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Abstract

Consider an infinite planar graph with uniform polynomial growth of degree d > 2. Many
examples of such graphs exhibit similar geometric and spectral properties, and it has been
conjectured that this is necessary. We present a family of counterexamples. In particular, we
show that for every rational d > 2, there is a planar graph with uniform polynomial growth of
degree d on which the random walk is transient, disproving a conjecture of Benjamini (2011).

By a well-known theorem of Benjamini and Schramm, such a graph cannot be a unimodular
random graph. We also give examples of unimodular random planar graphs of uniform
polynomial growth with unexpected properties. For instance, graphs of (almost sure) uniform
polynomial growth of every rational degree d > 2 for which the speed exponent of the walk
is larger than 1/d, and in which the complements of all balls are connected. This resolves
negatively two questions of Benjamini and Papasoglou (2011).
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1 Introduction

Say that a graph G has uniform polynomial growth of degree d if the cardinality of all balls of radius
in the graph metric lie between cr® and Cr? for two absolute constants C > ¢ > 0, for every r > 0.
Say that a graph has nearly-uniform polynomial growth of degree d if the cardinality of balls is trapped
between (log r)"Cr? and (log r)Cr? for some universal constant C > 1.

Planar graphs of uniform (or nearly-uniform) polynomial volume growth of degree d > 2 arise
in a number of contexts. In particular, they appear in the study of random triangulations in 2D
quantum gravity [AD]97] and as combinatorial approximations to the boundaries of 3-dimensional
hyperbolic groups in geometric group theory (see, e.g., [BK02]).

When the dimension of volume growth disagrees with the topological dimension, one sometimes
witnesses certain geometrically or spectrally degenerate behaviors. For instance, it is known that
random planar triangulations of the 2-sphere have nearly-uniform polynomial volume growth
of degree 4 (in an appropriate statistical, asymptotic sense) [Ang03]. The distributional limit
(see Section 1.1.1) of such graphs is called the uniform infinite planar triangulation (UIPT). But
this 4-dimensional volume growth does not come with 4-dimensional isoperimetry: With high
probability, a ball in the UIPT of radius r about a vertex v can be separated from the complement of
a 2r ball about v by removing a set of size O(r). And, indeed, Benjamini and Papasoglu [BP11]
showed that this phenomenon holds generally: such annular separators of size O(r) exist in all
planar graphs with uniform polynomial volume growth.

Similarly, it is known that diffusion on the UIPT is anomalous. Specifically, the random walk on
the UIPT is almost surely subdiffusive. In other words, if {X;} is the random walk and dg denotes
the graph metric, then E dg(Xo, X;) < t1/27¢ for some ¢ > 0. This was established by Benjamini
and Curien [BC13]. In [Leel7], it is shown that on any unimodular random planar graph with
nearly-uniform polynomial growth of degree d > 3 (in a suitable statistical sense), the random
walk is subdiffusive. So again, a disagreement between the dimension of volume growth and the
topological dimension results in a degeneracy typical in the geometry of fractals (see, e.g., [Bar98]).

Finally, consider a seminal result of Benjamini and Schramm [BS01]: If (G, p) is the local
distributional limit of a sequence of finite planar graphs with uniformly bounded degrees, then
(G, p) is almost surely recurrent. In this sense, any such limit is spectrally (at most) two-dimensional.
This was extended by Gurel-Gurevich and Nachmias [GN13] to unimodular random graphs with an
exponential tail on the degree of the root, making it applicable to the UIPT. Benjamini [Ben13] has
conjectured that this holds for every planar graph with uniform polynomial volume. We construct
a family of counterexamples. Our focus on rational degrees of growth is largely for simplicity;
suitable variants of our construction should yield similar results for all real 4 > 2 (see Remark 3.6).

Theorem 1.1. For every rational d > 2, there is a transient planar graph with uniform polynomial growth
of degree d.

Conversely, it is well-known that any graph with growth rate d < 2 is recurrent. The examples
underlying Theorem 1.1 cannot be unimodular. Nevertheless, we construct unimodular examples
addressing some of the issues raised above. Angel and Nachmias (unpublished) showed the
existence, for every ¢ > 0 sufficiently small, of a unimodular random planar graph (G, p) on which
the random walk is almost surely diffusive, and which almost surely satisfies
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Here, Bg(p, r) is the graph ball around p of radius r. In other words, r-balls have an asymptotic
growth rate of 3¢ as r — oo.

The authors of [BP11] asked whether in planar graphs with uniform growth of degree d > 2,
the speed of the walk should be at most t1/4+°(1) We recall the following weaker theorem.

Theorem 1.2 ([Leel7]). Suppose (G, p) is a unimodular random planar graph and G almost surely has
uniform polynomial growth of degree d. Then:

E [dc(Xo, X1) | Xo = p] < tH/max@d=D),

We construct examples where this dependence is nearly tight.

Theorem 1.3. For every rational d > 2 and € > 0, there is a constant c(e) > 0 and a unimodular random
planar graph (G, p) such that G almost surely has uniform polynomial growth of degree d, and

E [do(Xo, X¢) | Xo = p| > c(e)t/max2d=1re),

Finally, let us address another question from [BP11]. In conjunction with the existence of small
annular separators, the authors asked whether a planar graph with uniform polynomial growth of
degree d > 2 can be such that the complement of every ball is connected. For example, in the UIPT,
there are “baby universes” connected to the graph via a thin neck that can be cut off by removing a
small graph ball.

Theorem 1.4. For every rational d > 2, there is a unimodular random planar graph (G, p) such that almost
surely:

1. G has uniform polynomial growth of degree d.

2. The complement of every graph ball in G is connected.

Annular resistances. Our unimodular constructions have the property that the “Einstein relations”
(see, e.g., [Bar98]) for various dimensional exponents do not hold. In particular, this implies that the
graphs we construct are not strongly recurrent (see, e.g., [KMO08]). Indeed, the effective resistance
across annuli can be made very small (see Section 2.3 for the definition of effective resistance).

Theorem 1.5. For every ¢ > 0and d > 3, there is a unimodular random planar graph (G, p) that almost
surely has uniform polynomial volume growth of degree d and, moreover, almost surely satisfies

RS (Bo(p, R) & V(G)\ Be(p, 2R)) < C(e)R19), VR >1, (1.1)
where C(¢&) > 1is a constant depending only on .

Note that the existence of annular separators of size O(R) mentioned previously gives
RS (Bc(p,R) < V(G)\ Bs(p,2R)) 2 R7! by the Nash-Williams inequality. Moreover, recall
that since the graph (G, p) from Theorem 1.5 is unimodular and planar, it must be almost surely
recurrent (cf. [BSO1]). Therefore the electrical flow witnessing (1.1) cannot spread out “isotropically”
from Bg(p, R) to Bg(p, 2R). Indeed, if one were able to send a flow roughly uniformly from Bg(p, 21)
to Bg(p,2'*1), then these electrical flows would chain to give

RS (0 © V(G)\ Ba(p,2) s Y 20,

j<i



and taking i — oo would show that G is transient.

One formalization of this fact is that the graphs in Theorem 1.5 (almost surely) do not satisfy an
elliptic Harnack inequality. These graphs are almost surely one-ended, and one can easily pass to
a quasi-isometric triangulation that admits a circle packing whose carrier is the entire plane R.
By a result of Murugan [Mur19], this implies that the graph metric (V(G), dg) on the graphs in
Theorem 1.5 is not quasisymmetric to the Euclidean metric induced on the vertices by any such
circle packing. (This can also be proved directly from (1.1).)

We remark on one other interesting feature of Theorem 1.5. Suppose that I' is a Gromov
hyperbolic group whose visual boundary deI" is homeomorphic to the 2-sphere S2. The authors of
[BKO2] construct a family {G, : n > 1} of discrete approximations to dI" such that each G, is a
planar graph and the family {G,, } has uniform polynomial volume growth.! They show that if there
is a constant ¢ > 0 so that the annuli in G, satisfy uniform effective resistance estimates of the form

RS (Bg,(x,R) & V(Gy) \ Bg,(x,2R)) > ¢, V1< R < diam(G,)/10, x € V(G,), Vn > 1,

then do.I' is quasisymmetric to S? (cf. [BK02, Thm 11.1].)

In particular, if it were to hold that for any (infinite) planar graph G with uniform polynomial
growth we have

Rei (Bo(x,R) & V(G)\ Bg(x,2R)) > ¢ >0, VR>1,x€V(G),

then it would confirm positively Cannon’s conjecture from geometric group theory. Theorem 1.5
exhibits graphs for which this fails in essentially the strongest way possible.

1.1 Preliminaries

We will consider primarily connected, undirected graphs G = (V, E), which we equip with the
associated path metric dg. We will sometimes write V(G) and E(G), respectively, for the vertex and
edge sets of G. If U C V(G), we write G[U] for the subgraph induced on U.

For v € V, let deg(v) denote the degree of v in G. Let diam(G) := sup, ey dc(x, y) denote
the diameter (which is only finite for G finite). For v € V and r > 0, we use Bg(v,r) = {u € V :
dc(u,v) < r} to denote the closed ball in G. For subsets S, T C V, we write dg(S, T) := inf{dg(s, ) :
seS, teT}.

Say that an infinite graph G has uniform volume growth of rate f(r) if there exist constants C, c > 0
such that

cf(r) <|Bg(v, 1) < Cf(r) YoeV,r>1.

A graph has uniform polynomial growth of degree d if it has uniform volume growth of rate f(r) = r4,
and has uniform polynomial growth if this holds for some d > 0.

For two expressions A and B, we use the notation A < B to denote that A < CB for some universal
constant C. The notation A <, B denotes that A < C(y)B where C(y) is a number depending only
on the parameter . We write A < B for the conjunction A < B A B < A.

More precisely, for the boundary of a hyperbolic group as above, one can choose a sequence of approximations with
this property.



1.1.1 Distributional limits of graphs

We briefly review the weak local topology on random rooted graphs. One may consult the extensive
reference of Aldous and Lyons [AL07], and [BC12] for the corresponding theory of reversible
random graphs. The paper [BS01] offers a concise introduction to distributional limits of finite
planar graphs. We briefly review some relevant points.

Let G denote the set of isomorphism classes of connected, locally finite graphs; let G, denote
the set of rooted isomorphism classes of rooted, connected, locally finite graphs. Define a metric on
G. as follows: dj,. ((G1, p1),(Ga, pz)) =1/(1 + a), where

a = sup {1’ >0: BG1(P1/7’) E‘D BGz(pZz 7’)} ’

and we use =, to denote rooted isomorphism of graphs. (G., di,.) is a separable, complete metric
space. For probability measures {y,}, 4 on G., write {u,} = p when p, converges weakly to u
with respect to djqc.

A random rooted graph (G, Xp) is said to be reversible if (G, Xy, X1) and (G, X1, Xo) have the
same law, where X is a uniformly random neighbor of Xy in G. A random rooted graph (G, p) is
said to be unimodular if it satisfies the Mass Transport Principle (see, e.g., [AL07]). For our purposes,
it suffices to note that if [E[degG(p)]~< oo, then (G, p) is unimodular if and only if the random rooted
graph (G, p) is reversible, where (G, p) has the law of (G, p) biased by deg(p)

If {(Gy, pn)} = (G, p), we say that (G, p) is the distributional limit of the sequence {(G,, px)},
where we have conflated random variables with their laws in the obvious way. Consider a sequence
{G,} C G of finite graphs, and let p,, denote a uniformly random element of V(G,). Then {(G,, p»)}
is a sequence of G,-valued random variables, and one has the following: if {(G,, p»)} = (G, p),
then (G, p) is unimodular. Equivalently, if {(G,, p,)} is a sequence of connected finite graphs and
pn € V(G,) is chosen according to the stationary measure of G, then if {(G,,, p»)} = (G, p), it
holds that (G, p) is a reversible random graph.

2 A transient planar graph of uniform polynomial growth

We begin by constructing a transient planar graph with uniform polynomial growth of degree
d > 2. Our construction in this section has d = log,(12) ~ 2.26. In Section 3, this construction is
generalized to any rational d > 2.

2.1 Tilings and dual graphs

Our constructions are based on planar tilings by rectangles. A tile is an axis-parallel closed rectangle
A C R2. We will encode such a tile as a triple (p(A), £1(A), £2(A)), where p(A) € R? denotes its
bottom-left corner, £1(A) its width (length of its projection onto the x-axis), and ¢>(A) its height
(length of its projection onto the y-axis). A tiling T is a finite collection of interior-disjoint tiles.
Denote [T] := Jer A. If R € R?, we say that T is a tiling of R if [T] = R. See Figure 1(a) for a tiling
of the unit square.

We associate to a tiling its dual graph G(T) with vertex set T and with an edge between two
tiles A, B € T whenever A N B has Hausdorff dimension one; in other words, A, B are tangent, but
not only at a corner. Denote by 7~ the set of all tilings of the unit square. See Figure 1(b). For the
remainder of the paper, we will consider only tilings T for which G(T') is connected.
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(a) A tiling of the unit square (b) The associated dual graph

Figure 1: Tilings and their dual graph

Figure 2: An example of the tiling product So T

Definition 2.1 (Tiling product). For S, T € 7, define the product So T € 7 as the tiling formed by
replacing every tile in § by an (appropriately scaled) copy of T. More precisely: For every A € §
and B € T, thereis atile R € S o T with ¢;(R) := €;(A){;(B), and

pi(R) = pi(A) + pi(B)ti(A),
for each i € {1,2}. See Figure 2.

IfT €7 andn > 0, we willuse T" := T o --- o T to denote the n-fold tile product of T with
itself. The following observation shows that this is well-defined.

Observation 2.2. The tiling product is associative: (SoT)oU =So (ToU) forall S,T,U € 7.
Moreover, if I € 7 consists of the single tile [0, 1>, thenToI =IoT forallT € 7.

Definition 2.3 (Tiling concatenation). Suppose that S is a tiling of a rectangle R and T is a tiling of
arectangle R’ and the heights of R and R’ coincide. Let R” denote the translation of R’ for which
the left edge of R” coincides with the right edge of R, and denote by S | T the induced tiling of the
rectangle R U R”. See Figure 3.

Let H denote the tiling in Figure 1(a), and define H,, := G(H° | H! | --- | H"); see Figure 4,
where we have omitted H for ease of illustration. The next theorem represents our primary goal
for the remainder of this section. Note that H’ = {p} consists of a single tile, and that {(#,, p)}
forms a Cauchy sequence in (G., dioc), since (H,, p) is naturally a rooted subgraph of (H,+1, p).
Letting H. denote its limit, we will establish the following.

6



Figure 3: An example of the tiling concatenation S | T

I
LT T T T

Figure 4: The tiling H' | H? | H®
Theorem 2.4. The infinite planar graph Hy is transient and has uniform polynomial volume growth of
degree 1og,(12).

Uniform growth is established in Lemma 2.11 and transience in Corollary 2.17.

2.2 Volume growth

The following lemma shows that a ball of radius » = diam(H") in H" has volume < r1°8:(12) Later on,
in Lemma 2.10, we will show a similar bound holds for balls of arbitrary radius 1 < < diam(H")
in H".

Lemma 2.5. For n > 0, we have |H"| = 12", and 3" < diam(H") < 3"*1.

Proof. The first claim is straightforward by induction. For the second claim, note that £1(A) = 37"
for every A € H". Moreover, there are 3" tiles touching the left-most boundary of [0, 1]?. Therefore
to connect any A, B € H" by a path in G(H"), we need only go from A to the left-most column in at
most 3" steps, then use at most 3" steps of the column, and finally move at most 3" steps to B. O

The next lemma is straightforward.

Lemma 2.6. Consider S,T € 7 and G = G(SoT). Forany X € SoT, it holds that |B¢(X, diam(G(T)))| >
|T|.



If T is a tiling, let us partition the edge set E(G(T)) = E1(T) U E»(T) into horizontal and vertical
edges. For A € T and i € {1,2}, let Nt(A, i) denote the set of tiles adjacent to A in G(T) along the
ith direction, meaning that the edge separating them is parallel to the ith axis (see Figure 5).

T
X
B

Figure 5: A tile X € H and its neighbors are marked. Here we have Ny (X,1) = {T, B} and
Nu(X,2) ={L,R}.

Further denote Nt(A) := Nt(A,1) U N1(A, 2). Moreover, we define:

ar(A, i) = max { 221;;

ar(A) := max ar(A,i)
ie{1,2}

:BeNr(A,i),je {1,2}} , 1€{1,2}

ar :=max{ar(A): AeT}
Ly :==max{{i(A):AeT,ie{1,2}}. (2.1)

We take at :=1if T contains a single tile. It is now straightforward to check that ar bounds the
degrees in G(T).

Lemma 2.7. Fora tiling T and A € T, it holds that
degg(r)(A) <4(1+ar) < 8ar.

Proof. After accounting for the four corners of A, every other tile B € Nt(A, i) intersects A in a
segment of length at least ¢;(B) > {;(A)/ar. The second inequality follows from at > 1. O

Lemma 2.8. Consider S,T € 7 and let G = G(S o T). Then for any X € S o T, it holds that
|Bc(X,1/(agLy))| < 192a3|T|. (2.2)
Proof. ForatileY € SoT,let Y € S denote the unique tile for which Y C Y. Let us also define
Ns(X) := {X} UNs(X) U Ns (Ns(X,1),2) UNs (Ns(X,2),1),

which is the set of vertices of G(S) that can be reached from X by following at most one edge in
each direction.



We will show that o
[Bo(X,1/(aeLr))] € [Ns(X)] - (2.3)
It follows that

2
1Be(X, 1/(a§Lr))| < |T| - INs(X)| < |T| - 3 (rgggdegc(s)(z‘\)) ,
and then (2.2) follows from Lemma 2.7.

To establish (2.3), consider any pat~h (}A{ = Xo, X1, X>,...,X) in G with X, ¢ Ng(X). Letk < h
be the smallest index for which X; ¢ Ns(X). Then:

Xo, X1, .-+, Xk-1 € [Ns(X)] (2.4)
Xi-1 N (2 [Ns(X)] n(0,1)%) # 0. (2.5)

Now (2.4) implies that
6i(Xj) < Lrti(Xj) < Lragta(X),  j<k-1,ie{1,2}. (2.6)

And (2.5) shows that for some i’ € {1,2},

=~

-1
€r(Xj) > min {£;(Y): Y € Ns(X)} > €4(X)/a?. 2.7)

—.
Il
o

To clarify why this is true, note that
X+ [-a(R)/ad, (1R /ad] x [-0(R)/ad, (R /ad] € [Ns(R)],

where "+’ here is the Minkowskisum R+ S := {r+s :r € R,s € S}. Indeed, this inclusion motivates
our definition of the “£., neighborhood” N above.

Combining (2.6) and (2.7) now gives

completing the proof. m]

We can now finish the analysis of the volume growth in the graphs {H" : n > 0}.

Lemma 2.9. For n > 1, it holds that ag» < 2.

Proof. Consider A € H" and B € Ng»(A). First note that, as in the proof of Lemma 2.5, all the
tiles in H" have the same width 37", and so ¢1(A) = ¢1(B). Moreover, one can easily verify that
every two vertically adjacent tiles in H" have the same height, and so we have {2(A) = {»(B) when
B € Npgn(A,1). Now we prove by an induction on 7 that for all horizontally adjacent tiles A, B € H"

we have
02(A) <
6(B)




The base case is clear for n = 1. For n > 2 Let us write H" = Ho H" !, and let A, B € H be
the unique tiles for which A C A and B C B. If A = B, then the claim follows from the induction
hypothesis. Otherwise, as B € N« (A, 2), it holds that B € Ny (A, 2) as well. By symmetry, the tiles
touching the left and right edges of H" ! have the same height, and therefore it follows that

64) _ @) _,
6(B) " 6B)

completing the proof.

Lemma 2.10. For any n > 0, it holds that
By (A, )| < 812 VA € H",1 < r < diam(G(H")).

Proof. Writing H" = H"™* o H* and employing Lemma 2.6 together with Lemma 2.5 gives
|Bo@rny(A, 3| > |HF| =125,  VAeH" ke{0,1,...,n}.

The desired lower bound now follows using monotonicity of |Bgn) (A, r)| with respect to 7.

To prove the upper bound, first note that we have Lyx = 37k (recall the definition (2.1)). Moreover,
by Lemma 2.9 we have ag» < 2. Hence invoking Lemma 2.8 with § = H n-kand T = H¥ gives

B (A,3¢/16)| < 768-12F,  VAeH",ke{0,1,...,n},
completing the proof. m]
Finally, this allows us to establish a uniform polynomial growth rate for H.
Lemma 2.11. It holds that
|Ba (v, r)| = r°%02 vy e V(Hy),r > 1.

Proof. Recall first the natural identification H" — V(Hx) under which V(He) = U,»o H" is a
partition. Consider v € V(Hs) and let n > 0 be such that v € H". Now Lemma 2.10 in conjunction
with Lemma 2.5 yields the bounds:

|Bg (v, 7)| > | By (v, 7) NH"| 2 r'°8:(12) r <3t
|B7~{m(vz 7’)| > |Hk| — 12k > rlog3(12) re [3k+3,3k+4),k >n
By, (v, )| = By (v, 1) N H" ™| + By (v, 7) N H"| + |Byy (v, 1) N H'|
< rlog3(12) r< 311—1
By, (0,0 < > |HI| <2 12maxkrd) g log12) re[3k1,35), k > n.

j<max(k,n+1)

These four bounds together verify the desired claim. m]
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2.3 Effective resistances

Consider a weighted, undirected graph G = (V, E, c) with edge conductances ¢ : E — R.. For
p = 1,denote £,(V):={f:V = R | X,cy |f(u)|P < oo}, and equip £2(V) with the inner product
(fr9) = Zuev fu)g(u).

Fors,t € €1(V) with ||s||1 = ||t|l1, we define the effective resistance
Recff(s, t) = (s - t,LE(s - t)> ,

where L is the combinatorial Laplacian of G, and LE is the Moore-Penrose pseudoinverse. Here,
L is the operator on ¢£>(V) defined by

Lef@) = > c({u,0}) (f(o) - f(w).
u{u,v}eE
If G is unweighted, we assume it is equipped with unit conductances ¢ = Tgg).
Equivalently, if we consider mappings 0 : E — R, and define the energy functional

&c(0) = ) cle) "6,

ecE

then Rerf(s, t) is the minimum energy of a flow with demands s — . (See, for instance, [LP16, Ch.
2].) For two finite sets A, B C V in a graph, we define

RSH(A < B):= inf{ReGH(s, t) :supp(s) € A,supp(t) € B,s,t € t1(V), |Is|li = ||t = 1} ,

and we recall the following standard characterization (see, e.g., [LP16, Thm. 2.3]).

If we define additionally ¢, := X,cy ) c({u,v}) for v € V, then we can recall that weighted
random walk {X;} on G with Markovian law

c({u,v})

P[Ximi=v|Xs=u]= c
u

u,vev.

Theorem 2.12 (Transience criterion). A weighted graph G = (V, E, c) is transient if and only if there is a
vertex v € V and an increasing sequence V1 C --- C V,; C Vy4q C -« - of finite subsets of vertices satisfying
Ups1 Vi =V oand

sup Rgﬁ {o} o V\V,) < oo.

n>1

For a tiling T of a closed rectangle R, let £(T') and % (T') denote the sets of tiles that intersect the
left and right edges of R, respectively. We define

p(T) = RS (T /IL(T)), 1y /|R(T)])

Observation 2.13. For any S,T € 7, we have |2(S o T)| = |£(S)| - |£(T)| and |&(S o T)| =
| (S)| - |R(T)|. In particular, [£(H")| = |#(H")| = 3".

Lemma 2.14. Suppose that S, T are tilings satisfying the conditions of Definition 2.3. Suppose furthermore
that all rectangles in %.(S) have the same height, and the same is true for £(T'). Then we have

1
max(|% ()], 1£(T)])

p(S|T)<p(S)+p(T)+

11



Proof. By the triangle inequality for effective resistances, it suffices to prove that

1
max(|%(S)], 1L(T)]) ’
where G = G(S | T). We construct a flow from % (S) to £(T) as follows: If A € %(S),B € £(T) and
{A, B} € E(G), then the flow value on {A, B} is
Fap = len(ANnB) 1 ‘
6 (A) RS

RS (Tas)/ 1R (S)], Vo) /12 (T)) <

Denoting m := max(|Z(S)|, |£(T)|), we clearly have F4p < 1/m. Moreover,

> Y et

Ach(S) BeZ(T):
{A,B}YeE(G)

hence
> Bp<im,
AeR(S) BeZ(T):
{A,BYeE(G)
completing the proof. m]

Say that a tiling T is non-degenerate if L(T) N R(T) = 0, i.e., if no tile A € T touches both the left
and right edges of [T]. Let At := maxer degG(T)(A). If S and T are non-degenerate, we have the
simple inequalities p(T) > 1/(Ar - |£(T)|) and p(T) > 1/(Ar - |R(T)|). Together with Lemma 2.7,
this yields a fact that we will employ later.

Corollary 2.15. For any two non-degenerate tilings S, T satisfying the assumptions of Lemma 2.14, it holds
that

p(§|T) < p(S)+ p(T) + 8min(asp(S), arp(T))
Sas,ar P(S) + p(T).
Lemma 2.16. For every n > 1, it holds that
p(H") < (5/6)".

Proof. Fix n > 2. Recalling Figure 1(b), let us consider H" as consisting of three (identical) tilings
stacked vertically, and where each of these three tilings is written as H*™! | S | H"~! where S
consists of two copies of H"~! stacked vertically. Applying Lemma 2.14 to H"™! | S | H""! gives

1 1
max(AH D], [Z(S)])  max(LH )], [A(S))

p(H") < (1/3)*-3 (ZP(H'H) +p(S) +

<(1/37-3 (2p<H”‘1> +A/27 - 2p(H") + =

= (5/6)p(H"™) +37",

where in the second inequality we have employed Observation 2.13. This yields the desired result
by induction on 7. m]
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Corollary 2.17. The graphs H, = G(H® | H | - -- | H") satisfy

sup p(Hy) < oo. (2.8)

n>1

Hence H, is transient.
Proof. Employing Lemma 2.14, Observation 2.13, and Lemma 2.16 together yields
1 . .
p(Hy) < > [(5/6) +37],
j=1

verifying (2.8). Now Theorem 2.12 yields the transience of H.. ]

3 Generalizations and unimodular constructions

Consider a sequence y = <)/1, eel, )/b> with y; € N. Define a tiling T), € 7 as follows: The unit
square is partitioned into b columns of width 1/b, and fori € {1,2, ..., b}, the ith column has y;
rectangles of height 1/y;. For instance, the tiling H from Figure 1(a) can be written H = T 3 ¢ 3).

We will assume throughout this section that min(y) = b and y1 = y,. Let us use the notation
|¥] :=y1+ -+ p. The proof of the next lemma follows just as for Lemma 2.5 using min(y) = b so
that there is a column in T} of height b".

Lemma 3.1. For n > 0, it holds that |T)/| = |y|", and b" < diam(Ty) < 3b".

Clearly we have ar, < |7]/b. The following lemma can be shown using a similar argument to
that of Lemma 2.9. Note that the only symmetry required in the proof of Lemma 2.9 is that the first
and last column of T), have the same geometry, and this is true since y1 = 5.

Lemma 3.2. Forany n > 1, it holds that ary < ar, <|y|/b.

The next lemma also follows from Lemma 3.1 and the same reasoning used in the proof of
Lemma 2.10. The dependence of the implicit constant on |y|/b comes from Lemma 3.2.

Lemma 3.3. Forany n > 0, it holds that

IBG(A, )| =|y1/p log,(IyD) VA €Ty, 1 <r < diam(G(T)).

3.1 Degrees of growth

Consider b, k € Nwith k > b > 4, and define the sequence

k-3 k-3 k-3 k-3
(k) .
y b <b,{b_3wb,...,h_3}b,b,{b_BJb,...,{b_BJb,b)

(k—3) mod (b—3) copies (b—3)—[(k—3) mod (b—3)] copies

Denote Ty k) := T, » and note that |y(0k)| = bk. Define dy(b, k) :=log,(bk),and I’y x := 2?21 1/yfb’k).

13



Observation 3.4. The following facts hold fork > b > 4and n > 0:

(a) There are b" tiles in the left- and right-most columns of T(VZ "

(b) If a pair of consecutive columns in
max(h, h’).

T(’Z 0 have heights 1 and #’, then min(h, ') divides

Now observe that Lemma 3.3 yields the following.

Corollary 3.5. The family of graphs ¥ = {G(T(’;) k)) : n > 0} has uniform polynomial growth of degree
dy(b, k) in the sense that

|Bg(x, )| =¢ r%®H VG eF,xeV(G),1<r<diam(G).
For any rational p/q > 2, one can achieve d;(b, k) = p/q by taking b = 49 and k = 4771,

Remark 3.6 (Arbitrary real degrees d > 2). We note that by considering more general products of
tilings, one can obtain planar graphs of uniform polynomial growth of any real degree d > 2 for
which the main results of this paper still hold. Instead of working with the family of powers {7}
for a fixed tiling T, one defines an infinite sequence (y(l), 7/(2), ...), and examines the family of
graphs Ty(n) 0---0 Ty(l).

More concretely, fix some real d > 2, and let us consider a sequence {/, : n > 1} of nonnegative

integers. Also define y(") := y44+h) and T") := T, o---oTyn. Then |T™| = 47 ]_[;7:1(4 + hj),

and diam(T™) = 4", By a similar argument as in Lemma 2.10 based on the recursive structure, it
holds that for i € {1,2,...,n}, balls of radius = 4! in T have volume =<y 4 H§:1(4 + hj), where
K := max{h, : n > 1}. Given our choice of {hy,...,h,_1}, we choose h, > 0 as large as possible
subject to

Z log,(1+h;/4) < (d - 2)n.
j=1

It is straightforward to argue that K <; 1, and

n
Z log,(1+h;/4) - (d —2)n| <4 1,
j=1

implying that 4" H?:1(4 +hj) =4 49" for every n > 1. It follows that the graphs {T" : n > 1} have
uniform polynomial growth of degree d.

Let us now return to the graphs and analyze the effective resistance across them.

LY

Lemma 3.7. For every n > 1, it holds that

Ty Skp (T(?;,k)) STy

14



Proof. Fixn > 2 and write T} . = Ty 5o T, lasAi| Ay |- | Ay where, for 1 < i < b, each A; is

(b,k) (b,k)
a vertical stack of y( ) copies of T(’Z kl) Since p(A;) = (T(’;] kl)) / y(b ) by the parallel law for effective
resistances, applying Lemma 2.14 to A1 | Ay | --- | A} gives
b-1

n=1y 7., (bk) 1 -1 1-n
p ( o, k)) Z p(T(b k))/y le min (R(A;), £(Ai+1)) s p(T(b k))rb'k o

where in the second inequality we have employed min (%% (A;), £(Ai+1)) > b" which follows from
Observation 3.4(a). Finally, observe that T x > 1/ )/(b k) 4 1/ )/(h K = /b, and therefore the desired
upper bound follows by induction.

For the lower bound, note that since the degrees in T(’l‘) ) are bounded by k, the Nash-Williams
inequality (see, e.g., [LP16, §5]) gives

bk))NkZ|K|NZ|K| bk' (3.1)

where K; is the ith column of rectangles in T(b Y and the last equality follows by a simple

induction. O

The next result establishes Theorem 1.1.

Theorem 3.8. For every k > b, the graphs ﬁ(b’k) =G ( .5 | T b .0 | - T, k)) satisfy
sup p (ﬁ(b’k)) < oo. (3.2)
nz1

Hence the limit graph T is transient. Moreover, T’ has uniform polynomial growth of degree dy(b, k).

Proof. Employing Lemma 2.14, Observation 3.4(a), and Lemma 3.7 together yields

p (7] < Z (T + 7).

j=1

For k > b, we have max(y®¥) > b and min(y®}) = b, hence T, x < 1, verifying (3.2). Now
Theorem 2.12 yields transience of 7

Uniform polynomial growth of degree d;(b, k) follows from Corollary 3.5 as in the proof of
Lemma 2.11. m|

3.2 The distributional limit

Fix k > b > 4 and take G, := G(T/! b k)) Since the degrees in {G,} are uniformly bounded, the
sequence has a subsequential dlstrlbutlonal limit, and in all arguments that follow, we could
consider any such limit. But let us now argue that if u, is the law of (G, p,) with p, € V(G,)
chosen according to the stationary measure, then the measures {y,, : # > 0} have a distributional
limit.

15



Lemma 3.9. For any k > b > 4, there is a reversible random graph (Gy k, p) such that {(Gn, pn)} =
(Gp,k, p)- Moreover, almost surely Gy x has uniform polynomial volume growth of degree d,(b, k).

Proof. 1t suffices to prove that {(G,, pn)} has a limit (G x, p). Reversibility of the limit then follows
automatically (as noted in Section 1.1.1), and the degree of growth is an immediate consequence of
Corollary 3.5. It will be slightly easier to show that the sequence {(G,, p»)} has a distributional
limit, with p, € V(G,) chosen uniformly at random. As noted in Section 1.1.1, the claim then
follows from [BC12, Prop. 2.5] (the correspondence between unimodular and reversible random
graphs under degree-biasing).

Let uy,,, be the law of Bg, (pn, r). It suffices to show that the measures {y,,, : n > 0} converge
for every fixed r > 1, and then a standard application of Kolmogorov’s extension theorem proves
the existence of a limit.

For a tiling T of a rectangle R, let dT denote the set of tiles that intersect some side of R. Define
the neighborhood N,(dT; ,.) := {v € T(’Z = dg, (v, 8T(’z k)) < r} and abbreviate d = d;(b, k). Then

(b,k)
|8T(’z k)l < 4b", so Corollary 3.5 gives

[N@Ty )| i o

Since |T(’;) k)l = (bk)", it follows that

1-P [Sr,n] Sk k_nrd/
where &, , is the event {Bg, (pn, 1) N QT& o= 0}.

Now write T(’llJ = T p © T('Z_kl), and note that p, falls into one of the |y®X)| = bk copies of G,

and is, moreover, uniformly distributed in that copy. Therefore we can naturally couple (G, f»)
and (Gy,-1, pn-1) by identifying p, with p,_1. Moreover, conditioned on the event &, ,,_1, we can
similarly couple Bg, (pn, r) and Bg, ,(pn-1,7)-

It follows that, for every r > 1,

dTV ([/ln—l,r/ Pln,r) <1- P[gr,n—l] <k k_nrd .

As the latter sequence is summable, it follows that {1, » } converges for every fixed r > 1, completing
the proof. O

3.3 Speed of the random walk

Let {X;} denote the random walk on Gy, x with Xy = p. Our first goal will be to prove a lower bound
on the speed of the walk. Define:

dw(b, k) :=dgy(b, k) +log, (I'y ).
We will show that d, (b, k) is related to the speed exponent for the random walk.

Theorem 3.10. Consider any k > b > 4. It holds that forall T > 1,

E [dGh,k(XT/ XO) | XO — ,D] >p Tl/dw(b,k)' (33)
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Before proving the theorem, let us observe that it yields Theorem 1.3. Fix k > b > 4. Observe
that for any positive integer p > 1, we have d, (b7, k?) = dg(b, k). On the other hand,

dg(bp/ kP) - dw(bp/ kP) = logbl’ (Fbp,kp)
—log,, Bb77 + (b/k)P) — 0,(1)
in (1,1og, (k) — 1) — 0p(1)

=
=
> min (1, dg(b”, kP) —2) = 0,(1). (3.4)

m
m
So for every ¢ > 0, there is some p = p(¢) such that

dw(b?, k”) < max (2,dg (b7, k7) - 1) + ¢,
and moreover Gpr r» almost surely has uniform polynomial growth of degree d, (b, k). Combining
this with the construction of Corollary 3.5 for all rational d > 2 yields Theorem 1.3.

3.3.1 The linearized graphs

Fix integers k > b > 4 and n > 1, and let us consider now the (weighted) graph L = L?b 0 derived
from G = G(T(’Z,k)
We connect two vertices u, v € V(L) if their corresponding columns C, and C, in G are adjacent,

and we define the conductances ¢, := |[Eg(Cy, Cy)|, where Eg(S, T) denotes the number of edges
between two subsets S, T C V(G). Define additionally ¢, :=2|C,| and

Cy = Cyy + Z c{u,v}).

v:{u,v}€E(L)

) by identifying every column of rectangles into a single vertex. Thus |V(L)| = b".

Let us order the vertices of L from left to right as V(L) = {{1, ..., {pn }. The series law for effective
resistances gives the following.

Observation 3.11. For1 <i <t < j < b", we have
RE (L o €)) = R o £) + RL (6 & ¢))

We will use this to bound the resistance between any pair of columns.

Lemma 3.12. If1 <s <t < b", then

Réﬁ(fs o) (ce, +co ++ce) =<k Tpi- bk)logb(t_s) . (3.5)

s+1

Proof. Let us first establish the upper bound. Denote 1 := [log,(t —s)], T := Ty x), and I := T 1.
Write T" = T"" o T" and along this decomposition, partition T" into b" " sets of tiles Dy, . .., Dyu-n,
where each D; is formed from adjacent columns

Di = C(i—1)~bh+1 U---uU Ci.bh . (36)

Suppose that, for1 < i < b" " the tiling T" " has Bi tiles in its ith column. Then D; consists of §;
copies of T" stacked atop each other.
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Thus we have |D;| = §;|T"|, and furthermore p(D;) < p(T")/B:, hence
p(Di) - 1D;i] < p(T") - |T" < T" - (bk)", (3.7)

where the last inequality uses Lemma 3.7.

Letl1 <i<j<b"™ " be such that C; € D; and C; C D;. Since t < s+ b", and each set D;
consists of bh consecutive columns, it must be that j < i+ 1. If i = j, then |Cs| + -+ + |G| < | D],
and Observation 3.11 gives

Réff(fs A ft) < p(@i),

thus (3.7) yields (3.5), as desired.

Suppose, instead, that j = i + 1. From Lemma 3.2, we have ap.-» < |y|/b < k. Therefore
1/k < Bi+1/Bi < k. Since the degrees in G(T(’Z k)) are bounded by k, this yields the following claim,

which we will also employ later.

Claim 3.13. For any ¢; € V(L), we have
ce; =k |Cil, (3.8)

and for any D > 0 and columns C, € D; and C, € D; with |i — j| < D, it holds that

ct, =<k |Cal =k,0 |Gyl =<k ce,- (3.9)

Thus using Corollary 2.15 (and noting that each D; is non-degenerate) along with (3.7) gives
p(D; U Dis1) = p(Di | Dis1) sk p(Di) + p(Div1) sk p(T")/Bi
Since it also holds that |D;| + |D;1| = (Bi + ﬁi+1)|Th| < ZkﬁilThl, Observation 3.11 gives
Ri(ls & €) - (IC] + -+ +Ci]) < p(Di U Di1)| D U Dia| < p(TMIT,

and again (3.7) establishes (3.5). Now (3.8) completes the proof of the upper bound.

For the lower bound, define 1’ := |log, (t — s)] — 1 and decompose T" = T" " o T". Partition
T" similarly into b1 sets of tiles Dy, .. ., Dyu-w. Suppose that Cs € D; and C; € Dj, and note
that the width of each D; is b and b"*2 > t —s > b"*1, hence j > i + 1. Therefore using again
Observation 3.11 and the Nash-Williams inequality, we have

-1 -1 1 ibh 1
RL.(6s & ;) > — — =17
aills > 1) _Z » Z ICj Z Gl ﬁz+1 bk
j=s+1 ¢ s+1 ](z—l)bh+1

where the final inequality uses (3.1). Note also that
ICs| + -+ +|Ct| = |Disa] = Bina|T" | = Bira(bK)".

An application of (3.8) completes the proof of the lower bound. m]
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3.3.2 Rate of escape in L

Consider again the linearized graph L = L?b 0 with conductances ¢ : E(L) — R, defined in

Section 3.3.1, and let {Y};} be the random walk on L defined by

PlYipi=0|Yr=u] = Ccﬂ, {u,v} € E(L)oru = v. (3.10)

u

Let 71, be the stationary measure of {Y;}.
For a parameter 1 < h < n, consider the decomposition T" = T "oT" andlet Vy, Vs, ..., Viyn-n
be a partition of V(L) into continguous subsets with |V1| = [V,| =--- = |Vlf‘h| =",

Let{Z;:ie{1,2,...,b""}} be a collection of independent random variables with

Pz = o] = L9 ey

— (V)
Define the random time 7(h) as follows: Given Yy € V;, let 7(h) be the first time 7 > 1 at which
Y €{Zj2, Zjso} 3<j<b"M -2
Y.=Zj  je{1,2}

Y.=Zjo je{b""-1,b""}.

The next lemma shows that the law of the walk stopped at time (%) is within a constant factor of
the stationary measure.

Lemma 3.14. Suppose Yy is chosen according to 1. Then for every v € V(L),
P [YT(h) = ZJ] =k TCL(U).

Proof. Consider some 5 < j < b"™" — 4 and v € V;. The proof for the other cases is similar. Let &
denote the event {Yy € {V;_2, Vj12}}. The conditional measure is

m(u)

PlYy = El = ,
o=ulel= )

u e V]'_2 U V]'+2.

Consider three linearly ordered vertices v, u, w € V(L), i.e., such that v, w are in distinct connected
components of L[V (L) \ {u}]). Let p5=“ denote the probability that the random walk, started from
Yy = u hits v before it hits w. Now we have:

P [Yo = 0] = 20 PO @) ocw PEAODY T®) ocw

3 . . u
T(L(V]) MGV]',Z wer,4 T(L(V]_4) llEV]‘+2 wer+4 nL(V]+4)
(3.11)
It is a classical fact (see [LP16, Ch. 2]) that
prse Rgﬁ(u < w) B Rgff(u o w)
u

Réﬁ(u ©v)+ Réﬁ(u o w) Rgﬁ(v o w)

where the final equality uses Observation 3.11 and the fact that v, u, w are linearly ordered.
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Thus from Lemma 3.12 and (3.9), whenever w € Vj_4,u € Vis,v € Vioru € Vi3, v € Vj,w €
Vij+4, it holds that
pu Y =k 1

Another application of (3.9) gives
7L (Vie2) =k mL(Vjea) =k mL(Vj) <k m(Visa),

hence (3.11) gives
P [Yen = 0] = mi(v),
completing the proof. m]

Lemma 3.15. It holds that E[t(h) | Yo] <x b"de®R),

Proof. Consider a triple of vertices u € Vj,v € Vi, w € Vjyp for3 < j < b"h — 2. TLet Tp,w be the
smallest time 7 > 0 such that X; € {v, w}, and denote

tyY = E[tpw | Yo=ul.
Then the standard connection between hitting times and effective resistances [CRR"97] yields
j+2
tyY <2 Z Z cx |min (Rl (u & v), RE(u © w)) ¢ (Fb,kbk)h ,
i=j—2 xeV;
where the last line employs Lemma 3.12. Recalling that dy,(b, k) = log, (bkI'; 1), this yields
E[7(k) | Yo = o] s b ()

foranyv € V3UV4U---U Vyun_y. A one-sided variant of the argument follows in the same manner
forve Viwhenj<2orj>b""-1. m]

Lemma 3.16. Let Y, have law ;. There is a number ci > 0 such that for any T < deiam(L)dw(b,k)’ we
have
E [di (Yo, Yr)] 2x TV ®H),

Proof. First, we claim that for every T > 1,

1
E[di(Yo, YT)] > > nax E[d(Yo, Y¢) —dr(Yo, Y1)]. (3.12)
0<t<T

Let s’ < T be such that
EldL(Yo, Ys)] = nax E[dL(Yo, Yi)].

Then there exists an even time s € {s’,s" — 1} such that E[d (Yo, Ys)] > E[dL(Yo, Ys) — dL(Yo, Y1)]-
Consider {Y;} and an identically distributed walk {Y;} such that Y; = Y; for t < s/2 and Y; evolves
independently after time s/2. By the triangle inequality, we have

dr(Yo, Yr) +d.(Yr, Ys) = dr(Yo, Ys).
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But since {Y;} is stationary and reversible, (Yo, Yr) and (Y7, Y;) have the same law as (Y, Yr).
Taking expectations yields (3.12).

Let h € {1,2,...,n} be the largest value such that E[t(h)] < T. We may assume that T is
sufficiently large so that E[7(1)] < T, and Lemma 3.15 guarantees that

bl TY () (3.13)

as long as h < n (which gives our restriction T < b k) = ¢ diam(L)/ %5 for some cx > 0).
From the definition of 7(), we have

dr(Yo, Yem)) = b

hence the triangle inequality implies
A1 (Yo, Yar) > Vepear (0" = du(¥Ve, Yor)) (3.14)

Again, let {Y;} be an independent copy of {Y;}. Then since P(t(h) < 2T) > 1/2, Lemma 3.14
implies -
P [Ye = | {t(h) <2T}| <2P [Y.py = 0] sk P [Yo =]
Therefore,
E [1emy<ary ALYy, Yor)| Sk E [Veg<ary d(Yo, Yor—)] -
Define 1 := b~" maxo<t<or E[d1(Y0, Y3)]. Using the above bound yields
E [1gen<ary dL(Yeqn), Yor)] < C(k) P(t(h) < 2T) nb",

for some number C(k). Taking expectations in (3.14) gives

E [dL(Yo, Yar)] > P((h) < 2T)(1—17C(k))bh (1 nC(k))bh

If n < 1/(2C(k)), then E[dL(Yo, Yar)] > b" /4. If, on the other hand, n > 1/(2C(k)), then (3.12) yields

1
E[d(Yo, Yor)] > 5 (nbh — 1) > b

Now (3.13) completes the proof. m]

3.3.3 Rate of escape in Gy x

Consider now the graphs G, := G(T/; b k)) forsomek > b > 4and n > 1. Let us define the cylindrical

version G, of G, with the same vertex set, but additionally and edge from the top tile to the bottom
tile in every column (see Figure 6). If we choose p,, € V(Gy) according to the stationary measure on
G,, then clearly {(G, pn)} = (Gp, p) as well.

Define also L, := L} ,. Because of Observation 3.4(b), the graph Gy has vertical symmetry:
Tiles within a column all have the same degree and, more specifically, have the same number of
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Figure 6: The cylindrical graph G for G = G(T(3 ¢ 3,). The new edges are dashed.

neighbors on the left and on the right. Let =, : V(G,) — V(L) denote the projection map and
observe that
d@n(u,v) 2 dLn(ni’l(u)/ ni’l(v))/ Vl/l,v € V(Gi’l)

Let {XE”)} denote the random walk on G,, with X(()”) = pn, and let {Yt(”)} be the stationary random
walk on L, defined in (3.10).

Note that, by construction, {nn(Xin))} and {Yt(”)} have the same law, and therefore

E [de, (X5, x| > € [an, (v, ()] (3.15)
With this in hand, we can establish speed lower bounds in the limit (G x, p).

Proof of Theorem 3.10. Observe that (3.15) in conjunction with Lemma 3.16 gives, for every T <
cr(diam(G,)/2)% 0,
e a0, )] 0

Since {(Gy, pn)} = (G, p) by Lemma 3.9, it holds that if { X;} is the random walk on G with Xy = p,
thenforall T > 1,

E [dc;(Xo, XT)] 2k Tl/d“’(b’k). O
3.4 Annular resistances
We will establish Theorem 1.5 by proving the following.

Theorem 3.17. Forany k > b > 4, there is a constant C = C(k) such that for G = Gy x, almost surely

RS, (B(p, R) & V(G)\ Bs(p,2R)) < CR&Tw8) VR > 1.

To see that this yields Theorem 1.5, consider some k > b?, corresponding to the restriction
dy(b, k) > 3. Then for all positive integers p > 1, we have d,(b?, k¥) = dy(b, k) and recalling (3.4),

lim logy, (Fer k) = —1.

p—o0

To prove Theorem 3.17, it suffices to show the following.
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Lemma 3.18. Foreveryn > 1, k > b > 4, there is a constant C = C(k) such that for G = G(
have

T(’;,k)), we
RS (Bo(x,R) & V(G) \ Bg(x,2R)) < CR™&ek), vx € V(G),1 < R < diam(G)/C.

Proof. Denote T := T(; ). Consider some value 1 < R < diam(G)/C, and define & := [log,(R/3)].

LetCy, ..., Gy denote the columns of T" and writing T" = T" “hoTh letus partition the columns
into consecutive sets Dy, . .., Dyu-i (as in the proof of Lemma 3.12), where D; = C;_1)pi U+ -UCipn.
For1<i<b"™", let Bi denote the number of tiles in the ith column of T"" so that D; consists of Bi
copies of T" stacked vertically.

Fix some vertex x € V(G) and suppose that x € D; for some 1 < s < b""". Denote A := 9b. By
choosing C sufficiently large, we can assume that b~ > 2A, so that either s < b" " = Aors > 1+A.
Let us assume that s < b~ — A, as the other case is treated symmetrically. Define t := [s + 2 + 6b]
sothatt —s < A, and

do(De, D) > bt —5—1) > (t—5 — 1)3% S 2R (3.16)

Denote & := ged(Bs, Bs+1, - - -, ft). We claim that

& 2k max(Bs, Ps+1,---, Pt) - (3.17)

This follows because min(f;, fi+1) | max(B;, fi+1) forall 1 < i < b" (cf. Observation 3.4(b)), and
moreover the ratio max(B;, fi+1)/min(B;, fi+1) is bounded by a function depending only on k. Since
t —s <k 1, this verifies (3.17).

Denote D := Dy U --- U D;. One can verify that D is a vertical stacking of & copies of

p(T) <k p(T") ST, (3.18)

with the final inequality being the content of Lemma 3.7.

Let A be the copy of T that contains x, and let S be the copy of T" in T" = T"~" o T" that contains
x. Since & divides s, it holds that S C A and £(S) € £(A). We further have

[L(A)] = 1L(T)| = (Bs/E)NL(T™) = (Bs /L (S)] sk |L(S)].

This yields i R X
RS (1(s)/1L(S)] © % (A)) sk RG(Tga)/|LA)] & R(A)), (3.19)

where we have used the hybrid notation: For s € £1(V),
Rex(s © U) =inf {RG(s, 1) : supp(t) C U, [It]h = s} -
Therefore,
RG(L(S) & R(A)) < RG(14(5)/1£(S)] < R(A))

(319)_ - . A . (B18)
Sk RG (g /12(A)] & R(A) = p(T) <¢ T}

Since diamg(S) < 30" < Rand x € S, it holds that S € Bg(x, R). On the other hand, since x € S,
(3.16) shows that Bg(x,2R) N % (A) = 0. We conclude that
R$(Ba(x, R) & V(G) \ Bo(x,2R)) < RG(L(S) & R(A)) <i T} < RO T0),

as desired. O
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3.5 Complements of balls are connected

Let us finally prove Theorem 1.4. Recall the setup from Section 3.3.3: We take k > b > 4, define G, =
G(T(’Z k))' and use (G, pn) to denote the cylindrical version, which satisfies {(G,, pn)} = (Gpk, p)-

Partition the vertices of G,, into columns Cy, . . ., Cpr in the~ natural way (as was done in Sgction 3.3
and Section 3.4). In what follows, we say that a set S C V(G,,) is connected to mean that G,[S] is a
connected graph.

Definition 3.19. Say that a set of vertices U C V(G,,) is vertically convex if for all 1 < i < b", either
UNC; =0or UnN C; is connected.

Observation 3.20. Consider a connected set U C C; forsome 1 < i < b". Then for 1 < i’ < b" with
li —i'| <1, the set B (U, 1) N Cy is connected.

Momentarily, we will argue that balls in G, are vertically convex.

Lemma 3.21. Consider any A € T and R > 0. It holds that B (A, R) is vertically convex.

With this lemma in hand, it is easy to establish the following theorem which, in conjunction
with Lemma 3.9, implies Theorem 1.4.

Theorem 3.22. Almost surely, the complement of every ball in Gy i is connected.

Proof. Since {(Gﬂ, pn)} = Gy, it suffices to argue that for every n > 1, x € V(G,), and R < b"/3,
the set U := V(Gn) \ B¢, (x, R) is connected.

By Lemma 3.21, it holds that B (x, R) is vertically convex. Since the complement of a vertically
convex set is vertically convex (given that every column in G, is isomorphic to a cycle), U is vertically

convex as well. To argue that U is connected, it therefore suffices to prove that there is a path from
.%(T(’Z,k)) to %(T&",k}) in G,[U].

In fact, the tiles in T(’Z 0 have height at most b™", and therefore the projection of K := HB &, (x, R)]]
onto {0} X [0, 1] has length at most (2R +1)b™" < 1. Hence there is some height 1 € [0, 1] such thata
horizontal line € at height 1 does not intersect K. The set of tiles {A € V(G,) : N [A] # 0} therefore

contains a path from "%(T{Z,k)) to %(T(’Z’k)) that is contained in G,[U], completing the proof. O

We are left to prove Lemma 3.21. To state the next lemma more cleanly, let us denote
Co=Cpi1 = 0.

Lemma 3.23. Consider 1 < i < b" and let U C C;j—1 U C; U Ci11 be a connected, vertically convex subset of
vertices. Then Bg (U, 1) N C; is connected as well.

Proof. Fori’ € {i—1,i,i+ 1}, denote Uy := U N C;. Clearly we have
BG”(U, 1) = Bcn(ui_h 1) U BG”(UZ', 1) U BG"(UZ'H, 1) .
If U; = 0, then as U is connected it should be that either U = U;_1 or U = U;41, and in either case

the claim follows by Observation 3.20.

Now suppose U; # 0, and consider some i’ € {i—1, i+1} suchthat U; # 0. Then Observation 3.20
implies that BG” (Ui, 1) N C; is connected. Furthermore, since U is connected, it holds that
Bg, (Uy,1) N U; # 0. Now, as we know that U; is connected by the assumed vertical convexity of U,
we obtain that B (U, 1) N C; is connected, completing the proof. m]
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Proof of Lemma 3.21. We proceed by induction on R, where the base case R = 0 is trivial, so consider
R > 1. Fixsomei € {1,2,...,b"}, and suppose B (A, R) N C; # 0. Denote

U:=Bg (A, R-1)N(Ci-1 UCi UCisa).

Clearly we have Be, (A,R)NGC; = Bg, (U,1) N C;. The set U is manifestly connected and, by the
induction hypothesis, is also vertically convex. Thus from Lemma 3.23, it follows that B G, U, 1)nc;
is connected as well. We conclude that B (A, R) is vertically convex, completing the proof. m]
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