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Abstract. The planetary boundary layer height (PBLH) is an essential parameter for weather 

forecasting and climate modeling. The primary methods for obtaining the PBLH include 

radiosonde measurements of atmospheric parameters and lidar measurements, which track 

aerosol layers in the lower atmosphere. Radiosondes provide the parameters to determine the 

PBLH but cannot monitor changes over a diurnal cycle. Lidar instruments can track the 

temporal variability of the PBLH and account for spatial variability when operated in a network 

configuration. The networkable micropulse DIAL (MPD) instruments for thermodynamic 

profiling are based on diode-laser technology that is eye-safe and cost-effective and has 

demonstrated long-term autonomous operation. We present a retrieval algorithm for 

determining the PBLH from the quantitative aerosol profiling capability of the high spectral 

resolution channel of the MPD. The PBLH is determined using a Haar wavelet transform 

(HWT) method that tracks aerosol layers in the lower atmosphere. The PBLH from the lidar is 

compared with the PBLH determined from potential temperature profiles from radiosondes. In 

many cases, good agreement among the PBLH retrievals was seen. However, the radiosonde 

retrieval often missed the lowest inversion layer when several layers were present, while the 

HWT could track the lowest layer. © The 
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1 Introduction 

The planetary boundary layer (PBL) is the lowest layer in the Earth’s atmosphere that is affected 

by the surface conditions on the time scale of an hour,1 with the PBL height (PBLH) defined as 

the altitude of the top of the PBL. The PBLH follows a diurnal cycle driven by the sensible heat 

flux of the earth’s surface2 and helps control the exchange of heat, water vapor, aerosols, and 

momentum between the surface and the free troposphere. The PBLH is an important parameter 

for meteorological phenomena, including turbulent mixing, convective transfer, and cloud 

entrainment. It is also an important parameter in creating numerical weather forecasting 

models,3–5 estimating surface emissions of trace gases,6 and predicting the density of surface 

pollutants.7,8 Continuous monitoring of the PBLH is advantageous for improving weather 

forecasting and predicting air quality. 

Despite its importance in weather forecasting and climate science, current instrumentation 

fails to monitor the PBLH adequately. Twice-daily radiosondes from the global radiosonde 

network fail to capture the temporal variability and diurnal cycle of the PBLH. More recently, 

remote sensing of the atmosphere with lidar instruments has provided the opportunity to capture 

the temporal variability of the PBLH.9–12 The PBLH can be located in a lidar profile because the 

inversion layer that defines the PBLH is colocated with a steep gradient in a passive tracer such 
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as aerosol concentration or water vapor number density. Several methods exist for determining 

the PBLH from aerosol or water vapor profiles, including the gradient method,13,14 the Haar 
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wavelet covariance transformation (HWT) method,15,16 the curve-fitting method,17,18 and the 

variance method.19,20 

In collaboration with the National Center for Atmospheric Research, researchers at Montana 

State University are developing micropulse DIAL (MPD) instruments for profiling the lower 

troposphere, including the PBL and the transition to the free troposphere. The MPD instruments 

are based on semiconductor technology and provide eye-safe operation. Currently, a network of 

five MPD instruments for water vapor profiling, two instruments for temperature profiling, and 

three instruments for high spectral resolution lidar (HSRL) measurements of atmospheric 

aerosols have been developed. These instruments are cost-effective and have demonstrated 

long-term unattended operation in networkable configurations that can provide continuous 

temporal resolution and coarse spatial resolution based on the deployment. As these instruments 

become available to the larger research community, efforts to improve the instrument 

performance and data products continue.21–23 

The PBLH retrieval developed for the MPD instruments utilizes an HWT method. The HWT 

method searches for regions of abrupt change in the lidar signal. The HWT method is similar to 

the gradient method because it assumes that the inversion layer at the PBLH will be associated 

with a steep negative gradient in the aerosol concentration. However, the HWT has the 

advantage of minimizing the effects of high-frequency noise and can better detect the low-

frequency transition between the PBL and the free troposphere. 

This paper is organized as follows. Section 2 briefly describes the MPD instrument and the 

experimental site. Section 3 describes the PBLH retrieval method. Section 4 presents the results, 

including case studies and radiosonde comparisons. Section 5 discusses the results, and Sec. 6 

provides a brief conclusion. 

2 Instrumentation 

The lidar used for data collection uses the MPD architecture for differential absorption 

measurements of oxygen in the atmosphere. The off-line wavelength, operating at 770.1085 

nm, and a potassium absorption cell are used to provide HSRL measurements of aerosol optical 

properties. Details regarding this MPD instrument are available in Spuler et al.24 and Stillwell 

et al.25 The aerosol backscatter coefficient is the primary data product used in the PBLH 

retrieval. Data used in the HSRL retrieval26 is integrated into 5-min time bins. The pulse duration 

of the MPD transmitter is 1 μs and corresponds to a 150-m range resolution. The detectors over-

sample the laser pulse by a factor of 4, yielding data from a range bin of 37.5 m with an 

uncertainty of 150 m. 

A colocated radiosonde station was used to launch Vaisala RS92-SGP radiosondes for 

comparison. These radiosondes provide range-resolved atmospheric parameters, including 

temperature, pressure, and humidity. A total of 32 radiosondes were launched during this study. 

The MPD instrument and radiosonde station are located on the campus of Montana State 

University in Bozeman, Montana (45.6666°N, 111.0460°W). Bozeman is 1524 m above sea 

level and experiences a dry continental climate typical of the Rocky Mountain region of the 

western United States. Typically, Bozeman experiences relatively low aerosol optical depths 

punctuated by episodes of high aerosol loading due to forest fire activity in the western United 

States and Canada. 
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3 PBLH Retrieval 

The retrieval algorithm presented in this paper uses a series of processing steps to determine the 

PBLH. The first two steps of the retrieval algorithm include developing a cloud mask to identify 

clouds and a simple metric to determine the height of the free troposphere, which is used as an 

upper limit on the range for the remainder of the retrieval. Next, an HWT is applied to the 

normalized aerosol backscatter coefficient profile and is used to identify the aerosol layers 

below the height of the free troposphere. This HWT is used in the remaining four steps to 

identify the capping inversion (CI) layer, identify the bottom of residual layers (RLs), set the 

top limit for the PBLH retrieval, and finally locate the PBLH. The PBLH retrieval algorithm is 

compared with potential temperature profiles from colocated radiosondes. Figure 1 shows the 

PBLH, CI, and 

 

Fig. 1 The PBLH, RL, and CI for typical atmospheric conditions. (a) The aerosol backscatter coefficient 
(potential temperature) profile as a blue solid (black dotted) line. (b) The HWT of the aerosol backscatter 

coefficient (potential temperature lapse rate) as the blue solid (black dotted) line. 

RL for typical atmospheric conditions. The PBLH and CI are located above regions of steep 

change in the aerosol backscatter coefficient, βaer, and potential temperature, θ, profiles, which 

corresponds to maxima in the HWT and potential temperature lapse rate, ∂
∂

θ
r, profiles. The RL 

is associated with an increase in the aerosol backscatter coefficient with range, r, and is located 

by finding negative HWT values. 

The first step in the retrieval algorithm is to identify clouds in the lidar return signal. A cloud 

masking algorithm based on the method developed by Binietoglou et al.27 is used to locate 

clouds in the lidar signal. Specifically, two of the features extraction methods, the Sobel operator 

and the standard deviation of a 5 × 5 grid of lidar bins, were used to identify clouds. The Sobel 

operator detects the edges of clouds, as the edges of clouds are expected to have a much higher 

gradient than other regions of the lidar signal. The standard deviation method is used to locate 

the center of clouds, as the variance of the signal within a cloud is much higher than in other 

regions. 

Once the clouds are identified, the next step in the retrieval is to estimate the height of the 

free troposphere. Low aerosol concentrations characterize the free troposphere, and this height 

is defined as the height where the aerosol backscatter coefficient initially falls below 5 · 10−8 

m−1 sr−1. The purpose of determining the height of the free atmosphere is to set an upper limit to 

the retrieval for all following layers. Once the height of the free troposphere is found, clouds 

above this height are not considered, which minimizes the effect of high-altitude clouds. 

The next step in the PBLH retrieval is the application of an HWT to the retrieved aerosol 

backscatter coefficient profile. The aerosol backscatter coefficient profile is first normalized to 
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its average value below 400 m so that the same HWT thresholds can be used in all conditions. 

The HWT, also known as the wavelet covariance transform (WCT), is used as the basis for the 

PBLH retrieval and is implemented according to Brooks.15 The HWT works by convolving a 

filter function with the normalized aerosol backscatter coefficient profile, which provides a 

proxy measurement for the aerosol concentration and a passive tracer for the PBLH. The 

convolution of the filter function and the aerosol backscatter coefficient profile is used to 

identify large gradients, identifying aerosol transition layers. The filter function, hðrÞ, used for 

the HWT is 

r 

TARGET;te mp:i ntralink-;e0 01;11 6;15 6 z − r ¼ < þ a; (1) h a 1∶ r ≤ z EQ-

≤ 2 

: 0∶ elsewhere 

where r is the range of interest, a is the dilation, and z is a variable that comes into play in the 

convolution. 

Accuracy in the HWT method relies on the correct choice of dilation. Brooks demonstrated 

that the ideal choice of dilation is equal to the depth of the transition zone at the top of the PBL.15 

Unfortunately, this value is usually not known. However, the depth of the transition zone tends 

to increase as the PBLH increases in altitude. For this reason, a range-dependent dilation similar 

to the one used by Baars et al.10 is used for the retrieval. The dilation used for this work is equal 

to the altitude of the range bin divided by three and rounded to the nearest multiple of the range 

bin depth. The dilation reaches a maximum of 900 m at an altitude of 2700 m. Above this 

altitude, it is constant. A dilation of 150 m is used for any range bin with an altitude <450 m. 

The HWT, Hða;rÞ, is found by convolving the filter function with the variable dilation with 

βaer, so that 

 EQ-TA RGET;te mp:i ntralink-;e 002;1 16;6 16

H
ð

a;r
Þ ¼ a1 · Z rþ

a2 a2 βaerð
z
Þ · 

h
z 

−
a rdz: (2) 

r− The HWT, Hða;rÞ, is used to identify aerosol layers 

and used in the remaining steps of the PBLH retrieval. 

The next step in the PBLH retrieval identifies the CI. The CI is the highest altitude with a 

significant HWT value in the lidar signal below the free troposphere. The CI is set to the highest 

range bin where the HWT is >0.05, with an upper range limit set at 300 m above the height of 

the free troposphere layer. If there is a cloud beneath the free troposphere, the CI is the altitude 

of the maximum HWT value above the cloud. 

Identifying the RLs is the next step in the PBLH algorithm. RLs are located and used as a 

top limiter for the PBLH retrieval in a method similar to that used by Dang et al.12 Frequently, 

the inversion layer between the lofted RL and the CI has an HWT value greater than the 

inversion layer at the PBLH. RLs must be located so that the PBLH retrieval does not errantly 

set the PBLH to the top of an RL. Different thresholds are used for the RLs depending on the 

time of day. In the morning, RLs are particularly troublesome because the growing convective 

layer is frequently beneath the minimum range of the lidar. In the first half of the day, any point 

in the HWT <0 is identified as an RL. In the evening, RLs are also an issue, as a new PBL forms 

beneath the well-mixed layer of the previous day. In the last sixth of the day, any point in the 

HWT < −0.02 is identified as an RL. RLs are not considered for the rest of the day because, 

during periods of high convection, negative HWT values sometimes occur within the PBL, and 
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searching for RLs causes errors in the PBLH retrieval. The CI is used as the upper limit for 

where the retrieval algorithm searches for the RL. 

The sixth step in the PBLH retrieval algorithm sets an upper range limit for the PBLH 

retrieval. The presence of RLs increases the variability of PBLH height between lidar and 

radiosonde methods when an upper range limit is not used.28 Figure 2 displays how this limit is 

 

Fig. 2 A flowchart for determining the top limiter in the PBLH retrieval algorithm. 

selected. The location of the top limiter is determined by the altitude of the CI, the RLs, and 

PBL clouds. If there is a cloud beneath the CI, the algorithm searches for an HWT value >0.05 

under the cloud base. If one exists, the upper limit is set to be the bottom of the cloud. If the top 

limiter, as determined by the CI, RLs, and clouds, is higher than 4 km, the upper limit is lowered 

to 4 km. The lower limit of the lidar signal is considered to be the minimum range of the lidar 

plus the dilation for the lowest range bins. 

The seventh and final step of the PBLH retrieval algorithm identifies the PBLH. If there are 

no clouds in the lidar signal, the algorithm first searches for a local maximum in the HWT. 

Then, it places the PBLH at the first point above the peak where the HWT falls below a 

threshold. The algorithm chooses the lowest peak >0.08 in the HWT. If no point fits this 

criterion, the algorithm searches for the first peak >0.05 in the HWT. Once this peak is found, 

the algorithm then sets this peak as the lower limit for searching for the PBLH. The PBLH is 

then the first point in the HWT that falls below 0.05. If this point does not exist, then the PBLH 

is set to the altitude of the minimum HWT between the peak and the top limiter. If there is a 

cloud below the upper limit, the PBLH is set to the altitude of the maximum HWT between the 

base of the cloud and the top limiter. 

The PBLH retrieval steps are shown sequentially in Fig. 3. Figure 3(a) shows the aerosol 

backscatter coefficient on a logarithmic scale for a single day from sunrise to sunset. Figure 3(b) 

shows the free atmosphere as green dots. In Fig. 3(c), the CI is displayed as red crosses. The 

RLs are located beneath the CI and are shown as purple diamonds in Fig. 3(d). In Fig. 3(e), the 

CI and RLs generate the top limiter, represented as a gray line. In Fig. 3(f), the PBLH is located 

beneath the top limiter and is shown as black asterisks. 

The PBLH retrieval contains many outlying points due to noise in the lidar signal. For this 

reason, an iterative method was developed for removing outlying points. The first step to the 

iterative method is taking the 1-h moving average of each layer. Any points >300 m away from 
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Fig. 3 The atmospheric layers found by the retrieval algorithm. (a) The aerosol backscatter coefficient on 
a logarithmic scale from sunrise to sunset. (b) The free atmosphere as green dots. (c) The CI as red 
crosses. (d) The bottom of RLs as purple diamonds. (e) The CI and RLs generate the top limiter, which is 

represented as a gray line. (f) The PBLH as black asterisks beneath the top limiter. 

the moving average are considered potential outliers. The algorithm searches for the closest 

point that meets each layer’s criteria to the moving average. New points are found, and the 

moving average is recomputed with these new points. If there is no change between iterations, 

the operation is complete, and the iterative method is terminated. 

Validation of the PBLH retrieval using the algorithm described above is achieved by 

comparing the PBLH retrieved from the potential temperature profiles measured using 

colocated radiosondes. The Heffter method was used as an objective method for determining 

the PBLH from the radiosonde profiles, and it was implemented according to the process 

described by Sivaraman et al.29 The Heffter method uses the potential temperature lapse rate to 

locate the PBLH. The Heffter method first defines inversion layers as layers with a potential 

temperature lapse rate >5 km
K below an altitude of 4 km. Once these inversion layers are located, 

the Heffter method then looks for the lowest inversion layer with a potential temperature 

difference between the top and bottom of the layer >2 K. If a layer meets this criterion, the 

Heffter method places the PBLH at the top of this layer. Otherwise, the PBLH is set to the 

altitude of the maximum potential temperature lapse rate below 4 km. If there are no lapse rate 

values >5 km
K , the PBLH is indeterminate. 

The Heffter method and other automated PBLH retrieval methods using radiosondes fail in 

certain conditions. Frequently, potential temperature inversion layers at the PBLH do not meet 

the criteria for the Heffter method, and the automated retrieval method sets the PBLH to the top 

of an RL. Thus, the PBLH is routinely estimated by inspection of radiosonde potential 

temperature profiles,30 and the radiosonde PBLH is adjusted to these lower inversion layers in 

these cases. 
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4 Results 

Two cases with different boundary layer conditions are presented to demonstrate the 

effectiveness of the HWT technique using MPD data. On each day, radiosondes were launched 

for comparison. The first day presented, March 13, 2021, demonstrates a well-behaved 

boundary layer with one significant aerosol gradient. The second day, June 2, 2021, 

demonstrates a more complicated boundary layer regime with a strong morning CI and a 

turbulent evening transition. 

4.1 Case Study 1: March 13, 2021 

Figure 4 shows the boundary layer regimes in terms of the aerosol backscatter coefficient, βaer, 

on a logarithmic scale for data collected on March 13, 2021. Sunrise is at 6:39 MST, and sunset 

is at 18:27 MST. In the first few hours of the morning, the PBLH is below the minimum range 

of the lidar. An RL is present in the morning, but the top limiter prevents the algorithm from 

selecting the CI. At 9:30 MST, the PBLH rises above the minimum range of the lidar, reaching 

a maximum height of 880 m at 12:30 MST. The PBLH is relatively constant until the last hour 

 

Fig. 4 The aerosol backscatter coefficient taken on March 13, 2021, from sunrise to sunset with the PBLH 

and the CI. The red-dashed line represents a radiosonde launch. 

 

Fig. 5 A radiosonde launch with PBLH values found by lidar and radiosonde methods taken on March 13, 
2021, 13:30 MST. (a) The aerosol backscatter coefficient (potential temperature) as the blue solid (black 

dotted) line. (b) The HWT (potential temperature lapse rate) as the blue solid (black dotted) line. 
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before sunset when it begins to descend. A weak RL is present in the afternoon. However, this 

layer had few aerosols, and the HWT value at the top of this layer did not meet the 0.05 threshold 

of the CI, and the retrieval algorithm placed the CI at the PBLH. 

A radiosonde was launched at 13:30 MST and is indicated in Fig. 4 as the red-dashed line. 

The radiosonde potential temperature, θ, and aerosol backscatter coefficient, βaer, profiles, are 

shown in Fig. 5(a). The potential temperature lapse rate, , and the HWT of the aerosol 

backscatter coefficient are shown in Fig. 5(b). The HWT shows a single transition layer, and 

the PBLH from the HWT method is 843 m. In the potential temperature profile, there are several 

inversion layers. The lowest inversion layer is located at the same altitude as the aerosol 

transition layer. The PBLH determined by the radiosonde profile is 861 m, closely matching the 

PBLH determined by the HWT method. 

4.2 Case Study 2: June 2, 2021 

Figure 6 shows the boundary layer regimes in terms of the aerosol backscatter coefficient on a 

logarithmic scale for data collected on June 2, 2021. Sunrise is at 5:37 MDT, and sunset is at 

 

Fig. 6 The aerosol backscatter coefficient taken on June 2, 2021, with the PBLH and CI. The red-dashed 

lines represent radiosonde launches. 

21:07 MDT. Three radiosondes were launched and are shown as red-dashed lines. There is a 

strong RL in the first few hours of the morning, but the top limiter prevents the algorithm from 

selecting the CI. At about 8:30 MDT, the PBLH rises above the minimum range of the lidar and 

reaches a maximum height of 2004 m at 12:38 MDT. The PBLH remains relatively constant 

until ∼17∶15 MDT when it begins to descend. Turbulence in the evening transition period 

creates an RL, but the top limiter prevents the HWT from choosing this layer. The PBLH 

descends until sunset. It is last detected at 356 m at 20:33 MDT. 

For the radiosonde launched at 10:15 MDT, the potential temperature and the aerosol 

backscatter coefficient profiles are shown in Fig. 7(a), while the potential temperature lapse rate 

and the HWTare shown in Fig. 7(b). The HWT shows two clear aerosol transition layers. The 

first is associated with the PBLH and the second is the top of an RL. The top limiter is below 

this RL, so the HWT method places the PBLH at 768 m. The potential temperature profile shows 

two clear inversions at the same altitudes as the aerosol transition layers. However, the lowest 

inversion does not have a potential temperature difference of 2 K between the top and the bottom 

of the layer, so the Heffter method selects the second one as the PBLH. The Heffter method 

PBLH is 2552 m. This altitude is the top of an RL, so the PBLH from the potential temperature 

profile is adjusted to the top of the lower inversion layer at 727 m. The adjusted PBLH from the 

potential temperature profile closely matches the PBLH as derived by the HWT method. 

For the radiosonde launched at 12:49 MDT, the potential temperature and the aerosol 

backscatter coefficient profiles are shown in Fig. 7(c), while the potential temperature lapse rate 
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and the HWT of the aerosol backscatter profiles are shown in Fig. 7(d). The HWT shows a 

single aerosol transition layer. The HWT method locates the PBLH to be 1967 m. The potential 

temperature profile from the radiosonde shows the lowest significant potential temperature 

inversion to be located at the same altitude as the aerosol transition layer. The PBLH determined 

by the potential temperature profile is 1879 m, which closely matches the PBLH as determined 

by the HWT method. 

For the radiosonde launched at 15:32 MDT, the potential temperature and the aerosol 

backscatter coefficient profiles are shown in Fig. 7(e), while the potential temperature lapse rate 

and the HWT are shown in Fig. 7(f). The HWT shows a single significant aerosol transition 

layer. The PBLH as determined by the HWT method is 1555 m. The potential temperature 

profile shows several significant inversion layers. The lowest potential temperature inversion 

layer is located at approximately the same altitude as the aerosol transition layer. None of the 

inversion layers met the criterion that the difference in potential temperature between the top 

and the bottom of the inversion layer be >2 K, so the Heffter method places the PBLH at the 

point where the potential temperature lapse rate reaches a maximum. The Heffter method places 

the PBLH at 1943 m. However, because there is an obvious potential temperature inversion 

layer below this, this inversion layer is not the PBLH. The PBLH, as determined by radiosonde, 

is adjusted to the top of the lower layer, with an altitude of 1499 m. This adjusted radiosonde 

PBLH matches the HWT method closely. This radiosonde was launched at almost the exact 

time that the HWT method jumped between aerosol transition layers. This jump can be seen in 

Fig. 6, where the PBLH, as determined by the HWT method, followed the second inversion 

layer until the sonde was launched, then switched to the first layer as the aerosol transition layer 

shifted lower in altitude. This radiosonde highlights how the choice of thresholds affects the 

PBLH retrieval in both the lidar and radiosonde methods. 

4.3 Radiosonde Comparisons 

Radiosondes were used to compare the HWT method to a potential temperature method. About 

32 radiosondes were launched between March and September 2021. Initially, the Heffter 

method was used for comparison. However, many potential temperature inversion layers near 

the PBLH found by the HWT method were too weak to be located by the Heffter method. The 

Heffter criteria are often too strict, and the Heffter method frequently misses the potential 

temperature inversion layer at the PBLH. Additionally, the Heffter method has no top limiter 

other than 4 km, so the Heffter method frequently places the PBLH at the top of an RL. 

The PBLH values found using the Heffter method compared with the HWT method is shown 

in Fig. 8(a). Out of the 32 radiosondes launched, no potential temperature inversion layer met 

the 
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Fig. 7 Radiosonde launches with PBLH values found by lidar and radiosonde methods on June 2, 2021. (a) 

The aerosol backscatter coefficient (potential temperature) as the blue solid (black dotted) line for the 
sonde launched at 10:15 MDT. (b) The HWT (potential temperature lapse rate) as the blue solid (black 

dotted) line for the sonde launched at 10:15 MDT. (c) The same as (a) for the sonde launched at 12:49 
MDT. (d) The same as (b) for the sonde launched at 12:49 MDT. (e) The same as (a) for the sonde launched 

at 15:32 MDT. (f) The same as (b) for the sonde launched at 15:32 MDT. 

Heffter method criteria in eight radiosonde profiles. Of the remaining 24 profiles, the Heffter 

method and the HWT method located the same inversion layer nine times and located different 

inversion layers 15 times. The nine cases where the two methods agree on which inversion layer 

is the PBLH closely agree. The PBLH, as found by the HWT method, is, on average, 105 m 

below the PBLH as found by the Heffter method when the methods agree. The linear model for 
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Fig. 8 Comparison between the lidar and radiosonde PBLH values. (a) A comparison between the HWT 

and Heffter PBLH values. The black asterisks represent sonde launches where the methods chose the 
same inversion layers as the PBLH, and the red circles represent sonde launches where the two methods 

chose different inversion layers as the PBLH. The black dotted line is a linear fit for the black asterisks, 
and the blue solid line is a 1 to 1 line for comparison. (b) The same as (a), except the lidar and adjusted 

radiosonde PBLH values are compared. 

sonde launches where the methods agreed has an offset of 146 m, a slope of 0.977, and a 

coefficient of determination of R2 ¼ 0.985. 

The PBLH was adjusted to the height of the lowest potential temperature inversion layer for 

the radiosonde profiles in cases when the Heffter method missed low-altitude inversion layers. 

The adjusted PBLH values found by radiosonde and the PBLH values found by the HWT 

method are shown in Fig. 8(b). Of the 32 radiosonde launches, the PBLH was visible in every 

launch. The PBLH, as determined by the HWT method and the adjusted radiosonde PBLH, 

were located at the same inversion layer in 27 launches. The other five launches included two 

where the HWT method located a spurious layer underneath the PBLH with an extended 

transition zone, two where the HWT method located the top of an RL, and one where the PBLH 

below a cloud layer was not detected. There were slightly elevated potential temperature lapse 

rates near the spurious aerosol layers, but they were too weak to be the correct PBLH. For the 

27 radiosondes where the two methods chose the same layer, the PBLH, as found by the HWT 

method, was on average 18 m lower than the PBLH determined from the potential temperature 

profile. The linear model for these radiosonde launches has an offset of 129 m, a slope of 0.926, 

and a coefficient of determination of R2 ¼ 0.944. 

5 Discussion 

An automated algorithm for determining the PBLH from MPD data has been developed and 

demonstrated and has the potential to add a valuable data product to the MPD network currently 

in development. Using the HWT method with a top limiter and special conditions for clouds, 

the automated retrieval algorithm finds the PBLH using MPD data for most conditions. The 

thresholds and the range-dependent dilation equation used in this paper were only tested for 

Bozeman, Montana, and will not necessarily work well for other locations and thus requires 

further field validation experiments. The most common error results when the HWT method 

locates a spurious aerosol layer in the case of an extended PBLH and underestimates the PBLH. 

Another frequent error occurs when the HWT fails to locate an RL and errantly sets the PBLH 
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to the top of an RL. These issues are not unique to lidar retrieval algorithms; the Heffter method, 

which uses the potential temperature profile from radiosonde launches, frequently mistakes the 

top of an RL for the PBLH. 

The MPD contains a water vapor differential absorption lidar for profiling atmospheric water 

vapor concentrations in addition to the HSRL and the oxygen differential absorption lidar for 

temperature profiling. The retrieval algorithm in this paper only uses data from the HSRL, but 

future work will explore using the water vapor and temperature profiling capabilities of the 

MPD for improving the PBLH retrieval algorithms. 

6 Conclusion 

The MPD is valuable for continuous monitoring of the thermodynamics of the lower 

troposphere. This paper demonstrated using an HSRL built with the MPD architecture to 

monitor the daytime PBLH with an automatic retrieval algorithm. The PBLH is a data product 

that improves the utility of the MPD network and could be used for weather forecasting or 

forecasting pollution events. The retrieval algorithm used the HWTof the normalized aerosol 

backscatter coefficient, a range-dependent dilation, and a top limiting algorithm. The PBLH, as 

found by the HWT method, closely matched the PBLH determined from the potential 

temperature profiles from radiosonde launches. For 27 of the 32 radiosonde launches, the two 

methods selected the same inversion layer as the PBLH. For these launches, the PBLH as 

determined by the HWT method was on average 18 m below the PBLH as determined by 

radiosonde. The linear fit has a coefficient of determination of R2 ¼ 0.944. Additionally, the 

HWT method using MPD data was more effective than the Heffter method at tracking the lowest 

aerosol layer associated with the PBLH. 
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