvé,/i_pd, ()

and the integral of position error state

t
o= / ¢, d, 9)
0

and define f = fy —feq, where foq = m(—ge; +py) is the force
at equilibrium. Then the desired force vector is

f=—-Ke, = f; = —Ke, +foq, (10)

where €, = [ ; e, e ]T and K is a gain matrix selected
to minimize the LQR objective
Jior(eq, D) = / (e;Weea + f’TWfi‘)dt, (11)
0
where W, € R%*? and Wr e R3*3 are symmetric positive
definite matrices.

V1. DESIRED ROTATION

From the trajectory-following LQR controller we receive a
desired force vector f,;. In the previous section we assumed that
the quadrotor could produce any desired force, but in reality it
can only produce force in the direction of its rotors, along the
body k-axis. The vehicle will be able to achieve the desired
force only if this axis is aligned with the force vector.

We follow the method presented in [3] to construct a
desired rotation matrix RZ € SO(3) (the rotation from the
desired frame to the inertial frame) such that the desired
k-axis is aligned with f;. Noting that the columns of a rota-
tion matrix are the coordinate-frame axis vectors, we set
RZ = [id jd kd], where iz, jg, and ky; are the desired
coordinate axes expressed in the inertial frame. Set

k L4 (12a)
AT
to align the rotors to the desired force vector. The desired
rotation about k; can be chosen arbitrarily. To constrain the
rotation matrix, we provide a desired heading 4 from the
trajectory generator, implying that

. kg X sq

Ja=—7—7, (12b)
kg x sql

id = jd X kd, (12C)

where s; = [cos(Va) sin(¥g) 0]
The desired angular velocity wZ /i is constructed from the
rotational kinematics as

.. . T \2
R) =Rl = of, = (R,'R,) . (3)
where R’d = [id ja kd], and iy, jq, and kg are found by
differentiating (12).

In contrast to [3], we set the total thrust of the motors to be

T = |fall (14)

as opposed to T = —f}RZTeg. While the latter can be proven
to stabilize the full rigid-body dynamics when the attitude
tracking error is within a bounded region [3], we found that
the former was able to track much more aggressive trajecto-
ries. This is likely because the thrust is not as limited, and the
rotational system converges quickly enough that the direction
of applied thrust is almost always close to the desired direction
of thrust.

VIl. CONTROL ON SO(3) USING LOGARITHMIC ERROR
We develop a geometric controller on SO(3) to track
the desired rotation R/, and angular velocity wfl /i given the
dynamics (6c), (6d) and prove that it is globally attractive.
The rotatlon from the desired frame to the body frame is
RS = R’ R’ We evaluate three choices for the error rotation:
fo = E(RZ -
function 1[I — RS|% [3], Fe =

ZT)V which comes from using the LTyapunov
1 b b'y\Vv
N ) (R; —R; )" used
in [4], and the logarithmic map r, = Log(R ). Figure 3 shows
the magnitude of each error expression versus ¢ € [0, 7] given
that RZ = Exp([d) 0 O]T). Unsurprisingly, ||T.| increases
linearly with ¢ because ||Fs| = ||Log(Rz)|| = ¢. This shows
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Error Magnitudes Versus Rotation . . . .
5 Taking the time derivative, we get
~ - -~ . A
=6 Ji®) K F+e' (sz/,. + @y, Jo ) — r”)
0
~ - - . A
=o' (J;(r) K+ waj,/l. + ")Z/i Jwﬁ/i - Tb>
| . . = -0 Ko, (23)
Fig. 3. Error function comparisons.
which is negative semi-definite. However, note that
that the logarithmic map transforms geodesics in SO(3) to V=0=o=0= “:E 0
straight lines in the Lie algebra. For this reason we believe that = Jof it o) /i Jo i~ =0
the logarithmic map is the most effective and natural method L@ TKE =0 F=0, (24)

for representing rotational error, thus we choose the rotational
error expression to be

=7, = Log(R}). (15)
We express the error in angular velocity as
® =Rjol,; — w), = o}, (16)
Lemma 1: The dynamics of r are given by
r=J0""'e, (17)

where J;(F) is the left Jacobian of SO(3).

The proof is omitted for brevity, but involves inverting (15),
taking the time derivative of the matrix exponential, and
rearranging. See [11] for details.

Additionally, the angular velocity error dynamics are
given by

Jo = Yol + wfJa — 7, (18)
where we note that
d’Z/i = %(RZQZ/i> Rdwd/z + Rdwa'/z
= szg/l + wARde/l
Rda)d/l + (Rdwd/l wb/Z)ARdwd/l
=Rlo7, — o), Riw]. (19)
Define the set
S2{pu| — T <¢p<m uu=1}, (20)

and its closure S where —r <¢ <m.
Theorem 1: Given the dynamics (17), and (18), the control
law

" =) Jwh; + Ik, + I® K+ Kb, (21)
where K,, K, € R>*3 are symmetric positive definite
matrices, is asymptotically stable for all (F,®) € S x R3.
Furthermore, if K, = kI and K, = k,J where k, and k,
are scalars, then the closed-loop system is globally attractive
on § x R3.

Proof: Let (f,®) € S x R3, and consider the Lyapunov
function candidate
1 1
—r TK, ¢ + —o'Jo.

V(E, @) = (22)

where the last result is due to the fact that the matrix
Ji(¥)~ TK, is full-rank, thereby showing that the largest invari-
ant set in S x R3 is the origin, and asymptotic stability follows
by the LaSalle invariance principle.

Now assume that (£(0), @(0)) € (S\ S) x R3, where the
initial body rotation R;; is exactly 180 degrees from the desired
rotation Ri,, and assume that the set (S\ S) x R? is invariant
to the dynamics (17), (18), and (21).
~ Since r € S\ S we have that ¥ = £7u, which implies that
F = 7. Since u'u = 1 we have that u' @ = 0. Therefore

T

u'r=+ru'a=0. (25)

On the other hand, from Equation (17) we have that
u't=u'J(Eru) e
=u' (I ¥ %uA + uAuA>(Z)

T

=u ®=0,

where we have used Equation (5) and the fact that u is orthog-
onal to u"®, and the last equality follows from Equation (25).
Differentiating u' @ = 0 gives u'®=—u'®, where

1
Wo=+-6"J"T(Exrwe
T

1
= +-&"0F 2u" + ')
b4 2
1
=+—@ uu'®=0,
T
where we have used the identity u"u® = —I+ uu', and the
fact that @ and w"@ are orthogonal. Therefore u'@® = 0 on

S\ S.
Alternatively, from Equations (18) and (21) we get
TA

u'o=Fru"J U (EFrwKu —uJT K6, (26)
If we let K, = k,I and K, = k,J, then
u'®=Frku'J 'u (27)

Since J~! is positive definite and u is a unit vector, ) # 0,
which is a contradiction. Therefore (S\ S) x R? is not invari-
ant and the system dynamics must enter S x R>, and thereby
converge to the origin. The closed-loop system is therefore
globally asymptotically stable. |

In (21), the inverse left Jacobian on the rotation error term
is only necessary if K, # k.I. This control law is similar
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Fig. 4. Fast circle trajectory performance.

to the one presented in [9], where global exponential stabil-
ity is proven. However, we feel that our proof is simpler in
nature, without the need to express jumping dynamics in the
Lie algebra of SO(3).

VIII. SIMULATION EXPERIMENTS

We simulated the quadrotor dynamics (6) and tested the
ability of the proposed control scheme to track highly aggres-
sive trajectories. The dynamic parameters we used were m =
1 kg, g = 9.81592, and J = diag(0.07,0.07,0.12) kg m?2.
The dynamics and controller were updated synchronously at a
frequency of 100 Hz. To create the mixing matrix M, we gave
the quadrotor an arm length of 0.25 m, a maximum thrust per
rotor of 9.81 N, and a maximum torque per rotor of 5 Nm.
Additionally, to demonstrate the robustness of the proposed
control scheme we added zero-mean Gaussian input noise to
each motor throttle input with a standard deviation of 0.04,
and we perturbed the mixing matrix used in the controller
by increasing the estimated thrust per rotor by 10 percent
beyond its true value. The control parameters we used were
W, = diag(2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1073, 1073, 0.1), Wy =
diag(0.1, 0.1, 1.0), K, = 10I, and K, = 15], except where
otherwise stated. A video of these experiments can be found
at www.youtube.com/watch?v=suEyw84wSoA.

A. Fast Circles

We chose sinusoidal trajectories because of their C*° conti-
nuity and because they demonstrate the effectiveness of the
proposed control scheme well. For the first trajectory, the
quadrotor was commanded to follow circles in the xy-plane
with a diameter of 10 m, a period of 2.5 s, a vertical offset
of 5 m, and a commanded heading such that the body i-axis
points in the direction of travel.

The results are shown in Figures 4 and 5. The quadrotor
converges to the correct altitude within 3 seconds and fol-
lows the trajectory fairly well. Due to the aggressiveness of
the trajectory and because of the decoupling between the posi-
tion and rotation controllers, it never quite reaches the correct

Fast Circles Position

—— actual
—— desired

N W oA~ »
z (m)

4

0 2

-2 \ka\

X () 2 _4
m) 4 _6

Fig. 5. 3D position plot of the fast circles trajectory. The z-axis is flipped
for visual clarity.
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Fig. 6. Upside-down recovery performance, comparing to the

controllers presented in [3] and [8].

diameter, but stays fairly close to it. Note that the roll angle
throughout the trajectory is around 70 degrees, indicating that
the trajectory is quite aggressive.

B. Upside-Down Recovery

For this simulation, the quadrotor was given an initial roll
angle of exactly 180 degrees and commanded to hover in place
at pg = 0. The goal of this trajectory is to verify whether
the proposed control scheme is indeed globally stable. The
performance of our controller was tested against the controllers
presented in [3] and [8]. The controller of [4] was not com-
pared because their choice of error rotation is not defined when
¢ = £m. We set K, = 30J, and, after a great deal of tun-
ing to ensure good performance, set the parameters of [8] to
(using their notation) k1 = 20, k» = 15, « = 1.99, 8 = 0.98,
8 = 0.05, B,, =5, and k, = 20J. The results are shown in
Figure 6, with [3] denoted as “frobenius” and [8] denoted as
“hybrid”. Ours and [8] were both able to recover the quadrotor,
while [3] was not, for the reason depicted in Figure 3. Our
controller was able to flip the quadrotor over more quickly
than [8], and as a result reached the origin sooner. We believe
that this is because the hybrid control scheme of [8] intro-
duced a non-smooth response when the control configuration
jumped at about 0.5 s (this can be seen by the bump in the
roll plot), sending the vehicle further from the origin before
beginning to converge.
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IX. HARDWARE EXPERIMENTS
A. Modified Hardware Controller

Most quadrotor hardware platforms have an onboard embed-
ded flight control unit (FCU) that tracks attitude or angular rate
commands at very high rates (e.g., 1000 Hz) using an iner-
tial measurement unit (IMU). In order to better interface with
the FCU, we modified the controller presented in Section VII.
We assume that the FCU can achieve a commanded angu-
lar rate nearly instantaneously and neglect the angular rate
dynamics (6d). The rotational dynamics thereby become R =

waA, where ®” is the angular velocity command sent to
the FCU.

Define r and ® as in (15, 16), but replace w’,;/l. with wlg.

Theorem 2: The control law
ol = Rjef, + IOK,F (28)

exponentially drives the error dynamics (17) to zero for any
initial value of F (assuming angular velocity is achieved

instantaneously).
Proof: The proof is similar to Theorem 1. For details
see [11]. [ |

Note the use of the left Jacobian in Equation (28) versus the
inverse left Jacobian in Equation (21). This is because the error
rotation term in (23) is canceled by subtraction, whereas in the
proof of Theorem 2 the Jacobian is canceled by multiplying
by the inverse.

B. Results

We tested the ability of our control scheme to track
aggressive trajectories with a quadrotor hardware plat-
form. Our platform uses ROSFlight! as its onboard FCU.
To estimate the state of the quadrotor, we flew the
vehicle in a room set up with an Optitrack’? motion
capture system. The control parameters we used were
W, = diag(0.5,0.5,0.5,0.2,0.2,0.2,0.1,0.1,0.1), Wy =
diag(0.1,0.1,0.3), and K, = diag(5, 5, 5).

We tested this controller on a hand-designed S5th degree
B-spline trajectory that started and ended in the same posi-
tion with no initial or terminal velocity and acceleration. The
trajectory was a large loop in the yz-plane whose required
acceleration at the top of the loop is so high that the quadro-
tor must point its rotors downwards by doing a flip in order
to track it. Figure 1 shows a time lapse of the trajectory
and Figure 7 shows the results. The quadrotor tracked the y
and z position fairly well through most of the trajectory, and
was completely upside-down just before 30 seconds. After it
completed the majority of the maneuver it deviated from the
commanded trajectory for a moment. This effect could likely
be reduced by further refining the trajectory to ensure dynamic
feasibility and/or tuning of the control parameters.

X. CONCLUSION

We have developed a new quadrotor control scheme that is
capable of tracking highly aggressive trajectories. Our geomet-
ric controller uses the logarithmic map to express rotational

Lrosfli ght.org
2optitrack.com
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Fig. 7. Hardware flipping loop trajectory performance.

error in the Lie algebra of SO(3), which allows us to treat
the manifold in a more effective and meaningful manner. We
have shown that the proposed geometric controller is glob-
ally attractive, without requiring a complicated hybrid control
scheme. Additionally, we have presented an adaptation to this
controller that allows it to interface with off-the-shelf quadro-
tor FCUs and have shown the ability of this control scheme
to track highly aggressive trajectories in both simulation and
hardware experiments.
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