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Abstract Water quality sampling is a key element in tracking water quality monitoring objectives.
However, frequencies adapted by different agencies might not be sufficient to provide an accurate
indication of water quality status. In this study, data from low and high-resolution water quality
datasets were analyzed to determine the extent to which monitoring objectives could be achieved
with different sampling frequencies, with a view to providing recommendations and best practices
for water quality monitoring frequency in places with limited resources with which to implement
a high-frequency monitoring plan. Water quality data from two watersheds (Maumee River and
Raisin River) located in the Western Lake Erie Basin (WLEB) were used since these watersheds
have consistent records over substantial periods of time, and the water quality data available have
a high resolution (at least daily). The water quality constituents analyzed included suspended solids
(SS), total phosphorus (TP), soluble reactive phosphorus (SRP), and nitrate+nitrite (NO2+3).
Sources of pollutants for watersheds located in the WLEB include contributions from point sources
like discharges from sewage treatment plants and non-point sources such as agricultural and urban
storm runoff. Weekly, bi-weekly, monthly and seasonal datasets were created from the original
datasets, following different sampling rules based on the day of the week, week of the month, and
month of the year. The resulting datasets were then compared to the original dataset to determine
how the sampling frequency would affect the results obtained in a water quality assessment when
different monitoring objectives are considered. Results indicated that constituents easily
transported by water (such as sediments and nutrients) require more than 50 samples/year to
provide a small error (<10%) with a confidence interval of 95%. Monthly and seasonal sampling
were found appropriate to report a stream’s prevailing water quality status and statistical
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properties. However, these resolutions might not be sufficient to capture long-term trends, in which
case bi-weekly samples would be preferable. Limitations of low-resolution sampling frequency
could be overcome by including rainfall events and random sampling during specific time
windows as part of the monitoring plan.
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Introduction

Water quality monitoring protocols have been implemented as a way to understand water
quality processes and to obtain water quality variables for planning, designing, and operating water
resources and wastewater treatment systems (Harmancioglu, 1999). Whitfield (1988) indicated
that some of the reasons for conducting water quality monitoring are: 1) assessment of trends in
variables of concern, 2) compliance with standards, 3) estimation of mass transport, 4) assessment
of environmental impact, and 5) general surveillance. To incorporate a temporal basis for water
quality monitoring, Sherwani & Moreau (1975) defined short-term, intermediate-term, and long-
term goals. The primary purposes for short-term goals were to: monitor and investigate complaints;
prevent water pollution emergencies (e.g., fish kills); set, amend, or repeal water quality standards;
and, develop effluent standards. Intermediate and long-term goals focused on: evaluating the
effectiveness of activities aimed to control water pollution; determining the nature and extent of
pollution in areas of interest; long-range program and policy planning; evaluation of trends; and,
prediction of water quality status.

Depending on monitoring goals, different sampling frequencies have been adopted by
different entities. In the National Water Quality Assessment (NWQA) program developed by the
U.S. Geological Survey (USGS), for example, the minimum and most common sampling
frequency for basic fixed-sites i1s monthly for two years, while high-frequency sampling on
intensive fixed-sites is typically weekly (or bi-weekly for large basins) and lasts between 3 to 9
months (Gilliom et al., 1995). In 2013, the U.S. Geological Survey National Water Quality
Network (NWQN) was formed with the merger of the National Stream Quality Accounting
Network (NASQAN) and the NWQA.. Under this new program, the frequency of sample collection
is determined based on historically observed variability in water concentrations and pollutant
loads. Samples are collected through a seasonal weighted, fixed-interval regime, and the number
of samples ranges between 12 to 18 samples collected in a year (Lee et al., 2017). In 2018, the
USGS started a pilot of the Next Generation Water Observing System (NGWOS) in the Delaware
River Basin. This program involves continuous monitoring of temperature and specific
conductance is being conducted in selected streamflow stations, as well as the use of remote
sensing technologies to monitor suspended-sediment concentration, channel erosion, and harmful
algal blooms (USGS, 2021). The U.S. Environmental Protection Agency (USEPA), under the
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the summer for two years to provide a national snapshot of a stream’s water quality over time as
captured during the sampling period. The NRSA is conducted every five years, with the last
assessment completed in 2018-2019 (U.S. EPA, 2020).

The European Union’s Water Framework Directive recommended monthly sampling should
be completed for priority substances and every three months for other pollutants. However, the
Directive allows that Member States define their own monitoring frequency based on the
conditions and variability of their water bodies. The only requirement that Member States have to
meet for selecting their own frequency is that this frequency provides a reliable assessment of the
status of all water bodies (European Commission & Directorate-General for the Environment,
2003). In Australia and New Zealand, the sampling frequency depends on the water monitoring
objectives and the jurisdiction where the study takes place. The Queensland’s Monitoring and
Sampling Manual indicates that monthly sampling is usually adequate for baseflow (dry water
concentration) water quality sampling; however, the frequency can be adjusted based on the
monitoring goals (DES, 2018).

Table 1 shows a summary of sampling frequencies used for different water quality
monitoring objectives. Regulatory agencies and frameworks suggest sampling frequencies ranging
from monthly to annually. However, recent research indicates that some of the frequencies
indicated by regulatory agencies might not be sufficient to accomplish specific water quality
monitoring objectives (Bowes et al., 2009; Halliday et al., 2015; Ross et al., 2015; Vilmin et al.,
2018). Vilmin et al. (2018) concluded that it is not possible to specify one single optimal sampling
frequency under the E.U. Water Directive Framework (WFD); instead, the optimal sampling
should be defined for each variable and location. The authors disclosed that major urban effluents
increase the variability in the receiving environment; therefore, weekly sampling may be needed
to capture this variability. Babitsch et al. (2021), after comparing monthly samples with
subsamples of 10, 8, 6, 4, 2, and 1 measurements, concluded that low sampling frequency reduces
the reliability of temporally variable water quality data. Kotaméki et al. (2019) identified that more
sampling is required beyond the recommendation provided by the WFD, especially for rivers with
a class status of “High,” “Bad,” or “Poor. The researchers also indicated that the frequency and
coverage of monitoring designs should be systematically and iteratively evaluated in relation to

monitoring objectives for the water body.



According to the United Nations Environment Program (UNEP, 2016), sampling
frequencies in the U.S. can vary from hourly to annually depending on the purpose of sampling.
Conversely, the average monitoring frequency for Latin America was four samples per year from
1990 to 2010. The Colombian Andean Region follows a trend similar to that documented for the
Latin American region. Water quality sampling is conducted three to four times a year, generally
considering the annual wet and dry periods. Recent studies completed in Colombia indicated that
monitoring with a higher temporal and spatial resolution is desirable (Diaz-Casallas et al., 2019;
Holguin-Gonzalez et al., 2013; Rodriguez et al., 2013). These authors stated that there are periods
with no information and the ecological water quality assessment may be limited.

Sampling frequency and recurrence are widely discussed in handbooks, official guidelines,
and scientific papers, especially when optimization of water quality monitoring programs is
discussed (Behmel et al. 2016). Several issues emerge from work and discussions on sampling
frequencies: 1) Even though sampling frequencies are often based on water quality monitoring
objectives, there does not seem to be any consensus as to the frequency to be adopted for any one
objective. For example, (Naddeo et al., 2013) concluded that the assessment of the water
environmental quality did not change with seasonal sampling in the Sele River Basin. In contrast,
(Halliday et al., 2015) stated that sampling frequency and collection time had a significant impact
on water quality status under the WFD. In the U.S., the EPA and the USGS have established
monitoring programs with seasonal or annual sampling with the objective of assessing the streams’
water quality status; however, at the state level, environmental agencies may set monthly sampling
as the sampling frequency to accomplish the same monitoring objective (Florida Department of
Environmental Protection, 2020; Indiana Department of Environmental Management (IDEM),
2017; Pennsylvania Department of Environmental Protection, 2019); 2) Water quality monitoring
programs are better defined and established in North America and Europe. For the most part, the
different planning and decision-making agencies can access relevant, accurate, and up-to-date
information about water quality status. In many other parts of the world, there is less water quality
information, and water quality monitoring may be less structured. These are also the regions in
which resource constraints greatly impact water quality monitoring, hence the need for more
definitive information on sampling frequencies; and, 3) The value of high-frequency sampling

over lower-frequency sampling needs to be established (Jiang et al., 2020). Furthermore, there is



the need to identify and eliminate redundancy (Guerreiro et al., 2020; Karamouz et al., 2009), this
being the point beyond which higher frequency sampling does not result in a gain in information.

The purpose of this study is to provide recommendations and best practices for water quality
monitoring frequency, particularly for places with limited resources to implement a high-
frequency monitoring plan. Specifically, to: 1) Compare extent and applicability of water quality
information obtained based on different sampling frequencies; 2) Assess the performance of the
frequencies based on different monitoring objectives using long-term datasets with a high
resolution; 3) Develop recommendations for water quality frequencies considering potential

regional constraints.

Materials and Methods
Water quality data from the Western Lake Erie Basin (WLEB, Fig. 1) were used. This basin
was selected because a substantial amount of data was readily available, with water quality
parameters sampled at high resolutions, in some cases up to four times a day. An exploratory
analysis of the data from the Maumee watershed led to the following critical question: how does
monitoring frequency affect the accuracy of information obtained considering different objectives?
From this question, five sub-questions were formulated to narrow the scope of the main question.
The sub-questions are:
a) Is there an ideal sampling frequency to identify changes in water quality parameters?
b) What would be the adequate water quality sampling frequency to assess long-term
trends?
¢) Can monthly and seasonal sampling be improved in a way that can provide more
accurate and reliable results for long-term trend monitoring?
d) How does the interpretation of water quality status change if sampling is conducted at
different times during the year?
e) What are the impacts of different sampling frequencies on water quality status as
reported using Water Quality Index (WQI)?
To provide answers to these questions, a combination of different analysis were completed,
including the estimation of the number of samples required in a year using the water quality means
methodology, a trend analysis using a Mann-Kendall trend test, and a comparison of the Water

Quality Sub-Indexes proposed by Mijares et al. (2019). Data pre-processing and statistical analysis



Table 1 Summary of sampling frequencies based on different monitoring objectives

Agency/Reference

Purpose of
Monitoring

Frequency

Notes

U.S. Environmental Protection
Agency (EPA) National Rivers and
Streams Assessment (NRSA) (U.S.
EPA, 2020)

Water Framework Directive —
European Commission (EC)
(2000/60/E.C.) (EC, 2003)

U.S. Geological Services (USGS)
National Water-Quality Assessment
(NAWQA) Project (Gilliom et al.,
1995)

Indiana Department of
Environmental Management (IDEM)
(IDEM, 2017)

Florida Department of
Environmental Protection (FDEP)
(FDEP, 2020)

Pennsylvania Department of
Environmental Protection (PADEP)
(PADEP, 2019)

Establish a baseline of the
condition of wadeable
streams and extent of
major stressors
Assessment of long-term
trends.

Establish the status of
those bodies identified as
being at risk of failing to
meet their environmental
objectives

Assessment of current
status and long-term
trends

Assessment of current
status and  long-term
trends
Assessment of current
status and  long-term
trends
Assessment of current
status and  long-term
trends

Single sample every 5 years

Monthly for priority
substances and every three months
for other pollutants

Streams: bi-monthly and 8-18
seasonally weighted samples
Agricultural and urban sites: monthly
and 12 seasonally weighted samples

Fixed stations: monthly

Probabilistic selected sites: 3
seasonal samples (May-Oct)
Targeted sites: At least 3 samples per
year

Trend monitoring network:
monthly
Status monitoring network: 1 sample

Standard stations: monthly
(physical/chemical) and annually
(biological)

1853 sites sampled. Site selection based on a
stratified random sampling design

45 pollutants are considered priority substances,
including heavy metals, PAHs, and POPs. More
frequent sampling may be necessary to detect
long-term trends

110 sites (streams and rivers) with consistent
streamflow and water-quality information

165 fixed sites, 38-50 probabilistic selected
sites. Targeted locations are selected based on a
variety of factors depending on monitoring
objectives, including known impairments,
permitted dischargers, land use, etc. Sites
change annually
78 fixed stations for trend monitoring
240 sites are sampled for status monitoring
(canals: 60, streams: 90, rivers: 90) Sampling
occurred in Jan-Feb (canals), Apr-May
(rivers), Jul-Sep (streams)
CIM measure water temperature, specific
conductance, pH, and dissolved oxygen and are
completed for one year or less to capture time
periods of specific interest. Several CIM




Purpose of

Agency/Reference Monitoring Frequency Notes
Assessment of effluent Chesapeake Bay stations: monthly deployments were maintained for multiple years
limitations for the (physical/chemical), every other year to understand year-to-year differences and
National Pollutant (biological), 8 times/year during observe trends
Discharge Elimination storm events
System (NPDES) permits ~ Reference stations: monthly
(physical/chemical) and annually
(biological)
Continuous Instream  Monitoring

New York City Department of
Environmental Protection
(NYCDEP) (NYCDEP, 2019)

State of Queensland Department of
Natural Resources, Mines, and
Energy (DES, 2018)

ITHR Hydroscience & Engineering
(Weber et al., 2016)

Skeffington et al. (2015)

The Heidelberg Tributary Loading
Program (HTLP) (Roerdink, 2017)

Assessment of current
status and  long-term
trends

Assessment of condition
and trend of Queensland’s
freshwater aquatic
ecosystem health

Research

Research

Research

(CIM): every 15 min
Fixed frequency: monthly
Automated stream
(ASM): every 15min
Manual samples were collected 1-4

monitoring

times a year.

Continuous time-series
measurements of temperature and
electrical conductivity at selected
stations

Samples were taken every 15 min

Hourly (3 sites) and 2-4 times/day (1
site)

3 times/day (04:00, 12:00, 20:00)

100 fixed frequency sampling sites and 6 ASM
stations. ASM stations monitoring for water
temperature, specific conductivity, and turbidity

161 stations (68% of all stations) have the
equipment to continuously measure temperature
and electrical conductivity. Manual water
quality sampling is conducted in 229 stations

28 sites in lowa monitoring for nitrate and
nitrite,  turbidity, temperature,  specific
conductance, pH, and dissolved oxygen.

4 sites were assessed in the U.K. Parameters
analyzed included pH, temperature, dissolved
oxygen, and phosphorus (T.P., SRP, ortho-
phosphorus)

18 sites in Ohio and Michigan, sampling for
nutrients (especially phosphorus), sediments,
and pesticides
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Fig. 1 Western Lake Erie Basin (WLEB) with the location of the water quality stations used in this
study

were completed using R 4.0.0. Missing data were completed using embedded functions in R.

Data collection and preparation

Data from four water quality stations located in the Maumee (Maumee, Blanchard, and
Tiffin stations) and Raisin (Raisin) Rivers watersheds (Fig. 1) were obtained from the Heidelberg’s
University’s National Center for Water Quality Research (NCWRQ), part of the Heidelberg
Tributary Loading Program (HTLP). Data for suspended solids (SS), total phosphorus (TP),
soluble reactive phosphorus (SRP), and nitrates+nitrites (NO»+3) were obtained for this study.
Since water quality samples had been taken at varying intervals throughout the day, flow-weighted
average daily values were computed and used for this analysis. These flow-weighted daily values

constituted the baseline datasets for this study.



Data resampling

Similar to the method used by Tanos et al. (2015), a systematic approach was used to
extract data from the original datasets and create datasets for use with the analysis. In particular,
for: 1) weekly values, datasets were generated constituting samples taken on each day of the week
(DOW) every week. This generated seven datasets with 52-54 samples/year/set; 2) bi-weekly
values, datasets were generated constituting samples taken on each DOW every other week on
even weeks and similarly for odd weeks. This generated 14 datasets with 26-27 samples/year/set;
3) monthly values, datasets were generated constituting samples taken on each DOW every month
generating 31 datasets with 12 samples/year/set; and, 4) seasonal samples, datasets generated
constituted samples taken on days 2, 6, 7, 10, 15, 16, 20, 21, 22, or 24 for March, June, September,
and December; and a dataset for samples taken on Tuesday, Wednesday, or Thursday for week 1-
4 generating 22 datasets with 4 samples/year/set. Four additional datasets were created by selecting
random samples. These random datasets were created by selecting one sample from Tuesday,
Wednesday, or Thursday from a randomly selected week 1-4, by setting various seed numbers and

using R’s replicate function.

Station Datasets

For the Maumee and Raisin stations, data were available at least daily from January 1986 to
December 2015, and a total of 103 datasets were created for these stations. For the Tiffin and
Blanchard stations, the data were primarily reported weekly from July 2007 to December 2015,
and a total of 96 datasets were created. After creating the datasets, we conducted a comparison of
statistical properties and essential characteristics among datasets.

Since a comprehensive comparison among all datasets within each category would be
burdensome and might not necessarily provide additional information to address the study’s
objective, we analyzed datasets at each sampling frequency to see if there were appreciable
differences among the datasets. Additionally, we conducted a Kruskal-Wallis test (Table S2) to
check if the datasets for each sampling frequency had an identical distribution. Based on this
analysis, subsets were extracted at random from the datasets at each sampling frequency and used
for further analysis. To check if the selected datasets were from the same distribution as the original
dataset, a Kolmogorov-Smirnov test was completed. The statistical properties evaluated in this
analysis were mean, standard deviation, standard error, median, minimum, maximum, 90, 95, and

99 quantiles, skewness, and kurtosis. The essential characteristics were: number of samples over
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90, 95, and 99 percentile; number of samples over thresholds; number of samples over the
threshold in each season, and water quality sub-indices. This last characteristic was only estimated
for monthly and seasonal datasets. A summary of the most relevant statistical properties is included

in Table 2.

Ideal Sampling Frequency

As part of formulating a water quality monitoring program, agencies face the question of
defining the minimum number of samples required to meet the water quality monitoring
objectives. One of the most commonly used methods to estimate the number of samples is based
on water quality means. This method has the purpose of defining a rational sampling frequency
criterion based on the relationship between sampling frequency and the magnitude of half

confidence interval of the annual mean variable concentration (Sanders & Adrian, 1978).
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Table 2 Summary statistics for daily, monthly, and seasonal sampling frequencies (mg/L)

Suspended Solids

Maumee Raisin Tiffin Blanchard

Daily Monthly  Seasonal  Daily Monthly  Seasonal  Daily* Monthly  Seasonal  Daily* Monthly  Seasonal
Mean 72.00 72.63 71.57 48.71 50.95 50.73 54.43 63.24 36.68 35.85 34.38 24.71
SD 100.08 94.02 90.56 93.05 138.73 87.51 70.15 94.55 25.89 66.58 60.61 36.30
Total Phosphorus
Mean 0.224 0.228 0.230 0.120 0.116 0.123 0.179 0.186 0.144 0.280 0.291 0.275
SD 0.146 0.141 0.144 0.116 0.131 0.114 0.144 0.158 0.101 0.155 0.144 0.134
Soluble Reactive Phosphorus
Mean 0.0548 0.0582 0.0576 0.0241 0.0263 0.0257 0.0542 0.0554 0.0497 0.1548 0.1706 0.1678
SD 0.0432 0.0436 0.0440 0.0248 0.0229 0.0227 0.0372 0.0346 0.0361 0.1032 0.1220 0.1155
Nitrate+nitrite
Mean 4.40 4.53 4.69 2.90 2.93 2.69 3.16 291 2.79 5.70 6.30 6.01
SD 3.121 3.073 3.089 2.304 2.324 2.121 2.317 1.599 1.566 2.531 3.088 2.679

*Sampling frequency for Tiffin and Blanchard varies from daily to weekly sampling
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These researchers used streamflow data instead of water quality parameters since high-
frequency sample were not available. Additionally, using streamflow data is a logical assumption
since some water quality constituents (sediments, major ions, and salts) are highly correlated to
the river flow. Our study compares the number of samples required based on the streamflow, SS,
TP, and SRP data obtained for the Maumee and Raisin Rivers. NO2+3 data were not included
because it does not meet the condition of having an approximated normal distribution. This method
established that the half-expected confidence interval of the mean (R) is a function of the standard
deviation of the observed residuals (S), the constant from the Students’ t-distribution (t), and the
number of samples (n). The equation used to estimate the values of R is:

_ ta/zs
R = I (1

Before applying the aforementioned method, the data must be modeled to isolate random,
independent, and identically distributed residuals. To achieve this purpose, the methodology
indicated by Sanders and Adrian (1978) was used, where the long-term trend component is
removed from the time series. Then the time series is converted to natural logs, and a first-order
autoregressive moving average model is created. Finally, the standard deviation is calculated and

used in equation 1.

Sampling Frequency for Long-Term Trend Monitoring Goals

Water quality monitoring objectives often include the identification of long-term trends.
Therefore, a trend analysis was conducted to identify if there was a difference in the results
obtained from this analysis for the different sampling frequencies used in this study. Since daily,
weekly, bi-weekly, and monthly datasets may be serial correlated, the seasons’ means were used
in the trend analysis. Once the means were estimated, we conducted a Mann-Kendall test to assess
if there were trends in the water quality parameters during the observed period. The analysis was

performed for each of the sampled seasons (Winter, Spring, Summer, and Fall).

Improving Monthly and Seasonal Sampling for Long-Term Trends

Since monthly and seasonal sampling has been reported as potentially inadequate to
capture long term trends (Lé4szl6 et al., 2007; Vilmin et al., 2018), the option to include samples
corresponding to rainfall events was considered as an alternative to improve the accuracy and

reliability of the results obtained from trend analysis. Therefore, an initial comparison between
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wet days and dry days was completed to check if there was a significant difference between both
types of days. For the purpose of this study, a wet day was defined as a day that has a rainfall equal
to or greater than 0.1 mm. The metric used for this analysis was the Water Quality Index as defined
by Mijares et al. (2019), computed for each of the sampled seasons. Water Quality Indexes (WQIs)
are simple methods by which to summarize the water quality status of a water body by grouping
values of different water quality parameters into a single value. One of the issues associated with
WQI is that there are different WQI models currently in use (Gitau et al., 2016).

Water quality sub-indexes (WQSI) are transformations that allow values of specific
constituents to be expressed on a common scale (U.S. EPA, 2009). As defined by Mijares et al.
(2019), the calculation of these sub-indexes is based on the respective constituent’s threshold
value. The estimated sub-index numerical value can range from 0-100; sub-index values below 40
indicate that the water quality falls below the constituent threshold. The ratings defined by Mijares
et al. (2019) are as follows: 90-100: Pristine; 70-89: Good; 50-69: Fair; 40-49: At Risk; 30-39:
Poor; 0-29: Unsuitable for all uses. For seasonal and annual computations, we used flow-adjusted
concentrations to estimate the sub-indexes. Once the comparison was completed, monthly and
seasonal datasets were complemented with additional observations corresponding to storm events.
Storm samples were defined using streamflow data from each of the stations. A storm sample
constituted data points where the daily streamflow exceeded the annual 90™ percentile of the daily
streamflow distribution.

Different combinations including storm samples (monthly+storm samples and
seasonal+storm samples) were used to create additional datasets. The initial combination included
monthly or seasonal samples plus eight storm samples, which follows the approach used by Zhang
and Hirsch (2019). The remaining datasets included the monthly or seasonal samples plus 12, 16,

20, and all storm samples.

Variation in water quality status depending on the day of sampling

When assessing water quality status, a common question that arises is if the status varies
depending on the day when sampling is conducted. To provide an answer to this question, a
comparison between water quality sub-indexes was completed. The initial comparison was
conducted for summer since a higher concentration of sediments and nutrients is expected during

this season due to spring and summer showers and farming activities conducted during the summer
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months. The dates selected for the analysis were July 1%, July 30", August 29", and September
28" This analysis was further expanded for the other seasons selecting four days, including the

1, 30" 60™, and 90" days of the season.

Analysis of Water Quality Status Reported as Water Quality Indexes (WQI) for different
frequencies

Water quality sub-indexes were estimated for weekly, biweekly, monthly, and seasonal
frequencies using the Mijares et al. (2019) method. Statistical properties for each frequency were
then estimated and compared to identify if there was a significant difference in the water quality

status as determined.

Results and Discussion

Data validation and statistical properties

Results from the Kolmogorov-Smirnov test validated that the datasets selected came from
the same population (p>0.05). The statistical properties for the different sampling frequencies
(Table S1) did not show a significant difference between the means except for seasonal samples,
ranging from 7 to 15%. SS and TP were the constituents with a larger difference in the
concentrations at the 99 percentile between daily and seasonal sampling.

Fig. 2 shows the distribution of water quality parameters for various sampling frequencies.
Medians and interquartile range values (IQR) for all analyzed frequencies were similar with
noticeable differences being primarily in the number of outliers. This was confirmed in the
suspended solids time-series (Fig. 3) plot, where we observed that a reduction in the number of
samples taken, from weekly to seasonal, represented a reduction in the peak concentration events
observed. Moreover, the distributions varied among the different analyzed sampling frequencies.
None of the analyzed frequencies was close in shape or magnitude to the daily distribution. The
weekly, bi-weekly, monthly, and seasonal distributions were more evenly distributed, with shorter
peaks, compared to the daily frequency.

These results were consistent with the findings reported by Ross et al. (2015). The reduced
number of high concentration events captured in monthly and seasonal sampling may be
troublesome since some of these events could exceed the allowable acute or chronic contaminant

levels.
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Fig. 3 Suspended solids time series plots comparing daily frequency sampling (grey line) with
generated datasets simulating samples collected on a weekly (a), bi-weekly (b), monthly (c), and
seasonal (d) basis.

Estimation of the number of samples

The datasets’ resolution was sufficient to allow the use of the water quality means method
to estimate the number of samples required for the sampled constituents at the selected stations in
the Maumee and Raisin Rivers. Fig. 4 shows the magnitude of the confidence interval’s half-width
of the means’ random component (R) for streamflow, SS, TP, and SRP as a function of the number
of samples. The value of R rapidly decreases as the number of samples increases, indicating that a
high number of samples (>100) reduces the values of R to 0.25 or less. Streamflow, SS, and SRP
require more samples to reach an error equal to or below 10% (R=10), while the same error can be
reached for TP with 50-100 samples, depending on the station. Even though mixed results have
been found regarding the relationship between streamflow and water quality trends, Murphy and
Sprague (2019) indicated that streamflow regimes more commonly influenced trends in major
ions, salinity, and sediments, which coincide with the behavior observed between streamflow, SS,
and SRP. In contrast, TP seemed to be independent of streamflow, which conforms with findings
reported in the literature (Murphy & Sprague, 2019). Table 3 shows the values of R at the Maumee
Station for the different sampling frequencies analyzed in this study. In relation to seasonal

samples, it was observable that a 56% reduction in the value of R occurred when seasonal and
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monthly sampling were compared, and an additional 15% reduction was observed when values
were compared with those from bi-weekly sampling. Additionally, the results suggest SRP is the
constituent that should be sampled more frequently since the rate at which R decreases is slower
compared to that for the other two constituents analyzed. A bi-weekly sampling frequency (26
samples) would give an R value of 0.411, which can be achieved with 7 and 11 samples for TP

and SS, respectively.

Table 3 Summary of the magnitude of the confidence interval’s half-width of the means’
random component (R) for different sampling frequencies (Maumee Station)

Frequency
Parameter Daily Weekly Biweekly Monthly Seasonal
n R n R n R n R n R
Streamflow 365 0.115 52 0311 26 0448 12 0.693 4 1.573
Suspended Solids 365 0.083 52 0223 26 0.321 12 0497 4 1.128
Total Phosphorus 365 0.045 52 0.121 26 0.175 12 0271 4 0.614
Soluble * Reactive 305106 52 0285 26 0411 12 0636 4 1.442

Phosphorus

* The table shows the values of R as a function of the number of samples. A low value of R (<0.10) indicates that the
water quality data’s variance is small, providing higher confidence that the data is a good representation of the streams’
water quality. A large value of R (>0.50) indicates high variability in water quality data, which reduces the confidence
that the data is representative for the streams’ water quality.

Long-Term Trend Analysis

Fig. 5 shows the results for the trend analysis for suspended solids during winter, where
the slope for the decreasing and increasing trend for seasonal sampling was greater compared to
the other frequencies. Table S3 to S6 show a summary of the results obtained from the Mann-
Kendall trend analysis. Overall, the tau and p-values obtained were similar for the daily, weekly,
and bi-weekly samples. However, the results for monthly and seasonal sampling varied among
them, making them less reliable as a tool for identifying trends. This finding is consistent with
what was reported by Raimonet et al. (2015), who indicated that monthly sampling is not sufficient
to assess water quality for highly variable constituents like ammonia and nitrite. The
aforementioned authors also concluded that other constituents’ fluxes like for nitrate could be
captured with monthly sampling. This finding could not be verified for the Maumee River since

nitrogen concentrations were reported as nitrate+nitrite (NO2+3). However, the nitrite variability
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Fig. 4 Magnitude of the confidence interval’s half-width of the means’ random component (R) for streamflow, suspended solids (SS),
total phosphorus (TP), and soluble reactive phosphorus (SRP) versus the number of samples per year for four water quality stations
located in the Maumee and Raisin watersheds. The red line represents the threshold to achieve a 10% error.
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Fig. 5 Trend results for different sampling frequencies (daily, weekly, bi-weekly, monthly, and
seasonal) for Maumee Station.

tended to be more predominant since the trend analysis results for nitrate+nitrite had the highest
variability for the constituents sampled for the Maumee River.

Monthly and Seasonal Sampling for Long-Term Trends

Fig. 6 and Fig. 7 show a comparison for water quality parameters among monthly, seasonal,
and monthly+storm events sampling. The monthly+storm events sampling captured more high
concentration events for all constituents except for NO2+3 (Fig. 6). The inability to capture high
concentration events for NO2+3 may be attributable to the dilution of nitrate during the early stages
of the storm events (Blaen et al., 2017; Outram et al., 2014). Fig. 7 shows the distributions for the
different sampling schemes and it was evident that the monthly+storm events sampling median
were higher by between 17% to over 100% compared to those obtained from monthly and seasonal
sampling. Discrepancies were highest for suspended solids (102% - 114%), followed by TP (50%
- 58%), SRP (22% - 29%), and NO2+3 (17%) for the Maumee station. These findings are consistent
with the results reported by (Chanat et al., 2016), who indicated that phosphorus and suspended

solids had the more pronounced relative difference in medians when monthly+storm event samples
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were compared to a baseline dataset made of all observations. The discrepancies in the median for
the analyzed sampling frequencies might be attributable to the concentration-discharge relation for
the analyzed constituents. SS, TP, and SRP are more easily mobilized through sub-surface than
NO:2:3; therefore, any storm event generates a spike in their concentrations.

Regarding the identification of long-term trends, the monthly-+storm event datasets did not
seem to improve the results previously obtained with monthly and seasonal sampling datasets.
Based on the results, the slope direction and relationship strength differed among sampling
frequencies for the four parameters analyzed. The daily dataset exhibited a negative slope for SS,
TP, and NO2+3, while the monthly+storm event sample dataset had a positive slope. For SRP, both
datasets had a positive slope, but the relationship strength for the daily set was more than twice the
corresponding relationship strength for the monthly+storm event dataset. This difference could be
associated with the hysteresis of SRP, which makes concentrations increase or decrease lag behind
an increase or decrease in streamflow (Moosmann et al., 2005). Therefore, trends would be more
sensitive to daily variations than storm events. These findings differed from what was reported by
Chanat et al. (2016), who indicated that there was little evidence that the trend found using a design
guideline subsample (monthly+storm event) would lead to different findings regarding trend

direction or shape when compared to baseline data (daily).

Analysis of Water Quality Status Reported as Water Quality Indexes (WQI) for different

frequencies

Table 4 shows the mean, minimum, and maximum values for WQSI by season. The results
showed that WQSI values tended to increase when sampling frequency decreased. For SS, WQSIs
ranged from 18 to 78 (unsuitable to good) for weekly sampling, 11 to 83 (unsuitable to good) for
bi-weekly sampling, 12 to 88 (unsuitable to good) for monthly sampling, and 29 to 86 (poor to
good) for seasonal sampling. For SRP, WQSI values tended to increase only for maximum values
up to monthly sampling. Seasonal samples for spring and summer (SRP) had a higher maximum
WQSI compared to weekly samples but lower than bi-weekly and monthly samples. The mean
WQSI values changed slightly within seasons, ranging from 35 to 38, which did not affect the
overall classification of the stream. In contrast, WQSIs for TP ranged from 16 to 59 for weekly
sampling, 10 to 59 for bi-weekly sampling, 7 to 80 for monthly sampling, and 23 to 83 for seasonal
sampling. In this case, the differences were substantial and changed the stream water quality

classification from unsuitable to fair (weekly and bi-weekly) to unsuitable to good for monthly
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and seasonal sampling. For NO»+3 values ranged from 33 to 85 (poor to good) for weekly sampling,
33 to 86 (poor to good) for bi-weekly sampling, 26 to 89 (unsuitable to good) for monthly
sampling, and 26 to 89 (unsuitable to good) for seasonal sampling. Additionally, the highest WQSI
values occurred during the Summer, when the stream reached the “Good” category for this
constituent.

Based on the results obtained, variation in WQSIs tended to increase as the sampling
frequency decreased from weekly to seasonal sampling. This variation was considered acceptable
at a weekly sampling frequency because the WQSIs generally fluctuated within two adjacent
categories. However, the variation would be critical where the WQSIs spanned the range from
“unsuitable” to “good,”—as was the case with some seasonal samples—, because this could lead
to a misleading assessment of the streams’ water quality status. Thus, if WQSIs are estimated using
low-resolution water quality data (monthly or seasonal sampling), the results obtained should be
used as a reference value, rather than a tool to assess the effectiveness of a water quality
management strategy or to make decisions about the stream.

Variation in water quality status depending on the day of sampling

Fig. 8 shows the seasonal distribution of water quality sub-index values for SS in the
Maumee River. The days in the Fair and At Risk categories occurred primarily between in the
Spring and Summer, reaching the lowest median value on July 1*. These are the seasons in which
there is higher precipitation and more agricultural activities in the region. Results for the remaining
constituents sampled at the Maumee River station are presented as supplementary material (Fig.
S1-Fig. S3). Changes in the water quality status for TP and SRP, did not vary during the selected
dates and the median subindexes values always remained below the target threshold. This is
consistent with work by Mijares (2017), which did not show significant changes in these values
regardless of the season. High phosphorus concentrations are a persistent problem in the Maumee
River Watershed. SRP concentrations have increased since the mid-1990s due to an increase in
annual discharges into the river, perpetuating the prevalence of harmful algal blooms in Lake Erie.
Hence results are consistent with what has been reported for the watershed. For NO»+3, the median
subindex values mainly fell in the Fair category, with five dates falling in the Good category in
Summer (3) and Fall (2). In general, it was observed that for NO»+3, as with SS, coarse sampling
(monthly and seasonal) tended to present a better overall outcome than when high-frequency

sampling was used. This was of special concern for NO»+3 during the summer since monthly and
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seasonal sampling would not capture a potential water quality impairment due to the agricultural
activities conducted at the study site.

Based on these findings, we can infer that water quality status as reported based on water
quality subindexes did not change drastically at different times throughout the season. Even though
there may be a risk of misclassification, some water quality parameters were more stable than
others and sampling at any date during the season would not change the reported water quality
status. These results were consistent with what was reported by Skeffington et al. (2015), who
indicated that pH, temperature, and phosphorus could be assigned an unambiguous category with

monthly samples.
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Table 4 Summary statistics for water quality sub-indexes for suspended solids, total phosphorus, soluble reactive phosphorus, and
nitrate+nitrite (mg/L)*

Fall Spring Summer Winter
Statistics Weekly  Bi- Mthly Seasr ~Weekly  Bi-  Mthly Seasr Weekly  Bi-  Mthly Seasr Weekly  Bi-  Mthly Seasr
weekly weekly weekly weekly

SS
Mean 48 51 57 60 39 40 43 46 46 48 50 58 40 42 49 48
Min 18 11 32 31 31 31 29 29 33 32 30 35 23 19 12 30
Max 78 81 88 86 62 63 86 72 71 70 79 77 73 83 86 84
Interpretation At Risk Fair Fair Fair Poor At At At Risk At Risk At Fair Fair  AtRisk At At At

Risk Risk Risk Risk Risk  Risk
TP
Mean 36 37 39 41 35 35 36 37 37 37 38 38 35 35 36 37
Min 16 10 28 26 28 27 24 24 29 29 25 30 20 15 7 23
Max 59 59 77 83 39 40 57 50 39 40 71 50 39 40 80 80
Interpretation  Poor Poor Poor At Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor  Poor

Risk

SRP
Mean 35 35 36 35 36 36 37 36 36 36 37 38 35 35 35 37
Min 29 27 19 19 32 31 30 25 30 30 28 30 29 29 25 26
Max 49 65 77 68 58 71 74 68 41 71 80 68 40 39 50 68
Interpretation  Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor  Poor
NO2;
Mean 59 60 62 58 53 53 54 54 69 70 71 78 56 57 57 57
Min 33 33 30 27 38 37 34 26 42 37 37 57 38 38 26 32
Max 78 79 89 88 75 76 81 89 85 86 89 89 69 69 75 74
Interpretation Fair Fair Fair Fair Fair Fair Fair Fair Fair Good Good Good Fair Fair Fair  Fair

Ratings: 90-100 Pristine; 70-89 Good; 50-69 Fair; 40-49 At Risk; 30-39 Poor; 0-29 Unsuitable for all uses. The interpretation was reported for the mean values.

*The goal is not to compare water quality across seasons, rather to determine whether sampling frequencies make a difference in water
quality status determination within a season
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General Discussion

Ideally, sampling frequencies are subject to diverse factors like stream characteristics,
nature of the constituents of concern, and climate (Halliday et al., 2015; Laszl6 et al., 2007; Vilmin
et al., 2018). From our analysis, the number of samples required to obtain a 10% error with a 95%
confidence ranged from 50 to 350 samples in a year for the stations analyzed in this study. The
constituent that required the least amount of samples was TP (50 to 100 samples/year), followed
by SS (100 to 250 samples/year) and SRP (100 to 350 samples/year), translating to at least weekly
for TP, and twice a week for SS and SRP. These findings were consistent with results reported by
Khalil et al. (2014), who pointed out that TP and total suspended solids (TSS) would require more
than 12 samples per year due to the high variation in these constituents and recommended that
these constituents should ideally be sampled on a biweekly basis. If the contaminants came from
urban sources, additional aspects needed to be considered. Vilmin et al. (2018) indicated that
optimal sampling depended on the location of the sampling site relative to the major anthropogenic
effluents since major effluents increase the variability in the receiving environment. In the case of
urban pollutant sources, Raimonet et al. (2015) and Vilmin et al. (2018) noted that at least weekly
sampling was required to account for the high-variability of ammonia and nitrite.

Regarding the estimation of long-term trends, the results obtained in this study showed that
there were differences in the trends as determined from the different sampling frequencies
analyzed. Results from the Mann-Kendall test showed that daily, weekly, and bi-weekly sampling
gave consistent results, capturing the direction and magnitude of the potential trend. In contrast,
there was not a consistent pattern for the trends for monthly and seasonal sampling. The trend’s
direction and strength vary when compared to the different datasets at the same frequency level
(monthly or seasonal). Moreover, in some cases, the trends (positive or negative) identified in
seasonal sampling can be amplified due to the high variability of the analyzed constituents (Fig.
6). Vilmin et al. (2018) and Raimonet et al. (2015) indicated that monthly sampling does not
capture the high variability of constituents originating from urban effluents. As a result, monthly
or seasonal sampling may not be adequate to estimate long-term trends. Similar findings were
reported by Bowes et al. (2009), who indicated that the temporal resolution of the datasets should
be increased from monthly sampling if the monitoring goal is to assess water quality improvement

due to the implementation of management practices. Halliday et al. (2012) concluded that weekly
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sampling could be used to obtain general water quality characteristics, long-term trends, and
seasonality changes for nitrate, sulfate, chloride, dissolved organic carbon, iron, and aluminum.

Additionally, the use of a high-frequency sampling strategy may reduce the length of the
record required to identify long-term trends. Liu et al. (2020) determined that good trend detection
probability was achievable with 5-years of continuous (15-min sampling) records for electrical
conductivity and turbidity. Likewise, Moosmann et al. (2005) showed the relationship between
observed trends, the length of study, and the number of samples required to identify the desired
trend in nutrient loads. If the purpose was to identify small trends (< 3%/yr), the number of samples
or the length of study had to be increased. The researchers indicated that for TP, 150 samples in a
3-year study or 30 samples in a 5-year study would be necessary to identify a 3%/year trend. In
contrast, Naddeo et al. (2013) were able to identify trends using water quality samples ranging
from one to six months. Hunt et al. (2008) found that there was redundancy for DO and chlorophyll
samples collected in the Boston Harbor and Massachusetts Bay, and a frequency sampling
reduction from 17 to 4 per year could be accomplished without affecting the quality of the data.
The reduction in sampling frequency can only be achieved after a robust statistical analysis
indicates that the low-frequency data would not be significantly different from the high-frequency
data.

Concerning the improvement of monthly and seasonal sampling to assess long-term trends,
the inclusion of 8 randomly selected storm samples helped to capture some of the peak
concentration events. However, the median and IQR were higher for SS and TP. The difference in
those values was consistent with what was reported by Thompson et al. (2021), who found that the
estimated error for TSS loads was 32% for the median and 106% for the IQR when storm samples
were included in a weekly dataset. This type of error could lead to misleading conclusions when
the effectiveness of water quality improvement practices is assessed.

Overall, our results indicate that using the same sampling frequency for all constituents
may not be suitable to meet all water quality monitoring objectives, especially when high-
frequency sampling is not available. Unfortunately, setting clear objectives may not be easily
accomplished since there is no consensus among existing definitions monitoring objectives due to
external constraints like social, legal, economic, and administrative factors (Harmancioglu, 1999).
While agencies at the local, regional, and national levels might have similar monitoring objectives;

often different sampling frequencies are used to assess the objectives. Due to the uncertainty in
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defining an optimal sampling frequency, future research needs to focus on how high-frequency
sampling can be used to define the appropriate sampling frequency tailored to the site-specific
needs and aligned to the water quality monitoring objectives. Likewise, the lack of extensive data
makes it difficult to define optimal sampling frequencies. Based on the GEMStat database, the
density of water quality stations ranges from 1.5 to 4 stations per 10,000 km? in the U.S. and
Europe, while in Latin America there are 0.3 stations per 10,000 km?, in Asia is 0.08 stations per
10,000 km?, and in Africa is 0.02 stations per 10,000 km? (UNEP, 2016).

Sampling frequency also depends on the constituent analyzed and the source of water
pollution. Water quality parameters with high variability, like nutrients and sediments, require at
least weekly sampling. Additionally, areas near urban area effluents or another known source of
pollutants require a high-resolution sampling frequency (Raimonet et al., 2015; Vilmin et al.,
2018). Regarding long-term trends, our study showed differences depending on when the samples
were taken in the monthly and seasonal datasets. Therefore, assessments made based only on this
information might be biased. In relation to water quality status, we observed that WQI could be
different depending on the sampling frequency. Weekly and bi-weekly sampling seemed to capture
the constituents’ high variability and the changes associated with seasonality, while monthly and
seasonal sampling could lead to misclassification in the water quality status thereby
misrepresenting a stream’s condition.

A limitation of this study is associated with the number of constituents analyzed. Further
research could evaluate the behavior of water quality parameters related to urban pollution like
BODs, heavy metals, ammonia, and contaminants of emerging concern. Additionally, the
confidence interval method to estimate the number of samples per constituent was the only method
used in this study since it was the more frequently used method, as reported by Nguyen et al.
(2019). A comparison among methods to estimate the number of samples would be of interest to
identify differences and potential shortcomings for each method. Additionally, since the Western
Lake Erie Basin is located in the Great Lakes area, conducting similar studies in other regions and
landscapes could provide additional information to formulate new recommendations.

Case Application

The Colombian Andean Region has an area of 283,000 km?, located in the country’s central
part along the East, Central, and Western Andes mountain ranges. The elevation ranges from 500-

5000 meters above mean sea level, making it a region with numerous valleys, canyons, and
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plateaus. The main rivers are the Magdalena and Cauca Rivers, forming the Magdalena-Cauca
Hydrological Area. This region also has most of the country’s water resources and the most
productive soils (Universidad del Rosario, 2015). According to the 2018 Census, around 26 million
people live in the region (57% of the country’s population), mostly concentrated in urban areas
(82% live in urban centers) (Baena Salazar et al., 2020). The region also represents 65% of the
GDP, followed by manufacturing activities (13%), real estate (10%), and administrative activities
(DANE, 2020). Sub-areas of the Andean region have been identified for having water-related
issues. Eight out of the eleven region’s Departments have a high erosion potential; the deficit in
precipitation events is more recurrent across the region; and the water bodies are highly impacted
by contaminant loads (IDEAM, 2018).

Due to the region’s economic, social, and environmental significance, it is a priority to set
strategies, practices, and tools to guarantee its water resources’ sustainable use. The Otun River, a
major tributary of the Cauca River, has been identified as a river with issues associated with
erosion, water quality, and water scarcity. Additionally, this watershed is located in Colombia’s
coffee axis, an area where coffee production boosted the national economy during most of the 20th
century and brought the emergence of cities like Pereira/Dosquebradas and Manizales. These two
cities became relevant urban areas since they are intermediate points between Bogot4, the capital
city and the country’s major economic center, and the Pacific Ocean. Pereira and Dosquebradas
are the largest urban centers and made up to 99% of the total population (Consorcio Ordenamiento
Cuenca del Rio Otun, 2017). According to the 2008 Census, Pereira and Dosquebradas had
467,269 and 217,178 inhabitants, where 83% and 92% of the total population live in the urban
area, respectively.

The Otun River Watershed’s (ORW) water management falls under the Regional
Environmental Authority (CARDER) jurisdiction. CARDER is Risaralda’s environmental
authority and its responsibilities include classifying surface water, indicating the water’s intended
use, establishing short, mid, and long-term water quality objectives, and setting regulations to
preserve water quality (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2015). The
main urban center in the ORW is the Pereira/Dosquebradas metropolitan area. In 2015, CARDER
approved the Otun River and Dosquebradas Creek Water Ordinance Plan. Under this ordinance,
the short (5 years), mid (10 years), and long-term (20 years) objectives were set for both streams.

Each of the streams is subdivided into stretches and objectives are tailored for each of them, based
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on the intended water use. The water objectives for both streams can be found as supplementary
material (Table S7 and Table S8). The ordinance plan also indicates that the plan’s revision and
adjustment must be completed during its extent (20 years), based on the results obtained from the
monitoring plan. Under this plan, sampling is conducted three times a year, two during the wet
period (January-June and September-December) and one during the dryer period (July-August).
The number of sampling points in the Otun River ranges from 15 to 17, and in the Dosquebradas
Creek ranges from 8 to 17 sampling points. Samples are analyzed for 25 physical-chemical
parameters, including temperature, pH, turbidity, dissolved oxygen, fecal coliforms, total solids,
biochemical oxygen demand (BODs), nitrates, and phosphates.

The previously listed parameters are used to calculate a WQI, which is the metric used to
report the streams’ water quality status. This WQI is estimated using the methodology proposed
by the National Sanitation Foundation (Brown et al., 1970). In this methodology, each parameter
has a weighted factor as follows: dissolved oxygen (0.17), fecal coliform (0.16), pH (0.11), BODs
(0.11), change in temperature (0.10), phosphate (0.10), nitrates (0.10), turbidity (0.08), and total
solids (0.07). In the 2017 Risaralda’s water quality report, the Otun River’s water quality was
classified as good in eight stations (57%), medium in five stations (36%), and bad in one station
(7%). Meanwhile, Dosquebradas Creek’s water quality was classified as good in five stations
(29%), medium in ten stations (59%), and bad in two stations (12%). The water quality decline for
the aforementioned streams is associated with agricultural activities occurring in the ORW
midsection and urban raw sewage discharges from Pereira and Dosquebradas.

Results of our analysis indicate that water quality status could be worse than indicated due
to sampling frequency. Depending on the water concerns in the area of study, the monitoring
objectives may be different. The most common objectives are to estimate the trends and assess the
status. Based on the results obtained in this study, it is necessary to have a minimum of bi-weekly
sampling frequency to capture the water quality trends with a high degree of confidence. The
sampling frequency may be reduced for relatively stable constituents, like TP, or it needs to be
increased for easily transported constituents or highly variable like NO»+3, SS, and SRP.

Another important consideration that can be made when defining the sampling frequency
is the watershed characteristics and its potential source of pollutants. In the case of the ORW, the
upper section does not have many sources of pollutants (the only major source of pollutants is the

Pezfresco trout farming and processing factory, located in the borderline between the watershed’s
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upper and mid sections), and since part of this section corresponds to a protected environmental
zone, the sampling frequency may be limited to seasonal sampling or even reduced to an annual
basis, with the purpose being to assess the Otun River and its tributaries’ water quality status. This
is consistent with findings from Levine et al. (2014), who indicated that sampling at mixed
frequencies might decrease the number of times that each site is sampled. On the other hand, the
ORW mid-section has been identified as the area contributing most of the pollutant loads into the
Otun River and Dosquebradas Creek (Consorcio Ordenamiento Cuenca del Rio Otan, 2017). For
that reason, it is highly recommended that the monitoring efforts should be focused on this part of
the watershed. As high-frequency water quality monitoring plans are expensive to implement, an
initial focus on increasing the sampling frequency from seasonal to monthly in this area would
provide benefits in capturing pollutant trends. The monthly sampling may, however, not capture
all the high concentration events, but the values for median concentration and trend analysis would
be closer to the values obtained with a daily sampling frequency. Over the long term,
environmental authorities should consider the use of emerging monitoring technologies.
Automatic high-frequency monitoring is becoming more common and affordable to implement.
Additionally, passive and active remote sensing can be used as complementary data sources.
Citizen science—a commonly used resource in environmental monitoring—could potentially
provide improved statistical power of datasets and facilitate the observation of difficult to observe
phenomena (as reported by Jollymore et al., 2017).

Regarding water quality status, it is important to select an appropriate metric to report the
water bodies’ status. The water quality status in the ORW is reported using the categories
established by the National Sanitation Foundation (NSF) (Brown et al., 1970). In contrast, the
Colombian Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM) uses the
Universal Water Quality Index (UWQI) methodology. Gitau et al. (2016) concluded that the use
of more objective and less rigid formulations would provide a better way of assessing water quality
status. Mijares et al. (2019) developed subindex formulations that were then built into the
Unweighted Multiplicative Water Quality Index (UMWQI). The advantage of using these
subindex formulations is that they incorporate water quality thresholds. Additionally, an
unweighted quality index is not restrictive with the water quality parameters to be used and can be
tailored to a specific location. Regardless of the methodology used to assess and report the water

quality status, it is essential to consider the pollutants of concern in the area. For the ORW, the
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pollutants of concern come from agricultural activities and the Pereira/Dosquebradas raw sewer
discharges. As a result, constituents like dissolved oxygen, BOD, nitrogen, phosphorus, pH,
suspended solids, and ammonia should be included in the metric used for the water quality status
assessment. Moreover, since one of the primary uses for the Otun River’s water is for human
consumption, environmental authorities may want to consider a metric that includes constituents

of interest for human health.

Conclusions

Water quality sampling frequency has typically been selected according to the monitoring
objective to be addressed. However, the sampling frequency selected varies within sampling
objectives with monitoring plans comprising weekly, monthly, seasonal, and/or annual sampling
frequencies. Water quality sampling is expensive, thus the need to determine suitable sampling
frequencies capturing multiple objectives. In this study, data representing weekly, bi-weekly,
monthly, and seasonal sampling frequencies were compared against daily data to determine their
suitability in capturing long-term trends and water quality status. Long-term trends determined
from monthly and seasonal sampling were highly variable and, thus, these frequencies might not
be appropriate for use in this type of analysis. Accuracy at these sampling frequencies could be
improved by including rainfall events as part of the monitoring plan. Regarding water quality
status, differences were found in the water quality sub-indexes from data sampled 30-days apart,
suggesting higher frequency sampling would be more appropriate. Our results suggest that weekly
sampling accounts for the high variability of some constituents, like sediments and nutrients, and
changes in the constituents’ concentrations associated with seasonal phenomena. If sampling at
such resolution is not feasible, bi-weekly sampling would still provide reasonably accurate data.
Bi-weekly sampling is suggested as an alternative sampling frequency since it is able to capture
long-term trends for relatively stable constituents, and the water quality status as determined based
on this frequency would generally be same as the one reported with weekly samples. For pristine
or protected environments in which water quality is not at risk, different sampling frequencies can
be considered as alternatives to sampling on the same day every year, for example, random

sampling during a specific time window.
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Supplementary Material

Table S1. Summary of statistical properties for different sampling frequency datasets (Maumee Station)

Daily Weekly Bi-weekly Bi-weekly Monthly Seasonal
(even) (odd)

SS
Mean (mg/L) 72.0 71.8 71.7 71.9 73.7 78.9
SD (mg/L) 100.1 92.4 90.2 94.2 99.0 87.0
Min (mg/L) 0.5 2.1 2.9 2.2 33 54
Max (mg/L) 2325.1 1351.3 1046.4 1112.1 865.4 516.4
Q90 (mg/L) 156.9 158.8 155.8 159.5 157.7 176.3
Q99 (mg/L) 465.0 458.6 449.7 460.0 460.1 411.6
TP
Mean (mg/L) 0.22 0.22 0.22 0.22 0.22 0.24
SD (mg/L) 0.15 0.14 0.14 0.14 0.15 0.14
Min (mg/L) 0.03 0.043 0.05 0.04 0.06 0.06
Max (mg/L) 2.17 1.45 1.23 1.32 1.09 0.80
Q90 (mg/L) 0.40 0.39 0.39 0.39 0.40 0.41
Q99 (mg/L) 0.78 0.78 0.79 0.77 0.75 0.68
SRP
Mean (mg/L) 0.055 0.056 0.056 0.056 0.056 0.059
SD (mg/L) 0.043 0.043 0.043 0.042 0.043 0.043
Min (mg/L) 0.001 0.001 0.001 0.001 0.001 0.001
Max (mg/L) 0.525 0.351 0.334 0.265 0.244 0.202
Q90 (mg/L) 0.110 0.111 0.111 0.111 0.110 0.111
Q99 (mg/L) 0.176 0.170 0.173 0.165 0.163 0.172
NO2;
Mean (mg/L) 4.40 4.43 4.43 4.43 4.45 4.71
SD (mg/L) 3.12 3.13 3.11 3.16 3.12 3.28
Min (mg/L) 0.01 0.01 0.01 0.01 0.012 0.02
Max (mg/L) 26.72 20.6 15.02 20.58 15.66 13.8
Q90 (mg/L) 8.47 8.49 8.41 8.55 8.47 8.72
Q99 (mg/L) 12.87 13.06 13.04 12.97 12.58 12.79
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Table S2. Dataset comparison made with the Kruskal-Wallis test

# of p-value
Type of dataset datasets SS - SRP NOw

Weekly

DOW-+random 10 0.992 0.999 0.331 0.996
Bi-weekly

Eventrandom 10 0.967 0.996 0.860 0.999

Odd+random 10 0.999 0.999 0.647 0.999

Even+Odd+random 20 0.999 1.000 0.887 1.000
Monthly

DOM-+random 35 0.995 0.999 0.784 0.999

SEL+random 16 0.981 0.956 0.869 0.898

DOM+SEL+random 47 0.940 0.983 0.107
Seasonal

SELD+random 14 0.308 0.218 0.835 0.394

TWT+random 16 0.506 0.173 0.938 0.376

SELD+TWT+random 26 0.707 0.386 0.972 0.626
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Table S3. Results from the Mann-Kendall test for suspended solids concentrations during the
observed period (1986-2015) for Maumee Station

Suspended Solids
Dataset
Winter Spring Summer Fall
tau p-value tau p-value tau p-value tau p-value
Daily -0.085 0.521 -0.306 <0.05 -0434 <0.05 -0.237 0.069
Weekly-random 1 -0.002 >0.999 -0.287 <0.05 -0448 <0.05 -0.209 0.108
Weekly-random 2 -0.002 >0.999 -0.287 <0.05 -0448 <0.05 -0.209 0.108
Weekly-random 3 -0.002 >0.999 -0.287 <0.05 -0448 <0.05 -0.209 0.108

Bi-weekly even-random 1 0.053 0.695 -0.389  <0.05 -0.370 <0.05 -0.297  0.022
Bi-weekly even-random2  -0.076 0.568  -0.237 0.069 -0.411 <0.05 -0.338 <0.05
Bi-weekly even-random 3 -0.094 0.475 -0.375 <0.05 -0.343 <0.05 -0.274 0.035
Bi-weekly odd-random 1 0.044 0.748  -0.251  0.054 -0.407 <0.05 -0.186  0.153
Bi-weekly odd-random 2 -0.030 0.830  -0.168 0.199 -0.434 <0.05 -0.149 0.254
Bi-weekly odd-random 3 -0.053 0.695 -0.301 <0.05 -0.379 <0.05 -0.218  0.094

Monthly-random 1 -0.048 0.737 -0.085 0.521 -0.292  <0.05 -0.212  0.104
Monthly-random 2 -0.062 0.643 -0.191 0.143  -0398 <0.05 -0.255 <0.05
Monthly-random 3 0.154 0.239 -0.131 0318 -0324 <0.05 -0.237  0.069
Monthly-random 4 -0.223 0.087 -0.191 0.143  -0389 <0.05 -0.237  0.069
Seasonal random 1 0.043 0.770 -0.163 0212  -0.281 <0.05 -0.197  0.156
Seasonal random 2 -0.182 0.201 -0.057  0.669  -0.108 0412 -0.076  0.574
Seasonal random 3 -0.021 0.890 -0.099 0464 -0.340 <0.05 -0.074 0.594

Seasonal random 4 -0.368 0.008 -0.168 0.199  -0.345 <0.05 -0.164  0.228




Table S4. Results from the Mann-Kendall test for total phosphorus concentrations during the
observed period (1986-2015) for Maumee Station

Total Phosphorus
Dataset
Winter Spring Summer Fall
tau p-value tau p-value tau p-value tau p-value
Daily 0.177 0.175 -0.136 0.301 -0.315 <0.05 -0.186 0.153
Weekly-random 1 0.186 0.153 -0.147 0.261 -0.366 <0.05 -0.113 0.392
Weekly-random 2 0.186 0.153 -0.147 0.261 -0.366 <0.05 -0.113 0.392
Weekly-random 3 0.186 0.153 -0.147 0.261 -0.366 <0.05 -0.113 0.392

Bi-weekly even-random 1 0.164 0.212 -0.242 0.063 -0.260 <0.05 -0.166  0.205
Bi-weekly even-random 2 0.083 0.532 -0.071 0.592 0350 <0.05 -0.175 0.181
Bi-weekly even-random 3 0.090 0.498 -0.113 0392 0269 <0.05 -0.168 0.199
Bi-weekly odd-random 1 0.168 0.199 -0.102 0.443 -0.357 <0.05 -0.126  0.335
Bi-weekly odd-random 2 0.189 0.148 -0.111 0402 0356 <0.05 -0.094 0475
Bi-weekly odd-random 3 0.173 0.187 -0.136  0.301 -0.240  0.066  -0.164  0.212

Monthly-random 1 0.247 0.069 0.044 0.748  -0.236  0.071  -0.065 0.630
Monthly-random 2 0.118 0.372 -0.134 0309 -0.268 <0.05 -0.245 0.063
Monthly-random 3 0.297 <0.05 -0.063 0.642 -0.227 0.083 -0.317 <0.05
Monthly-random 4 0.021 0.886 -0.058 0.668  -0.257 <0.05 -0.137  0.300
Seasonal random 1 0.219 0.117 0.021 0.886  -0.170  0.208 -0.078  0.579
Seasonal random 2 -0.053 0.724 -0.007 0.971 -0.054  0.694 -0.063 0.652
Seasonal_random 3 0.174 0.205 -0.060  0.666  -0.165 0.221  -0.231 0.095

Seasonal_random 4 -0.210 0.137 -0.162  0.224  -0.343 <0.05 -0.100 0475




Table SS. Results from the Mann-Kendall test for soluble reactive phosphorus concentrations
during the observed period (1986-2015) for Maumee Station

Soluble Reactive Phosphorus

Dataset
Winter Spring Summer Fall
tau p-value tau p-value tau p-value  tau p-value
Daily 0.545 <0.05 0.301 <0.05  0.002 1.000  0.154 0.239
Weekly-random 1 0.526 <0.05 0.241 0.064 0.030 0.830  0.159 0.225
Weekly-random 2 0.526 <0.05 0.241 0.064 0.030 0.830  0.159 0.225
Weekly-random 3 0.526 <0.05 0.241 0.064 0.030 0.830  0.159 0.225

Bi-weekly even-random 1 0.529 <0.05 0269 <0.05 0.048 0.721 0.145 0.269
Bi-weekly even-random 2 0.548 <0.05 0408 <0.05 0.030 0.830 0.154 0.239
Bi-weekly even-random 3 0.554 <0.05 0290 <0.05 0.103 0432 0.205 0.116
Bi-weekly odd-random 1 0.531 <0.05 0.191 0.143  -0.057 0.669  0.177 0.175
Bi-weekly odd-random 2 0.485 <0.05 0336 <0.05 0.025 0.858 0.205 0.116
Bi-weekly odd-random 3 0.559 <0.05 0.209 0.108 0.011 0.943  0.237 0.069

Monthly-random 1 0.508 <0.05 0.322 <0.05 0.083 0.559 0.091 0.499
Monthly-random 2 0.529 <0.05 0.023 0.872 0.111 0.409 0.069 0.605
Monthly-random 3 0.566 <0.05 0334 <0.05 0.030 0.830 0.143 0.276
Monthly-random 4 0.442 <0.05 0.118 0.372 0.046 0.734 0.005 0.986
Seasonal random 1 0.595 <0.05 0.355 <0.05 0.080 0.591 0.049 0.738
Seasonal random 2 0.284 0.050 0.049 0.738 0.148 0.268 0.195 0.162
Seasonal random 3 0.430 <0.05 0.157 0.270  -0.007  0.970 0.095 0.504

Seasonal random 4 0.412 <0.05 -0.035 0.807  -0.042 0.767 -0.041 0.791




Table S6. Results from the Mann-Kendall test for nitrate + nitrite concentrations during the
observed period (1986-2015) for Maumee Station

Nitrate + Nitrite
Dataset
Winter Spring Summer Fall
tau p-value tau p-value tau p-value tau p-value
Daily -0.241 0.064 -0.191 0.143  -0278 <0.05 -0.154  0.239
Weekly-random 1 -0.241 0.064 -0.241 0.064 -0306 <0.05 -0.136  0.301
Weekly-random 2 -0.241 0.064 -0.241 0.064 -0306 <0.05 -0.136  0.301
Weekly-random 3 -0.241 0.064 -0.241 0.064 -0306 <0.05 -0.136  0.301

Bi-weekly even-random 1 -0.246 0.059 -0.175 0.181 -0.264 <0.05 -0.163 0.212
Bi-weekly even-random 2 -0.186 0.153 -0.214  0.101 -0.283 <0.05 -0.154  0.239
Bi-weekly even-random 3 -0.223 0.087 -0.186  0.153 -0.274  <0.05 -0.149 0.254
Bi-weekly odd-random 1 -0.241 0.064 -0.172 0.187 -0.283 <0.05 -0.122 0.354
Bi-weekly odd-random 2 -0.223 0.087 -0.186  0.153 -0.186  0.153  -0.067  0.617
Bi-weekly odd-random 3 -0.223 0.087 -0.163 0212 -0.283 <0.05 -0.159 0.225

Monthly-random 1 -0.061 0.664 -0.099 0454 -0.128 0339 -0.067 0.617
Monthly-random 2 -0.191 0.143 -0.195 0.134  -0.193  0.139 -0.149  0.254
Monthly-random 3 -0.297 0.022 -0.103 0432 -0.200 0.125 -0.214  0.101
Monthly-random 4 -0.241 0.064 -0.205 0.116  -0.202 0.129 -0.030  0.830
Seasonal random 1 -0.077 0.588 -0.051 0.708 0.036 0.823  -0.267  0.065
Seasonal random 2 -0.133 0.362 -0.117 0.372  -0.148  0.300 0.066 0.646
Seasonal_random 3 -0.323 0.017 0.054 0.694  -0.124  0.400 -0.016  0.921

Seasonal_random 4 -0.177 0.203 -0.049  0.722 0.004 >0.999 -0.074  0.602
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Table S7. Water Quality Objectives for the Otun River as indicated in the 2015 Water Ordinance Plan

Water
Quality
Parameter

Water Quality Objectives (WQO)

Stretch

1. Source to Barbo River

2. Barbo River to Nuevo

Libar¢ intake

3. Nuevo Libaré intake to

Gaitan Bridge

4. Gaitan Bridge to Belmonte

power house

5. Belmonte power house to

discharge

5 yr

10 yr

20 yr

5 yr

10 yr

20 yr

5yr

10 yr

20 yr

Syr

10 yr

20 yr

Syr

10 yr

20 yr

BOD:s

(mg/L)

COD

(mg/L)

pH

Dissolved
Oxygen
(mg/L)
Conductivity
(uS/cm)

Total
Coliforms
(MPN/ 100
mL)

Fecal
Coliforms
(MPN/ 100
mL)

Total
Suspended
Solids

(mg/L)

Oil and
Grease
(mg/L)

Total
Phosphorus
(mg P-PO4/L)
Total
Nitrogen

(mg N/L)

3

5
6.5-9.0

> 6

700

<20,000

<2,000

Non
present

0.5

3

6
6.5-8.5

>6.5

750

<20,000

<2,000

Non
present

0.5

3

5
6.5-8.5

>6.5

500

<1,000

<200

Non
present

0.5

4

5
6.5-9.0

>6

750

<20,000

<2,000

Non
present

0.5

4

6
6.5-9.0

>6.5

750

<20,000

<2,000

Non
present

0.5

3

5
6.5-9.0

>6.5

500

<5,000

2,000

Non
present

0.5

3

5
6.5-9.0

>6

700

<20,000

<2,000

Non
present

0.5

3

6
6.5-8.5

>6

750

20,000

2,000

Non
present

0.5

3

5
6.5-8.5

>6

500

5,000

2,000

Non
present

0.5

20

60
6.5-9.0

>4.5

750

1X10°

10,000

40

Non
present

0.5

30

60
6.5-9.0

750

1X10°

10,000

40

Non
present

0.5

10

40
6.5-9.0

>6

500

50,000

10,000

30

Non
present

0.5

20

60
6.5-8.5

>5

750

1X10°

10,000

40

Non
present

0.5

30

60
6.5-8.5

>5

750

1X10°

10,000

40

Non
present

0.5

10

40
6.5-8.5

>6

750

50,000

10,000

30

Non
present

0.5
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Table S8. Water Quality Objectives for the Otun River as indicated in the 2015 Water Ordinance

Plan
Water Quality Objectives (WQO)
Water Quality Stretch
Parameter
1. Aguazul Creek source to 2. ACUASEDO intake to discharge
ACUASEQO intake
5 yr 10 yr 20 yr Syr 10 yr 20 yr

BOD:s 3 3 3 20 30 10
(mg/L)
COD 5 6 5 60 60 40
(mg/L)
pH 6.5-9.0 65-85 65-85 65-90 65-85 65-85
Dissolved Oxygen > 6 >6.5 >6.5 >5 >5 >6
(mg/L)
Conductivity 700 750 500 750 750 750
(uS/cm)

Total Coliforms
(MPN/ 100 mL)
Fecal Coliforms
(MPN/ 100 mL)

<20,000 <20,000 <1,000 1X10° 1X 108 50,000

<2,000 <2,000 <200 10,000 10,000 10,000

Total Suspended Solids 6 5 4 40 40 Non
(mg/L) reported
Oil and Grease Non Non Non Non Non Non
(mg/L) present present present present present present
Total Phosphorus 2 2 2 2 2 2
(mg P-PO4/L)

Total Nitrogen 0.5 0.5 0.5 0.5 0.5 0.5
(mg N/L)
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