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Abstract. We consider a large service system with two customer classes that are distin-
guished by their urgency and service requirements. In particular, one of the customer
classes is considered urgent, and is therefore prioritized over the other class; further, the
average service time of customers from the urgent class is significantly larger than that of
the nonurgent class. We therefore refer to the urgent class as “slow,” and to the nonurgent
class as “fast.” Due to the complexity and intractability of the system’s dynamics, our goal
is to develop and analyze an asymptotic approximation, which captures the prevalent fact
that, in practice, customers from both classes are likely to experience delays before entering
service. However, under existing many-server limiting regimes, only two of the following
options can be captured in the limit: (i) either the customers from the prioritized (slow) cus-
tomer class do not wait at all, or (ii) the fast-class customers do not receive any service. We
therefore propose a novel Fluid-Diffusion Hybrid (FDH) many-server asymptotic regime,
under which the queue of the slow class behaves like a diffusion limit, whereas the queue
of the fast class evolves as a (random) fluid limit that is driven by the diffusion process.
That FDH limit is achieved by assuming that the service rate of the fast class scales with the
system’s size, whereas the service rate of the slow class is kept fixed. Numerical examples
demonstrate that our FDH limit is accurate when the difference between the service rates
of the two classes is sufficiently large. We then employ the FDH approximation to study
the costs and benefits of de-pooling the service pool, by reserving a small number of
servers for the fast class. We prove that, in some cases, a two-pool structure is the asymp-
totically optimal system design.
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1. Introduction

service capacity (which is not allocated to the guaranteed

We consider a large-scale service system that handles
two classes of customers with substantially different ser-
vice requirements: a class of “urgent” (or “guaranteed”)
customers, that should be served quickly, and a class of
“nonurgent” (or “best effort”) customers, that can be de-
layed for relatively long time periods. Due to the practi-
cal relevance, variants of such systems were studied ex-
tensively in the literature in various settings and
application domains. For example, in healthcare settings,
“urgent” may refer to high-acuity patients that should
be prioritized over lower-acuity (nonurgent) patients. In
economic models, “urgent” may refer to customers who
pay a premium in order to receive service within a guar-
anteed time period, and are thus prioritized over
“nonurgent” customers, who receive only the remaining
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customers), and can therefore experience long delays.
Our aim in this paper is to capture the following ubig-
uitous phenomenon: Despite the fact that the urgent
customers are prioritized over the nonurgent ones, they
may nevertheless experience delay. As we elaborate,
this phenomenon presents modeling and analytical
challenges, because it cannot be captured by standard
many-server asymptotic regimes. Further, delays for
both customer classes can coexist in the asymptotic ap-
proximation only if the high-priority customers require
longer services than the low-priority customers. We
therefore consider systems in which the average service
time of the urgent class is substantially longer than that
of the nonurgent one, and we refer to the former as the
“slow class,” and to the latter as the “fast class.” We
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will also refer to the slow- and fast-class customers as
“slow customers” and “fast customers,” respectively.

1.1. Motivation
The main motivation for this work comes from the ob-
servation that the setting just described applies in sev-
eral important systems, in which the customers who
receive high priority also require long service times.
For example, contact centers employing “blending” of
inbound calls with other types of jobs, such as out-
bound calls or emails, are prevalent in practice (see
Gans et al. 2003; Pang and Perry 2014). Although
service-level constraints for inbound calls require that
they be replied to relatively quickly (often within sev-
eral seconds), the other type of jobs can be delayed for
long time periods (hours or even days) before being
processed. Further, the average duration of an inbound
call is typically several minutes long, whereas email
replies may follow a generic template, and require only
several seconds to process. Similarly, the average dura-
tion of outbound calls is often short, because those
calls are not initiated by the customers, who may not
be interested in having a conversation with the agent.
Other important cases to which our setting applies
are healthcare systems that treat patients with differ-
ent levels of severity. In such cases, the level of severi-
ty is typically positively correlated with the length of
the treatment, as well as the prioritization of the dif-
ferent patient types. For example, emergency rooms
(ER)" in the United States employ a five-level Emer-
gency Severity Index (ESI) to rank the acuity of
patients during the triage stage (Gilboy et al. 2012).
Patients granted ESI-1 are in need for an immediate,
life-saving treatment, whereas ESI-2 patients require
treatment “as soon as possible” due to risk of deterio-
ration. Patients with ESI levels 3-5 (the particular ESI
level of those patients differ by the amount of resour-
ces the triage nurse estimates they will need) can wait
until a bed is available in the ER. Because ESI-1 pa-
tients constitute approximately 1%-3% of all ER
patients, Fitel et al. (2003), and because large ERs typi-
cally reserve resources (beds) for those patients, one
can consider the ER as a two-class service system with
our modeling characteristics, with ESI-2 patients being
the “slow-class customers” (as those patients require
long treatment times), and the lower-acuity patients
with ESI 3-5 being the “fast-class customers.” Indeed,
ESI-2 patients are prioritized over the lower-acuity pa-
tients, and thus experience relatively short waiting
times, whereas the waiting times for the ESI 3-5 pa-
tients are long (can be measured in hours) relative to
the waiting times of ESI-2 patients, and relative to
their own treatment times (see Song et al. 2015). A
similar characteristic can be found in Inpatient Units
(IPs) that treat Observation patients in addition to the

Inpatients, because the former type of patients has
lower priority during bed assignments, and shorter
average treatment times than the latter patient type.

An immediate question for the above examples is
whether it is beneficial to split the service pool into
two separate pools—one that is dedicated to the slow
(urgent) class, and the other that can serve both clas-
ses. Specifically, a fundamental implication of many-
server asymptotic analysis is that pooling reduces
waiting times of all customers, due to associated econ-
omies of scales (Whitt 1992). However, in the multi-
class setting, significant improvements, in terms of
waiting times, can be achieved for the fast class with
only minor impacts on the slow class. We therefore
study a two-server-pool system as well, and show
that de-pooling may be asymptotically optimal, in our
proposed asymptotic regime, when abandonment,
holding, and staffing costs are incurred.

1.2. Modeling and Analytical Approaches

To repeat, the examples discussed above all share the
two features that we aim to model, namely, (i) the ser-
vice requirements of the prioritized (urgent) class is sub-
stantially longer than that of the lower-priority class,
and (ii) a nonnegligible proportion of the customers
from either class experiences delays in queue before en-
tering service. Unfortunately, exact analysis of the sys-
tem is intractable, even if it evolves as a continuous-time
Markov chain (CTMC), as one must keep track of the
number of customers from each class in service and in
queue, so that the minimal Markov representation of the
system is four-dimensional in the single-pool case, and
five-dimensional in the two-pool case. Furthermore, lit-
tle insight can be obtained from numerical computations
of the system’s steady-state, or from simulations that
aim to approximate steady-state performance metrics,
and it is therefore natural to resort to a Many-Server
Heavy-Traffic (MSHT) approximation. However, under
existing MSHT limiting regimes, only the following four
scenarios are possible in the limit:

(D) The system is underloaded, in which case both clas-
ses are served, and neither class experiences any delay.

(I) The system is critically loaded, in which case
both classes are served, and the urgent (prioritized)
class experiences negligible delays.

(II) The system is overloaded, but there is sufficient
service capacity to serve the urgent class alone. In this
case, the urgent class experiences negligible delays,
and a significant proportion of the nonurgent class
abandons the queue.

(IV) The system is overloaded, and there is at most a
negligible service capacity left for the nonurgent class.
In this case, the urgent class may experience nonnegli-
gible delays, and most nonurgent customers abandon
the queue.

(See Section 2 for a more rigorous discussion on the
four scenarios.) Therefore, in order to capture our
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desired dynamics, we propose a new MSHT regime
for a system with sufficient service capacity to handle
all customers (unlike in scenario (IV)), such that both
customer classes experience nonnegligible delays as-
ymptotically (unlike scenarios (I)-(II[)). We achieve
this by considering a properly scaled sequence of
queueing systems in which, in addition to the arrival
rates and the number of servers, the service rate of the
fast class is accelerated appropriately. Under that scal-
ing, the queue of the fast class converges to a (ran-
dom) fluid limit, whose dynamics are governed by
the resulting diffusion limit of the slow class. We
therefore refer to this limiting approximation as a
Fluid-Diffusion Hybrid (FDH).

As usual, a limiting approximation for an intractable
stochastic system is useful because, in addition to pro-
viding quantitative estimations for key performance
measures, it also provides qualitative insights that are
not available otherwise. Here, we demonstrate this by
employing the FDH limit to consider the impacts of de-
pooling, namely, of splitting the service pool to two
separate pools—one that handles both classes, and the
other that is dedicated to the fast class. Because the fast
class requires short service times, the size of the dedi-
cated pool is an order of magnitude smaller than that
of the shared pool Motivated by the ER setting, in
which a relatively small pool of beds that are dedicat-
ed to patients who have low priority in the general ER
is referred to as “fast track,” we refer to the dedicated
pool by the same name. A schematic representation of
the single- and the two-pool system is depicted in
Figure 1, which clarifies why the single-pool system is
often referred to as the V-model (or V-system), where-
as the two-pool system is known as an N-model.

To summarize, the contribution of this paper is
threefold:

(1) We propose a new asymptotic regime for a two-
class many-server queueing system (the V-model) in

which the service rates of the two classes are signifi-
cantly different. In that new FDH limit (i) both classes,
including the high-priority class, have a nonnegligible
probability of waiting for service, and (ii) both classes,
including the low-priority class, receive service.

(2) We employ the FDH limit to study the potential
benefits of de-pooling (the N-model). We show that a
small number of dedicated servers, that is an order of
magnitude smaller than the total number of servers,
can substantially reduce the overall congestion in the
system by reducing the delay of the fast-class custom-
ers at the expense of a negligible increase in the delay of
the slow class. Our analysis thus confirms existing evi-
dence, that having a small fast track can reduce overall
waiting times for patients in the ER (see, e.g., Cooke
et al. 2002, Sanchez et al. 2006).

(3) Finally, we demonstrate how the FDH limit can
be used to optimize the system’s topology when a
holding and staffing cost is incurred. In particular, we
prove important structural results for the optimal
system-design problem in the FDH limit, and prove
that the FDH-optimal system topology is asymptotical-
ly optimal in an appropriate sense (see Proposition 1 in
Section 6).

1.3. Conventions About Notation

All random variables and processes are defined on a
probability space (Q,F,P). We let Z, :={1,2,...} de-
note the positive integers, R denote the real numbers,
and RX, k > 1, denote all the k-dimensional vectors
with components in R. We use e to denote the identi-
ty function, e(t) = t. The indicator function of a set A,
denoted by 14, is the function that equal to 1 on A
and to 0 otherwise. We denote by D* := D([0,00), R¥)
the space of Rf-valued right-continuous functions
with limits from the left, endowed with Skorohod
J1 topology; see, for example, Whitt (2002), and write
D for D".

Figure 1. A Single-Pool “V-system” (Left), and a Two-Pool “N-system” with a Fast Track (Right)
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In the subspace C*c D* of R*-valued continuous
functions, the J; topology reduces to the topology of
uniform convergence over compact intervals, which is
induced by the uniform metric

llxll, := sup [lx(s)||:= sup max |x(t)l, x=(x1,...,x;)€C;
0<s<t 0<s<p 15i<k

note that we have used ||-|| to denote the maximum
norm in R¥. We use = to denote weak convergence
(convergence in distribution).

For a sequence of positive real numbers {a" : n € Z, }
and a sequence of real numbers {V" : n € Z, }, we write
(i) b" =o(a") if |b"/a"| — 0 as n — oo; (ii) b" = O(a") if
|b" /a"| is bounded from above; (iii) b" = ©(a") if [b" /a"|
is bounded from above and from below by strictly
positive numbers, namely, if m <|b" /a"| < M for some
0<m<M< oo and forall n.

For a sequence of random variables {y":ne€Z,}
and a sequence of positive real numbers {a" : n € Z. },
we write (i) ¥ =op(a") if ||y"||/a" = 0 as n — oo; (ii)
y" = Op(a") if {|ly"||/a" :n € Z.} is a tight sequence in
R; and (iii) y" = ©p(a”) if y" is Op(a™), but not op(a™).
Finally, for a sequence of stochastic processes {Y":n €
Z,} and a sequence of positive real numbers
{a":neZ,}, we write (i) Y" =op(a") if for any t>0,
[[Y"l;/a" = 0 as n — oo; (ii) Y" = Op(a") if for any ¢ >
0, {IY"|l;/a":n€Z,} is a tight sequence in R; and
(iii) Y = @p(a™) if Y" is Op(a™), but not op(a”).

1.3.1. Organization. The rest of the paper is organized
as follows: We provide background on relevant
many-server heavy-traffic asymptotics, and expand
on the theoretical need to develop the FDH regime in
Section 2. A review of related literature is presented in
Section 3. Sections 4 and 5 are dedicated to analyzing
the “V-system” and the “N-system,” respectively. In
Section 6, we consider the V and N models under a
cost structure, and establish the asymptotically opti-
mal system design. We present numerical examples in
Section 7, and summarize in Section 8.

2. Background on MSHT Asymptotics

and Relevant Insights

In this section, we provide background information
on heavy traffic limiting approximations and relevant
insights for the FDH regime. Because we are interest-
ed in systems with many agents (or servers), we focus
on the MSHT limiting regime, which is achieved by
considering a sequence of queueing systems in which
the number of servers increases to infinity, and the
traffic intensity is scaled appropriately so that nontri-
vial limits are achieved.

2.1. Existing MSHT Limiting Regimes

In their seminal paper, Halfin and Whitt (1981) classi-
fied three heavy-traffic regimes, which were later
named in Garnett et al. (2002) as Quality-Driven (QD),
Quality-and-Efficiency Driven (QED), and Efficiency-
Driven (ED) regimes. Under the QD regime, an arrival
will—with probability converging to 1—find an idle
agent, and will therefore not be delayed in queue.
Thus, a pool of servers operating under the QD re-
gime is asymptotically equivalent to an infinite-server
queue, as in Iglehart (1965). In contrast, under the ED
regime, an arrival—with probability converging to
1—will need to wait in a queue to be served. Under
the QED regime, which was first identified in Halfin
and Whitt (1981), and is therefore also called the Half-
in-Whitt regime, the probability that an arrival will find
all servers busy is, asymptotically, strictly between 0
and 1, even though most servers are working at any
given time. More specifically, at most order y/n servers
can be idle as n — oo, where n is the number of servers
in the pool. In this regime, the queue is of order \/1 so
that waiting times, as well as the proportion of aban-
donment, are decreasing to 0 at rate 1/+/n. For a single
class and single-pool system with no abandonment, it
was shown in Halfin and Whitt (1981) that the QED
regime is achieved via the square-root staffing rule,
stipulating that

mﬁ(l_pﬂ)zﬁ’

for some g > 0, where p, <1 is the traffic intensity (ar-
rival rate divided by the total service rate of the pool).
This result was extended in Garnett et al. (2002) to in-
clude abandonment, in which case p, >1 (and g <0)
is allowed.

For a single-class, single-pool system with abandon-
ment, we can therefore distinguish between the three
different regimes according to the value of f: For
B =+c0,BER, or = —0o, the system operates in, re-
spectively, the QD, QED, or ED asymptotic regime.
Further, abandonment and waiting times are asymp-
totically negligible in all cases, unless liminf,_,.p" > 1
(and in particular, when p" —p>1 as n— ), in
which case the proportion of abandonment is asymp-
totically nonnegligible, and waiting times are of the
same order as service times. Note that this latter case
corresponds to having a genuinely overloaded sys-
tem, because the traffic intensity is bounded away
from its critical value 1. The queue process is then
well-approximated by a fluid limit; see Whitt (2004).

A fourth MSHT regime, named nondegenerate slow-
down (NDS), was proposed in Atar (2012). The NDS re-
gime is of “ED-type,” because arrivals are delayed in
queue with a probability converging to 1, but, unlike
previous ED approximations, waiting times are of the
same order as the service times while simultaneously,
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the abandonment proportion is negligible. In particu-
lar, the proportion of abandonment is of order 1/+/n,
as in the QED regime. The NDS asymptotic regime is
achieved by scaling the number of agents, as well as
the service rate of each individual agent, by Vn.

In practice, engineering consideration is required in
order to determine which regime is an appropriate
approximation for a given system. If most customers
enter service immediately upon arrival, then the QD
approximation is appropriate. If a nonnegligible pro-
portion (which is not too close to 1) of the arrivals is
delayed in queue, but waiting times of delayed cus-
tomers are short relative to their average service
times, then the QED regime is an appropriate asymp-
totic approximation. On the other hand, if almost all
arrivals are delayed in queue, then the ED approxima-
tion should be employed. (The exact type of ED ap-
proximation can be chosen based on the proportion of
abandonment, e.g., NDS when abandonment is negli-
gible, and a fluid approximation when abandonment
is substantial.)

2.2. Relevant Insights
With the insights obtained from the single-class sin-
gle-pool setting, we can explain why the four scenari-
os in Section 1.2 are the only possible ones. Consider a
sequence of single server-pool systems indexed by the
number of servers n, and for i = S, F, let A?, y;, and 6,
denote the arrival rate, service rate, and abandonment
rate of the class-i customers, respectively, in system n.
(S and F are mnemonic for “fast” and “slow.”) As-
sume that A]/n— A; as n — oo, but that the service
and abandonment rates are kept fixed along the se-
quence. Note that abandonment keeps the two queues
stable even if the total arrival rate to the system is
higher than its total processing rate. Let p” := A} /(ny.)
denote the traffic intensity of class i and p, := A;/y; de-
note the limit, so that p! /n — p,asn — oo, fori =S, F.
If ps + pp <1, then the system operates in the QD re-
gime, and neither class experiences any waiting, as-
ymptotically. The same continues to hold if ps + pp =1,
but 1 - p — p? converges to 0 at a slower rate than v,
namely, if Vn(1— pZ— p?) — oo as n — oo; see Iglehart
(1965) and the discussion in the introduction of Halfin
and Whitt (1981). These two cases correspond to sce-
nario (I). Scenario (II) arises when p;+ p. =1, but 1—
pi — pi converges to 0 at rate y/n or faster, whereas Sce-
nario (1) arises when p, +p, > 1, but p; <1. In this
case, the delay in queue of the slow class is negligible
asymptotically with respect to the delay of the fast
class; see, for example, Theorem 3 and the discussion
following it in Maglaras et al. (2017). Finally, if pg > 1,
then, asymptotically, there is no service capacity left
to handle the low-priority (fast) class, so that the
proportion of fast customers that are served is negli-
gible, and practically all those customers leave the

Table 1. Summary of Existing MSHT Regimes for Two-
Class Priority Systems

Traffic intensity Slow class Fast class
V(1 — pt — pit) — +oo QD QD
1-pi—pt=0@m7?) QD QED
ps+pe>1land pg <1 QD ED
ps+pr>land pg =1 QED or ED No Service

system via abandonment, as in scenario (IV). Table 1
summarizes the four scenarios.

2.3. A Singular Perturbation Approach
The discussion above shows that a different MSHT ap-
proach is required in order to have an asymptotic ap-
proximation for the system under which customers
from either class are delayed, but most customers (from
either class) are eventually served. Because we want
the probability that a slow customer is delayed in
queue to be strictly positive, we should assume that
ps 21, but then only a negligible service capacity can
be allocated to the fast class. One might try to circum-
vent this problem by exploiting the fact that the fast
class requires short service times, and take 1/u. =0.
This perturbation approach can be effective in some
cases, as in Whitt (2005), but it is easy to see that it trivi-
alizes the problem in our setting. Indeed, if the fast class
is served instantaneously, then a single dedicated serv-
er for that class would suffice to ensure that no queue-
ing of fast-class customers ever occurs. Asymptotically,
the system is then equivalent to the singleclass
M/M/n+M (Erlang-A) queue, serving the slow class
only. Further, prioritizing the fast customers in this case
does not impact the service quality of the slow custom-
ers at all. Therefore, such an approximation has no use-
ful implication for the practical settings we consider.
Instead, we propose a singular perturbation ap-
proach, in which the service time of the fast class ap-
proaches 0 (equivalently, the service rate increases
without bound), but remains strictly positive along
the sequence of systems. We achieve our modeling
goals by letting the service rate of the fast class in-
crease with n at an order O(y/n), while maintaining
the service rate of the slow class fixed. Under an ap-
propriate spatial scaling, the queue of the fast class
converges to a diffusion process, and the queue of the
slow class to a fluid limit whose dynamics are gov-
erned by those of the diffusion limit.

3. Literature Review

The V and N models have both been studied exten-
sively in the conventional heavy traffic setting; for
example, see Whitt (1971), Bell and Williams (2001),
Ghamami and Ward (2013) (with customer abandon-
ment), and Harrison (1998), as well as in the MSHT
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setting, which is our focus here; see, for example, Atar
et al. (2010), Harrison and Zeevi (2004), Atar et al.
(2004), and Gurvich et al. (2008), for works related
to V-systems, and Tezcan and Dai (2010) for an N-
system. Also related are the papers Gurvich and Perry
(2012), which considers overflow from a main pool of
agents to a second pool (or pools), and Perry and
Whitt (2009, 2011, 2015), which consider an automatic
control designed to transform an X-model (with two-
way sharing) into an N-model. Unlike our FDH limit,
the limits in all these works (and also in other works
considering heavy traffic approximations for queue-
ing systems) are either fluid or diffusion processes.
Further, the numbers of servers in the two pools in
the N-systems are of the same order, whereas the fast
track in our N-system is an order of magnitude small-
er than in the main pool.

Our work relates to the literature on service systems
that handle two types of customers: guaranteed and
best effort. The service quality for the former customer
class (in terms of delay times in queue or in terms of
service rates) is guaranteed, whereas for the latter class,
the allocation of service capacity is based on availabili-
ty; see Afeche (2013), Maglaras and Zeevi (2004),
Maglaras and Zeevi (2005), and references therein.

Assuming that customers are strategic and seek to
maximize their utility, Maglaras et al. (2017) shows
that firms providing a service to a market consisting
of several customer classes should offer a menu of de-
lays and costs in order to maximize their profits. In
particular, optimal market segmentation might re-
quire that low-priority classes are delayed in queue,
even when such delays can be eliminated due to hav-
ing sufficient service capacity. In this case, the optimal
staffing is to have the high-priority class operate in
the QD regime, and the low priority in the ED regime.
Here we do not consider a customer choice model,
but it is intuitively clear that having the low-priority
class operate in the QED (instead of the QD) regime
might be optimal in some cases; the FDH approxima-
tion can be used to study such cases when the service
times of guaranteed and best-effort customers are sub-
stantially different. (Note that longer service times can
be offered as part of a delay, service-time, and cost
menu.) We also refer to Nazerzadeh and Randhawa
(2018), which considers a related problem in the single-
server setting, and Gurvich et al. (2019), which com-
pares the priority schemes of revenue-maximizing firms
to those of a social planner.

Another closely related paper is Ata and Van Mie-
ghem (2009), which considers a queueing system in
which an “express class” is served by a fast service
pool, and a “standard class” is served by a slow ser-
vice pool. The problem considered in this paper is
whether letting the fast servers process customers

from the standard class is beneficial, namely, whether
the system should operate two independent dedicated
service pools, or an N-system with a shared service
pool and a second pool dedicated to the slow class.

3.1. Perturbation and Singular-Perturbation
Techniques

Perturbation of a (possibly stochastic) dynamical
system is an analytical method in which a “small” pa-
rameter or process ¢ is replaced by 0 (0 may be the ze-
roth function, depending on the setting). If the limit
point £ =0 differs in important ways from the ap-
proach to the limit as € — 0, then a singular perturba-
tion technique is required, in which & (which is fixed
for the given system) is taken to 0 in a suitable way, so
as to achieve a meaningful limiting approximation;
see, for example, Hinch (1991).

Whitt (2005) considers the heavy-traffic limit for the
G/H;/n/m queue, in which the service-time distribu-
tion H; is exponential with mean 1 /v with some prob-
ability p, and has point mass at 0 with probability
1 - p. Thus, the system with the H, service-time distri-
bution can be considered as a perturbation for a
system with an hyperexponential service-time distri-
bution H> (a mixture of two exponentials) in which
the service time is, with probability 1—p, small rela-
tive to v. This perturbation technique was shown to be
useful for developing closed-form expressions for per-
formance measures for the M/G/n model in Whitt
(1983). Maglaras and Zeevi (2004) employs a perturba-
tion approach, in which the service rates of different
customer classes are perturbed about a single value in
order to develop a diffusion limit that approximates
the intractable diffusion limit of the original system
with arbitrary service rates.

Singular perturbation techniques have been used
extensively in the study of stochastic systems. An ex-
ample for a fluid limit of a queueing model can be
found in (Perry and Whitt 2016, section 6), where one
of the control parameters is replaced by 0 in certain
states of the system. The resulting singularly per-
turbed dynamical system is then amenable to qualita-
tive long-run analysis that is intractable for the origi-
nal fluid limit. Perthaps the most prevalent technique
is the method of time scales, under which a small and
fast process is replaced by its local stationary behav-
ior; see, for example, Yin and Zhang (2005), Yin and
Zhang (2012), and Khasminskii and Yin (2005). In the
queueing literature, we mention pointwise stationary
approximations, as in Bassamboo et al. (2009) and
Whitt (1991), and stochastic averaging principles, as in
Hunt and Kurtz (1994) and Coffman et al. (1995). We
refer to Gurvich and Perry (2012) and Perry and Whitt
(2013) for detailed discussions and literature reviews;
see also Wu et al. (2018) and Moyal and Perry (2017).
However, we emphasize that our singular-perturbation
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approach here is different than in any of the aforemen-
tioned papers, because our diffusion process evolves in
the same time scale as the fluid process, so that no sepa-
ration of time scales occurs.

Finally, scaling of service times was proposed in
Atar (2012) to develop the NDS regime. See Atar and
Gurvich (2014) for an application of the NDS regime
in multiclass multipool systems. However, unlike our
setting, the number of agents in the NDS regime scales
in the same order as the service rates, and the service
times of all customer classes scale in the same fashion.
More importantly, the NDS regime was developed so
as to have the service time and delay in queue of a
typical customer decay at the same order n'/?; in par-
ticular, both are comparable to each other. In the FDH
regime, however, the service time of a fast customer
decays at rate n~'/2, whereas the average delay is
bounded away from 0 as n— co. Thus, the fast
customers experience delays that are an order of mag-
nitude larger than their service times, and so the
corresponding queue does not operate in the NDS

regime.

4. The FDH Limit for the V-System

We consider a single pool of many statistically homo-
geneous agents that handle two customer classes, as
depicted in the left panel of Figure 1. The service times
of class-i customers are assumed to be Independent
and Identically-Distributed (IID) exponential random
variables with mean 1/, i = S, or i = F, and to satisfy
1/up <1/pg; see Assumption 1. We refer to class-S
and to class-F customers as slow and fast, respectively.

We let the arrival process of class-i customers fol-
low a Poisson process with rate A;. A class-i customer
that is not routed to an agent immediately upon arriv-
al is placed in an infinite buffer (there are two buffers,
one for each class), and waits for his turn to be served.
We assume that each class-i customer has a finite pa-
tience time that is exponentially distributed with
mean 1/6;, and will abandon the queue if his delay in
queue exceeds his patience time. All random variables
are assumed to be independent from each other, as
well as from the two independent Poisson arrival
processes.

Agents are nonidling, namely, an agent does not
idle if a customer is waiting in either queue, and give
strict priority to the slow class. For tractability, we as-
sume that the routing policy is preemptive, so that a
slow customer never waits in queue if there are fast
customers in service. A fast customer who is replaced
by a slow customer is put back at the head of his des-
ignated queue, and resumes his service at a later time.
As we explain in Section 7.3, the difference between
the queueing dynamics under the preemptive and the
nonpreemptive priority policies diminishes as the size

of the system increases, so that our results are mean-
ingful also if the nonpreemptive priority policy is
employed.

4.1. The FDH Scaling
The FDH approximation is obtained in a MSHT limit-
ing regime for a sequence of systems indexed by the
number of servers n, as n increases without bound.
We append with a superscript n the arrival, service,
and abandonment rates, as well as the stochastic pro-
cesses corresponding to system n. We let A% and A}
increases proportionally to n, so that neither one is as-
ymptotically negligible, but take the abandonment
rates of both classes, and the service rate of the slow
class, to be fixed along the sequence. The aforemen-
tioned singular-perturbation technique corresponds to
letting the service rate of the fast class scale with n so
as to achieve a nontrivial limit. It will become clear
(see the discussion below Theorem 1) that, because we
consider the slow class to be operating in the QED re-
gime, uf must increases at a rate y/n. We formalize
our MSHT scaling in the following assumption.

Let r; denote the scaled offered load of the fast
class; in particular,

=R}/\n where R} := A%/ul. (1)

Assumption 1 (FDH Scaling). For B € R and 65 >0, the
following holds for the slow class.

lim (n— A /Nn=B, ut=1, and 6¢=6s foralln>1.

For strictly positive real numbers Ar, rg, and O, the
following holds for the fast class

lim A} /n=Ap, lunr"—rp, and OF =06 foralln>1.

H—ro0

We remark that the assumption uf =1 is taken with-
out loss of generality, because we can also measure
time in terms of the expected service-time of the slow
class.

Let X?(t) and Q”(t) denote the number of class-i cus-
tomers in the system and in queue at time ¢, respec-
tively, and let X"(f):=(X%(t),XF(t) and Q"(f):=
(Q%(t), Qi(t)). Note that X" is a CTMC, but that Q" is
not Markov. The FDH-scaled processes are defined
Vvia

NRSE

LR N N QS QF
Q _(QStQF)_(mt A; .
Notice that the processes corresponding to the slow
class, X? and Qf, are diffusion-scaled, whereas the

X" .= (x" 5<")

X"nx") p

)
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processes corresponding to the fast class, X7 and Qr,
are fluid-scaled.

4.2. The FDH Limit
The FDH limit of X" in (2) depends on having the se-
quence of initial conditions X" (0) converge in R%. We
therefore must guarantee that the initial conditions in
the limit and the prelimit are “legitimate” as in the fol-
lowing assumption.

Assumption 2 (Initial Condition for the V-System).
Q%(0) = (X2(0) —n)* and Q1(0) >0 foralln > 1.

Both Assumptions 1 and 2 are assumed to hold
throughout this section.

Below is the main result for the V-system—the FDH
limit for the scaled sequence {X" :n > 1}. This limit is
characterized via a stochastic differential equation
(SDE) whose solution is a fluid-diffusion hybrid, and
we thus refer to that SDE as a Hybrid Stochastic Differ-
ential Equation (HSDE).

Theorem 1 (FDH Limit for the V-System). If X"(0) =
X(0) in R?, then X" = X in D?, where X := (Xs, X) is the
unique solution to the following HSDE with initial condi-
tion X(0)

dXs(t) = (—B + Xs(t)” — OsXs(t)*)dt + V2dB(t),  (3)
dXp(t) = (1-77'Xs(t)” — OpXp(t))dt +dI(t) and
Xp(t) 20, 4)

where B is a standard Brownian motion, and I is the unique
nondecreasing process satisfyying

i
10)=0 and f Lxepoydl(s) =0, forallt>0. (5)
0

Observe that the expression characterizing the process
Xs in (3) does not involve Xr; it is the piecewise
Ornstein-Uhlenbeck (OU) process that was shown in
Garnett et al. (2002) to arise as the limit for the Erlang-
A model operating in the QED regime. However, X
and X are dependent processes, as is clear from (4).
(Observe that Xs and Xr(0) are the only sources of
randomness in the equations for Xr in (4) and (5).)
From the fact that X is the Garnett diffusion, it fol-
lows that the number of agents working with fast cus-
tomers is Op(y/n) in the prelimit. This explains why
the service rate of the fast class must scale at a rate y/n.
Further, due to the fluid scaling of X7, the limit pro-
cess Xr is therefore reflected at 0, and its nonnegativ-
ity is preserved by the regulator process I in (5). It is
also easy to see that Xr is bounded w.p.l1 by
max{Xr(0),65'}, and in fact, one can show that if
Xr(0) > 65", then X will decrease toward [0, 6;") and
will be absorbed in this interval.

It is easy to see that the limit process X in Theorem 1
also characterizes the FDH limit of {Q" :n >1}: For
each n>1, we have Q!=(X%-n)" and Q+QF
= (X% + X2 —n)". Therefore, Theorem 1 and the contin-
uous mapping theorem imply that Q:=(Qs,Qr):=
(X%, Xg) is the FDH limit of {Q" : n>1}. (Notice that
X; and Qp both converge weakly to the same limit X
due to the fact that the number-in-service process of

the fast class is Op(y/1).)
Now consider the prelimit cumulative idleness process

P = [[(n-X36 - X0 a5,

and its scaled version I" =I"/R:. Note that the inte-
grand in the above expression represents the number
of idle agents at time s. Because idleness is nonde-
creasing and “accumulates” only when the queue of
the fast class is empty, we have

t
./u. Loresodl (5)=0, forallt>0,

which is analogous to (4), due to the aforementioned
asymptotic equivalence of Qr and Xr. Indeed, we can
prove that I is the FDH limit of I". We summarize in
the following corollary to Theorem 1.

Corollary 1. If X"(0) = X(0) in R?, then (X",Q",1") =
(X,Q,1) in D® as n — oo, where (Xs, Xr,I) is characterized
in (3)~(5).

4.3. FDH Approximation for Limiting Distributions
Due to the abandonment, the process X", which is
clearly an irreducible CTMC, is positive recurrent for
each n > 1, and thus ergodic; in particular, it possesses
a unique stationary distribution, which is also its lim-
iting distribution. One expects to have the FDH-scaled
sequence of stationary distributions converge weakly
as n — oo, to the stationary distribution of the FDH
limit, but such a result is not guaranteed to hold in
general. We note that the (marginal) stationary distri-
butions of the processes X5, n>1, have been shown
to converge to the stationary distribution of the
limiting Garnett diffusion in (Garnett et al. 2002,
Appendix C). Here, however, we must prove the re-
sult for the sequence of joint stationary distributions of
the processes (X5, X}).

For a sequence of ergodic CTMCs that converges to
a fluid limit, it is typical to have the corresponding
sequence of stationary distributions converge to a
stationary point of the fluid limit. (A point x* is sta-
tionary, if Xp(t) = x* for all ¢ > 0, whenever X¢(0) = x".)
However, the fluid part of the FDH limit Xr clearly
keeps oscillating indefinitely, and therefore cannot
possess a stationary point. Nevertheless, Xr is a
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stochastic fluid limit, and its driving diffusion process
X does possess a stationary distribution, as was just men-
tioned. We use this latter fact to show that the FDH lim-
it X is regenerative with a finite expected cycle length,
thus possessing a unique limiting distribution. We then
show that this limiting distribution is the weak limit of
the stationary distributions of {(X":n>1}asn— oo.

Let (X"(c0),Q"(c0)) denote an R* random variable
having the limiting distribution of (X", Q"), and define
the FDH-scaled random variables

—-ﬂoo i —-ﬂoo —-ﬂoo — XE(OO)—H XE(OO)
X(00) := (X 5(00), Xp(e0)) ( N Y

Q' (e0) = (Qz(oo),Q;(oo))z(QE(w) Qg(oo))_

), and

VYRRRY

Theorem 2. The following hold:

1. The FDH process (X, Q) possesses a unique stationary
distribution, which is also the limiting distribution, namely,
(X(#), Q(t)) = (X(c0), Q(c0)) in R* as t — oo, with

Q(c0) := (Qs(00), Qr(20)) = (Xs5(c0)", Xp(00)).

2. (X"(0),0"(0)) = (X(c0),Q(c0)) in R* as n — oo.
In particular,

lim lim E[f(X" (), Q" (#))] = lim lim E[f(X"(5),Q"())]
= E[f(X(0), Q(=0))],

for any bounded and continuous function f : R SR
3. {Qi(c0):n>1} is Uniformly Integrable (UI) for
i=S,F, so that

lim E[Q](c0)] = E[Qi(c0)].

The random variables Xs(c0) and Qs(co) are the
steady-state distributions of the Garnett number-
in-system and queue process, respectively; see part (2)
of theorem 2* in Garnett et al. (2002). Note that, just
like the process Xp, the corresponding limiting distri-
bution X¢(c0) has support on [0,05"), with a positive
probability mass on state 0. Indeed, X} can be bound-
ed from above, in sample-path stochastic order, by an
infinite server queue having service rate O, giving the
upper bound of the support of the limiting process X
(see the proof of Theorem 4). Further, it follows from
(4) that, if Xs(t) < —rf, then X is strictly decreasing at
time t. Because X is an ergodic diffusion process, it
almost-surely experiences excursions below —r¢ for
sufficiently long time intervals so as to allow the
(bounded) process X to empty, and then remain at

state 0 until X5 experiences an excursion in the set
[—7E, 00), which causes X to increase.

It is also worth noting that, because Xg(co) has a
positive probability mass at 0, the probability that a
fast-class customer does not need to wait is positive
asymptotically (as n — o0). Thus, even though the fast
class is highly congested, and has fluid queue build-
ing up over much of the time, it does not strictly oper-
ate in the ED regime, as defined in Garnett et al.
(2002); see Table 1 in this reference.

4.3.1. Approximating Performance Measures. Due to
Theorem 2, we can use the limiting distribution of the
FDH limit, as well as the expected values of the limit-
ing FDH queues, to approximate key performance
measures for the prelimit stochastic system. For i=
S,F and for n large, we consider the following meas-
ures: the probability of delay in queue P(W! > 0); the
average waiting time of delayed customers (including
the waiting of the customers who eventually abandon
the queue, but excluding customers who are not de-
layed) E[W}|W} > 0]; and the probability of abandon-
ment P(Ab}).

The approximation of P(W% > 0) is straightforward:
Because the event {W¢ > 0} is equivalent to the event
{X% > n}, both events have the same probability. Be-
cause Xg(o0) is a continuous random variable, the
event {Xs(co) = 0} has probability 0, and so we can ap-
proximate the limiting probability that the slow cus-
tomers are delayed by P(Xs(co) > 0) = P(Qs(c0) > 0).

The approximation of P(W} >0) is more intricate,
although it too can be approximated by the probabili-
ty that the corresponding queue is strictly positive,
namely, by P(Qg(c0) > 0). The intricacy here is that
Q7 (00) = Qp(e0) in R does not directly imply that
P(QF(0) >0) = P(Qr(0) >0) as n— oo, because
Qr(o0) = Xp(o0) has a probability mass at 0; hence, the
cumulative distribution function (cdf) of Xg(c0) is dis-
continuous at state 0. (Recall that weak convergence is
defined to hold in continuity points of the limit cdf.)
Nevertheless, we claim that P(Qp(co) =0) approxi-
mates P(Q}(c0) =0) for large n, so that P(Qg(o0) > 0)
also approximates P(Q%(c0) > 0). To see why, note that
{Qr(t) =0} implies that {Xs(t) <—r¢}, because Qr is
bounded from below by 0 and is strictly increasing
whenever X > —rr. Specifically, idleness appears in
the system (so that Qr is fixed at 0) immediately once
Qr reaches state 0 and X5 < —rr, whereas Qr begins to
increase immediately when Xg crosses —rr from be-
low. Therefore, in the limit, either the fluid queue of
the fast class is strictly positive, and waiting times are
positive, or the queue is empty, in which case there is
idleness, and so no waiting.
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The approximation for the expected waiting of de-
layed customers builds on the equality E[W]]=
E[Q}(c0)]/A}, which holds by virtue of Little’s law,
from which it follows that

E[W;IW; > 0] = E[W]/P(W} > 0)
= (A1) E[Q! (00)] /P(Q(e0) > 0).

Finally, we define the abandonment rate from queue i
to be 6;E[Q}'(0)].
To summarize, we have the approximations

P(W2 > 0) = P(Qs(c0) > 0),
(A3)2E[Qs(c0)]
P(Qs(c0) > 0) ~
o o E[Qs(c0)]
P(AbY) ~ O — T
P(W} > 0) ~ P(Qr(c0) > 0),
E[Qr(c0)]
P(Qr(c0) > 0)”
P(Ab}) ~ OrE[QF(c0)]. @)

E[WEWE > 0] ~

(6)

E[WIW" > 0] ~

4.4. An Example
We now demonstrate the effectiveness of the FDH ap-
proximation by comparing its predictions to simula-
tion of a stochastic system. The system we consider
has n = 50 servers that are fed by two independent
Poisson processes having arrival rates Ag =46 and
F =15. The service rates are y¢ =1 and uf=>5, and
the abandonment rates are 85 =0.1 and 6r = 0.3. Note
that the traffic intensity of the slow class (Ag/(nu®)
=0.92) is close to 1, and that the service rate of the fast
class is five times larger than that of the slow class.
For the computation of the FDH approximation,
we take

B=(m—-A%)/{JAs and re=AF/(UFAJAS).  (8)

The computation of the FDH limit is carried out nu-
merically by generating 400 independent sample
paths via the Euler scheme, as in (Asmussen and
Glynn 2007, chapter X.3), using step size 0.002. To esti-
mate the stationary performance measures of the sto-
chastic system, we averaged 400 independent simula-
tion runs, each was run for 1,000 time units, and
considered after a warm-up period of 100 time units.
The results, given in Table 2, show that the FDH ap-
proximation is accurate for the four performance
measures, and for each customer class. In particular,
the relative errors of the limiting approximations for
the expected queue lengths E[Q(c0)] and waiting
times E[W?|W?" >0],i =1, 2, are less than 3%.

It is useful to contrast the simulation results with
existing many-server asymptotic approximations.

Table 2. Comparison of Performance Measures for a
Stochastic System and Its FDH Approximation

Slow (i = S) Fast (i = F)

simulation FDH

E[Qi(e0)]  3.42(0.03) 3.28(0.02) 14.06 (0.07) 1357 (0.07)
E[WIWF > 0] 0.18 (%e4) 0.18 (8e-4)  1.28 (0.005) 1.29 (0.005)
P(W'>0) 041 (0.001) 0.39 (0.001) 0.73 (0.001) 0.70 (0.001)
P(AbY) 0.01 (6e-5) 0.01 (5e-5) 0.28 (0.001) 0.27 (0.001)

Notes. The “simulation” columns give the results for the stochastic
system, and the “FDH” columns show the results for the FDH
approximation. Standard errors are presented in parentheses.

simulation FDH

Specifically, recall from Section 1.2 that, under existing
MSHT limiting regimes, one of the following three
scenarios must hold asymptotically: (I) neither class
experiences any delay; (II) both classes are served,
and all the delay is experienced by the lower-priority
class; (I) the slow class experience delay, in which
case the fast class receives no service, asymptotically.
Clearly, none of these three scenarios is consistent
with the simulation results presented in Table 2, as
the slow class has a significant delay (0.18 time units)
while most of the customers (72%) of the fast class are
served.

To demonstrate that the limiting distribution of the
FDH approximates well the limiting distribution of
the stochastic system (beyond the means), we com-
pared the (marginal) limiting cdf’s of the two simulat-
ed queues to the corresponding FDH distributions.
The results are depicted in Figure 2.

5. The FDH Limit for the N-System

We now consider the FDH approximation for the N-
system. For comparison purposes, we think of the sin-
gle pool of the V-system as being split into two dis-
tinct pools: a “regular track” which, as before, serves
both classes with strict priority to the slow class, and a
fast track, which is dedicated to serving the fast class.
Such a system design often makes sense, because it
provides some of the benefits of pooling while requir-
ing only part of the agents to be cross-trained. As we
show, the N-system design is especially useful in our
setting, because a small number, that is asymptotically
negligible, of dedicated agents can dramatically de-
crease the waiting times of the fast class, while main-
taining good service levels for the slow class.

The benefits of having a fast track are especially
pronounced when the dedicated pool is cheaper to op-
erate, which is often the case in practice. For example,
in the hospital setting, residents can replace physi-
cians in the ER’s fast track, and the required nurse-to-
patient ratio in observation units is lower than in
general inpatient units. In the contact-center setting,
agents that handle inbound calls (slow customers)
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Figure 2. (Color online) The Marginal cdf's Computed from Simulations of Q%(e0) and QF(c0) (Solid, Starred Line) and the Cor-
responding cdf’s Computed for the FDH Approximation (y/12Qs(c0), A Qr(0)) (Dashed, Circled Line)
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and emails, may receive higher pay and be more cost-
ly to train, than agents that only respond to emails.

5.1. The Setting

We assume that the arrival processes, patience, and
service times are as in Section 4. We further assume
that the service time distribution of the fast class is the
same in both pools, namely, the service times are
class-dependent, and are not pool-dependent. As be-
fore, the slow customers receive preemptive priority
over the fast customers in the regular track. However,
an interrupted service due to preemption can be re-
sumed in the fast track. In addition, fast customers are
always routed to the fast track when both pools have
idle servers. We let z" denote the number of servers in
the fast track in system #, and assume that

lim 2" /R} =z, for some z € [0,1],

H—ro0

so that z is the limiting capacity of the fast track. In
particular, the case z = 0, corresponding to having no
fast track, will be seen shortly to agree with the corre-
sponding limit for the single-pool V model. On the
other hand, when z = 1, all the fast customers are
served in the fast track. Note that the number of serv-
ers assigned to the fast track is z" = O(y/n) and in par-
ticular, z" /y/n — rrz as n — oo by Assumption 2.

We let X*":=(XZ",Xp") denote the number-in-
system process, Q%" := (QZ",QF") denote the queue-
length process, and I2*(t) := f; (n—X2"(s) — X2"(s))"ds de-
note the cumulative idleness process for a given z in
system n (so that the fast track size in that nth system
is z"). The FDH scaling is as follows

Xy~ (n-2") XZ)

X = (XK 1=

The Fast Class
1 . . . —

4 —+—Simu.
-—o—-FDH
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0.8}
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(=] =]

o
&

o
'S
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Queue Length

note that we center the process X" about the number
of servers in the regular track n —z".

Let Q" and I”" be the FDH-scaled versions of the
processes just defined, as in (2). We make the follow-
ing assumption in order to avoid a jump at time 0 in
the limiting process.

Assumption 3 (Initial Condition for the N-System).

2"(0) = (XZ"(0)— (n—z")" and QF"(0)>0 for all
nx=1

The following theorem provides the FDH limit for
the N-system as the solution to an HSDE.
Theorem 3 (FDH Limit for the N-System). If X™"(0) =
XZ(0) in R* and, in addition, Assumptions 1 and 3 hold,
then (X™"(5), Q™ (1), T (1)) = (0X*(t), Q*(t), F(¥)) in D° as
n — co, where the component process of X* is the unique
solutions to the HSDE

AXE(H) = (=B +rrz+ X&(t)” — OsXE(t)*)dt + V2dB(t),
)

dXE(t) = (1 —z—rF' XE(t) ™ — OpXE(t))dt +dE(t) (10)

and Xi(f) >0,

where B is a standard Brownian motion, Q% := (X%)*, X3),
and I* is the unique nondecreasing process satisfiyjing

t
(0)=0 and f 1z dF(s) =0, forall £ 0.
0
(11)

Observe the similarity between the FDH limit for the
N-system and for the V-system in Theorem 1. In par-
ticular, (9) becomes (3) if we replace f—rrz by B,
whereas (10) becomes (4) if we scale both sides by
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1-z. Thus, (X%,(1—2z)"'X2) is the FDH limit for a se-
quence of V-systems, in which the number of servers
in the nth system is reduced by z", whereas the fast-
class arrival in the nth system is reduced by ppz".

It is useful to consider the two extreme values of z,
z =0and z = 1, to see how the FDH limit X* depends
on z: (i) When z = 0, the N-system reduces to the V-
system; indeed, the expressions in (9) and (10) reduce
to the expressions in (3) and (4), respectively. There-
fore, the FDH limit for the single-pool model is a spe-
cial case of the FDH limit for the N-system. (ii) When
z = 1, (10) implies that X%(co) is identically zero. In
this case, both classes have asymptotically negligible
delay, implying that only a relatively negligible pro-
portion of the arrivals abandon asymptotically. Com-
pared with the V-system, in which a nonnegligible
portion of fastclass customers abandon the system,
we conclude that a fast track can significantly increase
the throughput of the system;

We note that having no fluid queue for the fast class
may not be desirable, because, in this case, the delay
of the fast class may not be sufficiently larger than the
delay of the slow class, which should receive high pri-
ority. Given the imposed priority, this implicitly
means that too much of the service resources are taken
from the high-priority class in order to reduce delays
for the low-priority class. There are therefore clear
tradeoffs that must be taken into account when decid-
ing whether a fast-track should be operated, and what
its size should be. We formalize this problem under a
cost structure in Section 6.

5.2. FDH Approximation for the Limiting
Distribution

Similar to Theorem 2, we can show that the limiting

distribution of the FDH limit exists and is also the lim-

it of the sequence of stationary versions of the process-

es, (X*",Q™"), which we denote by (X" (c0), Q™" (0)),
respectively.

Theorem 4. For each z € [0, 1], the following hold:
1. The FDH process (X*, Q%) possesses a limiting distribu-

tion (X*(c0), F(c0)), namely, (X*(t), (1)) = (X*(o0),
Q%)) as t — co in R*, where

QF(0) := (Qf(00), Qf(e0) = (XE(00)*, X(e0)).  (12)
2. (X7(00), Q7"(00)) = (X*(c0), Q¥(e0)) in R* as
n — oo, In particular,
lim Tim E[f(X™" (), Q™" (1))]
=lim lim E[f(X"(8), Q" (1))] = E[f(X*(e0), Q(e0))],

t=—rco n—co

for any bounded and continuous functionf :R* — R.

3. For i=S,F the sequences {(Qf’ﬂ(oo)) :n>1} are U,
so that

lim E[Q}" (00)] = E[Q(e0)]

Analogously to (6) and (7), Theorem 4 allows us to em-
ploy the limiting distribution of FDH limit to approxi-
mate key performance measures for each class when
z < 1. When z = 1, there is sufficient service capacity in
the fast track to ensure that the fast queue is not over-
loaded under fluid scaling, namely, Q7(c0) =0 w.p.1,
so that more refined asymptotic analysis is required in
order to approximate the queue of the fast class. As be-
fore, the established UI can be used to approximate
performance measures corresponding to the limiting
distributions of the queues. In Section 6, we use it to
optimize expected costs.

6. Employing the FDH Limit to Optimize
System Design

It is often the case that a fast track is considered be-
cause the slow customers must receive strict priority
in the regular pool over the fast customers. The fast
track is then used in order to “circumvent” this policy
constraint, by having a small pool that is dedicated to
the low-priority customers. On the other hand, the
fast track is taking resources away from the regular
pool, and so introduces a nontrivial cost-benefit trade-
off. Indeed, in a private communication with the man-
agement of a large hospital in Chicago, we were told
that a fast track is operated in order to attract low-
acuity patients, because those patients provide large
revenues, but require simple (and thus, cheaper) treat-
ments. In a different hospital, we were told that the
fast track was recently eliminated, in order to deter
low-acuity patients from arriving to the ER.

We now demonstrate how the FDH approximation
can be employed to optimize (asymptotically) sys-
tems’ design when holding, abandonment, and staff-
ing costs are incurred. Specifically, we consider an
N-system, and employ the FDH limit to establish the
size of the fast track that asymptotically minimizes the
incurred cost (where we recall that z = 0 corresponds
to having no fast track).

For i=S,F, let af denote the cost incurred per aban-
doning class-i customer, and k! denote the rate at
which holding costs are incurred in system n. Let dj
and dy be the per-server cost in the regular track and
the fast track, respectively. For a system with z" fast
track servers and n — z" regular-track servers, the cost
has the form of:

Z (hTE[Q;"(c0)] +a} 0] E[Q7" (c0)]) + di(n —2" )+ d}2".

i=S,F
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Let d" :=dp —dy and cf :=h! + 0;a}. Because the term
ndy has no impact on the optimal solution, we consid-
er the objective function

C"(2"):= D] 'E[Q7"(c0)] +d"2". (13)

i=S,F

Minimizing C"(-) is clearly prohibitive because the sta-
tionary distribution of the system is hard to compute
for any given value of z". However, an asymptotically
optimal system design can be efficiently computed by
utilizing the FDH limit, as we show. The interesting
(nontrivial) case to consider is when the total costs of
queueing for both classes are proportional, implying
that the cost incurred due to queueing of the slow
class is significantly higher than the cost incurred by
the fast class. Indeed, unlike low-acuity patients, the
condition of high-acuity patients may deteriorate if
they do not receive treatment in a timely manner. Sim-
ilarly, there is typically more flexibility regarding
when to process outbound work in contact centers
than there is regarding inbound customers, who ex-
pect to receive service quickly. Because the fast queue
is Op(n) while the slow queue is Op(v/n) in the FDH
scaling, we therefore assume that c /c = O(n~'/2). We
further assume that the staffing costs corresponding
to agents working only with the fast class are lower
than those corresponding to the slow class. Formally,

Assumption 4. ¢ =cs, ¢} =cp/u} and df —dy =d <0.
Then by virtue of Assumption 4 and Theorem 4(3), we have
that

C(z) = lim n~"/*C"(Ryz)
= CSE[Qé(OO)] +CF?‘FE[Q§(°°)] +drrz,

where we utilized the fact that n™'/2\/AT —1 as
n — oo. Let

(14)

Y= i . 1

z':=arg ZI'E['[I‘._E}]C(Z) (15)
For z' to be well-defined, we need the following
lemma.

Lemma 1. z+—> E[Qf()] is continuous in [0,1] for
i=S,F.

The value of z* can be numerically computed using
grid search; it is relevant for the prelimit stochastic
system because it asymptotically minimizes the oper-
ating cost (under the control we consider), as we
prove next.

Consider a sequence of systems with a correspond-
ing sequence of fast tracks {z":n > 1}. To avoid hav-
ing redundant service capacity in the fast track, which
is clearly suboptimal, we assume that
limsup — < 1. (16)

Rg

H—ro0

For x€R, let |x] denote the largest integer that is
smaller than or equal to x.

Proposition 1. z™ :=|R}z"| asymptotically minimizes
C"(z"), in the sense that

1
lim sup N

for any sequence {z" : n > 1} that satisfies (16).

(C"=")-C"(z") <0

6.1. Structural Resulis

We can say more about the limiting cost function C(-)
in (14) and z' if we impose more assumptions on the
system’s parameters. First, we require that Os < pg.
This condition tends to hold in service systems, as re-
viewed in Gans et al. (2003) (which mentions that the
rate of abandonment rate of customers tends to be
about half that of their service rate). This also suggests
our second requirement, that 65 <6r (because
pé < uj). Finally, consistent with the imposed priority
rule, we assume that the cu-type condition c3ug > cpup
holds. (Loosely speaking, this condition suggests that
delaying a slow-class customer is more costly than de-
laying a fast-class customer, even after incorporating
their service times.) Due to Assumption 4, this cu con-
dition is equivalent to the assumption that cg > cr. We
summarize these three conditions in the following for-
mal assumption, which is assumed to hold throughout
this section, in addition to Assumptions 1, 3, and 4.

Assumption 5. 85 < g, s < Or and cs > cr.

Under this extra assumption, we can prove impor-
tant structural results for the limiting cost function
C(-) in (14).

Proposition 2. C:[0,1] - R is strictly convex. Hence,
there exists a unique minimizer z* to (15).

Together with the continuity of C(-), Proposition 2
implies that a simple binary search can efficiently find
the global minimizer z*.

6.1.1. Quantifying the Tradeoffs of Having a Fast-
Track. Even though a fast track reduces the waiting
time of the fast class and increases the throughput of
the system, it increases the delays of slow class, and
thus the overall delay cost. Specifically, let

Cy(2) := esE[Qg(00)] + cprrE[Qp(o0)],

and note that C(z) = C4(z) + drrz. The second term drz
corresponds to the fast-track staffing cost, whereas
C4() is the cost corresponding to the queues (holding
and abandonment costs), and thus the delays. Because
the fast-track staffing cost is smaller than the staffing
cost of the main pool, the following proposition dem-
onstrates that there is a clear tradeoff in operating a
fast-track, as it increases the overall queueing cost.
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Proposition 3. C;:[0,1] > R, is convex and strictly
increasing.

In ending we remark that, unlike the function C in
the limit, the function C" need not be convex for any
given n € Z,. For example, take n = 2, A5 =10, Af =3,
pg=1,uf=2,685=0.999,6r=5,c¢=3,cg=1,and d" =0.
(Note that n is too small for the FDH approximation
to be accurate.) One can check that Assumption 5 is
satisfied. Wetake z!' =i for i=0, 1,2 and let

A :==C"(z5) + C"(z5) = 2C"(2}).

A discrete event simulation with 400 replications re-
ports A =-0.12 with standard deviation 0.0003, sug-
gesting that C" is not convex in z".

7. Numerical Studies

We now present a numerical and simulation study
in which we compare the FDH predications to simu-
lations of the stochastic system it approximates. In
particular, in Section 7.1 we demonstrate how the
accuracy of the FDH approximation increases togeth-
er with the size of the system. We perform a sensitivi-
ty analysis in Section 7.2, which demonstrates the
robustness of the FDH approximation. Finally, in
Section 7.3, we explain why the dynamics under the
nonpreemptive version of the strict-priority policy are
asymptotically indistinguishable from the dynamics
under the preemptive priority policy we considered.
We support that explanation with simulation.

7.1. A Numerical Demonstration of the
Convergence to the FDH Limit

Because the FDH approximation is obtained as a weak
limit for stochastic systems with many servers, one ex-
pects its accuracy to improve as the size of the system
increases. The following example shows that this is in-
deed the case, although the limit provides a good ap-
proximation also for a relatively small system, with
only n = 25 agents. For the examples we consider, we
take ps =1, =05,r,=0.3, 8s=10.1, and 6 =0.3 and

vary the number of agents n, giving it the values in
{25, 100, 400}. For each n we consider two values of the
fast service rate, uf=+n and p}=0.5vn. We take
these two values of u} because yuf = v/n is extremely
large when n = 400, and pf =0.5yn is quite small
when n = 25. The values of A5 and A} are chosen so as
to satisfy (8). We compare the simulated values of
E[Q;(c0)] and P(W!>0),i=S,F, to their respective
FDH approximations, where, for each of the six sys-
tems, we employ the same procedures as in the nu-
merical example in Section 4.4 for the simulation of the
stochastic system and the numerical solution for its
FDH approximation. The results are shown in Table 3.

We observe that the accuracy of the approximations
increases with n. The error is relatively large when
n = 25 and pf =0.5yn=2.5, as should be expected.
Nevertheless, despite the lesser accuracy in this case,
the limit still captures the key feature for which the
FDH approximation is developed; in particular, the
high-priority (slow) class operates in a QED-type fash-
ion (its probability of delay is substantially larger than
0 and smaller than 1), while the low-priority (fast)
class operates in an ED-type fashion. Note that, be-
cause the FDH approximation for the fast class is
based on a fluid limit, the lesser accuracy for small
systems is to be expected, because the stochastic fluc-
tuations (which are not captured by the fluid approxi-
mation), are substantial relative to the “predictable
dynamics” of the fluid limit. (Loosely speaking, the
fluid limit captures dynamics that are ©®p(n), whereas
the stochastic fluctuations are @p(+/n). For n small, the
two orders are indistinguishable.)

We used the simulation experiments to approxi-
mate the cdf’s of the stationary distributions of the
fast-class queue in the three systems with p! = 0.5/,
and compare these cdf’s to the corresponding cdf of
the limiting distribution for the FDH approximation.
The result, depicted in Figure 3, illustrates the weak
convergence of the stationary distribution of the
queue to the corresponding distribution of the FDH
limit.

Table 3. Comparison of the FDH Predictions to Simulation Results for Three Components of

a Sequence of Systems

Discrete-event simulation

n=25 n =100 n =400 FDH
pt=+n E[Q%(c0)] 0.62 (0.005) 0.61 (0.005) 0.60 (0.004) 0.59 (0.004)
P(Ws>0) 0.47 (0.002) 0.46 (0.002) 0.45 (0.001) 0.44 (0.001)
E[Q7(c0)] 0.97 (0.005) 0.94 (0.005) 0.93 (0.005) 0.92 (0.005)
P(W? > 0) 0.71 (0.001) 0.70 (0.001) 0.68 (0.001) 0.67 (0.001)
= 0.5yn E[Q4(c0)] 0.62 (0.005) 0.61 (0.004) 0.60 (0.004) 0.59 (0.004)
P(Ws>0) 0.47 (0.002) 0.46 (0.001) 0.45 (0.001) 0.44 (0.001)
E[Q7(c0)] 1.03 (0.005) 0.96 (0.005) 0.93 (0.005) 0.92 (0.005)
P(W? > 0) 0.74 (0.001) 0.71 (0.001) 0.70 (0.001) 0.67 (0.001)

Note. Standard errors for the simulations are presented in parentheses.
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Figure 3. (Color online) Empirical cdf’s of Q5(c0) (Left) and QF (c0) (Right) for n € {25,100,400}, Plotted Together with the Em-

pirical cdf of Qs (eo) (Left) and Qf(c0) (Right)
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7.2. Sensitivity Analysis
Recall that the FDH limit was achieved by assuming
that 1-pi=0(m"1?) (where ptt:=A%/(nys) and
ps=1), and p?=O(y/n). Therefore, the FDH limit
may not be a proper approximation when p% is signifi-
cantly smaller than 1, or when uf is not sufficiently
larger than 1. To test how the values of p¢ and u} af-
fect the accuracy of the FDH approximation, we con-
duct a sensitivity analysis with three values of p§ and
uy, for a total of nine different examples. We fix the
number of agents to be n = 50 and take the offered
load to be equal to the service capacity, namely,
5/u%+ Ap/uf =n. The abandonment rates are fixed
at 85 =0.1 and 6r = 0.3. The results for the nine com-
binations are shown in Table 4. To facilitate the com-
parison between the different experiments, we show
the expected values of the FDH-scaled queues.

The results in Table 4 make it clear that, as expected,
the accuracy of the FDH approximation is sensitive
to the value of uj. In particular, the FDH approxima-
tions for E[Qz(c0)] and P(W? > 0) have the largest er-
rors when pj =2, whereas the error is significantly
smaller for the larger two values of u}. (Note that the
FDH approximation for E [Q;(oo)] and P(W? > 0) does
not depend on puj.) Nevertheless, the FDH limit still
exhibits the behavior and the main qualitative features
it is designed to capture in this case.

On the other hand, the accuracy of the FDH approx-
imation is not very sensitive with respect to p%. For
small pg, that is, p? =0.75, the results show that the
slow class does not operate in the QED regime, be-
cause the probability of delay is close to 0. Of course,
this is simply an indication that the traffic intensity of
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g 4 n=25
0.9 —n=100 |
—&— n=400
08l — Limit
£ 07
£
[+
8
a 06
0.5
0.4
0 2 4 6 8

Scaled Queue Length

the slow class is too low for the QED regime to be an
appropriate limiting approximation. In particular, an
Erlang-A model with the same parameters Ag, us, Os,
and n as in this example is better approximated by the
QD regime. Despite this, the FDH approximation is
still a good quantitative approximation, especially for
the larger values of uf, and it clearly captures the
qualitative behavior of the simulated stochastic sys-
tems well.

7.3. Non-Preemptive FDH Approximation

We now provide a high-level explanation as to why
the queueing dynamics under the priority policy
with no preemption are asymptotically (as n — oo)
indistinguishable from the dynamics under the pre-
emptive policy we analyzed. The explanation is giv-
en for the V-system, as similar arguments apply for
the N-system.

Let Z}(t) and Z%(f) denote the number of agents at
time ¢ that are working with fast and slow customers,
respectively, in system n. Now, the scaling of uy im-
plies that Z} = Op(y/n). Therefore, if a queue of slow
customers is building up, then Op(+/n) fast customers
are removed from service and added to their queue
under the preemptive policy, a quantity that is negli-
gible under the spatial fluid scaling of that queue. In
particular, even if all the fast customers in service
were removed and put back in their queue instanta-
neously, there would be no impact on the limiting
queue Q. Further, Z} = op(n) under either policy (in-
deed, QF = 5(;), showing that the processes corre-
sponding to the fast class are indistinguishable under
the two policies in the FDH limit.
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Table 4. Sensitivity Analysis for the Accuracy of the FDH Approximation

Discrete-event simulation

HE=2 HE=5 Hp=10 FDH
pE=075 E[Q5(c0)] 0.02 (0.002) 0.02 (0.002) 0.02 (0.002) 0.01 (0.002)
P(W2>0) 0.03 (0.001) 0.03 (0.001) 0.03 (0.001) 0.02 (0.001)
E[Qr(c0)] 0.47 (0.002) 0.44 (0.002) 0.43 (0.002) 0.41 (0.002)
P(WE > 0) 0.77 (0.001) 0.77 (0.001) 0.77 (0.001) 0.76 (0.001)
pL =085 E[Q¢(c0)] 0.14 (0.003) 0.14 (0.003) 0.14 (0.003) 0.12 (0.003)
P(W2>0) 0.18 (0.001) 0.18 (0.001) 0.18 (0.001) 0.16 (0.001)
E[Qr(c0)] 0.75 (0.003) 0.71 (0.003) 0.69 (0.003) 0.68 (0.003)
P(W2>0) 0.79 (0.001) 0.78 (0.001) 0.77 (0.001) 0.76 (0.001)
pt =095 E[Qs(c0)] 0.84 (0.006) 0.84 (0.006) 0.84 (0.006) 0.82 (0.005)
P(W2>0) 0.54 (0.001) 0.54 (0.001) 0.54 (0.001) 0.53 (0.001)
E[Qr(c0)] 1.38 (0.006) 131 (0.006) 129 (0.006) 1.27 (0.005)
P(W2>0) 0.83 (0.001) 0.81 (0.001) 0.79 (0.001) 0.78 (0.001)

Notes. Standard error of the simulation experiments are presented in parentheses. The expected queue lengths are scaled

according to the FDH scaling.

The reasoning as to why the processes correspond-
ing to the slow class under the nonpreemptive policy
are unchanged asymptotically is more intricate, but
again follows from the scaling of u}. Due to this scal-
ing, the total output rate of fast customers from ser-
vice is ©p(n) whenever Z}(t) = ©p(v/n). This suggests
that, if a queue of slow customers is starting to build
up, the number of fast customers in service will drop
to op(y/n) in 0p(1) time under the nonpreemptive poli-
cy, because no new fast customers will be routed into
service. In fact, the total service rate of all fast custom-
ers in service combined is always an order +/n larger
than the order of the number of those customers. Spe-
cifically, if Z}(t)>0 and Q%(t)>0 for all t € [t],1],
0 <t <t} <oo, then Z} behaves like a pure death pro-
cess over this time interval, with death rates
kut = O(ky/n), k=1,2,.... It follows that for any € >0,
the sequence of events

B'(e):={{Z}(t) >0} N{Qe(t) >0} : te[t], 5], t5 — ] > €},

satisfies P(B"(e)) — 0 as n — oo, where P is the proba-
bility measure in the underlying probability space. In
other words, having fast customers in service and
slow customers in queue simultaneously over an in-
terval is an asymptotically null event. (It is significant
that the events B"(¢) are defined in terms of the un-
scaled processes Zp and Qf.) In turn, whenever a
queue of the slow class builds up in the limiting sys-
tem, the number of fast customers in service drops to
0 instantaneously, so that all the service capacity is
dedicated to the slow class, just like the case in which
preemption is exercised.

We do not attempt to rigorously prove the asymptot-
ic equivalence between the policies. Instead, we dem-
onstrate that the dynamics of the queues are similar
under both policies via simulation. Figure 4 plots two
sample paths for the system considered in Section 4.4,

with n = 50, A5 =46,Ar =15t =1, uyf =5,0s =01
and 6 =0.3. The two sample paths shown in the fig-
ure were generated by giving both the same arrival
process of customers, with each customer having the
same patience and service-time requirement. As can be
seen, the two sample paths are in close agreement with
each other. We also mention that the stationary perfor-
mance measures are similar under the two policies. In
particular, the values of (E[X%(c0)], E[X}(c0)]) are esti-
mated to be (49.1,16.2) for the preemptive policy, and
(49.7,14.6) for the nonpreemptive policy, with stan-
dard errors smaller than 0.04.

8. Summary
In this paper, we proposed a fluid-diffusion hybrid
process to approximate two-customer class many-
server systems that operate under a priority policy.
We assumed that the high-priority (slow) customers
require substantially longer service times than the
low-priority (fast) customers. The need to develop the
FDH approximation stems from the fact that existing
MSHT approximations cannot capture the setting in
which both customer classes are delayed in queue
with a nonnegligible probability, and yet most cus-
tomers, from either class, end up receiving service.
We first considered the V-system, in which the two
customer classes are served by a single pool of agents,
and then the N-system, in which one pool handles
both customer classes (giving strict priority to the
slow class), and the other pool, which we named fast
track, is dedicated to the fast class. For both systems,
we characterized the FDH limit, and proved that it
possesses a limiting distribution, which is also the
weak limit for the sequence of stationary distributions
of the underlying sequence of systems. As we demon-
strated via numerical examples, the FDH limit can be
used to approximate key performance measures of
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Figure 4. (Color online) Sample Path Comparison of X7 (Left) and X} (Right) in a System with n = 50 Agents, Operating Under

the Preemptive and Nonpreemptive Priority Policy
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Note. The starred lines plot the sample paths under the preemptive policy, and the circled lines plot the sample paths under the nonpreemptive

policy.

the underlying stochastic system when the basic as-
sumptions of the model hold. Sensitivity analysis
demonstrated the robustness of the FDH approxima-
tion in that the main qualitative insights remain to
hold even when it is questionable whether these as-
sumptions are satisfied.

In Section 6 we demonstrated how the FDH limit can
be employed to determine the asymptotically optimal
system topology. In particular, we considered whether
it is beneficial to split the server pool into two pools,
and to determine the optimal size of the “fast-track”
pool in the limit, assuming a linear holding and aban-
donment cost is incurred. One can employ the FDH re-
gime and the framework we developed here in other
optimization settings, such as in finding an asymptoti-
cally optimal control for either the one- or the two-pool
system, when the priority policy is not enforced. Such
implementations are currently under investigation.
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Endnote

! We use ER instead of the now-common ED (for Emergency De-
partment) to avoid confusion with the acronym for Efficiency Driv-
en, which will be used repeatedly throughout the paper.
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