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Abstract Water quality sampling is a key element in tracking water quality monitoring objectives. 

However, frequencies adapted by different agencies might not be sufficient to provide an accurate 

indication of water quality status. In this study, data from low and high-resolution water quality 

datasets were analyzed to determine the extent to which monitoring objectives could be achieved 

with different sampling frequencies, with a view to providing recommendations and best practices 

for water quality monitoring frequency in places with limited resources with which to implement 

a high-frequency monitoring plan. Water quality data from two watersheds (Maumee River and 

Raisin River) located in the Western Lake Erie Basin (WLEB) were used since these watersheds 

have consistent records over substantial periods of time, and the water quality data available have 

a high resolution (at least daily). The water quality constituents analyzed included suspended solids 

(SS), total phosphorus (TP), soluble reactive phosphorus (SRP), and nitrate+nitrite (NO2+3). 

Sources of pollutants for watersheds located in the WLEB include contributions from point sources 

like discharges from sewage treatment plants and non-point sources such as agricultural and urban 

storm runoff. Weekly, bi-weekly, monthly and seasonal datasets were created from the original 

datasets, following different sampling rules based on the day of the week, week of the month, and 

month of the year. The resulting datasets were then compared to the original dataset to determine 

how the sampling frequency would affect the results obtained in a water quality assessment when 

different monitoring objectives are considered. Results indicated that constituents easily 

transported by water (such as sediments and nutrients) require more than 50 samples/year to 

provide a small error (<10%) with a confidence interval of 95%. Monthly and seasonal sampling 

were found appropriate to report a stream’s prevailing water quality status and statistical 
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properties. However, these resolutions might not be sufficient to capture long-term trends, in which 

case bi-weekly samples would be preferable. Limitations of low-resolution sampling frequency 

could be overcome by including rainfall events and random sampling during specific time 

windows as part of the monitoring plan. 
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Introduction  

Water quality monitoring protocols have been implemented as a way to understand water 

quality processes and to obtain water quality variables for planning, designing, and operating water 

resources and wastewater treatment systems (Harmancioǧlu, 1999). Whitfield (1988) indicated 

that some of the reasons for conducting water quality monitoring are: 1) assessment of trends in 

variables of concern, 2) compliance with standards, 3) estimation of mass transport, 4) assessment 

of environmental impact, and 5) general surveillance. To incorporate a temporal basis for water 

quality monitoring, Sherwani & Moreau (1975) defined short-term, intermediate-term, and long-

term goals. The primary purposes for short-term goals were to: monitor and investigate complaints; 

prevent water pollution emergencies (e.g., fish kills); set, amend, or repeal water quality standards; 

and, develop effluent standards. Intermediate and long-term goals focused on: evaluating the 

effectiveness of activities aimed to control water pollution; determining the nature and extent of 

pollution in areas of interest; long-range program and policy planning; evaluation of trends; and, 

prediction of water quality status.  

Depending on monitoring goals, different sampling frequencies have been adopted by 

different entities. In the National Water Quality Assessment (NWQA) program developed by the 

U.S. Geological Survey (USGS), for example, the minimum and most common sampling 

frequency for basic fixed-sites is monthly for two years, while high-frequency sampling on 

intensive fixed-sites is typically weekly (or bi-weekly for large basins) and lasts between 3 to 9 

months (Gilliom et al., 1995). In 2013, the U.S. Geological Survey National Water Quality 

Network (NWQN) was formed with the merger of the National Stream Quality Accounting 

Network (NASQAN) and the NWQA. Under this new program, the frequency of sample collection 

is determined based on historically observed variability in water concentrations and pollutant 

loads. Samples are collected through a seasonal weighted, fixed-interval regime, and the number 

of samples ranges between 12 to 18 samples collected in a year (Lee et al., 2017). In 2018, the 

USGS started a pilot of the Next Generation Water Observing System (NGWOS) in the Delaware 

River Basin. This program involves continuous monitoring of temperature and specific 

conductance is being conducted in selected streamflow stations, as well as the use of remote 

sensing technologies to monitor suspended-sediment concentration, channel erosion, and harmful 

algal blooms (USGS, 2021). The U.S. Environmental Protection Agency (USEPA), under the 

National Rivers and Streams Assessment (NRSA) program, collects data in a single site visit in 
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the summer for two years to provide a national snapshot of a stream’s water quality over time as 

captured during the sampling period. The NRSA is conducted every five years, with the last 

assessment completed in 2018-2019 (U.S. EPA, 2020).  

The European Union’s Water Framework Directive recommended monthly sampling should 

be completed for priority substances and every three months for other pollutants. However, the 

Directive allows that Member States define their own monitoring frequency based on the 

conditions and variability of their water bodies. The only requirement that Member States have to 

meet for selecting their own frequency is that this frequency provides a reliable assessment of the 

status of all water bodies (European Commission & Directorate-General for the Environment, 

2003). In Australia and New Zealand, the sampling frequency depends on the water monitoring 

objectives and the jurisdiction where the study takes place. The Queensland’s Monitoring and 

Sampling Manual indicates that monthly sampling is usually adequate for baseflow (dry water 

concentration) water quality sampling; however, the frequency can be adjusted based on the 

monitoring goals (DES, 2018).       

Table 1 shows a summary of sampling frequencies used for different water quality 

monitoring objectives. Regulatory agencies and frameworks suggest sampling frequencies ranging 

from monthly to annually. However, recent research indicates that some of the frequencies 

indicated by regulatory agencies might not be sufficient to accomplish specific water quality 

monitoring objectives (Bowes et al., 2009; Halliday et al., 2015; Ross et al., 2015; Vilmin et al., 

2018). Vilmin et al. (2018) concluded that it is not possible to specify one single optimal sampling 

frequency under the E.U. Water Directive Framework (WFD); instead, the optimal sampling 

should be defined for each variable and location. The authors disclosed that major urban effluents 

increase the variability in the receiving environment; therefore, weekly sampling may be needed 

to capture this variability. Babitsch et al. (2021), after comparing monthly samples with 

subsamples of 10, 8, 6, 4, 2, and 1 measurements, concluded that low sampling frequency reduces 

the reliability of temporally variable water quality data. Kotamäki et al. (2019) identified that more 

sampling is required beyond the recommendation provided by the WFD, especially for rivers with 

a class status of “High,” “Bad,” or “Poor. The researchers also indicated that the frequency and 

coverage of monitoring designs should be systematically and iteratively evaluated in relation to 

monitoring objectives for the water body.  



5 

 

According to the United Nations Environment Program (UNEP, 2016), sampling 

frequencies in the U.S. can vary from hourly to annually depending on the purpose of sampling. 

Conversely, the average monitoring frequency for Latin America was four samples per year from 

1990 to 2010. The Colombian Andean Region follows a trend similar to that documented for the 

Latin American region. Water quality sampling is conducted three to four times a year, generally 

considering the annual wet and dry periods. Recent studies completed in Colombia indicated that 

monitoring with a higher temporal and spatial resolution is desirable (Díaz-Casallas et al., 2019; 

Holguin-Gonzalez et al., 2013; Rodríguez et al., 2013). These authors stated that there are periods 

with no information and the ecological water quality assessment may be limited.  

Sampling frequency and recurrence are widely discussed in handbooks, official guidelines, 

and scientific papers, especially when optimization of water quality monitoring programs is 

discussed (Behmel et al. 2016). Several issues emerge from work and discussions on sampling 

frequencies: 1) Even though sampling frequencies are often based on water quality monitoring 

objectives, there does not seem to be any consensus as to the frequency to be adopted for any one 

objective. For example, (Naddeo et al., 2013) concluded that the assessment of the water 

environmental quality did not change with seasonal sampling in the Sele River Basin. In contrast, 

(Halliday et al., 2015) stated that sampling frequency and collection time had a significant impact 

on water quality status under the WFD. In the U.S., the EPA and the USGS have established 

monitoring programs with seasonal or annual sampling with the objective of assessing the streams’ 

water quality status; however, at the state level, environmental agencies may set monthly sampling 

as the sampling frequency to accomplish the same monitoring objective (Florida Department of 

Environmental Protection, 2020; Indiana Department of Environmental Management (IDEM), 

2017; Pennsylvania Department of Environmental Protection, 2019); 2) Water quality monitoring 

programs are better defined and established in North America and Europe. For the most part, the 

different planning and decision-making agencies can access relevant, accurate, and up-to-date 

information about water quality status. In many other parts of the world, there is less water quality 

information, and water quality monitoring may be less structured. These are also the regions in 

which resource constraints greatly impact water quality monitoring, hence the need for more 

definitive information on sampling frequencies; and, 3) The value of high-frequency sampling 

over lower-frequency sampling needs to be established (Jiang et al., 2020). Furthermore, there is 
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the need to identify and eliminate redundancy (Guerreiro et al., 2020; Karamouz et al., 2009), this 

being the point beyond which higher frequency sampling does not result in a gain in information.  

The purpose of this study is to provide recommendations and best practices for water quality 

monitoring frequency, particularly for places with limited resources to implement a high-

frequency monitoring plan. Specifically, to: 1) Compare extent and applicability of water quality 

information obtained based on different sampling frequencies; 2) Assess the performance of the 

frequencies based on different monitoring objectives using long-term datasets with a high 

resolution; 3) Develop recommendations for water quality frequencies considering potential 

regional constraints.  

Materials and Methods 

Water quality data from the Western Lake Erie Basin (WLEB, Fig. 1) were used. This basin 

was selected because a substantial amount of data was readily available, with water quality 

parameters sampled at high resolutions, in some cases up to four times a day. An exploratory 

analysis of the data from the Maumee watershed led to the following critical question: how does 

monitoring frequency affect the accuracy of information obtained considering different objectives? 

From this question, five sub-questions were formulated to narrow the scope of the main question. 

The sub-questions are: 

a) Is there an ideal sampling frequency to identify changes in water quality parameters? 

b) What would be the adequate water quality sampling frequency to assess long-term 

trends? 

c) Can monthly and seasonal sampling be improved in a way that can provide more 

accurate and reliable results for long-term trend monitoring? 

d) How does the interpretation of water quality status change if sampling is conducted at 

different times during the year? 

e) What are the impacts of different sampling frequencies on water quality status as 

reported using Water Quality Index (WQI)? 

To provide answers to these questions, a combination of different analysis were completed, 

including the estimation of the number of samples required in a year using the water quality means 

methodology, a trend analysis using a Mann-Kendall trend test, and a comparison of the Water 

Quality Sub-Indexes proposed by Mijares et al. (2019). Data pre-processing and statistical analysis  
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Table 1 Summary of sampling frequencies based on different monitoring objectives 

Agency/Reference 
Purpose of 

Monitoring 
Frequency Notes 

U.S. Environmental Protection 

Agency (EPA) National Rivers and 

Streams Assessment (NRSA) (U.S. 

EPA, 2020) 

Establish a baseline of the 

condition of wadeable 

streams and extent of 

major stressors 

Single sample every 5 years 
1853 sites sampled. Site selection based on a 

stratified random sampling design 

Water Framework Directive – 

European Commission (EC) 

(2000/60/E.C.) (EC, 2003)  

Assessment of long-term 

trends. 

Establish the status of 

those bodies identified as 

being at risk of failing to 

meet their environmental 

objectives 

Monthly for priority 

substances and every three months 

for other pollutants 

45 pollutants are considered priority substances, 

including heavy metals, PAHs, and POPs. More 

frequent sampling may be necessary to detect 

long-term trends 

U.S. Geological Services (USGS) 

National Water-Quality Assessment 

(NAWQA) Project (Gilliom et al., 

1995) 

Assessment of current 

status and long-term 

trends 

Streams: bi-monthly and 8-18 

seasonally weighted samples 

Agricultural and urban sites: monthly 

and 12 seasonally weighted samples 

110 sites (streams and rivers) with consistent 

streamflow and water-quality information  

 

Indiana Department of 

Environmental Management (IDEM) 

(IDEM, 2017) 

Assessment of current 

status and long-term 

trends 

Fixed stations: monthly 

Probabilistic selected sites: 3 

seasonal samples (May-Oct) 

Targeted sites: At least 3 samples per 

year 

165 fixed sites, 38-50 probabilistic selected 

sites. Targeted locations are selected based on a 

variety of factors depending on monitoring 

objectives, including known impairments, 

permitted dischargers, land use, etc. Sites 

change annually 

Florida Department of 

Environmental Protection (FDEP) 

(FDEP, 2020) 

Assessment of current 

status and long-term 

trends 

Trend monitoring network: 

monthly  

Status monitoring network: 1 sample 

- 78 fixed stations for trend monitoring  

- 240 sites are sampled for status monitoring 

(canals: 60, streams: 90, rivers: 90) Sampling 

occurred in Jan-Feb (canals), Apr-May 

(rivers), Jul-Sep (streams)  

Pennsylvania Department of 

Environmental Protection (PADEP) 

(PADEP, 2019) 

Assessment of current 

status and long-term 

trends 

Standard stations: monthly 

(physical/chemical) and annually 

(biological) 

CIM measure water temperature, specific 

conductance, pH, and dissolved oxygen and are 

completed for one year or less to capture time 

periods of specific interest. Several CIM 



8 

 

Agency/Reference 
Purpose of 

Monitoring 
Frequency Notes 

Assessment of effluent 

limitations for the 

National Pollutant 

Discharge Elimination 

System (NPDES) permits 

Chesapeake Bay stations: monthly 

(physical/chemical), every other year 

(biological), 8 times/year during 

storm events 

 Reference stations: monthly 

(physical/chemical) and annually 

(biological)  

Continuous Instream Monitoring 

(CIM): every 15 min 

deployments were maintained for multiple years 

to understand year-to-year differences and 

observe trends  

New York City Department of 

Environmental Protection 

(NYCDEP) (NYCDEP, 2019) 

Assessment of current 

status and long-term 

trends 

Fixed frequency: monthly 

Automated stream monitoring 

(ASM): every 15min 

100 fixed frequency sampling sites and 6 ASM 

stations. ASM stations monitoring for water 

temperature, specific conductivity, and turbidity   

State of Queensland Department of 

Natural Resources, Mines, and 

Energy (DES, 2018) 

Assessment of condition 

and trend of Queensland’s 

freshwater aquatic 

ecosystem health 

Manual samples were collected 1-4 

times a year. 

Continuous time-series 

measurements of temperature and 

electrical conductivity at selected 

stations 

161 stations (68% of all stations) have the 

equipment to continuously measure temperature 

and electrical conductivity. Manual water 

quality sampling is conducted in 229 stations  

IIHR Hydroscience & Engineering 

(Weber et al., 2016)  
Research Samples were taken every 15 min 

28 sites in Iowa monitoring for nitrate and 

nitrite, turbidity, temperature, specific 

conductance, pH, and dissolved oxygen. 

Skeffington et al. (2015) Research 
Hourly (3 sites) and 2-4 times/day (1 

site) 

4 sites were assessed in the U.K. Parameters 

analyzed included pH, temperature, dissolved 

oxygen, and phosphorus (T.P., SRP, ortho-

phosphorus) 

The Heidelberg Tributary Loading 

Program (HTLP) (Roerdink, 2017)  
Research 3 times/day (04:00, 12:00, 20:00) 

18 sites in Ohio and Michigan, sampling for 

nutrients (especially phosphorus), sediments, 

and pesticides  
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Fig. 1 Western Lake Erie Basin (WLEB) with the location of the water quality stations used in this 

study   

were completed using R 4.0.0. Missing data were completed using embedded functions in R.  

Data collection and preparation 

Data from four water quality stations located in the Maumee (Maumee, Blanchard, and 

Tiffin stations) and Raisin (Raisin) Rivers watersheds (Fig. 1) were obtained from the Heidelberg’s 

University’s National Center for Water Quality Research (NCWRQ), part of the Heidelberg 

Tributary Loading Program (HTLP). Data for suspended solids (SS), total phosphorus (TP), 

soluble reactive phosphorus (SRP), and nitrates+nitrites (NO2+3) were obtained for this study. 

Since water quality samples had been taken at varying intervals throughout the day, flow-weighted 

average daily values were computed and used for this analysis. These flow-weighted daily values 

constituted the baseline datasets for this study.  
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Data resampling 

Similar to the method used by Tanos et al. (2015), a systematic approach was used to 

extract data from the original datasets and create datasets for use with the analysis. In particular, 

for: 1) weekly values, datasets were generated constituting samples taken on each day of the week 

(DOW) every week. This generated seven datasets with 52-54 samples/year/set; 2) bi-weekly 

values, datasets were generated constituting samples taken on each DOW every other week on 

even weeks and similarly for odd weeks. This generated 14 datasets with 26-27 samples/year/set; 

3) monthly values, datasets were generated constituting samples taken on each DOW every month 

generating 31 datasets with 12 samples/year/set; and, 4) seasonal samples, datasets generated 

constituted samples taken on days 2, 6, 7, 10, 15, 16, 20, 21, 22, or 24 for March, June, September, 

and December; and a dataset for samples taken on Tuesday, Wednesday, or Thursday for week 1-

4 generating 22 datasets with 4 samples/year/set. Four additional datasets were created by selecting 

random samples. These random datasets were created by selecting one sample from Tuesday, 

Wednesday, or Thursday from a randomly selected week 1-4, by setting various seed numbers and 

using R’s replicate function.  

Station Datasets 

For the Maumee and Raisin stations, data were available at least daily from January 1986 to 

December 2015, and a total of 103 datasets were created for these stations. For the Tiffin and 

Blanchard stations, the data were primarily reported weekly from July 2007 to December 2015, 

and a total of 96 datasets were created. After creating the datasets, we conducted a comparison of 

statistical properties and essential characteristics among datasets.  

Since a comprehensive comparison among all datasets within each category would be 

burdensome and might not necessarily provide additional information to address the study’s 

objective, we analyzed datasets at each sampling frequency to see if there were appreciable 

differences among the datasets. Additionally, we conducted a Kruskal-Wallis test (Table S2) to 

check if the datasets for each sampling frequency had an identical distribution. Based on this 

analysis, subsets were extracted at random from the datasets at each sampling frequency and used 

for further analysis. To check if the selected datasets were from the same distribution as the original 

dataset, a Kolmogorov-Smirnov test was completed. The statistical properties evaluated in this 

analysis were mean, standard deviation, standard error, median, minimum, maximum, 90, 95, and 

99 quantiles, skewness, and kurtosis. The essential characteristics were: number of samples over 
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90, 95, and 99 percentile; number of samples over thresholds; number of samples over the 

threshold in each season, and water quality sub-indices. This last characteristic was only estimated 

for monthly and seasonal datasets. A summary of the most relevant statistical properties is included 

in Table 2. 

Ideal Sampling Frequency 

As part of formulating a water quality monitoring program, agencies face the question of 

defining the minimum number of samples required to meet the water quality monitoring 

objectives. One of the most commonly used methods to estimate the number of samples is based 

on water quality means. This method has the purpose of defining a rational sampling frequency 

criterion based on the relationship between sampling frequency and the magnitude of half 

confidence interval of the annual mean variable concentration (Sanders & Adrian, 1978). 
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Table 2 Summary statistics for daily, monthly, and seasonal sampling frequencies (mg/L)  

Suspended Solids 

 Maumee Raisin Tiffin Blanchard 

 Daily Monthly Seasonal Daily Monthly Seasonal Daily* Monthly Seasonal Daily* Monthly Seasonal 

Mean 72.00 72.63 71.57 48.71 50.95 50.73 54.43 63.24 36.68 35.85 34.38 24.71 

SD 100.08 94.02 90.56 93.05 138.73 87.51 70.15 94.55 25.89 66.58 60.61 36.30 

Total Phosphorus 

Mean 0.224 0.228 0.230 0.120 0.116 0.123 0.179 0.186 0.144 0.280 0.291 0.275 

SD 0.146 0.141 0.144 0.116 0.131 0.114 0.144 0.158 0.101 0.155 0.144 0.134 

Soluble Reactive Phosphorus 

Mean 0.0548 0.0582 0.0576 0.0241 0.0263 0.0257 0.0542 0.0554 0.0497 0.1548 0.1706 0.1678 

SD 0.0432 0.0436 0.0440 0.0248 0.0229 0.0227 0.0372 0.0346 0.0361 0.1032 0.1220 0.1155 

Nitrate+nitrite 

Mean 4.40 4.53 4.69 2.90 2.93 2.69 3.16 2.91 2.79 5.70 6.30 6.01 

SD 3.121 3.073 3.089 2.304 2.324 2.121 2.317 1.599 1.566 2.531 3.088 2.679 
*Sampling frequency for Tiffin and Blanchard  varies from daily to weekly sampling
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These researchers used streamflow data instead of water quality parameters since high-

frequency sample were not available. Additionally, using streamflow data is a logical assumption 

since some water quality constituents (sediments, major ions, and salts) are highly correlated to 

the river flow. Our study compares the number of samples required based on the streamflow, SS, 

TP, and SRP data obtained for the Maumee and Raisin Rivers. NO2+3 data were not included 

because it does not meet the condition of having an approximated normal distribution. This method 

established that the half-expected confidence interval of the mean (R) is a function of the standard 

deviation of the observed residuals (S), the constant from the Students’ t-distribution (t), and the 

number of samples (n). The equation used to estimate the values of R is:  

𝑅 =
𝑡𝛼/2𝑆

√𝑛
     (1) 

 Before applying the aforementioned method, the data must be modeled to isolate random, 

independent, and identically distributed residuals. To achieve this purpose, the methodology 

indicated by Sanders and Adrian (1978) was used, where the long-term trend component is 

removed from the time series. Then the time series is converted to natural logs, and a first-order 

autoregressive moving average model is created. Finally, the standard deviation is calculated and 

used in equation 1. 

Sampling Frequency for Long-Term Trend Monitoring Goals 

 Water quality monitoring objectives often include the identification of long-term trends. 

Therefore, a trend analysis was conducted to identify if there was a difference in the results 

obtained from this analysis for the different sampling frequencies used in this study. Since daily, 

weekly, bi-weekly, and monthly datasets may be serial correlated, the seasons’ means were used 

in the trend analysis. Once the means were estimated, we conducted a Mann-Kendall test to assess 

if there were trends in the water quality parameters during the observed period. The analysis was 

performed for each of the sampled seasons (Winter, Spring, Summer, and Fall). 

Improving Monthly and Seasonal Sampling for Long-Term Trends 

Since monthly and seasonal sampling has been reported as potentially inadequate to 

capture long term trends (László et al., 2007; Vilmin et al., 2018), the option to include samples 

corresponding to rainfall events was considered as an alternative to improve the accuracy and 

reliability of the results obtained from trend analysis. Therefore, an initial comparison between 
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wet days and dry days was completed to check if there was a significant difference between both 

types of days. For the purpose of this study, a wet day was defined as a day that has a rainfall equal 

to or greater than 0.1 mm. The metric used for this analysis was the Water Quality Index as defined 

by Mijares et al. (2019), computed for each of the sampled seasons. Water Quality Indexes (WQIs) 

are simple methods by which to summarize the water quality status of a water body by grouping 

values of different water quality parameters into a single value. One of the issues associated with 

WQI is that there are different WQI models currently in use (Gitau et al., 2016).  

Water quality sub-indexes (WQSI) are transformations that allow values of specific 

constituents to be expressed on a common scale (U.S. EPA, 2009). As defined by Mijares et al. 

(2019), the calculation of these sub-indexes is based on the respective constituent’s threshold 

value. The estimated sub-index numerical value can range from 0-100; sub-index values below 40 

indicate that the water quality falls below the constituent threshold. The ratings defined by Mijares 

et al. (2019) are as follows: 90-100: Pristine; 70-89: Good; 50-69: Fair; 40-49: At Risk; 30-39: 

Poor; 0-29: Unsuitable for all uses. For seasonal and annual computations, we used flow-adjusted 

concentrations to estimate the sub-indexes. Once the comparison was completed, monthly and 

seasonal datasets were complemented with additional observations corresponding to storm events. 

Storm samples were defined using streamflow data from each of the stations. A storm sample 

constituted data points where the daily streamflow exceeded the annual 90th percentile of the daily 

streamflow distribution.   

Different combinations including storm samples (monthly+storm samples and 

seasonal+storm samples) were used to create additional datasets. The initial combination included 

monthly or seasonal samples plus eight storm samples, which follows the approach used by Zhang 

and Hirsch (2019). The remaining datasets included the monthly or seasonal samples plus 12, 16, 

20, and all storm samples.   

 Variation in water quality status depending on the day of sampling 

 When assessing water quality status, a common question that arises is if the status varies 

depending on the day when sampling is conducted. To provide an answer to this question, a 

comparison between water quality sub-indexes was completed. The initial comparison was 

conducted for summer since a higher concentration of sediments and nutrients is expected during 

this season due to spring and summer showers and farming activities conducted during the summer 
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months. The dates selected for the analysis were July 1st, July 30th, August 29th, and September 

28th. This analysis was further expanded for the other seasons selecting four days, including the 

1st, 30th, 60th, and 90th days of the season.  

Analysis of Water Quality Status Reported as Water Quality Indexes (WQI) for different 

frequencies 

  Water quality sub-indexes were estimated for weekly, biweekly, monthly, and seasonal 

frequencies using the Mijares et al. (2019) method.  Statistical properties for each frequency were 

then estimated and compared to identify if there was a significant difference in the water quality 

status as determined.  

Results and Discussion 

Data validation and statistical properties 

 Results from the Kolmogorov-Smirnov test validated that the datasets selected came from 

the same population (p>0.05). The statistical properties for the different sampling frequencies 

(Table S1) did not show a significant difference between the means except for seasonal samples, 

ranging from 7 to 15%. SS and TP were the constituents with a larger difference in the 

concentrations at the 99 percentile between daily and seasonal sampling.  

Fig. 2 shows the distribution of water quality parameters for various sampling frequencies. 

Medians and interquartile range values (IQR) for all analyzed frequencies were similar with 

noticeable differences being primarily in the number of outliers. This was confirmed in the 

suspended solids time-series (Fig. 3) plot, where we observed that a reduction in the number of 

samples taken, from weekly to seasonal, represented a reduction in the peak concentration events 

observed. Moreover, the distributions varied among the different analyzed sampling frequencies. 

None of the analyzed frequencies was close in shape or magnitude to the daily distribution. The 

weekly, bi-weekly, monthly, and seasonal distributions were more evenly distributed, with shorter 

peaks, compared to the daily frequency. 

These results were consistent with the findings reported by Ross et al. (2015). The reduced 

number of high concentration events captured in monthly and seasonal sampling may be 

troublesome since some of these events could exceed the allowable acute or chronic contaminant 

levels. 
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Fig. 2 Summary of the distribution for analyzed constituents for each sampling frequency in selected stations in the Maumee and Raisin 

watersheds.  
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Fig. 3 Suspended solids time series plots comparing daily frequency sampling (grey line) with 

generated datasets simulating samples collected on a weekly (a), bi-weekly (b), monthly (c), and 

seasonal (d) basis. 

Estimation of the number of samples 

The datasets’ resolution was sufficient to allow the use of the water quality means method 

to estimate the number of samples required for the sampled constituents at the selected stations in 

the Maumee and Raisin Rivers. Fig. 4 shows the magnitude of the confidence interval’s half-width 

of the means’ random component (R) for streamflow, SS, TP, and SRP as a function of the number 

of samples. The value of R rapidly decreases as the number of samples increases, indicating that a 

high number of samples (>100) reduces the values of R to 0.25 or less. Streamflow, SS, and SRP 

require more samples to reach an error equal to or below 10% (R=10), while the same error can be 

reached for TP with 50-100 samples, depending on the station. Even though mixed results have 

been found regarding the relationship between streamflow and water quality trends, Murphy and 

Sprague (2019) indicated that streamflow regimes more commonly influenced trends in major 

ions, salinity, and sediments, which coincide with the behavior observed between streamflow, SS, 

and SRP. In contrast, TP seemed to be independent of streamflow, which conforms with findings 

reported in the literature (Murphy & Sprague, 2019). Table 3 shows the values of R at the Maumee 

Station for the different sampling frequencies analyzed in this study. In relation to seasonal 

samples, it was observable that a 56% reduction in the value of R occurred when seasonal and 
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monthly sampling were compared, and an additional 15% reduction was observed when values 

were compared with those from bi-weekly sampling. Additionally, the results suggest SRP is the 

constituent that should be sampled more frequently since the rate at which R decreases is slower 

compared to that for the other two constituents analyzed. A bi-weekly sampling frequency (26 

samples) would give an R value of 0.411, which can be achieved with 7 and 11 samples for TP 

and SS, respectively.  

 

Table 3 Summary of the magnitude of the confidence interval’s half-width of the means’ 

random component (R) for different sampling frequencies (Maumee Station) 

Parameter 

Frequency 

Daily Weekly Biweekly Monthly Seasonal 

n R n R n R n R n R 

Streamflow 365 0.115 52 0.311 26 0.448 12 0.693 4 1.573 

Suspended Solids 365 0.083 52 0.223 26 0.321 12 0.497 4 1.128 

Total Phosphorus 365 0.045 52 0.121 26 0.175 12 0.271 4 0.614 

Soluble Reactive 

Phosphorus 
365 0.106 52 0.285 26 0.411 12 0.636 4 1.442 

* The table shows the values of R as a function of the number of samples. A low value of R (<0.10) indicates that the 

water quality data’s variance is small, providing higher confidence that the data is a good representation of the streams’ 

water quality. A large value of R (>0.50) indicates high variability in water quality data, which reduces the confidence 

that the data is representative for the streams’ water quality. 

 

Long-Term Trend Analysis 

 Fig. 5 shows the results for the trend analysis for suspended solids during winter, where 

the slope for the decreasing and increasing trend for seasonal sampling was greater compared to 

the other frequencies. Table S3 to S6 show a summary of the results obtained from the Mann-

Kendall trend analysis. Overall, the tau and p-values obtained were similar for the daily, weekly, 

and bi-weekly samples. However, the results for monthly and seasonal sampling varied among 

them, making them less reliable as a tool for identifying trends. This finding is consistent with 

what was reported by Raimonet et al. (2015), who indicated that monthly sampling is not sufficient 

to assess water quality for highly variable constituents like ammonia and nitrite. The 

aforementioned authors also concluded that other constituents’ fluxes like for nitrate could be 

captured with monthly sampling. This finding could not be verified for the Maumee River since 

nitrogen concentrations were reported as nitrate+nitrite (NO2+3). However, the nitrite variability  
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Fig. 4 Magnitude of the confidence interval’s half-width of the means’ random component (R) for streamflow, suspended solids (SS), 

total phosphorus (TP), and soluble reactive phosphorus (SRP) versus the number of samples per year for four water quality stations 

located in the Maumee and Raisin watersheds. The red line represents the threshold to achieve a 10% error.   
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Fig. 5 Trend results for different sampling frequencies (daily, weekly, bi-weekly, monthly, and 

seasonal) for Maumee Station. 

tended to be more predominant since the trend analysis results for nitrate+nitrite had the highest 

variability for the constituents sampled for the Maumee River.  

Monthly and Seasonal Sampling for Long-Term Trends 

Fig. 6 and Fig. 7 show a comparison for water quality parameters among monthly, seasonal, 

and monthly+storm events sampling. The monthly+storm events sampling captured more high 

concentration events for all constituents except for NO2+3 (Fig. 6). The inability to capture high 

concentration events for NO2+3 may be attributable to the dilution of nitrate during the early stages 

of the storm events (Blaen et al., 2017; Outram et al., 2014). Fig. 7 shows the distributions for the 

different sampling schemes and it was evident that the monthly+storm events sampling median 

were higher by between 17% to over 100% compared to those obtained from monthly and seasonal 

sampling. Discrepancies were highest for suspended solids (102% - 114%), followed by TP (50% 

- 58%), SRP (22% - 29%), and NO2+3 (17%) for the Maumee station. These findings are consistent 

with the results reported by (Chanat et al., 2016), who indicated that phosphorus and suspended 

solids had the more pronounced relative difference in medians when monthly+storm event samples  
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Fig. 6 Variation in concentrations in 2013 for the different constituents sampled at the Maumee 

station. The solid gray line corresponds to daily concentrations   

 

Fig. 7 Comparison of the distribution for different sampling frequencies (daily, monthly, seasonal, 

and monthly+storm datasets) for the Maumee station. 
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were compared to a baseline dataset made of all observations. The discrepancies in the median for 

the analyzed sampling frequencies might be attributable to the concentration-discharge relation for 

the analyzed constituents. SS, TP, and SRP are more easily mobilized through sub-surface than 

NO2+3; therefore, any storm event generates a spike in their concentrations.  

Regarding the identification of long-term trends, the monthly+storm event datasets did not 

seem to improve the results previously obtained with monthly and seasonal sampling datasets.  

Based on the results, the slope direction and relationship strength differed among sampling 

frequencies for the four parameters analyzed. The daily dataset exhibited a negative slope for SS, 

TP, and NO2+3, while the monthly+storm event sample dataset had a positive slope. For SRP, both 

datasets had a positive slope, but the relationship strength for the daily set was more than twice the 

corresponding relationship strength for the monthly+storm event dataset. This difference could be 

associated with the hysteresis of SRP, which makes concentrations increase or decrease lag behind 

an increase or decrease in streamflow (Moosmann et al., 2005). Therefore, trends would be more 

sensitive to daily variations than storm events. These findings differed from what was reported by 

Chanat et al. (2016), who indicated that there was little evidence that the trend found using a design 

guideline subsample (monthly+storm event) would lead to different findings regarding trend 

direction or shape when compared to baseline data (daily).   

Analysis of Water Quality Status Reported as Water Quality Indexes (WQI) for different 

frequencies 

  Table 4 shows the mean, minimum, and maximum values for WQSI by season. The results 

showed that WQSI values tended to increase when sampling frequency decreased. For SS, WQSIs 

ranged from 18 to 78 (unsuitable to good) for weekly sampling, 11 to 83 (unsuitable to good) for 

bi-weekly sampling, 12 to 88 (unsuitable to good) for monthly sampling, and 29 to 86 (poor to 

good) for seasonal sampling. For SRP, WQSI values tended to increase only for maximum values 

up to monthly sampling. Seasonal samples for spring and summer (SRP) had a higher maximum 

WQSI compared to weekly samples but lower than bi-weekly and monthly samples. The mean 

WQSI values changed slightly within seasons, ranging from 35 to 38, which did not affect the 

overall classification of the stream. In contrast, WQSIs for TP ranged from 16 to 59 for weekly 

sampling, 10 to 59 for bi-weekly sampling, 7 to 80 for monthly sampling, and 23 to 83 for seasonal 

sampling. In this case, the differences were substantial and changed the stream water quality 

classification from unsuitable to fair (weekly and bi-weekly) to unsuitable to good for monthly 
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and seasonal sampling. For NO2+3 values ranged from 33 to 85 (poor to good) for weekly sampling, 

33 to 86 (poor to good) for bi-weekly sampling, 26 to 89 (unsuitable to good) for monthly 

sampling, and 26 to 89 (unsuitable to good) for seasonal sampling. Additionally, the highest WQSI 

values occurred during the Summer, when the stream reached the “Good” category for this 

constituent.  

 Based on the results obtained, variation in WQSIs tended to increase as the sampling 

frequency decreased from weekly to seasonal sampling. This variation was considered acceptable 

at a weekly sampling frequency because the WQSIs generally fluctuated within two adjacent 

categories. However, the variation would be critical where the WQSIs spanned the range from 

“unsuitable” to “good,”—as was the case with some seasonal samples—, because this could lead 

to a misleading assessment of the streams’ water quality status. Thus, if WQSIs are estimated using 

low-resolution water quality data (monthly or seasonal sampling), the results obtained should be 

used as a reference value, rather than a tool to assess the effectiveness of a water quality 

management strategy or to make decisions about the stream.              

Variation in water quality status depending on the day of sampling 

 Fig. 8 shows the seasonal distribution of water quality sub-index values for SS in the 

Maumee River. The days in the Fair and At Risk categories occurred primarily between in the 

Spring and Summer, reaching the lowest median value on July 1st. These are the seasons in which 

there is higher precipitation and more agricultural activities in the region. Results for the remaining 

constituents sampled at the Maumee River station are presented as supplementary material (Fig. 

S1-Fig. S3). Changes in the water quality status for TP and SRP, did not vary during the selected 

dates and the median subindexes values always remained below the target threshold. This is 

consistent with work by Mijares (2017), which did not show significant changes in these values 

regardless of the season. High phosphorus concentrations are a persistent problem in the Maumee 

River Watershed. SRP concentrations have increased since the mid-1990s due to an increase in 

annual discharges into the river, perpetuating the prevalence of harmful algal blooms in Lake Erie. 

Hence results are consistent with what has been reported for the watershed. For NO2+3, the median 

subindex values mainly fell in the Fair category, with five dates falling in the Good category in 

Summer (3) and Fall (2). In general, it was observed that for NO2+3, as with SS, coarse sampling 

(monthly and seasonal) tended to present a better overall outcome than when high-frequency 

sampling was used. This was of special concern for NO2+3 during the summer since monthly and 
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seasonal sampling would not capture a potential water quality impairment due to the agricultural 

activities conducted at the study site. 

 Based on these findings, we can infer that water quality status as reported based on water 

quality subindexes did not change drastically at different times throughout the season. Even though 

there may be a risk of misclassification, some water quality parameters were more stable than 

others and sampling at any date during the season would not change the reported water quality 

status. These results were consistent with what was reported by Skeffington et al. (2015), who 

indicated that pH, temperature, and phosphorus could be assigned an unambiguous category with 

monthly samples.  

 

Fig. 8 Seasonal subindex distribution for suspended solids at the Maumee River water quality 

station 
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Table 4 Summary statistics for water quality sub-indexes for suspended solids, total phosphorus, soluble reactive phosphorus, and 

nitrate+nitrite (mg/L)* 

Statistics 

Fall Spring Summer Winter 

Weekly Bi-

weekly 

Mthly Seasr Weekly Bi-

weekly 

Mthly Seasr Weekly Bi-

weekly 

Mthly Seasr Weekly Bi-

weekly 

Mthly Seasr 

SS                 

Mean 48 51 57 60 39 40 43 46 46 48 50 58 40 42 49 48 

Min 18 11 32 31 31 31 29 29 33 32 30 35 23 19 12 30 

Max 78 81 88 86 62 63 86 72 71 70 79 77 73 83 86 84 

Interpretation At Risk Fair Fair Fair Poor At 

Risk 

At 

Risk 

At Risk At Risk At 

Risk 

Fair Fair At Risk At 

Risk 

At 

Risk 

At 

Risk 

TP                 

Mean 36 37 39 41 35 35 36 37 37 37 38 38 35 35 36 37 

Min 16 10 28 26 28 27 24 24 29 29 25 30 20 15 7 23 

Max 59 59 77 83 39 40 57 50 39 40 71 50 39 40 80 80 

Interpretation Poor Poor Poor At 

Risk 

Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor 

SRP                 

Mean 35 35 36 35 36 36 37 36 36 36 37 38 35 35 35 37 

Min 29 27 19 19 32 31 30 25 30 30 28 30 29 29 25 26 

Max 49 65 77 68 58 71 74 68 41 71 80 68 40 39 50 68 

Interpretation Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor 

NO23                 

Mean 59 60 62 58 53 53 54 54 69 70 71 78 56 57 57 57 

Min 33 33 30 27 38 37 34 26 42 37 37 57 38 38 26 32 

Max 78 79 89 88 75 76 81 89 85 86 89 89 69 69 75 74 

Interpretation Fair Fair Fair Fair Fair Fair Fair Fair Fair Good Good Good Fair Fair Fair Fair 

Ratings: 90-100 Pristine; 70-89 Good; 50-69 Fair; 40-49 At Risk; 30-39 Poor; 0-29 Unsuitable for all uses. The interpretation was reported for the mean values. 

*The goal is not to compare water quality across seasons, rather to determine whether sampling frequencies make a difference in water 

quality status determination within a season 
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General Discussion 

Ideally, sampling frequencies are subject to diverse factors like stream characteristics, 

nature of the constituents of concern, and climate (Halliday et al., 2015; László et al., 2007; Vilmin 

et al., 2018). From our analysis, the number of samples required to obtain a 10% error with a 95% 

confidence ranged from 50 to 350 samples in a year for the stations analyzed in this study. The 

constituent that required the least amount of samples was TP (50 to 100 samples/year), followed 

by SS (100 to 250 samples/year) and SRP (100 to 350 samples/year), translating to at least weekly 

for TP, and twice a week for SS and SRP. These findings were consistent with results reported by 

Khalil et al. (2014), who pointed out that TP and total suspended solids (TSS) would require more 

than 12 samples per year due to the high variation in these constituents and recommended that 

these constituents should ideally be sampled on a biweekly basis. If the contaminants came from 

urban sources, additional aspects needed to be considered. Vilmin et al. (2018) indicated that 

optimal sampling depended on the location of the sampling site relative to the major anthropogenic 

effluents since major effluents increase the variability in the receiving environment. In the case of 

urban pollutant sources, Raimonet et al. (2015) and Vilmin et al. (2018) noted that at least weekly 

sampling was required to account for the high-variability of ammonia and nitrite.     

 Regarding the estimation of long-term trends, the results obtained in this study showed that 

there were differences in the trends as determined from the different sampling frequencies 

analyzed. Results from the Mann-Kendall test showed that daily, weekly, and bi-weekly sampling 

gave consistent results, capturing the direction and magnitude of the potential trend. In contrast, 

there was not a consistent pattern for the trends for monthly and seasonal sampling. The trend’s 

direction and strength vary when compared to the different datasets at the same frequency level 

(monthly or seasonal). Moreover, in some cases, the trends (positive or negative) identified in 

seasonal sampling can be amplified due to the high variability of the analyzed constituents (Fig. 

6). Vilmin et al. (2018) and Raimonet et al. (2015) indicated that monthly sampling does not 

capture the high variability of constituents originating from urban effluents. As a result, monthly 

or seasonal sampling may not be adequate to estimate long-term trends. Similar findings were 

reported by Bowes et al. (2009), who indicated that the temporal resolution of the datasets should 

be increased from monthly sampling if the monitoring goal is to assess water quality improvement 

due to the implementation of management practices. Halliday et al. (2012) concluded that weekly 
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sampling could be used to obtain general water quality characteristics, long-term trends, and 

seasonality changes for nitrate, sulfate, chloride, dissolved organic carbon, iron, and aluminum.  

Additionally, the use of a high-frequency sampling strategy may reduce the length of the 

record required to identify long-term trends. Liu et al. (2020) determined that good trend detection 

probability was achievable with 5-years of continuous (15-min sampling) records for electrical 

conductivity and turbidity. Likewise, Moosmann et al. (2005) showed the relationship between 

observed trends, the length of study, and the number of samples required to identify the desired 

trend in nutrient loads. If the purpose was to identify small trends (< 3%/yr), the number of samples 

or the length of study had to be increased. The researchers indicated that for TP, 150 samples in a 

3-year study or 30 samples in a 5-year study would be necessary to identify a 3%/year trend. In 

contrast, Naddeo et al. (2013) were able to identify trends using water quality samples ranging 

from one to six months. Hunt et al. (2008) found that there was redundancy for DO and chlorophyll 

samples collected in the Boston Harbor and Massachusetts Bay, and a frequency sampling 

reduction from 17 to 4 per year could be accomplished without affecting the quality of the data. 

The reduction in sampling frequency can only be achieved after a robust statistical analysis 

indicates that the low-frequency data would not be significantly different from the high-frequency 

data.   

 Concerning the improvement of monthly and seasonal sampling to assess long-term trends, 

the inclusion of 8 randomly selected storm samples helped to capture some of the peak 

concentration events. However, the median and IQR were higher for SS and TP. The difference in 

those values was consistent with what was reported by Thompson et al. (2021), who found that the 

estimated error for TSS loads was 32% for the median and 106% for the IQR when storm samples 

were included in a weekly dataset. This type of error could lead to misleading conclusions when 

the effectiveness of water quality improvement practices is assessed.        

Overall, our results indicate that using the same sampling frequency for all constituents 

may not be suitable to meet all water quality monitoring objectives, especially when high-

frequency sampling is not available. Unfortunately, setting clear objectives may not be easily 

accomplished since there is no consensus among existing definitions monitoring objectives due to 

external constraints like social, legal, economic, and administrative factors (Harmancioǧlu, 1999). 

While agencies at the local, regional, and national levels might have similar monitoring objectives; 

often different sampling frequencies are used to assess the objectives. Due to the uncertainty in 
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defining an optimal sampling frequency, future research needs to focus on how high-frequency 

sampling can be used to define the appropriate sampling frequency tailored to the site-specific 

needs and aligned to the water quality monitoring objectives. Likewise, the lack of extensive data 

makes it difficult to define optimal sampling frequencies. Based on the GEMStat database, the 

density of water quality stations ranges from 1.5 to 4 stations per 10,000 km2 in the U.S. and 

Europe, while in Latin America there are 0.3 stations per 10,000 km2, in Asia is 0.08 stations per 

10,000 km2, and in Africa is 0.02 stations per 10,000 km2 (UNEP, 2016).  

Sampling frequency also depends on the constituent analyzed and the source of water 

pollution. Water quality parameters with high variability, like nutrients and sediments, require at 

least weekly sampling. Additionally, areas near urban area effluents or another known source of 

pollutants require a high-resolution sampling frequency (Raimonet et al., 2015; Vilmin et al., 

2018). Regarding long-term trends, our study showed differences depending on when the samples 

were taken in the monthly and seasonal datasets. Therefore, assessments made based only on this 

information might be biased. In relation to water quality status, we observed that WQI could be 

different depending on the sampling frequency. Weekly and bi-weekly sampling seemed to capture 

the constituents’ high variability and the changes associated with seasonality, while monthly and 

seasonal sampling could lead to misclassification in the water quality status thereby 

misrepresenting a stream’s condition.      

A limitation of this study is associated with the number of constituents analyzed. Further 

research could evaluate the behavior of water quality parameters related to urban pollution like 

BOD5, heavy metals, ammonia, and contaminants of emerging concern. Additionally, the 

confidence interval method to estimate the number of samples per constituent was the only method 

used in this study since it was the more frequently used method, as reported by Nguyen et al. 

(2019). A comparison among methods to estimate the number of samples would be of interest to 

identify differences and potential shortcomings for each method. Additionally, since the Western 

Lake Erie Basin is located in the Great Lakes area, conducting similar studies in other regions and 

landscapes could provide additional information to formulate new recommendations. 

Case Application 

 The Colombian Andean Region has an area of 283,000 km2, located in the country’s central 

part along the East, Central, and Western Andes mountain ranges. The elevation ranges from 500-

5000 meters above mean sea level, making it a region with numerous valleys, canyons, and 
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plateaus. The main rivers are the Magdalena and Cauca Rivers, forming the Magdalena-Cauca 

Hydrological Area. This region also has most of the country’s water resources and the most 

productive soils (Universidad del Rosario, 2015). According to the 2018 Census, around 26 million 

people live in the region (57% of the country’s population), mostly concentrated in urban areas 

(82% live in urban centers) (Baena Salazar et al., 2020). The region also represents 65% of the 

GDP, followed by manufacturing activities (13%), real estate (10%), and administrative activities 

(DANE, 2020). Sub-areas of the Andean region have been identified for having water-related 

issues. Eight out of the eleven region’s Departments have a high erosion potential; the deficit in 

precipitation events is more recurrent across the region; and the water bodies are highly impacted 

by contaminant loads (IDEAM, 2018).  

Due to the region’s economic, social, and environmental significance, it is a priority to set 

strategies, practices, and tools to guarantee its water resources’ sustainable use. The Otun River, a 

major tributary of the Cauca River, has been identified as a river with issues associated with 

erosion, water quality, and water scarcity. Additionally, this watershed is located in Colombia’s 

coffee axis, an area where coffee production boosted the national economy during most of the 20th 

century and brought the emergence of cities like Pereira/Dosquebradas and Manizales. These two 

cities became relevant urban areas since they are intermediate points between Bogotá, the capital 

city and the country’s major economic center, and the Pacific Ocean. Pereira and Dosquebradas 

are the largest urban centers and made up to 99% of the total population (Consorcio Ordenamiento 

Cuenca del Río Otún, 2017). According to the 2008 Census, Pereira and Dosquebradas had 

467,269 and 217,178 inhabitants, where 83% and 92% of the total population live in the urban 

area, respectively. 

The Otun River Watershed’s (ORW) water management falls under the Regional 

Environmental Authority (CARDER) jurisdiction. CARDER is Risaralda’s environmental 

authority and its responsibilities include classifying surface water, indicating the water’s intended 

use, establishing short, mid, and long-term water quality objectives, and setting regulations to 

preserve water quality (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2015). The 

main urban center in the ORW is the Pereira/Dosquebradas metropolitan area. In 2015, CARDER 

approved the Otun River and Dosquebradas Creek Water Ordinance Plan. Under this ordinance, 

the short (5 years), mid (10 years), and long-term (20 years) objectives were set for both streams. 

Each of the streams is subdivided into stretches and objectives are tailored for each of them, based 
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on the intended water use. The water objectives for both streams can be found as supplementary 

material (Table S7 and Table S8). The ordinance plan also indicates that the plan’s revision and 

adjustment must be completed during its extent (20 years), based on the results obtained from the 

monitoring plan. Under this plan, sampling is conducted three times a year, two during the wet 

period (January-June and September-December) and one during the dryer period (July-August). 

The number of sampling points in the Otun River ranges from 15 to 17, and in the Dosquebradas 

Creek ranges from 8 to 17 sampling points. Samples are analyzed for 25 physical-chemical 

parameters, including temperature, pH, turbidity, dissolved oxygen, fecal coliforms, total solids, 

biochemical oxygen demand (BOD5), nitrates, and phosphates.  

The previously listed parameters are used to calculate a WQI, which is the metric used to 

report the streams’ water quality status. This WQI is estimated using the methodology proposed 

by the National Sanitation Foundation (Brown et al., 1970). In this methodology, each parameter 

has a weighted factor as follows: dissolved oxygen (0.17), fecal coliform (0.16), pH (0.11), BOD5 

(0.11), change in temperature (0.10), phosphate (0.10), nitrates (0.10), turbidity (0.08), and total 

solids (0.07). In the 2017 Risaralda’s water quality report, the Otun River’s water quality was 

classified as good in eight stations (57%), medium in five stations (36%), and bad in one station 

(7%). Meanwhile, Dosquebradas Creek’s water quality was classified as good in five stations 

(29%), medium in ten stations (59%), and bad in two stations (12%). The water quality decline for 

the aforementioned streams is associated with agricultural activities occurring in the ORW 

midsection and urban raw sewage discharges from Pereira and Dosquebradas.  

Results of our analysis indicate that water quality status could be worse than indicated due 

to sampling frequency. Depending on the water concerns in the area of study, the monitoring 

objectives may be different. The most common objectives are to estimate the trends and assess the 

status. Based on the results obtained in this study, it is necessary to have a minimum of bi-weekly 

sampling frequency to capture the water quality trends with a high degree of confidence. The 

sampling frequency may be reduced for relatively stable constituents, like TP, or it needs to be 

increased for easily transported constituents or highly variable like NO2+3, SS, and SRP.  

 Another important consideration that can be made when defining the sampling frequency 

is the watershed characteristics and its potential source of pollutants. In the case of the ORW, the 

upper section does not have many sources of pollutants (the only major source of pollutants is the 

Pezfresco trout farming and processing factory, located in the borderline between the watershed’s 



 

31 

 

upper and mid sections), and since part of this section corresponds to a protected environmental 

zone, the sampling frequency may be limited to seasonal sampling or even reduced to an annual 

basis, with the purpose being to assess the Otun River and its tributaries’ water quality status. This 

is consistent with findings from Levine et al. (2014), who indicated that sampling at mixed 

frequencies might decrease the number of times that each site is sampled. On the other hand, the 

ORW mid-section has been identified as the area contributing most of the pollutant loads into the 

Otun River and Dosquebradas Creek (Consorcio Ordenamiento Cuenca del Río Otún, 2017). For 

that reason, it is highly recommended that the monitoring efforts should be focused on this part of 

the watershed. As high-frequency water quality monitoring plans are expensive to implement, an 

initial focus on increasing the sampling frequency from seasonal to monthly in this area would 

provide benefits in capturing pollutant trends. The monthly sampling may, however, not capture 

all the high concentration events, but the values for median concentration and trend analysis would 

be closer to the values obtained with a daily sampling frequency. Over the long term, 

environmental authorities should consider the use of emerging monitoring technologies. 

Automatic high-frequency monitoring is becoming more common and affordable to implement. 

Additionally, passive and active remote sensing can be used as complementary data sources. 

Citizen science—a commonly used resource in environmental monitoring—could potentially 

provide improved statistical power of datasets and facilitate the observation of difficult to observe 

phenomena (as reported by Jollymore et al., 2017).   

 Regarding water quality status, it is important to select an appropriate metric to report the 

water bodies’ status. The water quality status in the ORW is reported using the categories 

established by the National Sanitation Foundation (NSF) (Brown et al., 1970). In contrast, the 

Colombian Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM) uses the 

Universal Water Quality Index (UWQI) methodology. Gitau et al. (2016) concluded that the use 

of more objective and less rigid formulations would provide a better way of assessing water quality 

status. Mijares et al. (2019) developed subindex formulations that were then built into the 

Unweighted Multiplicative Water Quality Index (UMWQI). The advantage of using these 

subindex formulations is that they incorporate water quality thresholds. Additionally, an 

unweighted quality index is not restrictive with the water quality parameters to be used and can be 

tailored to a specific location. Regardless of the methodology used to assess and report the water 

quality status, it is essential to consider the pollutants of concern in the area. For the ORW, the 
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pollutants of concern come from agricultural activities and the Pereira/Dosquebradas raw sewer 

discharges. As a result, constituents like dissolved oxygen, BOD, nitrogen, phosphorus, pH, 

suspended solids, and ammonia should be included in the metric used for the water quality status 

assessment. Moreover, since one of the primary uses for the Otun River’s water is for human 

consumption, environmental authorities may want to consider a metric that includes constituents 

of interest for human health. 

  

Conclusions 

Water quality sampling frequency has typically been selected according to the monitoring 

objective to be addressed. However, the sampling frequency selected varies within sampling 

objectives with monitoring plans comprising weekly, monthly, seasonal, and/or annual sampling 

frequencies. Water quality sampling is expensive, thus the need to determine suitable sampling 

frequencies capturing multiple objectives. In this study, data representing weekly, bi-weekly, 

monthly, and seasonal sampling frequencies were compared against daily data to determine their 

suitability in capturing long-term trends and water quality status. Long-term trends determined 

from monthly and seasonal sampling were highly variable and, thus, these frequencies might not 

be appropriate for use in this type of analysis. Accuracy at these sampling frequencies could be 

improved by including rainfall events as part of the monitoring plan. Regarding water quality 

status, differences were found in the water quality sub-indexes from data sampled 30-days apart, 

suggesting higher frequency sampling would be more appropriate. Our results suggest that weekly 

sampling accounts for the high variability of some constituents, like sediments and nutrients, and 

changes in the constituents’ concentrations associated with seasonal phenomena. If sampling at 

such resolution is not feasible, bi-weekly sampling would still provide reasonably accurate data. 

Bi-weekly sampling is suggested as an alternative sampling frequency since it is able to capture 

long-term trends for relatively stable constituents, and the water quality status as determined based 

on this frequency would generally be same as the one reported with weekly samples. For pristine 

or protected environments in which water quality is not at risk, different sampling frequencies can 

be considered as alternatives to sampling on the same day every year, for example, random 

sampling during a specific time window.   
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Supplementary Material 

Table S1. Summary of statistical properties for different sampling frequency datasets (Maumee Station) 

 Daily Weekly Bi-weekly 

(even) 

Bi-weekly 

(odd) 

Monthly Seasonal 

SS       

Mean (mg/L) 72.0 71.8 71.7 71.9 73.7 78.9 

SD (mg/L) 100.1 92.4 90.2 94.2 99.0 87.0 

Min (mg/L) 0.5 2.1 2.9 2.2 3.3 5.4 

Max (mg/L) 2325.1 1351.3 1046.4 1112.1 865.4 516.4 

Q90 (mg/L) 156.9 158.8 155.8 159.5 157.7 176.3 

Q99 (mg/L) 465.0 458.6 449.7 460.0 460.1 411.6 

TP       

Mean (mg/L) 0.22 0.22 0.22 0.22 0.22 0.24 

SD (mg/L) 0.15 0.14 0.14 0.14 0.15 0.14 

Min (mg/L) 0.03 0.043 0.05 0.04 0.06 0.06 

Max (mg/L) 2.17 1.45 1.23 1.32 1.09 0.80 

Q90 (mg/L) 0.40 0.39 0.39 0.39 0.40 0.41 

Q99 (mg/L) 0.78 0.78 0.79 0.77 0.75 0.68 

SRP       

Mean (mg/L) 0.055 0.056 0.056 0.056 0.056 0.059 

SD (mg/L) 0.043 0.043 0.043 0.042 0.043 0.043 

Min (mg/L) 0.001 0.001 0.001 0.001 0.001 0.001 

Max (mg/L) 0.525 0.351 0.334 0.265 0.244 0.202 

Q90 (mg/L) 0.110 0.111 0.111 0.111 0.110 0.111 

Q99 (mg/L) 0.176 0.170 0.173 0.165 0.163 0.172 

NO23       

Mean (mg/L) 4.40 4.43 4.43 4.43 4.45 4.71 

SD (mg/L) 3.12 3.13 3.11 3.16 3.12 3.28 

Min (mg/L) 0.01 0.01 0.01 0.01 0.012 0.02 

Max (mg/L) 26.72 20.6 15.02 20.58 15.66 13.8 

Q90 (mg/L) 8.47 8.49 8.41 8.55 8.47 8.72 

Q99 (mg/L) 12.87 13.06 13.04 12.97 12.58 12.79 
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Table S2. Dataset comparison made with the Kruskal-Wallis test 

Type of dataset  
# of 

datasets 

p-value 

SS TP SRP NO23 

Weekly      

DOW+random 10 0.992 0.999 0.331 0.996 

Bi-weekly       

Even+random 10 0.967 0.996 0.860 0.999 

Odd+random 10 0.999 0.999 0.647 0.999 

Even+Odd+random 20 0.999 1.000 0.887 1.000 

Monthly      

DOM+random 35 0.995 0.999 0.784 0.999 

SEL+random 16 0.981 0.956 0.869 0.898 

DOM+SEL+random 47 0.940 0.983 0.107 

Seasonal      

SELD+random 14 0.308 0.218 0.835 0.394 

TWT+random 16 0.506 0.173 0.938 0.376 

SELD+TWT+random 26 0.707 0.386 0.972 0.626 
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Table S3. Results from the Mann-Kendall test for suspended solids concentrations during the 

observed period (1986-2015) for Maumee Station 

Dataset 
Suspended Solids 

Winter Spring Summer Fall 

 tau p-value tau p-value tau p-value tau p-value 

Daily -0.085 0.521 -0.306 < 0.05 -0.434 < 0.05 -0.237 0.069 

Weekly-random 1 -0.002 > 0.999 -0.287 < 0.05 -0.448 < 0.05 -0.209 0.108 

Weekly-random 2 -0.002 > 0.999 -0.287 < 0.05 -0.448 < 0.05 -0.209 0.108 

Weekly-random 3 -0.002 > 0.999 -0.287 < 0.05 -0.448 < 0.05 -0.209 0.108 

Bi-weekly even-random 1 0.053 0.695 -0.389 < 0.05 -0.370 < 0.05 -0.297 0.022 

Bi-weekly even-random 2 -0.076 0.568 -0.237 0.069 -0.411 < 0.05 -0.338 < 0.05 

Bi-weekly even-random 3 -0.094 0.475 -0.375 < 0.05 -0.343 < 0.05 -0.274 0.035 

Bi-weekly odd-random 1 0.044 0.748 -0.251 0.054 -0.407 < 0.05 -0.186 0.153 

Bi-weekly odd-random 2 -0.030 0.830 -0.168 0.199 -0.434 < 0.05 -0.149 0.254 

Bi-weekly odd-random 3 -0.053 0.695 -0.301 < 0.05 -0.379 < 0.05 -0.218 0.094 

Monthly-random 1 -0.048 0.737 -0.085 0.521 -0.292 < 0.05 -0.212 0.104 

Monthly-random 2 -0.062 0.643 -0.191 0.143 -0.398 < 0.05 -0.255 < 0.05 

Monthly-random 3 0.154 0.239 -0.131 0.318 -0.324 < 0.05 -0.237 0.069 

Monthly-random 4 -0.223 0.087 -0.191 0.143 -0.389 < 0.05 -0.237 0.069 

Seasonal_random 1 0.043 0.770 -0.163 0.212 -0.281 < 0.05 -0.197 0.156 

Seasonal_random 2 -0.182 0.201 -0.057 0.669 -0.108 0.412 -0.076 0.574 

Seasonal_random 3 -0.021 0.890 -0.099 0.464 -0.340 < 0.05 -0.074 0.594 

Seasonal_random 4 -0.368 0.008 -0.168 0.199 -0.345 < 0.05 -0.164 0.228 
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Table S4. Results from the Mann-Kendall test for total phosphorus concentrations during the 

observed period (1986-2015) for Maumee Station 

Dataset 
Total Phosphorus 

Winter Spring Summer Fall 

 tau p-value tau p-value tau p-value tau p-value 

Daily 0.177 0.175 -0.136 0.301 -0.315 < 0.05 -0.186 0.153 

Weekly-random 1 0.186 0.153 -0.147 0.261 -0.366 < 0.05 -0.113 0.392 

Weekly-random 2 0.186 0.153 -0.147 0.261 -0.366 < 0.05 -0.113 0.392 

Weekly-random 3 0.186 0.153 -0.147 0.261 -0.366 < 0.05 -0.113 0.392 

Bi-weekly even-random 1 0.164 0.212 -0.242 0.063 -0.260 < 0.05 -0.166 0.205 

Bi-weekly even-random 2 0.083 0.532 -0.071 0.592 -0.350 < 0.05 -0.175 0.181 

Bi-weekly even-random 3 0.090 0.498 -0.113 0.392 -0.269 < 0.05 -0.168 0.199 

Bi-weekly odd-random 1 0.168 0.199 -0.102 0.443 -0.357 < 0.05 -0.126 0.335 

Bi-weekly odd-random 2 0.189 0.148 -0.111 0.402 -0.356 < 0.05 -0.094 0.475 

Bi-weekly odd-random 3 0.173 0.187 -0.136 0.301 -0.240 0.066 -0.164 0.212 

Monthly-random 1 0.247 0.069 0.044 0.748 -0.236 0.071 -0.065 0.630 

Monthly-random 2 0.118 0.372 -0.134 0.309 -0.268 < 0.05 -0.245 0.063 

Monthly-random 3 0.297 < 0.05 -0.063 0.642 -0.227 0.083 -0.317 < 0.05 

Monthly-random 4 0.021 0.886 -0.058 0.668 -0.257 < 0.05 -0.137 0.300 

Seasonal_random 1 0.219 0.117 0.021 0.886 -0.170 0.208 -0.078 0.579 

Seasonal_random 2 -0.053 0.724 -0.007 0.971 -0.054 0.694 -0.063 0.652 

Seasonal_random 3 0.174 0.205 -0.060 0.666 -0.165 0.221 -0.231 0.095 

Seasonal_random 4 -0.210 0.137 -0.162 0.224 -0.343 < 0.05 -0.100 0.475 
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Table S5. Results from the Mann-Kendall test for soluble reactive phosphorus concentrations 

during the observed period (1986-2015) for Maumee Station 

Dataset 
Soluble Reactive Phosphorus 

Winter Spring Summer Fall 

 tau p-value tau p-value tau p-value tau p-value 

Daily 0.545 < 0.05 0.301 < 0.05 0.002 1.000 0.154 0.239 

Weekly-random 1 0.526 < 0.05 0.241 0.064 0.030 0.830 0.159 0.225 

Weekly-random 2 0.526 < 0.05 0.241 0.064 0.030 0.830 0.159 0.225 

Weekly-random 3 0.526 < 0.05 0.241 0.064 0.030 0.830 0.159 0.225 

Bi-weekly even-random 1 0.529 < 0.05 0.269 < 0.05 0.048 0.721 0.145 0.269 

Bi-weekly even-random 2 0.548 < 0.05 0.408 < 0.05 0.030 0.830 0.154 0.239 

Bi-weekly even-random 3 0.554 < 0.05 0.290 < 0.05 0.103 0.432 0.205 0.116 

Bi-weekly odd-random 1 0.531 < 0.05 0.191 0.143 -0.057 0.669 0.177 0.175 

Bi-weekly odd-random 2 0.485 < 0.05 0.336 < 0.05 0.025 0.858 0.205 0.116 

Bi-weekly odd-random 3 0.559 < 0.05 0.209 0.108 0.011 0.943 0.237 0.069 

Monthly-random 1 0.508 < 0.05 0.322 < 0.05 0.083 0.559 0.091 0.499 

Monthly-random 2 0.529 < 0.05 0.023 0.872 0.111 0.409 0.069 0.605 

Monthly-random 3 0.566 < 0.05 0.334 < 0.05 0.030 0.830 0.143 0.276 

Monthly-random 4 0.442 < 0.05 0.118 0.372 0.046 0.734 0.005 0.986 

Seasonal_random 1 0.595 < 0.05 0.355 < 0.05 0.080 0.591 0.049 0.738 

Seasonal_random 2 0.284 0.050 0.049 0.738 0.148 0.268 0.195 0.162 

Seasonal_random 3 0.430 < 0.05 0.157 0.270 -0.007 0.970 0.095 0.504 

Seasonal_random 4 0.412 < 0.05 -0.035 0.807 -0.042 0.767 -0.041 0.791 
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Table S6. Results from the Mann-Kendall test for nitrate + nitrite concentrations during the 

observed period (1986-2015) for Maumee Station 

Dataset 
Nitrate + Nitrite 

Winter Spring Summer Fall 

 tau p-value tau p-value tau p-value tau p-value 

Daily -0.241 0.064 -0.191 0.143 -0.278 < 0.05 -0.154 0.239 

Weekly-random 1 -0.241 0.064 -0.241 0.064 -0.306 < 0.05 -0.136 0.301 

Weekly-random 2 -0.241 0.064 -0.241 0.064 -0.306 < 0.05 -0.136 0.301 

Weekly-random 3 -0.241 0.064 -0.241 0.064 -0.306 < 0.05 -0.136 0.301 

Bi-weekly even-random 1 -0.246 0.059 -0.175 0.181 -0.264 < 0.05 -0.163 0.212 

Bi-weekly even-random 2 -0.186 0.153 -0.214 0.101 -0.283 < 0.05 -0.154 0.239 

Bi-weekly even-random 3 -0.223 0.087 -0.186 0.153 -0.274 < 0.05 -0.149 0.254 

Bi-weekly odd-random 1 -0.241 0.064 -0.172 0.187 -0.283 < 0.05 -0.122 0.354 

Bi-weekly odd-random 2 -0.223 0.087 -0.186 0.153 -0.186 0.153 -0.067 0.617 

Bi-weekly odd-random 3 -0.223 0.087 -0.163 0.212 -0.283 < 0.05 -0.159 0.225 

Monthly-random 1 -0.061 0.664 -0.099 0.454 -0.128 0.339 -0.067 0.617 

Monthly-random 2 -0.191 0.143 -0.195 0.134 -0.193 0.139 -0.149 0.254 

Monthly-random 3 -0.297 0.022 -0.103 0.432 -0.200 0.125 -0.214 0.101 

Monthly-random 4 -0.241 0.064 -0.205 0.116 -0.202 0.129 -0.030 0.830 

Seasonal_random 1 -0.077 0.588 -0.051 0.708 0.036 0.823 -0.267 0.065 

Seasonal_random 2 -0.133 0.362 -0.117 0.372 -0.148 0.300 0.066 0.646 

Seasonal_random 3 -0.323 0.017 0.054 0.694 -0.124 0.400 -0.016 0.921 

Seasonal_random 4 -0.177 0.203 -0.049 0.722 0.004 > 0.999 -0.074 0.602 
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Fig. S1 Annual subindex distribution for total phosphorus at the Maumee River water quality 

station 

 

Fig. S2 Annual subindex distribution for soluble reactive phosphorus at the Maumee River water 

quality station 
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Fig. S3 Annual subindex distribution for nitrate+nitrite at the Maumee River water quality station
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Table S7. Water Quality Objectives for the Otun River as indicated in the 2015 Water Ordinance Plan  

Water 

Quality 

Parameter 

Water Quality Objectives (WQO) 

Stretch 

1. Source to Barbo River 2. Barbo River to Nuevo 

Libaré intake 

3. Nuevo Libaré intake to 

Gaitán Bridge  

4. Gaitán Bridge to Belmonte 

power house 

5. Belmonte power house to 

discharge 

5 yr 10 yr 20 yr 5 yr 10 yr 20 yr 5 yr 10 yr 20 yr 5 yr 10 yr 20 yr 5 yr 10 yr 20 yr 

BOD5  

(mg/L) 
3 3 3 4 4 3 3 3 3 20 30 10 20 30 10 

COD  

(mg/L) 
5 6 5 5 6 5 5 6 5 60 60 40 60 60 40 

pH 6.5–9.0 6.5–8.5 6.5–8.5 6.5–9.0 6.5–9.0 6.5–9.0 6.5–9.0 6.5–8.5 6.5–8.5 6.5–9.0 6.5–9.0 6.5–9.0 6.5–8.5 6.5–8.5 6.5–8.5 

Dissolved 

Oxygen  

(mg/L) 

>  6 > 6.5 > 6.5 > 6 > 6.5 > 6.5 > 6 > 6 > 6 > 4.5 > 4.5 > 6 > 5 > 5 > 6 

Conductivity  

(µS/cm) 
700 750 500 750 750 500 700 750 500 750 750 500 750 750 750 

Total 

Coliforms  

(MPN/ 100 

mL) 

<20,000 <20,000 <1,000 <20,000 <20,000 <5,000 <20,000 
< 

20,000 

< 

5,000 
1 X 106 1 X 106 50,000 1 X 106 1 X 106 50,000 

Fecal 

Coliforms  

(MPN/ 100 

mL) 

< 2,000 < 2,000 < 200 < 2,000 < 2,000 
< 

2,000 
< 2,000 

< 

2,000 

< 

2,000 
10,000 10,000 10,000 10,000 10,000 10,000 

Total 

Suspended 

Solids 

(mg/L) 

6 5 4 6 5 4 6 5 4 40 40 30 40 40 30 

Oil and 

Grease 

(mg/L) 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Total 

Phosphorus 

(mg P-PO4/L) 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Total 

Nitrogen 

(mg N/L) 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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Table S8. Water Quality Objectives for the Otun River as indicated in the 2015 Water Ordinance 

Plan 

Water Quality 

Parameter 

Water Quality Objectives (WQO) 

Stretch 

1. Aguazul Creek source to 

ACUASEO intake 

2. ACUASEO intake to discharge 

5 yr 10 yr 20 yr 5 yr 10 yr 20 yr 

BOD5  

(mg/L) 

3 3 3 20 30 10 

COD  

(mg/L) 

5 6 5 60 60 40 

pH 6.5 – 9.0 6.5 – 8.5 6.5 – 8.5 6.5 – 9.0 6.5 – 8.5 6.5 – 8.5 

Dissolved Oxygen  

(mg/L) 

>  6 > 6.5 > 6.5 > 5 > 5 > 6 

Conductivity  

(µS/cm) 

700 750 500 750 750 750 

Total Coliforms  

(MPN/ 100 mL) 

< 20,000 < 20,000 < 1,000 1 X 106 1 X 106 50,000 

Fecal Coliforms  

(MPN/ 100 mL) 

< 2,000 < 2,000 < 200 10,000 10,000 10,000 

Total Suspended Solids 

(mg/L) 

6 5 4 40 40 Non 

reported 

Oil and Grease 

(mg/L) 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Non 

present 

Total Phosphorus 

(mg P-PO4/L) 

2 2 2 2 2 2 

Total Nitrogen 

(mg N/L) 

0.5 0.5 0.5 0.5 0.5 0.5 

 


