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Abstract. The segment number of a planar graph G is the smallest
number of line segments needed for a planar straight-line drawing of G.
Dujmovié¢, Eppstein, Suderman, and Wood [CGTA’07] introduced this
measure for the visual complexity of graphs. There are optimal algorithms
for trees and worst-case optimal algorithms for outerplanar graphs, 2-
trees, and planar 3-trees. It is known that every cubic triconnected planar
n-vertex graph (except K4) has segment number n/2 + 3, which is the
only known universal lower bound for a meaningful class of planar graphs.

We show that every triconnected planar 4-regular graph can be drawn
using at most n + 3 segments. This bound is tight up to an additive
constant, improves a previous upper bound of 7n/4 + 2 implied by a
more general result of Dujmovié et al., and supplements the result for
cubic graphs. We also give a simple optimal algorithm for cactus graphs,
generalizing the above-mentioned result for trees. We prove the first linear
universal lower bounds for outerpaths, maximal outerplanar graphs, 2-
trees, and planar 3-trees. This shows that the existing algorithms for these
graph classes are constant-factor approximations. For maximal outerpaths,
our bound is best possible and can be generalized to circular arcs.

Keywords: Visual complexity - Segment number - Lower/upper bounds

1 Introduction

A drawing of a given graph can be evaluated by various quality measures depend-
ing on the concrete purpose of the drawing. Classic examples of such measures
include drawing area, number of edge crossings, neighborhood preservation, and
stress of the embedding. More recently, Schulz [20] proposed the visual complexity
of a drawing, determined by the number of geometric objects (such as line seg-
ments or circular arcs) that the drawing consists of. It has been experimentally
verified that people without mathematical background tend to prefer drawings
with low visual complexity [13]. The visual complexity of a graph drawing de-
pends on the drawing style, as well as on the underlying graph properties. A
well-studied measure of the visual complexity of a graph is its segment number,
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introduced by Dujmovié¢, Eppstein, Suderman, and Wood [5]. It is defined as
follows. Recall that a straight-line drawing of a graph maps (i) the vertices of
the graph injectively to points in the plane and (ii) the edges of the graph to
straight-line segments that connect the corresponding points. A segment in such
a drawing is a maximal set of edges that together form a line segment. Given
a straight-line drawing I" of a graph, the set of segments it induces is unique.
The cardinality of that set is the segment number of I'. The segment number,
seg(G), of a planar graph G is the smallest segment number over all crossing-free
straight-line drawings of G.

Previous work. Dujmovi¢ et al. [5] pointed out two natural lower bounds for the
segment number: (i) n(G)/2, where n(G) is the number of odd-degree vertices
of G, and (ii) the slope number, slope(G), of G, which is defined as follows.
The slope number slope(I) of a straight-line drawing I" of G is the number of
different slopes used by any of the straight-line edges in I". Then slope(G) is the
minimum of slope(I") over all straight-line drawings I" of G. Dujmovi¢ et al. also
showed that any tree T' admits a drawing with seg(7) = n(T")/2 segments and
slope(T) = A(T)/2 slopes, where A(T) is the maximum degree of a vertex in 7.
These drawings, however, use exponential area. Recall that an outerplanar graph
is a plane graph that can be drawn such that all vertices lie on the outer face.
The weak dual graph of an outerplane graph is its dual graph without the vertex
corresponding to the outer face; it is known to be a tree. An outerplane graph
whose weak dual is a path is called an outerpath. A mazimal outerplanar graph is
an outerplanar graph with the maximum number of edges. Dujmovié et al. showed
that every maximal outerplanar graph G with n vertices admits an outerplanar
straight-line drawing with at most n segments. They showed that this is worst-
case optimal. They also gave (asymptotically) worst-case optimal algorithms
for 2-trees and plane (where the combinatorial embedding and outer face is
fixed) 3-trees. Finally, they showed that every triconnected planar graph with n
vertices can be drawn using at most 5n/2 — 3 segments. For the special cases of
triangulations and 4-connected triangulations, Durocher and Mondal [6] improved
the upper bound of Dujmovié¢ et al. to (7n — 10)/3 and (9n — 9)/4, respectively.
The former bound implies a bound of (16n — 3m — 28)/3 for arbitrary planar
graphs with n vertices and m edges. Kindermann et al. [12] observed that this
implies that seg(G) < (8n—14)/3 for any planar graph G: if m > (8n—14)/3 this
follows from the bound, otherwise any drawing of GG is good enough. Constructive
linear-time algorithms that compute the segment number of series-parallel graphs
of maximum degree 3 and of maximal outerpaths were given by Samee et al. [19]
and by Adnan [1], respectively. Mondal et al. [17] and Igamberdiev et al. [11]
showed that every cubic triconnected planar graph (except Kj4) has segment
number n/2+ 3. Hiiltenschmidt et al. [10] showed that trees, maximal outerplanar
graphs and planar 3-trees admit drawings on a grid of polynomial size, using
slightly more segments. Kindermann et al. [12] improved some of these bounds.
Concerning the computational complexity, Durocher et al. |7] showed that the
segment number of a planar graph is NP-hard to compute, even if one insists
that in the resulting planar drawing all faces are convex.
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Universal Existential Existential Universal

Graph class lower bound  upper bound lower bound upper bound
planar conn. 1 1 2n—2 [5] (8n —14)/3 [6L|12]
planar 3-conn. V2n o [5] O(y/n) Bl 2n—6 5] 5n/2-3 [5
planar 3-conn. 4-reg. 2(y/n) {1 O(y/n) n n+3 2|
planar 3-conn. 3-reg. n/2+3 |5 — — n/2+3  |11417]
triangulation 2H/n) [p] O(/n) Bl 2n—2 |5 (Tn—10)/3  |6]
4-conn. triangulation 2(v/n) [5] O(v/n) B] 2n—6 [5] 9n—9)/4  |6]
planar 3-trees n+4 6 n+7 3n/2 2n —2 5]
2-trees (n+7)/5 T8 (5n + 24)/13 P 3n/2 —2 [5]  3n/2 5]
maximal outerplanar (n+ 7)/5 T8l (5n + 24)/13 n (5] n (5]

maximal outerpath [n/2] + 2 In/2| +2 n (5] n |5
cactus n/2+y L8 — — n/2+

Table 1: Universal and existential lower and upper bounds on the segment number
for subclasses of planar graphs. By ezistential upper bound we mean an upper bound
for the universal lower bound. Such a bound is provided by the segment number of a
specific graph family within the given graph class.Here, 1 is the number of odd-degree
vertices and v = 3co + 2¢1 + c2, where ¢; is the number of simple cycles with exactly 4
cut vertices. We use “—” to indicate that universal lower bound and the universal upper
bound agree for a specific graph class. The corresponding algorithms are thus optimal.
Results of this paper are shaded in gray, where we link to remarks (R), lemmas (L),
propositions (P), theorems (T).

Other related work. Okamoto et al. [18] investigated variants of the segment
number. For planar graphs in 2D, they allowed bends. For arbitrary graphs, they
considered crossing-free straight-line drawings in 3D and straight-line drawings
with crossings in 2D. They showed that all segment number variants are JR-
complete to compute, and they gave upper and existential lower bounds for the
segment number variants of cubic graphs. The arc number, arc(G), of a graph G
is the smallest number of circular arcs in any circular-arc drawings of G. It has
been introduced by Schulz [20], who gave algorithms for drawing series-parallel
graphs, planar 3-trees, and triconnected planar graphs with few circular arcs. For
trees, he reduced the drawing area (from exponential to polynomial). Chaplick
et al. [3L|4] considered a different measure of the visual complexity, namely the
number of lines (or planes) needed to cover crossing-free straight-line drawings
of graphs in 2D (and 3D). Kryven et al. [16] considered spherical covers.

Contribution and outline. In terms of universal upper bounds, we first show that
every triconnected planar 4-regular graph with n vertices can be drawn using at
most n + 3 segments (note that there are 2n edges); see This bound is
tight up to an additive constant, improves a previous upper bound of 7n/4 + 2
implied by a more general result [5, Thm. 15] of Dujmovi¢ et al., and supplements
the result for cubic graphs due to Mondal et al. [17] and Igamberdiev et al. [11].
Our algorithm works even for plane graphs and produces drawings that are
conver, that is, the boundary of each face corresponds to a convex polygon. We
remark that triconnected planar 4-regular graphs are a rich and natural graph
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class that comes with a simple set of generator rules |2]. It might seem tempting
to prove our result inductively by means of these rules, though we have not been
able make this idea work. Instead, our algorithm relies on a decomposition of
the graph along carefully chosen paths , which might be of independent
interest. We also give a simple optimal (cf. Table|l|) algorithm for cactus graphﬂ
(see 7 generalizing the result of Dujmovic et al. for trees.

We prove the first linear universal lower bounds for maximal outerpaths
(In/2] + 2; see [Sect. 3), maximal outerplanar graphs as well as 2-trees ((n + 7)/5;
see [Sect. 4), and planar 3-trees (n + 4; see . This makes the corresponding
algorithms of Dujmovi¢ et al. constant-factor approximation algorithms. For
Adnan’s algorithm [1] that computes the segment number of maximal outerpaths,
our result provides a lower bound on the size of the solution. For maximal
outerpaths, our bound is best possible and can be generalized to circular arcs.
For planar 3-trees, the bound is best possible up to the additive constant. Known
and new results are listed in Table[I} Claims with “x” are proved in the appendix.

Notation and terminology. All graphs in this paper are simple(i.e., we do not
allow parallel edges or self-loops). For any graph G, let V(G) be the vertex
set and E(G) the edge set of G. Now let I" be a planar drawing of a planar
and connected graph G. The boundary 9f of each face f of I' can be uniquely
described by a counterclockwise sequence of edges. If G is biconnected, then 0 f
is a simple cycle( otherwise, df can visit vertices and edges multiple times).
The collection of the boundaries of all faces of I' is called the combinatorial
embedding of I'. The unique unbounded face of I' is called its ouler face; the
remaining faces are called internal. Vertices (edges) belonging to the boundary of
the outer face are called outer vertices (edges); the remaining vertices (edges) are
called internal. A plane graph is a planar graph equipped with a combinatorial
embedding and a distinguished outer face. Note that two drawings of G with
the same combinatorial embedding may have different outer faces. A path in a
plane graph is internal if its edges and interior vertices do not belong to its outer
face. We say that an angle is conver if it is at most 7 and reflex if it exceeds 7.
In a conver polygon, each internal angle is convex. For any k € N, we use [k] as
shorthand for {1,2,...,k}.

2 Triconnected 4-Regular Planar Graphs

This section is concerned with the segment number of 3-connected 4-regular
planar graphs. We establish a universal upper bound of n + 3 segments, which
we complement with an existential lower bound of n segments, where n denotes
the number of vertices.

Overview. Towards the upper bound, we will show that each graph of the
considered class admits a drawing where all but three of its vertices are placed
in the interior of some segment. In such a drawing, each of these vertices is the

3 A cactus is a connected graph where any two simple cycles share at most one vertex.
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endpoint of at most two segments. The claimed bound then follows from the fact
that each segment has exactly two endpoints.

To construct the desired drawings, we follow a strategy that has already
been used in an algorithm by Hong and Nagamochi [9], which was sped up by
Klemz [15]. Both algorithms generate convex drawings of so-called hierarchical
plane st-graphs, but they can also be applied to “ordinary” plane graphs. In this
context, the algorithmic framework is as follows: the input is an internally (defined
below, see 3-connected plane graph G and a convex drawing I'° of
the boundary of its outer face. The task is to extend I'° to a convex drawing of G.
The main idea of both algorithms is to choose a suitable internal vertex y of the
given graph G and compute three disjoint (except for y) paths Py, Py, P3 from y
to the outer face. Each of these paths is then embedded as a straight-line segment
so that I° is dissected into three convex polygons, for an illustration see [Fig. Th.
The graphs corresponding to the interior of these polygons can now be handled
recursively. To ensure that a solution exists, the computed paths (as well as the
paths corresponding to the segments of I'°) need to be archfree, meaning that
they are not arched by an internal face: a path P is arched by a face a between
u,v € V(0a) N V(P) if the subpath P, of P between u and v is interior-disjoint
from da, see [Fig. 1h. Indeed, if a is internal, then such a path P cannot be
realized as a straight-line segment in a convex drawing since the interior of the
segment uv has to be disjoint from the realization of a. We follow the idea of
dissecting our graphs along archfree paths. However, to ensure that each internal
vertex is placed in the interior of some segment, the way in which we construct
our paths is necessarilyﬁ quite different. Specifically, we will show that a large
subfamily of the considered graph class can be dissected along three archfree
paths that are arranged in a windmill pattern as depicted in [Fig. 2h.

We begin by discussing necessary conditions for the existence of convex
drawings and the construction of archfree paths. We then define the desired
windmill configuration and give a necessary and sufficient criterion for its existence.
Finally, we describe our drawing algorithm, thereby establishing the universal
upper bound, and conclude with the existential lower bound.

Ezistence of convexr drawings. It is well-known that a plane graph admits a
convex drawing if and only if it is a subdivision of an internally 3-connected
graph [81[91|22]23]. There are multiple ways to define this property and it will be
convenient to refer to all of them. Therefore, we use the following well-known
characterization; for a proof, see, e.g., [14].

Definition 1. Let G be a plane 2-connected graph. Let o denote its outer face.
Then G is called internally 3-connected if and only if the following equivalent
statements are satisfied:

4 Note that it is not necessarily possible to embed two of the paths Py, P2, P3 on a
common segment since their outer endpoints might already belong to a common
segment of I'° (in particular, this is the case when | V(I'?)| = 3). Moreover, the
concatenation of the two paths might not be archfree.
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(11) Inserting a new vertex v in o and adding edges between v and all vertices
of Do results in a 3-connected graph.

(12) From each internal vertex w of G there exist three paths to o that are pairwise
disjoint except for the common verter w.

(18) Every separation pair u,v of G is external, i.e., u and v lie on do and every
connected component of the subgraph of G induced by V(G) \ {u, v} contains
a vertex of do.

When dissecting a 3-connected plane graph along internal paths, the resulting
subgraphs are not necessarily 3-connected anymore. In contrast, internal 3-
connectivity is preserved:

Observation 1 @, folklore) Let G be an internally 3-connected plane graph,
and let C be a simple cycle in G. The closed interior C~ of C is an internally
3-connected plane graph.

In the context of our recursive strategy, we face a special case of the following
problem: given an internally 3-connected plane graph G and a convex drawing I°
of the boundary of its outer face, extend I'° to a convex drawing of G. It is known
that such an extension exists if and only if each segment of I'° corresponds to an
archfree path of G [8}9,[22,23]. Hence, we say that I'° is compatible with G if
and only if it satisfies this property.

Construction of archfree paths. The following lemma gives rise to a strategy for
transforming a given internal path into an archfree path:

Lemma 1 ([9, Lem. 1]). Let G be an internally 3-connected plane graph, and
let f be an internal face of G. Any subpath P of Of with |E(P)| < |E(9f)| — 2
is archfree.

One can simply replace the arched parts by appropriate pieces of the bound-
aries of the arching faces. More precisely, this strategy works as follows: Let G
be an internally 3-connected graph. Consider the edges of the outer face do of G
to be directed in counterclockwise direction. Assume that there are two distinct
vertices s’ and ¢’ on do that are joined by a simple internal path P’. Consider P’
to be directed from s’ to ¢’ and let P = (s,...,t) be a directed subpath of P’.
Suppose that P is arched by an internal face a. Then we say a arches P from
the left if a is interior to the cycle formed by P’ and the directed t's’-path on do;
otherwise, we say that a arches P from the right. The left-aligned path Lg(P)
of P is obtained be exhaustively applying the following modification (for an
illustration see ): suppose that an internal face a arches P from the left
between two vertices u, v such u precedes v along P. Transform P by replacing
its uwv-subpath with the uv-path obtained by walking along da in counterclockwise
direction from u to v. The right-aligned path Rg(P) is defined symmetrically.

Lemma 2 ([8, Lemma 5, Corollary 6]). Let G be an internally 3-connected
plane graph. Let P = (s,...,t) be a subpath of a simple internal directed path P’
between two distinct outer vertices of G. Then:



The Segment Number: Algorithms and Universal Lower Bounds 7

Fig. 1: (a) Splitting I"° along three straight-line paths. The subpolygon containing arch
a cannot be extended to a convex drawing of its subgraph. (b) Left-aligned path Lg(P)
of P=(s,...,t).

Fig. 2: (a) A windmill (Py, P2, Ps). (b,c) The 3-connected case in the proof of

— La(P) (Ra(P)) is a simple internal st-path not arched from the left (right).

— If P is not arched from the right (left) by an internal face, then Lg(P)
(Ra(P)) is archfree.

— Re(Lg(P)) (La(Ra(P))) is archfree.

Ezistence of archfree windmills. Recall that our plan is to dissect our given
(internally) 3-connected graph along three archfree paths that form a windmill

pattern; see [Fig. 2h.

Definition 2. Let G be an internally 3-connected plane graph and let o denote
its outer face. For i € [3], let P; = (04,...,q;) be a simple path in G. We call
(Py, P2, P3) a windmill of G if and only if all of the following properties hold (all
indices are considered modulo 3):

(W1) The vertices 01,02, 03 are pairwise distinct and belong to Oo.

(W2) Fori € [3], no vertex of V(P;) \ {0;} belongs to do.

(W3) For i € [3], no interior vertez of P; belongs to P;y1.

(W4) Fori € [3], the endpoint q; is an interior vertex of Piy1.

If (Py, P2, P3) is a windmill of G, we call it archfree if Py, Py, P3 are archfree.

A necessary condition for the existence of an archfree windmill is the existence
of a strictly internal face (a face without outer vertices). For the considered graph
class we show that the condition is sufficient. The following lemma is the main
technical contribution of this section:

Lemma 3 (ED Let G be an internally 3-connected plane graph of mazximum
degree 4 with a strictly internal face f. Then G contains an archfree windmill.
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(c) (QFY, @57, Q5)

() (@Y, P3™, T5™) () (@™, P5™, T5™)

Fig. 3: Evolution of the three paths in the first (subfigures (a)—(d)) and second (subfig-

ures (e)-(h)) part of the proof of [Lem. 3|
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Proof (sketch). Let o be the outer face of G. By means of the internal 3-
connectivity of G and it can be shown that there are three pairwise
disjoint archfree paths P; = (0;, ..., fi),? € [3] between do and df as depicted in
[Fig. 3h. We now walk along df in a clockwise fashion and append appropriate
parts of df to the paths P;, Py, Ps to obtain an initial windmill (PPY, PS™, PS™)
as illustrated in [Fig. 3p. Specifically, we extend each P; by the f; fi;1 subpath
of df that does not contain f; 1o (indices are considered modulo 3). This windmill
is not necessarily archfree, but its paths can only be arched in a controlled way:
suppose that PV is arched by an internal face af". The subpath of PS™ that
belongs to df is archfree by Combined with the fact that P; is archfree,
it follows that af™ arches PV between some vertex s§V € V(F;) \ {fi} and a
vertex t§% € V(PfW) \ V(P;). Moreover, by planarity, a$¥ has to arch Pf" from
the left, as illustrated in[Fig. 3b. We remark that there might be multiple “nested”
faces that arch P7V. W.l.o.g., we use af" to denote the “outermost” one, that
is, the unique arch whose boundary replaces a part of Pf" in the left-aligned
path QSV = Lg(PfY), see[Fig. 3f. The paths of (QS§%, QSY, Q5¥) are now archfree
by though, |(W4)| from [Definition 2| is satisfied only for exactly those
i € [3] where the arch P{| is archfree. For each Q§" where is violated,
we append the f;,1t§V,-path of 0f that does not contain f;, see [Fig. 3d. This
modification maintains the archfreeness by planarity and However, the
resulting path triple (R, RSV, R§") might still not be a windmill: suppose that
a path PV is not archfree and its arching face aV is big, that is, t§¥ = fii1,
while additionally the path P£Y, is archfree (this is the case for i = 1 in[Fig. 3p).
Then [(W3)] from [Definition 2|is violated for R§Y; and is violated for RZY,.
Suppose that (R$Y, RSV, RS") is indeed not a windmill. We construct path triples
(PEe, P5o, PSo), (Q°, Q5°, Q5°™), and (RS, Rs™, RS™) in a symmetric
fashion by walking around Jf in counterclockwise direction. If (R{*™, RS™™, R5™)
is also not a windmill, it follows that both (R§Y, RSY, R§¥) and (R{Y, RS®Y, R5V)
contain a path that is arched by a big face. By planarity and the degree bounds,
we can now argue that there is exactly one i € [3] such that both (Pf") and
(Pfe) are arched by big faces while both (P77} ) and (Pff%) are archfree, which
is illustrated in for i = 1. Assume w.l.o.g. that i = 1 and that s§V is
not closer to o; on P; than s{°V. In view of the previous observations, it is
now easy to argue that the paths of (Q5V, Ps¥, P§¥) are archfree and satisfy all
windmill properties with the exception of for ¢ = 3. We restore by
appending the f;s{"-subpath of P; to P5", see[Fig. 3f. By means of the degree
bounds, it can be argued that [[W2)] and RmHaintained for i = 3. The
resulting path S$%¥ might now be arched (from the left, by planarity), which
can be remedied by applying see Figures [Bg and h. By means of the
degree bounds and planarity arguments, it can be shown that this modification
maintains all windmill properties. a

A plane graph G is internally 4-reqular if all of its internal vertices have
degree 4 and its outer vertices have degree at most 4. In we established
that the existence of an internal face suffices for the existence of an archfree
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windmill. By means of simple counting arguments, it can be shown that this
condition is satisfied if G has a triangular outer face.

Lemma 4 @ Let G be an internally 3-connected plane graph that is internally
4-regqular. Let o denote the outer face of G and assume |0o| = 3. Then G has a
strictly internal face.

Algorithm. We are now ready to describe our algorithm. As already mentioned
in the beginning of we follow the idea of the recursive combinatorial
constructions described by Hong and Nagamochi [9] and Klemz [15], though, the
way in which we decompose our graphs is necessarily quite different.

Theorem 1 @ Let G be an internally 3-connected internally 4-reqular plane
graph and let I'° be a compatible convex drawing of its outer face. There exists a
convex drawing I' of G that uses I'° as the realization of the outer face where
each internal vertex of G is contained in the interior of some segment of I.

Proof (sketch). Our goal is to (recursively) compute coordinates for the internal
vertices to obtain the desired drawing of GG. The base case of the recursion is
that G contains no internal edges, in which case there is nothing to show. Assume
that G is 3-connected — we deal with the case where G is not 3-connected in the
appendix. If | V(I'?)| > 4, then there exist two distinct outer vertices u, v that do
not belong to a common segment of I'°, see[Fig. 2b. By 3-connectivity and [Cem. 2]
they are joined by an archfree internal path P. We split I'° into two simple
convex polygons along P and handle the two corresponding subgraphs recursively.
If | V(I'°)| = 3, then G contains an archiree windmill (P, S, Q) by and
Since the three outer endpoints of P, S,Q do not belong to a common segment
of I'°, we can embed them in a straight-line fashion such that I'° is dissected
into four simple convex polygons, see [Fig. 2k. We handle the corresponding four
subgraphs recursively. a

Universal upper bound. Recall (from the beginning of that to establish
the claimed upper bound, it suffices to create a drawing where all but three of
the vertices of the graph are drawn in the interior of some segment. To achieve
this goal, we can now draw the outer face of the graph as a triangle and then

apply

Theorem 2 @ FEvery 3-connected internally 4-reqular plane graph G admits
a convex drawing on at most n + 3 segments where n is the number of vertices.

Exzistential lower bound. For a graph G, let G? denote the square of G, that is,
G? has the same vertex set as G and two vertices in G? are adjacent if and only
if their distance in G is at most 2. For n > 6, the square of the n-cycle, C2, is
4-regular and triconnected. By removing three edges from a drawing I" of C2,
we obtain a drawing of a graph whose segment number is n [5 proof of Thm. 7].
Consequently, I" uses at least n — 3 segments, which already shows that
is tight up to an additive constant. In [App. B} we examine the situation more
closely to prove a slightly stronger bound.
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Ho Hg /X H6 /
€1 x o X€2 €3x X €5

X X €4 )(
Hj H5

Fig. 4: An outerpath represented by a pseudo-2-arc arrangement. The internal edges
e1,...,es of arc a subdivide the outerpath into bays Ho, ..., Hs. We marked the bay
crossings of a and 8 by red crosses and violet triangles, respectively. For the bay
crossings in C that are relevant for our charging scheme we used larger symbols.

Proposition 1 (¥). For even n > 6, C2 is planar and seg(C2) > n.

It’s easy to show a slightly worse bound. Consider the outerpath R,, where
every vertex has degree at most 4. By adding three edges to R,,, we obtain C2.
Dujmovié et al. [5] have shown that seg(R,,) = n. Let I" be a drawing of R,, with
n segments. Each time we insert one of the three missing edges into I, we can
remove at most two ports, hence seg(C2) > n — 3.

Recall that C7 is the octohedron. It is known that seg(CZ) = 9 [16]. Hence,

for this graph, the bound in is best possible.

3 Maximal Outerpaths

In this section, we generalize segments and arcs to pseudo-k-arcs (defined below)
and give a universal lower bound for the number of pseudo-k-arcs in drawings of
maximal outerpaths.

We call a sequence vy, va, ..., v, of the vertices of a maximal outerpath G a
stacking order of G if for each i, the graph G; induced by the vertices vy, va, ..., v;
is a maximal outerpath. An arrangement of pseudo-k-arcs is a set of curves in the
plane such that any two of the curves intersect at most k times. (If two curves
share a tangent, this counts as two intersections.) We forbid self-intersections,
but for k > 2 we allow a pseudo-k-arc to be closed.

To show the bound, we present a charging scheme that assigns internal edges
to pseudo-k-arcs. Any drawing of a maximal outerpath has exactly n — 3 internal
edges. A pseudo-k-arc is long if it contains at least k + 1 internal edges; otherwise
it is short. Let arcy denote the number of pseudo-k-arcs, and let arci, denote
the number of pseudo-k-arcs with ¢ internal edges. The internal edges of a long
arc « subdivide the outerpath into subgraphs Hy, Hy,..., Hy called bays; see
Given a drawing I" of a maximal outerpath, we denote the sub-drawings
of G3,Gy,...,G, within I" by I3, Iy,..., I}, respectively. A pseudo-k-arc « is
incident to a face f if a contains an edge incident to a vertex of f. We say that
« 1s active in I if « is incident to the last face that has been added.

Lemma 5 (ED For any i € {3,...,n}, a partial outerpath drawing I'; contains
at most one active long pseudo k-arc.
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We do a 2-round assignment to assign each internal edge to a pseudo-k-arc.
We start with the round-1 assignment. Let I denote the set of internal edges
of long pseudo-k-arcs starting at the (k + 1)-th internal edge (as for the first &
internal edges an arc is still short). We assign all n — 3 internal edges except for
the edges in I to their own pseudo-k-arcs:

(n=3)—|I| = karcfk +(k—1)arci ™' + . -tarc}, = karcy, —Zfzo(k—i) arci (1)

Now we describe the round-2 assignment. There, we charge the internal edges
of I to specific crossings, which we can charge in turn to pseudo-k-arcs. A crossing
is a triple (o, 3, p) that consists of two pseudo-k-arcs « and 3 and a point p at
which « and g intersect. These specific crossings involve long arcs and we call
them bay crossings. Next, we define them such that for each long pseudo-k-arc «
with ¢ internal edges (¢ > k), there are 2¢ bay crossings (o, *, *) where * is
a wildcard. For each bay H € {Hy,...,Hy_1}, we have two bay crossings: a
crossing of a with another pseudo-k-arc at each of the two vertices of H that have
degree 2 within H; see the red crosses in Clearly, they exist for each H
because H is an outerpath. Since these two vertices are distinct for each pair of
consecutive bays, their bay crossings are distinct as well. Note that a tangential
point may be shared by some H; and Hj o (for j € [( —3]); see, e.g., Hy and Hy
in However, we still have distinct bay crossings for H; and H, o since a
tangential point counts for two crossings. For each of Hy and Hy, there is one
bay crossing defined next. In Hy and Hy, consider the two crossings of a at the
internal edge e; and ey, respectively — one at each of the vertices of the internal
edge. One of these vertices is the degree-2 vertex of H; (Hy—1) and hence may
be identical with a bay crossing of H; (Hy—1). E.g., in the bay crossing
(a,v,p) of Hs occurs as one of the considered crossings of Hg. The other one of
the two considered crossings cannot be a bay crossing in a neighboring bay and
this is our bay crossing of Hy (Hy); see the red crosses at Hy and Hg in

In the round-2 assignment, we charge the surplus internal edges of a long arc «
to the other pseudo-k-arcs involved in bay crossings with «. For each internal
edge of I, we have two distinct bay crossings of the preceding bay, e.g., in
H, provides two bay crossings for e3. Let C be the set of these bay crossings.
The bay crossings of Hy, ..., H_1, and Hy are not included in C as the internal
edges ej,. .., e, are not contained in I and there is no ey1. Clearly, 2|I| = |C]|.

Next, we give an upper bound for |C| in terms of arcg. The main argument
we exploit is that, by definition, each pseudo-k-arc can participate in at most k
crossings with the (current) long arc and, hence, also in at most k bay crossings
with the (current) long arc. However, we need to be a bit careful when one long
pseudo-k-arc becomes inactive and a new pseudo-k-arc becomes long, i.e., we
consider the transition between one long arc to a new long arc. A (not necessarily
long) pseudo-k-arc v could potentially contribute &k crossings in C' with each
long arc. To compensate for the double counting at transitions, we introduce the
transition loss ty;, which we define as tx = 3= ¢ 4\ (a,} ([{c = (%7, %) | c € C} k),
where A is the set of all pseudo-k-arcs and «; is the first long arc in I'. In other
words, each pseudo-k-arc, while it is short, contributes to t; the number of its
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bay crossings minus k. For example, in ~ contributes 1 to tx: v has one
bay crossing in C' with the long arc « (red cross at eg) and two bay crossings
in C with the long arc 3 (violet triangles on the top right). The arc 8 contributes
—1 to t: B has one bay crossing in C with the long arc «.

Note that, while it is long, an arc does not cross other long arcs. Also, we do
not count the crossings of the first £ bays and the very last bay. Hence,

The first long pseudo-k-arc does not provide The crossing of H; of the last

crossings with another long pseudo-k-arc. long arc is not in C.
= =
20| = |C| < k- (arcy—1) —@2k-1) ~T  +t (@)
—— ~—~
Each pseudo-k-arc intersects the Crossings of Hg, Hi,..., H,_, of transition
current long arc at most k£ times. the first long arc are not in C. loss

Plugging [Eq. (2)|into [Eq. (1)} we obtain the following general formula, which
gives a lower bound on the number of pseudo-k-arcs for any outerpath.

arc, > (2n —6+2- Zfzo(k —i)arc) —t,)/(3k) + 1 (3)
Since this formula still contains unresolved variables, we now resolve ty.

Lemma 6 (ED There is a loss of at most one crossing per transition from one

long pseudo-k-arc to another long pseudo-k-arc. Hence, t;, < max{0, arc,fk -1} <

>k o_ k i >k
arc; " = arcy — y_._oarcy, where arc;” is the number of long pseudo-k-arcs.

By [Lem. 6] and [Eq. (3)]

arcy > (2n 4 3k — 6 + 35 (2k — 2i + 1) arc}, ) /(3k + 1). (4)

Into this general formula, we plug specific values of k& and prove lower bounds
on arcy. We start with k = 1, i.e., outerpath drawings on pseudo segments.

Lemma 7 (Eb For k=1 and n > 3, in any outerpath drawing either arct > 3
or (arcy > 2 and arcl > 3).

Using we fill the gaps in for £k =1 and obtain
Theorem 3 @ For any n-vertex mazimal outerpath G, seg(G) > [ 5| + 2.

For k = 2, i.e, for (pseudo) circular arcs, leads to the following bound.
Theorem 4 (E) For any n-vertex mazimal outerpath G, arc(G) > [22].

For k > 2, it is not obvious how to generalize circular arcs. Still, we can make
a similar statement for curve arrangements, which follows directly from [Eq. (4)|

Proposition 2. Let G be an n-vertex maximal outerpath drawn on a curve
arrangement in the plane s.t. curves intersect pairwise < k times, can be closed, but

do not self-intersect. Then, the number arcy(G) of curves required is (%?fki%ffﬁ]
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(b) Qs (C) Us

Fig. 5: Families of maximal outerpaths with (a) n/2 4+ 2 segments (matching the lower
bound in [Thm. 3)), (b) n/3 + 1 circular arcs, and (c) (5n + 18)/16 < n/3 pseudo 2-arcs.

The infinite families of examples in [Prop. 3| and [Fig. 5| show that our bounds
for segments and arcs are tight. This implies, somewhat surprisingly, that, at
least for worst-case instances, using pseudo segments requires as many elements
as using straight line segments. Whether this also holds for pseudo circular arcs
and circular arcs is an open question. With circular arcs, we could not beat a
bound of n/3, which we could do for pseudo circular arcs.

Proposition 3 (E—D For every r € N, maximal outerpaths P,, Q,, U, exist s.t.
(i) P. has n = 2r + 6 vertices and seg(P,) <r+5=mn/2+ 2,
(i) Qr has n = 3r vertices and arc(Q,) <r+1=n/3+1,
(iti) U, has n = 16r + 6 vertices and arco(U,) < 5r + 3 = 22418 ~ (0.3125n.

4 Further Results and Open Problems

In [App. D] we give an alternative proof for charging segment ends to
vertices. We also give universal lower bounds on the segment numbers of 2-trees
and maximal outerpaths. The key idea is to “glue” outerpaths, while adjusting
the charging scheme. With a different charging scheme from segment ends to
faces, we show an (almost) tight universal lower bound for planar 3-trees.

Theorem 5 (ED For a 2-tree (or a mazimal outerplanar graph) G with n
vertices, seg(G) > (n+7)/5.

Theorem 6 @ For a planar 3-tree G with n > 6 vertices, seg(G) > n + 4.
For cactus graphs, we can compute the segment number in linear time.

Theorem 7 @ Given a cactus graph G, we can compute seg(G) in linear
time. Within this timebound, we can draw G using seg(G) many segments. If G is
giwen with an outerplanar embedding, the drawing will respect the given embedding.

Now we turn to open problems. The most prominent one is to close the gaps in
Since circular-arc drawings are a generalization of straight-line drawings,
it is natural to ask about the maximum ratio between the segment number and
the arc number of a graph. We make some initial observations regarding this
question in [App. F} Finally, what is the complexity of deciding whether the arc
number of a given graph is strictly smaller than its segment number?
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Appendix

In the following, we provide full proofs and omitted content. First, we introduce
some notation that we use throughout the appendix.

Recall that a cactus is a connected graph where any two simple cycles share at
most one vertex. A graph G is a k-tree if it admits a stacking order vy, v, ..., vy
of the vertices together with a sequence of graphs Gy41, Gk42,...,Gn = G such
that (i) Gk41 is a clique on {v1,...,vk41}; and (ii) for k& + 2 < ¢, the graph G; is
obtained from G;_; by making v; adjacent to all vertices of a k-clique in G;_1. A
vertex placement in step (ii) is called a stacking operation. Similarly, we call the
sequence of vertices vy, va, ..., v, of a maximal outerplanar graph G its stacking
order if for each ¢ the graph G; induced by the vertices vy, vs, ..., v; is a maximal
outerplanar graph. If G is an outerpath, each G; is an outerpath.

In a straight-line drawing I" of a graph G, each segment terminates at two
vertices. Let s be a segment in I, and let v be an endpoint of s. Geometrically
speaking, we could extend s at v into a face f. We say that s has a port at v in f.
We call v open if v has at least one port and closed otherwise. Let port(I”) be the
number of ports in I', and let port(G) be the minimum number of ports over all
straight-line drawings of GG. Observe that, for any planar graph G, it holds that
seg(G) = port(G)/2. Hence, in a drawing of G, counting segments is equivalent
to counting ports.

A An Algorithm for Cactus Graphs

We first state a lower bound for the segment number of cactus graphs. Then, we
give a recursive algorithm that produces drawings meeting the bound precisely.

Lemma 8. Let G be a cactus graph, let  be the number of odd-degree vertices
of G, and let v = 3cg + 2¢1 + c2, where ¢; is the number of simple cycles with
exactly i cut vertices in G. Then seg(G) > n/2 + 7.

Proof. If G is a tree, then v = 0 and seg(G) = n/2, as shown by Dujmovié¢ et
al. [5]. If G is a cycle, then all vertices have degree 2 (that is, n = 0). Moreover,
¢o =1 and ¢; = co = 0. A cycle can be drawn as a triangle (but not with less
than three segments), that is, seg(G) = 3.

So assume that G is neither a tree nor a cycle. Then G contains at least one
cycle and each cycle has at least one cut vertex, that is, cg = 0. Let I" be any
straight-line drawing of G. Every odd-degree vertex of G has a port in I'. Hence,
I has at least ) ports.

Additionally, each cycle f of G is a simple polygon in I'. In other words, f is
incident to at least three segments in I'. If f contains exactly two cut vertices,
the drawing of f must contain a bend at some vertex of f that is not a cut vertex,
that is, at a degree-2 vertex. This increases the number of ports by 2. Similarly,
if f contains exactly one cut vertex, the drawing of f must contain two bends
at degree-2 vertices, which increases the number of ports by 4. In total, I" has
at least 7 + 4¢q + 2¢o ports or /2 + 2¢1 + c2 segments. Since ¢y = 0, we have
seg(G) > n/2 + 3co + 2¢1 + ¢2 as claimed. O
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It is not difficult, but somewhat technical to draw a given cactus such that the
lower bound in the above lemma is met exactly. For an idea of how we proceed,

refer to [Fig. 6|

Theorem 7 @ Given a cactus graph G, we can compute seg(G) in linear time.
Within this timebound, we can draw G using seg(G) many segments. If G is given
with an outerplanar embedding, the drawing will respect the given embedding.

Proof. If G is a tree, we can use the linear-time algorithm of Dujmovié¢ et al. [5],
which yields a drawing with 7/2 segments, which is optimal. If G is a simple
cycle, we can draw G as a triangle, which again is optimal. Otherwise, ¢y = 0. In
this case, which we treat below, we draw G with 1/2 + 2¢; 4 ¢2 segments, which
is optimal according to

We draw G recursively, treating its biconnected components as units. Note
that, in a cactus graph, the biconnected components (called blocks) are exactly
its simple cycles and the edges that do not lie on any simple cycle. The block-cut
tree of a connected graph H has a node for each cut vertex and a node for each
block. A block node and a cut-vertex node are connected by an edge in the tree
if, in H, the block contains the cut vertex.

We compute the block-cut tree of G, which can be done in linear time [21],
and root it at a block node that corresponds to a simple cycle f. We start by
drawing this block as a regular p-gon P, where p is the maximum of 3 and the
number of cut vertices of f. Let 2r be the edge length of P, and let a be the
interior angle at each corner of P. Then v = 180° - (p — 2)/p.

Vd+2q” ! Nold+1

Fig. 6: Recursive approach for drawing cactus graphs. Vertex v is a cut vertex of f (or
a degree-2 vertex if f has less than three cut vertices). After f has been drawn, the
algorithm recursively draws the subgraph G(v) into C,,, such that v has a port if and
only if deg(v) is odd.
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For each cut vertex v of f, we recursively draw the subgraph G(v) of G
corresponding to the subtree that hangs off v in the block-cut tree; see We
draw G(v) into the interior of the circle C, , of radius r centered at v. (Within
this circle, we use only the complement of P.) For each pair of cut vertices, the
interiors of the corresponding circles are disjoint; hence, the drawing of G has no
edge crossings if the drawings of the subgraphs are crossing-free. Our drawing
of G will have the following property. Each odd-degree vertex has exactly one
port and, in every simple cycle of G with j < 3 cut vertices, there are exactly
3 — j degree-2 vertices with two ports. This implies that the total number of
segments in our drawing meets the bound in precisely.

Let d = deg(v) — 2, and let N(v) = {v1,...,va42} be the neighborhood of v.
Let vg41 and vgy2 be the two neighbors of v that lie on f (in clockwise order
before and after v on f) and have already been placed. Let vy,...,v442 be
ordered clockwise around v. We assume that neighbors that belong to the same
simple cycle are consecutive in this ordering. (Note that this is the case if G is
given with a fixed outerplane embedding.) We now define a set W of vertices in
G(v) for which we may call our algorithm recursively. Initially, W is empty. For
i€{1,...,d}, if v; and v do not lie on the same simple cycle, then set w; = v;
and add w; to W. Now let f’ be the simple cycle that contains v, v; and another
neighbor of v, say, v;11. If f does not contain a cut vertex other than v, set
w; = v; and add w; to W. Otherwise, let w; be the cut vertex of GG closest to v; in
G(v) —v. If v;41 has the same closest cut vertex w; then, if w; # v;, set w; = v;,
otherwise set w;+1 = v;4+1. Add w; and w; 41 and all other cut vertices of f/ (if
any) to W (except v).

We now place the vertices in W on the circle C,, /3. If d is odd, then
we place w(g41)/2 on the line that bisects the angle Zvgy2vv441; namely such
that wg41) /2 lies opposite of this angle (as w3 in|Fig. 6). For the remainder of this
proof, we assume for simplicity that d is even. Then d > 2 and we place wq/5 on
the line vvg11 and wg 241 on the line vvgy 2. We place the remaining neighbors in
pairs on opposite sides of lines through v such that these lines equally partition the
angle space in the double wedge W, o (light yellow in that is bounded by
the lines vvg11 and vvg 4o and does not contain the angle Zv442vv441. The angular
distance between two consecutive edges incident to v is then 5 = (360° — 2a)/d.

We draw each simple cycle f’ that contains v and two neighbors v; and v;11
of v as a simple polygon that connects v to w; to potential further cut vertices
of f' (in their order along f’) to w;+1 to v.

Now we define, for each newly placed vertex w € W with deg(w) > 2, values o’
and ' so that we can draw the graph G(w) recursively. To this end, if v and w
lie on the same simple cycle f’, let @’ be the interior angle of w in f’, and let r’
be the distance of w to the closest vertex in V(f) N W divided by 2. Otherwise,
let o be 0 and set r’ such that Cy fits into a wedge centered at w that has an
angle of B at its apex v; see, for example, ws in

Our invariant is that, in each recursive call for G(w’), we have 0 < o/ < 180°
and 7’ > 0. This ensures that our drawing has no crossings. To finish the proof,
note that the segments that we draw end only in odd-degree vertices (one port
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each) or in degree-2 vertices (two ports each) of simple cycles that have less than
three cut vertices.

Concerning the running time, it is easy to see that each recursive call of the
algorithm runs in time linear in the size of the subgraph of G that the current
call draws without further recursion. Hence, the overall running time is linear in
the size of G (including the computation of the block-cut tree). O

Note that the algorithm in the proof of can draw a cactus with a fixed
outerplane embedding such that its embedding is maintained. Unfortunately, the
drawing area can be at least exponential, even if the embedding is not fixed.

B Proofs Omitted in Section [2| (4-Regular Planar
Graphs)

Observation 1 (E, folklore) Let G be an internally 3-connected plane graph,
and let C' be a simple cycle in G. The closed interior C~ of C' is an internally
3-connected plane graph.

Proof. Clearly, Property [(I2)| of |[Definition 1| carries over from G to C'~. O

Lemma 3 (ED Let G be an internally 3-connected plane graph of mazximum
degree 4 with a strictly internal face f. Then G contains an archfree windmill.

Proof. Let o be the outer face of G. We begin by constructing three disjoint
archfree paths between 9o and 9f, as illustrated in[Fig. 7h. We plan to use these
paths, as well as parts of df to construct a windmill (see [Fig. 7b). We then
apply to make its paths archfree (illustrated in|[Fig. 7c and [Fig. 8n)). This
may destroy the windmill properties, but it does so in a controlled way, which
allows us to successively modify our paths to restore the windmill properties
while maintaining the archfreeness.

Claim 1 G contains three simple paths P; = (o, ..., fi),i € [3] such that
(P1) Py, Py, Py are pairwise vertex-disjoint,

(P2) fori € [3], the endpoint o; belongs to Do,

(P3) fori € [3], the endpoint f; belongs to Of,

(P4) fori € [3], the interior vertices of P; belong to neither Of nor do, and
(P5) Py, Py, Py are archfree in G.

Proof (of Claim . For illustrations refer to . To show that Py, Py, P3
exist, we add a new vertex vy into f and add edges between vy every vertex
of 0f. It is easy to see that this modification retains Property of
and, hence, the resulting graph G’ is internally 3-connected. By Property [(I2)[ of
applied to vy in G’, it follows that G contains three simple paths
P! = (o0i,..., fi),1 € {1,2,3}, that satisfy Properties |(P1)H(P4)| For i =1,2,3,
we consider P/ to be directed from o; to f; and define P, = Rg(Lg(P})). By
the paths Pp, P, P3 satisfy Property To see that the remaining



The Segment Number: Algorithms and Universal Lower Bounds 21

properties are also satisfied, we argue as follows: let C' be the simple cycle formed
by the paths Ps, P3, the os03-path on Jo that passes through oy, and the f5 f3-
path on Jf that passes through fi. The closed interior C~ of C' is internally
3-connected by Obs. [1} Note that Rg- (Lo-(Py)) = P since the only internal
face of G that is not an internal face of C'~ but shares a vertex with P} is f,
which has only a single vertex in common with P; by Properties [(P2)H(P4)l By
applied to C~ and PJ, P; is an internal o1 f1-path of C~. Hence, the
paths Py, Py, P§ satisfy Properties [(P1)H(P4)|in G. With analogous arguments,
we see that Py, Ps, Py and, finally, Py, P, P also satisfy Properties|[(P1)H(P4)l O

Without loss of generality, assume that o1, 02,03 appear on df in clockwise
order, as depicted in . For i € [3], we append the f;f;+1-path on 9f
that does not pass through f;_; to P; and call the resulting simple path P"
(all indices are considered modulo 3), see [Fig. 7b. Symmetrically, for i € [3],
we append the f;f;_1-path on df that does not pass through f;+1 to P; and
call the resulting simple path Pf°Y. By construction, both (Pf%, Ps¥, P§%) and
(Pfev, PseW  P§V) are windmills in G. If one of them is archfree, we are done. So
assume otherwise.

We will now deform parts of (P, Ps™, PS™) (or (Py°V, Ps°V, P§Y)) to obtain
the desired archfree windmill. To this end, we introduce some notation, for
illustrations refer to : suppose that a path Pf%,i € [3] is arched by a
face af¥. The subpath P; of PV is archfree by Claim [I| Moreover, the f; fiyi-
subpath of P; is also archfree by [Lem. 1} Consequently, the face ™ arches Pf™
between some vertex s§% € V(F;) \ {f;} and a vertex t{¥ € V(PCW) \ V(F). We
consider PV to be dlrected such that o; is its source. By planarity, the face a{™
has to arch P from the left. We remark that there might be multiple faces
that arch Pf¥ (from the left), in which case these faces have to be “nested”
(as depicted in [Fig. 7p). Without loss of generality, we may assume that a$™
is the “outermost” of these arches. More precisely, we assume that af" is the
unique arch such that a s{Vt{¥-path on das™ replaces the sy¥t"-path on P/Y
in Lg(PFY). We say that a$™ is big if t§% = f;11 (in|Fig. 7b the arch a§¥ is big,
while a$§¥ is not). Synrnnetrlcadly7 we deﬁne the expressions af®v, s{V, 5V for
each path Pf¥ ¢ € [3] that is arched (from the right), and we say that a{®¥
is big if t§°V = f;_1. For i € [3], let D; denote the simple cycle that is formed
by P;, Piy1, the f;fir1-path on 0f that does not pass through f;o and the
0;0;+1-path on do that does not pass through o;42 (the closed interior D, of D;
is indicated in [Fig. 7h).

For i € [3], we define Q§™ = Lg(PfW), for illustrations refer to .

Claim 2 The paths Q , 2 , QY are archfree. Properties (WIH(W3) from
W hold for (QS V. QSY). Property[(W7) from[Definition 9 is satisfied

for exactly those i € [3 ] where the arch afY, is undefined.

Proof (of Claim @ ” Lem. 2| implies that the paths are archfree (recall that
P is not arched from the right) and that the Propertles (W1) and - from

Deﬁmtlon 2| carry over from (Pf¥, Ps™, PSY) to (Qf QCW)
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(c) (@™, Q5",Q5") (d) (BT, B3, R5™)

Fig. 7: Evolution of the three paths in the first part of the proof of

To see that Property also carries over, we can argue as follows: let
C; be the simple cycle formed by the paths P;y1, P12, the 0;110;12-path on
OJo that passes through o;, and the f;y1f;1o-path on Of that does not pass
through fi. The closed interior C;  of C; is internally 3-connected by Obs.
Note that L (Pf™) = Q¢ since the internal faces of G that do not belong
to C; intersect PV only in f;y:. Hence, by applied to C; and FP{%
and by construction, the part of Q% that does not belong to Pf™ is located
in the interior of the cycle D;. By construction, the interior of D; is disjoint
from P7V, Ps%, and P5Y. Moreover, Dy, Dy, D3 are pairwise interior disjoint.
Consequently, Property |(W3)| from [Definition 2| carries over from (P{¥, P§%W, P§%W)
to (QY,Q5Y,Q5Y), as claimed.

Finally, Property is violated for those i € [3] where the arch a$};
exists since in this case the endpoint fiy1 of Qf" is not on QfY;. In contrast,
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Property is satisfied for those i € [3] where the arch a$}; undefined since
in this case the endpoint f; 1 of Q" is on Q5Y, (= P3Y). O

If (Q5Y,Q5", Q%) or (Q°,Q5™, Q5™Y) (which is defined symmetrically and
for which a symmetric version of Claim [2| holds) is an archfree windmill, we
are done. So assume otherwise. By Claim [2 the only violated property is
To remedy the situation, we will now construct three paths RV, RSY, R§Y by
appending appropriate parts of f to the corresponding paths in ( ™, Q5. Q%)

For each i € [3] where the arch a§Y, is undefined, we set R{™ = Q$". For each
i € [3] where the arch afY, exists, we append the f;11£{},-path on Jf that does
not contain f; to Q" and denote the resulting path by R{Y, for illustrations

refer to [Fig. 7d.

Claim 3 The paths R$™, RSV, RSY are archfree. Properties|[(W1) and[(W2)| from
hold for (RS™, RS™, RS™). Property|(W3) from|Definition 2 1is violated
for exactly those i € [3] where PEY, is arched by a big face and a$¥ is undefined.
Property m from W‘tiona violated exactly those i € [3] where P is

arched by a big face and agYy is undefined.

Proof (of Claim @ Let ¢ € [3]. To see that R{Y is archfree, recall that QSV is
archfree by Claim l Hence, if R{Y = Q5% there is nothing to show, so assume
otherwise. The f; 1127, subpath of R{™ is archfree by |Lem. 1} Therefore, if Rf™ is
arched by some internal face a # f, then a has to arch R{" between some vertex
in V(R$™) \ V(Q$Y) and some vertex in V(QS™) \ {fit+1}, which is impossible
by planarity (specifically, the boundary of a would have to cross the cyle D;y1).
Moreover, by construction, R{" is not arched by f. Hence, R{" is archfree, as
claimed.

Clearly, Properties[(WT)|and [[W2)|of Definition 2|carry over from (Q$%, QS%, Q™).

Regarding Property let g; denote the (mternal) endpoint of RCW that is
not o; for j € [3]. By construction, ¢; belongs to RfY,. Hence, Propertyis
violated if and only if ¢; is not an interior vertex of R{Y,, which, by construction,
is the case if and only if P{}; is arched by a big face and afY, is undefined (in
which case ¢; = 5 = fiy2 = ¢i41), for an illustration refer to with
i=3.

Regarding Property [[W3)] we argue in two steps: let 1919 be the set of interior
vertices of RSW that are also interior vertices of Q5% i.e, I?Y = V(QS¥)\{os, fir1}-
Further, let 17V be the set of interior vertices of R that are not interior vertices
of QY. Property holds if and only if none of these sets intersects V(R§Y,).

We first consider the set IP*V. If RS™Y = Q¢V, then IV = ) and, hence,
;Y N V(RTY,) = 0. Otherwise, 17 = {fip1} U (V(R™) \ (V(QFY Utis1))).
By construction, this set is dlSJOlnt from both V(Q$Y,) and V(RSY,) \ V(QFY,).
Hence, 17V N V(Rf)’r"l) =0.

It remains to consider the set IP'4. By Property [(W3)| for Q$%, we have
IMNV(QS5Y,) = 0. Soif I NV( z+1) # (), then 114N (V(Rfjrvl) \V(Q5Y,)) # 0.
All vertices in I9'd belong to the closed interior D; of the cycle D;. The fiyot§Vy-
path on O f intersects D, if and only if P, is arched by a big face (i.e., £y = f;),
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namely in f;. Hence, Property is violated for 4 if and only if Py}, is arched
by a big face and a$V is undefined (in which case Q% = Pf™ and, hence,

fi e V(R™)). O

If (RSY, RS™, RSY) or (RS®Y, R$°™, RS™Y) (which is defined symmetrically and
for which a symmetric version of Claim [3| holds) is an archfree windmill, we are
done. So assume otherwise. By Claim [3] it follows that both {P{¥, Ps%, P$™}
and {PyV, Ps°% P$®V} contain a path that is arched by a big face. Specifically,
we may assume without loss of generality that the arch a$¥ exists and is big (i.e.,
" = fo) and a$¥ is undefined; for an illustration refer to . By planarity,
the path P§°Y cannot be arched (the boundary of a5 would have to cross
the boundary of a$™). Moreover, the path P§°¥ cannot be arched by a big face
since this would imply deg(f2) > 5, contradicting the degree bounds. Hence, the
arch af°V of P exists and is big (by assumption and Claim [3). Note that, by
planarity, the path P§¥ cannot be arched (the boundary of a§" would have to

cross the boundary of a$°"). Without loss of generality, we may assume that s{%

is not closer to o1 on P; than s{°V (otherwise, we can argue symmetrically), for

illustrations refer to Figures [8h and d.

Claim 4 The paths Q$%, PS¥, PS¥ are archfree. Properties [[WI1)H(W3) from

hold for (QSY, PS™, PS™). Property|(W4 )| from|Definition 2 s satisfied
fori=1,2, but violated for i = 3.

Proof (of Claim . Since neither P5™ nor PV are arched, Claim [2| implies
the claimed properties hold for (Q§%,Q5",Q%"). Moreover, P§¥ = Q3% and
P35V = @5V, which proves the claim. O

We now append the f;s{V-subpath of P; to P5" and denote the resulting
path by S§%, for an illustration see [Fig. 8p.

Claim 5 The paths Q¥ and P§Y are archfree. Properties |(W1)H(W4) from
Definition 3 hold for (O, P, S5%).

Proof (of Claim[5). To see that Properties and hold for i = 3, we

argue as follows: towards a contradiction, assume that s{% € Jo, i.e., s§% = o0;1.
By our assumption about the positions of s{% and s{°V on P, it follows that
s§V = s§°V = 01. However, this implies that dego; > 5, contradicting the degree
bounds.

Clearly, by construction, the remaining properties of (Q§V, Ps%, Ps%) guaran-
teed by Claim {] carry over to (Q5%, Ps™, S§™). O

If (QFY, Pg™,SSY) is an archfree windmill, we are done, so assume otherwise.
By Claim [5] it follows that S5 is arched by an internal face. The paths P5™ and
P, are archfree, so an internal face a that is arching S§% has to do so between
some vertex in ¢ € V(S§V) \ V(PSY) and some vertex in s € V(P§V) \ {f1}. By
planarity, it is not possible that a arches SV from the right, so a arches S§¥
from the left. As in the definition of the arches a$", there may be multiple nested
arches that arch S5V from the left, and we assume a to be the“outermost” one.
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(c) (@Y, P5™, T5™) (d) (@7, 5™, T5™)

Fig. 8: Evolution of the three paths in the second part of the proof of

More precisely, we assume that a is this unique arch such that a st-path on da
replaces the st-path on S§% in Lo (S5Y).

As the final modification, we replace S§¥ by T¥" = L (S5%), for an illustration
see Figures [Bc and d.

Claim 6 (QSV, Ps™,TsY) is an archfree windmall.

Proof (of Claim|6). By Claim [5| the paths Q¥ and Ps™ are archfree and
Properties [(W1)H(W4)| from [Definition 2| hold for (Q§", Ps™, S$Y). By [Lem. 2

T$™ is archifree. To conclude the proof, it remains to show that Properties|(W1)|
hold for the set (Q$Y, PS™,TSY).

Properties [[W1)| and [[W2)] are preserved from (Q$¥, PS¥, S$V) (by
for i = 3). To show that the remaining two properties hold, we first show
that s ¢ V(Ps) \ {fs}. If s§% # s{° (see [Fig. &), this is clear by planarity
(the boundary of a would have to cross the boundary of a{®"). Towards a
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contradiction, assume that s{¥ = s{°" (see[Fig. &) and s € V(P3) \ {f3}. By
planarity, it follows that ¢ = s§% = s§°V (otherwise, the boundary of a would
have to cross the boundary of a{®"). However, this implies that deg(t) > 5,
contradicting the degree bounds. So indeed, s ¢ V(Ps) \ {f3} as claimed.

Clearly, Property for ¢ = 1,3 is preserved from (Q5%¥, Ps™,S§™) (by
for ¢ = 3). Since s ¢ V(P3) \ {f3}, it follows that the endpoint f5 of P§¥
is not an interior vertex of the st-path on S5%. Consequently, Property is
also preserved for i = 2.

It remains to establish Property It is clearly preserved for i = 1.
Consider the simple cycle C’ formed by Q$¥, the fsf3-path on df that does not
pass through f71, P3, and the 0j03-path on o that does not pass through 0. By
Obs. [1} the closed interior C'~ of C” is internally 3-connected. By construction,
all vertices of Q% and PV belong to the closed exterior of C'. By planarity,
there is no internal face of G that is not an internal face of C'~ and incident to
more than one vertex of the st-subpath of S$%. Hence, by applied to C'~
and the st-subpath of S§%, it follows that Property [(W3)|is preserved for i = 2
and 7 = 3. ad

By Claim [6] there is an archfree windmill, which concludes the proof. a

Lemma 4 @ Let G be an internally 3-connected plane graph that is internally
4-regqular. Let o denote the outer face of G and assume |0o| = 3. Then G has a
strictly internal face.

Proof. Let n,m, f denote the number of vertices, edges, and faces of G, respec-
tively. The existence of a separation pair would clearly violate Property of
Hence, the graph is 3-connected and it follows that each vertex
of Jo has degree 3 or 4. The handshaking lemma implies that the number 7
of odd degree vertices is even. Towards a contradiction, assume that G has no
strictly internal face, i.e., each face is incident to one of the vertices of do. By
3-connectivity, this implies that f =7 —n. By Euler’s polyhedron formula, the
handshaking lemma, and internal 4-regularity, we obtain:

n—m+f=2
@n—(?nfg)+(7fn):2
_5_1
&n=>5 >

If n = 2, it follows that n = 4, contradicting the internal 4-regularity. If n =
0, then G is a 4-regular graph on 5 vertices, i.e., it is isomorphic to Kj; a
contradiction to the fact that G is planar. a

Theorem 1 @ Let G be an internally 3-connected internally 4-reqular plane
graph and let I'° be a compatible convex drawing of its outer face. There exists a
convex drawing I' of G that uses I'° as the realization of the outer face where
each internal vertex of G is contained in the interior of some segment of I.
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Proof. The coordinates of the outer vertices of G are already fixed. Our goal is to
(recursively) compute coordinates for the internal vertices to obtain the desired
drawing of G. The base case of the recursion is that G contains no internal edges,
in which case there is nothing to show. So assume that G has at least one internal
edge. Without loss of generality, we may assume that G contains no (outer)
degree-2 vertices whose outer angle in I'° is 7 (we can just iteratively merge the
two incident edges of such vertices, compute the drawing, and then reinsert the
removed vertices at their prescribed coordinates). We distinguish two main cases:

Case 1: G is not 3-connected. We distinguish two subcases:

Case 1.1: G contains a degree-2 vertex v. For illustrations refer to [Fig. 9.
By internal 4-regularity, v belongs to V(I"°). By our assumption about degree-2
vertices, its outer angle in I'° is reflex. Let u and w denote the two neighbors
of v. Note that if uw € E, then it belongs to the boundary of the (triangular)
internal face incident to v since otherwise u,w would form a separation pair
that separates the interior of the cycle uvw from the outer face; contradicting
Property [(13)] of [Definition 1} If uw € E we set G} = G. Otherwise, we add
the edge uw in the internal face incident to v and call the resulting graph G.
Adding an internal edge to an internally 3-connected graph clearly preserves
Property [(12)] of [Definition 1 so, in both cases, G’ is internally 3-connected. We
delete v from G} and call the resulting graph G;. This modification preserves
Property |(I2)| of |[Definition 1} so G is internally 3-connected.

Since I'° is compatible, the vertices u and w cannot belong to a common
segment s of I'° (otherwise the internal face of G incident to v would arch s).
Consequently, we can replace the edges uv and vw of I'° with the edge uw to
obtain a simple convex polygon Iy, which is a convex drawing of the outer face
of G1. By [Lem. 1] the edge uw is archfree in G1. Combined with the fact that I"°
is compatible with G, it follows that I'{ is compatible with G;.

We recursively compute the coordinates of the internal vertices in a convex
drawing of G with I'7 as the realization of the outer face such that all internal
vertices of G; are placed in the interior of some segment. Since each internal
vertex of (G is also an internal vertex of GG, these coordinates combined with the
coordinates of v correspond to the desired drawing of G.

Case 1.2: GG contains no degree-2 vertex. Let u be a vertex that belongs to a
separation pair in G. By Property of all vertices that belong to
separation pairs are on the boundary of the outer face o of G. Let v be the first
vertex encountered when walking from u along do in clockwise direction such
that u, v is a separation pair, for an illustration see [Fig. 9p. By 2-connectivity,
there is an internal face f such that u,v € V(9f). The boundary df contains two
simple interior disjoint uv-paths. By the case assumption and the definition of v, at
least one of these paths, say P’ is internal. In fact, if | E(P’)| = |E(Jf)| — 1, then
the other path just consists of a single edge and is therefore also internal. So in any
case, the boundary df contains an internal uv-path P with |E(P)| < |E(9f)| -2,
which, by is archfree.

The boundary do contains two interior disjoint paths P;, P, between u and v.
Each of these two paths forms a simple cycle together with P. The closed interior
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w U

(a) (b)

Fig.9: (a) Case 1.1 and (b,c) Case 1.2 in the proof of [Thm. 1} Note that in (b) the
boundary of f contains only one internal uv-path.

of each of these two cycles describes an internally 3-connected plane graph by
Obs. [1} We denote these two graphs by G and G2 such that G;, ¢ € [2] has P;
on its outer face. We define I'7 to be the polygon resulting from replacing the
part of I'° that corresponds to P, with P drawn as a straight-line segment, see
[Fig. 9¢. The drawing I's is defined analogously. Since I'° is compatible with G,
the vertices u, v cannot belong to a common segment s of I'° (otherwise, since
there are no degree-2 vertices (with outer angle 7), s would be arched by the
internal face f). Hence, I'? and I§ correspond to simple (convex) polygons.
Moreover, since I'° is compatible and P is archfree, I'Y and Iy are compatible
with G; and G5 respectively. We recursively compute the coordinates of the
internal vertices in convex drawings of G and Go with outer face I'Y and Iy,
respectively, where each internal vertex is placed in the interior of some segment.
Since, additionally, the interior vertices of P are contained in the interior of the
segment corresponding to P, the combination of these drawings corresponds to
the desired drawing of G.

Case 2: (G is 3-connected. We distinguish two subcases:

Case 2.1: | V(I"°)| > 4. For illustrations refer to [Fig. 10p. Then there exist
two distinct outer vertices u, v that do not belong to a common segment of I°.
By 3-connectivity, G contains an internal uv-path P’. Consequently, by
G contains an archfree internal wv-path P. The boundary of the outer face of G
contains two interior disjoint paths Py, P, between u and v. Each of these two
paths forms a simple cycle together with P. The closed interior of each of these
two cycles describes an internally 3-connected plane graph by Obs. [1} We denote
these two graphs by G and Gs such that G;, i € [2] has P; on its outer face.
We define I'7 to be the polygon resulting from replacing the part of I'° that
corresponds to P with P drawn as a straight-line segment. The drawing IS is
defined analogously. By definition of v and v, I'Y and Iy correspond to simple
(convex) polygons. More, since I'° is compatible and P is archfree, I'? and Iy are
compatible with G; and G, respectively. We recursively compute the coordinates
of the internal vertices in convex drawings of G; and G2 with outer face I
and Iy, respectively, where each internal vertex is placed in the interior of
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Fig. 10: (a) Case 2.1 and (b) Case 2.2 in the proof of [Thm. 1j

some segment. Since, additionally, the interior vertices of P are contained in the
interior of the segment corresponding to P, the combination of these drawings
corresponds to the desired drawing of G.

Case 2.2: | V(I°)| = 3. By [Lem. 4] G contains a strictly internal face. Thus,
by [Lem. 3] it contains an archfree windmill (P, @, S). The paths P, Q, S dissect G
into four plane graphs G, G2, G3, G4, which are internally 3-connected by Obs.
The outer endpoints of P, @, S correspond to the exactly three vertices of I™°.
Consequently, they do not belong to a common segment of I'°. Hence, it is possible
to draw each of P, @, S as a straight-line segment such that the polygon I'° is
dissected into four simple convex polygons, as depicted in [Fig. 10p. Each of
these polygons corresponds to a convex drawing of the outer face of one of
G1,G4,G3,Gy. Moreover, these drawings are compatible with their respective
subgraphs since I'° is compatible and P, S, @ are archfree. We recursively draw
G1,G9,G3,G4 into their respective compatible convex polygons in a convex
fashion such that each of their internal vertices is placed in interior of some
segment. Since, additionally, all internal vertices of G that belong to P, @, or S
have been drawn in the interior of one of the segments corresponding to P, (),
and S, the combination of the four drawings corresponds to the desired drawing
of G. ad

It is easy to see that the proof of corresponds to a polynomial-time
algorithm. In fact, it seems very plausible that it can be implemented in quadratic
time, though, we have not worked out the details yet.

Theorem 2 @ FEvery 3-connected internally 4-reqular plane graph G admits
a convex drawing on at most n + 3 segments where n is the number of vertices.

Proof. We create a convex drawing ['° of the outer face of G on exactly 3
segments. Let u, v, w be the three vertices of I'° whose outer angles are reflex.
By 3-connectivity, none of the segments of I'® can correspond to a path that
is arched by an internal face. Consequently, I'° is compatible with G and, by
'Thm. 1} we can create a convex drawing I' of G that uses I'° as the outer face
such that each vertex in V(G) \ {u, v, w} is drawn in the interior of some segment
of I'. Hence, for each vertex z € V(G) \ {u,v,w} at most two segments of I"
have = as an endpoint. For each vertex y € {u,v,w} at most four segments of I"
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have y as an endpoint. Since each segment has exactly two endpoints, it follows
that the number of segments is at most W = n + 3, which concludes the
proof. a

Proposition 1 @ For even n > 6, C? is planar and seg(C2) > n.

Proof. Suppose that, for n > 6, the graph C2 has a drawing I" with at most n — 1
segments. For i € {0,2,4}, let n; be the number of vertices in C? with i ports.
Clearly, n = ng+ns +ny4. The drawing I" has 2ns + 4n4 ports and hence no + 2n4
segments. If ny > ng, then I' has ng + 2n4 > na + (no + n4) = n segments, which
would contradict our assumption. Hence, ng > n4. Each vertex on the convex
hull of C? has four ports, which implies that ny > 3. This in turn yields that
No=n—ng—ng <n-—171.

We label the vertices of C2 such that (v, va, . ..,v,) forms the simple cycle C,,.
Since ng > ng4, there must be two indices 1 < j < £ < n such that vertices v;
and vy have zero ports and every vertex v, with j < k < £ has two ports. Let
V' = N(vj) U{vj;,..., v} UN(vp) and n' := |V’|. We have n’ < n — 1 since V'
contains at most n — 7 vertices (with two ports) strictly between v; and vy, plus
six further vertices. Hence, w.l.0.g., we can choose our labeling of C? such that
V' = {vj_9,...,v¢42}. Let G' = G[V'], but drop any edge that connects one
of the first two with one of the last two vertices. Then G’ is isomorphic to the
outerpath R, where every vertex has degree at most 4. Dujmovi¢ et al. have
shown that seg(R,) = n’ [5, Proof of Theorem 7]. The graph G’, however, has
only 2n’ —2 ports: all vertices have two ports, except for v; and v, with zero ports
and vj_1 and vey;1 (both of degree 3) with at most three ports. This contradicts
the fact that seg(R, ) =n'. O

Remark 1. As a universal lower bound for the class of 3-connected 4-regular
planar graphs, note that in each vertex either at least two segments end or two
segments cross. In order to generate n vertices, we need at least £2(y/n) segments
as Dujmovié et al. [5] observed. It is not hard to see that (grid-like) 3-connected
4-regular planar graphs with segment number O(y/n) exist.

C Proofs Omitted in Section [3| (Maximal Outerpaths)

Lemma 5 (ED For any i € {3,...,n}, a partial outerpath drawing I'; contains
at most one active long pseudo k-arc.

Proof. Suppose that I'; contains two pseudo-k-arcs o and [ that are both active
and long. Let a have its first internal edge before . For 8 to become long,
must have k+ 1 internal edges, while o remains active. Let Hy, Hy, ..., H; be the
subgraphs into which the internal edges of  subdivide the complete outerpath
drawing I'; see Now for « to leave Hy, « needs either to enter H; (which
requires an intersection between « and ) or to enter Hs (which requires a
tangential point of « at 8 and is counted as two intersections). For « to be active
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when £ is long, o needs to reach Hy; (or some H; with j > k+1). This however,
requires at least k + 1 intersection points between « and 3, a contradiction to
the definition of pseudo-k-arcs. a

Lemma 6 (ED There is a loss of at most one crossing per transition from one

long pseudo-k-arc to another long pseudo-k-arc. Hence, t;, < max{0, arc,fk -1} <

>k _ k i >k
arcy " = arcy — y_._oarcy, where arc;” is the number of long pseudo-k-arcs.

Proof. Of course, the loss cannot be negative and the number of transitions from
one long arc to the other is arc,fk —1.

Summing up the losses over all pseudo-k-arcs of the drawing, we obtain tj.
Being counted in a crossing with a long arc more than k times is no contradiction
to the definition of pseudo-k-arcs because the long arc may change. We distinguish
two cases for the transition of a long arc a (with internal edge ey, ..., e, and
subgraphs Hy, ..., Hy) to along arc 8 (with internal edge €}, €5, . .. and subgraphs
H{ H},...).

Fig. 11: Cases for the transition of one long pseudo segment « to another long pseudo
segment (3.

In the first case, e, precedes e} ; see . Say an arc v has been counted
in g crossings with a long arc before reaching e . (If there has been a transition
of a long arc before, we have already subtracted its loss and hence we assume
q < k.) Next we show that 7 is part of at most k — ¢+ 1 counted crossings with f.
When +y reaches e}, it must have intersected 8 already at least ¢ — 1 times. This
is due to the fact that k —1 > ¢ — 1 internal edges of 3 precede e}, and while
an arc is active, it intersects all arcs of the internal edges. We know that v has
intersected « (or a previous long arc) ¢ times, so it has been in at least the last
(g —1) bays of « (or a previous long arc). By then, 8 has also already been active
and also has been in at least the last (¢ — 1) bays of « (or a previous long arc).
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In any bay H, all arcs that leave H intersect all other arcs that leave H at least
once. Hence, # and 7 have intersected pairwise at least ¢ — 1 times. This means
that v can be part of at most ¢ + (k — ¢ + 1) = k + 1 counted crossings with
a long arc — regarding all long arcs up to and including 8. It remains to argue
that there is at most one arc v with k + 1 counted crossings with a long arc per
transition. Suppose there was another arc 4’ with the same property, which has
been in ¢’ crossings with long arcs before e}.. Then, without loss of generality, v
has been in the crossing with o at e,. However, 7/ has also intersected « at e,
but without being counted in a crossing. So, 4’ has been in the last ¢’ Hs of «
together with 8 and contributes at most k — ¢’ crossings with 3.

In the second case, e; succeeds e€); see . If we started counting
crossings with 8 in bay Hj_ | instead of Hj, we would have the same situation as
in the first case. Now consider the counted crossing of Hj, at e)_ ;. Similar to the
first case, if an arc ¢ reaches this crossing and was part of counted crossings before,
it has intersected « at e;. Again, only one of v and some other pseudo-k-arc v/
can contribute the crossing with « at e, and then be part of k£ + 1 crossings with
long edges. For the counted crossing of bay Hj, at e}, we cannot rule out the
possibility that the involved arc ¢ is part of more than k crossings. So, we consider
this crossing as being lost, but then there exists a crossing of a and 3 that has
not been counted — namely at the common vertex of e, and €. Therefore, also
in the second case we have a loss of at most one counted crossing. a

Lemma 7 (ED For k=1 and n > 3, in any outerpath drawing either arc? > 3
or (arcy > 2 and arci > 3).

Proof. Consider vy and vy, i.e., the first and the last vertex in the stacking order
of G. Each of them is incident to two pseudo segments. If they would lie on only
one pseudo segment S, S would intersect the pseudo segment connecting the two
neighbors of vy (or v,) twice.

First, we show that v; and v, have at least one incident pseudo segment with
zero internal edges each (Case 0). Without loss of generality, assume that vy
is incident to the pseudo segments S; and S,., both have at least one internal
edge, and in the stacking order of the outerpath, the first internal edge e of S,
precedes the first internal edge of S; see [Fig. 12h. The path of faces reaches the
face f when passing over e. However, S; is not incident to f and becomes inactive.
(S; cannot be incident to f because then S; and S, would intersect twice or v;
would have a degree > 2.) Therefore, S; has zero internal edges. The same holds
when traversing the outerpath backwards starting at v,,.

Using this property, we now can make the following case distinction.

Case 1: v; and v, are incident to the same pseudo segment S having zero
internal edges. Let the other pseudo segments being incident to v; and v, be Sy
and S,,, respectively (clearly, they are distinct); see [Fig. 12b). This means that
S is incident to all faces in the outerpath. So, if S; or S, had an internal edge,
they would intersect S a second time. Hence, S7 and S,, have also zero internal
edges and we have at least three pseudo segments with zero internal edges in
total.
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Un S Un,
S
S
(%1 Sl
(a) Case 0 (b) Case 1

(f) Case 5 (g) Case 6

Fig. 12: Cases to show

Case 2: v; and v, are incident to the same pseudo segment S having one
internal edge. Let the other pseudo segments being incident to vy and v, be Sy
and Sy, respectively (clearly, they are distinct); see . Since S has an
internal edge, S1 and S,, have zero internal edges. Consider the face f following
the internal edge e of S. Beside S, the two other distinct bounding pseudo
segments of f are Sy and S3. Let S35 have an internal edge es following e along
the sequence of internal faces. All faces of the outerpath are incident to S, hence
S3 cannot have a second internal edge as it intersects S incident to f. Similarly,
So can have at most one internal edge e; when it intersects S incident to f. Thus,
S1 and S, have zero internal edges, while S, Sa, and S3 have at most one internal
edge each.
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Case 3: v; and v, are incident to the same pseudo segment S having at least
two internal edges. As in Case 2, when the sequence of faces of the outerpath
passes over S, there are two pseudo segments Sy and S3 each having at most
one internal edge. We have this situation at least twice — we denote the next
corresponding pair of segments that has at most one internal edge per pseudo
segment by Sy and Ss. Observe that maybe S3 = Sy; see[Fig. 12{. Then, however,
So # S5 as otherwise So and S3 would intersect twice. Therefore, we have two
pseudo segments with zero internal edges (S7 and S,,) and we have at least three
pseudo segments with at most one internal edge (S3, Ss, and Ss).

Case 4: v, and v,, are incident to four distinct pseudo segment and exactly
one of these pseudo segments has at least two internal edges. This case is similar
to Case 2 and Case 3. Without loss of generality, let the segments of v; and v,, be
S1,1, S1,r and Sy 1, Sy, respectively, and let S7; have at least two internal edges;
see [Fig. T2p. Consider the first internal edge e of Sy and the face f preceding e
along the sequence of faces. Let the other pseudo segments bounding f be S; and
So and let the internal edge e; for entering f be contained in S;. Because until
the sequence of faces passes over S} ; a second time, all faces are neighboring Sy ;.
Hence, S; and S5 have at most one internal edge each. Moreover, observe that
neither S, ; nor S, , can be equal to S; or S, as otherwise they would intersect
S1, twice. This gives us our bound — the three pseudo segments with at most
one internal edge are S;, S, and one of S, ; and S, ;.

Case 5: vy and v,, are incident to four distinct pseudo segment and two of
these pseudo segments have at least two internal edges. We have a very similar
situation as in Case 4, but now we have S; and S5 in the forward direction and
S1 and S} symmetrically in the backward direction; see . Let S7,; and
Sn,1 be the segments originating at v, and v, respectively, that have at least two
internal edges each. We have to be a bit more careful about the case that S
and S, intersect. However, even in this case S, Sz, S7, and S5 are four distinct
pseudo segments since the first internal edge e of S7,; precedes all internal edges
of S, ; and the last internal edge €’ of S, ; succeeds all internal edges of Sy
(otherwise the drawing would not be an outerpath).

Case 6: v; and v,, are incident to four distinct pseudo segment and each of
them has at most one internal edge. If three of them have zero internal edges, we
are done. So assume that the pseudo segment S; of v; (and one pseudo segment
of v,,) has one internal edge e; see . Consider the face f preceding e in
the sequence of faces in the outerpath. Beside 5;, let f be bounded by S; and
Ss. The key insight is that S; and Sy pass over S; at e, but on the other side of
S, they cannot intersect a second time and so the path of faces in the outerpath
can yield another internal edge at most for one of S; and S5. Hence, either Sy
has at most one internal edge (when entering f) or Sy has zero internal edges,
which provides our bound. We have to be careful about the case that Sy or S,
are pseudo segments of v,. Note that not both of them can reach v,, because
then they would intersect a second time. If Sy reaches v,,, then S; is our third
pseudo segment with at most one internal edge. If S; reaches v,,, then Sy is our
third pseudo segment without any internal edges. a
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Theorem 3 @ For any n-vertex maximal outerpath G, seg(G) > | 5| + 2.

Proof. Clearly, seg(G) > arci(G). Hence, it suffices to show arc; (G) > [ 5] + 2.
We plug in the result from [Lem. 6} into [Eq. (4)[for £ = 1 and use to
observe 3arc{ +arc} > 9:

_ 0 1 0 1
arc; > 2n -3+ 34arc1 +are; % n 3arcy 4—4arc1 3 > n 42— 3

As we cannot have partial (pseudo) segments, we can round up to [243] = | %] +2.
O

Theorem 4 (El) For any n-vertex mazximal outerpath G, arc(G) > [%*].

Proof. Clearly, arc(G) > arce(G). Hence, it suffices to show arco(G) > [22].

For k =2 and we plug in the result from and we get
2n + 5arc) +3 arcl +1 arc3 S 2n
7 -7
Since we can only have an integral number of arcs, we can round up this value.
O

arco >

Proposition 3 (ED For every r € N, maximal outerpaths P, Q,, U, exist s.t.
(i) P. has n = 2r + 6 vertices and seg(P.) <r+5=mn/2+ 2,
(ii) Q, has n = 3r vertices and arc(Q,) <r+1=n/3+1,
(iii) U, has n =167 + 6 vertices and arca(U,) < 5r + 3 = 22418 ~ 0.3125n.

Proof. (i) Consider [Fig. 5p. In the base case (m = 0), there obviously is a drawing
with six vertices on five line segments. When we increase m by one, we add a line
segment going through the central vertex and increasing the number of vertices
by two.

(ii) Consider [Fig. Bp, where m = 6. The main structure is a long horizontal
line segment (this is a circular arc with radius 0o). In the base case (m = 2), we
have two more circular arcs that look like the first and the last arc in -
two of their vertices are shared with each other, which gives us 6 vertices in
total. When we increase m by one, we add a circular arc as in [Fig. Bp. It has six
vertices, where three of them are new.

(iii) Consider [Fig. Bf. In the base case (k = 0), we have only the first three and
the last three vertices (in purple) using three pseudo-2-arcs. When we increase k
by one, we add the colored part k times (to show the repeating pattern, there
is another copy in gray). This colored part has 16 vertices, it extends three
pseudo-2-arcs and introduces five new pseudo 2-arcs. Observe that each pair of
pseudo-2-arcs intersects at most twice. O
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D Maximal Outerplanar Graphs and 2-Trees

Consider a straight-line drawing I' of a 2-tree G. The main idea for a universal
lower bound for 2-trees (and for its subclass of maximal outerplanar graphs)
is that G either has many degree-2 vertices and thus requires many segments
(recall that, in a 2-tree, all faces are triangles, hence degree-2 vertices cannot
be closed) or G can be obtained by gluing few outerpaths for which we know
(tight) universal lower bounds on the segment number. By gluing we mean the
following. Let G be a 2-tree and P a maximal outerpath. Let fs be a triangle of
G that is not incident to a degree-2 vertex and let fp be a triangle of P that is
incident to a degree-2 vertex (i.e., fp is the first or last triangle of P). Let I'p
be a straight-line drawing of P. Then we define the gluing of I'p to I'q as the
straight-line drawing I'gqp of the 2-tree G @ P obtained by identifying fp and
fe; see[Fig. 13] Note that [V (G @ P)| = |V(G)|+ [V(P)| — 3. In I'ggp, we call
fe and fp the gluing faces of G and P, respectively.

e P "V GeP

Fig. 13: Gluing drawings of an outerplanar graph G and an outerpath P.

Unfortunately, for gluing outerpaths, we cannot directly employ
because it does not tell us how many ports we lose when gluing. Therefore,
we first investigate the distribution of ports within a straight-line drawing of
a maximal outerpath. We will see that, by some careful counting arguments,
we lose only few (counted) ports when gluing outerpaths. We start by formally

proving some auxiliary properties; see

Lemma 9. Let P be a mazximal outerpath given with a stacking order, and let v

be a vertex of P. Then, in any outerplanar straight-line drawing of P, all of the

following holds.

(P1) If deg(v) = 2 or deg(v) is odd, then v is open.

(P2) If deg(v) > 5, then v is succeeded by deg(v) — 4 many neighbors of degree 3,
which we call companions.

(P3) If deg(v) > 6 and v is closed, then v has a companion with three ports,
which we call bend companion.

(P4) If subsequent vertices u and v both have degree 4, then at least one of u
and v 1s open.
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Fig. 14: For property in observe that vertex v; (which has degree 6)
is (a) either open or (b) has a bend companion (here v;11) with three ports; (c) for

property |(P4), note that two subsequent degree-4 vertices u and v cannot both be
closed because of the two triangles they form with their common neighbors x and y.

(P5) Let v be stacked upon the edge uw and u,v be subsequent vertices. If v is
closed, deg(v) = 4, deg(u) = 3, and deg(w) = 5, then either w or w has at
least three ports.

Proof. We consider each of the statements individually.

(P1) If deg(v) is odd, the claim is trivial. Otherwise, v and its two neighbors
form a triangle in any 2-tree and cannot be collinear.

(P2) Since v has degree at least five, constructing P with a sequence of stacking
operations involves deg(v) — 2 consecutive stacking operation on edges
incident to v. Consequently, all succeeding neighbors of v, except for the
last two, must have degree three.

(P3) Let v = v;. Consider the companions vi{1,...,Vitdeg(v;)—4 Of v. Suppose
neither of them has three ports (two is not possible since they have degree 3),
then (at least) deg(v;) — 2 neighbors of v; are collinear and thus result in a
triangle T with v at one corner and these neighbors on the opposing side of T';
see[Fig. 15al Then, however, v; cannot be closed since deg(v;)—2 > deg(v;)/2
and at most two segments can pass through v;, which is a contradiction.
Hence, one of the companion vertices of v has three ports; see

(P4) Let z,u,v,y be a stacking subsequence in P where both w and v have
degree four. Assume, for the sake of contradiction, that there exists a planar
straight-line drawing of P where both u and v are closed. Let s be the
segment that contains the edge uv. Then s intersects at u the segment s’
that contains zu, and s intersects at v the segment s” that contains zv; see
Observe that s’ and s” need to intersect again in y since P is a
maximal outerpath and both u and v are closed. However, this would only
be possible if x, u, v, and y are collinear; which is a contradiction to the
drawing being a planar straight-line drawing.

(P5) If w has three ports, we are done. Otherwise, u has only one port; see
Then note that © and v need to be collinear with a successor v’ of v and pre-
decessor u’ of u. Observe that these four vertices are adjacent to w. However,
since w has degree 5, only one of the edges {u', w}, {u, w}, {v,w}, {v',w}
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T

_,-""Ui+ 1 "‘-pi+2 L Ul+ 1

(a) For if all companions of v are (b) For if v is closed, then one of

collinear, then v cannot be closed. its companion neighbors has 3 ports.

Fig. 15: Configurations in the proof of where v has degree 6 (or a higher even
degree).

S -
S B
(a) For two subsequent degree-4 (b) For in case u has only one port,
vertices u and v cannot both be closed w has at least three ports because four
because of the two triangles with their of its neighbors are collinear.

common neighbors z and y.

Fig. 16: Configurations in the proof of where v is closed and has degree 4.

can be extended at w. (In [Fig. 16bl the edge {v’,w} lies on a segment
passing through w.) Therefore, w has at least three ports.

This finishes the proof. a

Proposition 4. Let P be a maximal outerpath with n > 4 wvertices. Then
port(P) > n+ 1. Moreover, for any planar straight-line drawing of P, we can
find an injective assignment of ports to vertices such that every port is assigned
to its own vertex or to a neighboring vertex.

Proof. Given any straight-line drawing I'p and any stacking order (vy,...,v,)
of P, we describe an assignment of ports to vertices in their vicinities such that
no two ports are assigned to the same vertex. This immediately proves that
port(P) > n. For the one remaining port, observe that v; has an additional
unassigned port.

Let ¢ € [n]. We consider different situations for vertex v;. Each situation is
illustrated by a vertex in the example shown in If v; is open (such as
V1, Vg, OF U4 in , we assign one of the ports to itself. If v; is closed, then
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Fig. 17: A straight-line drawing of a maximal outerpath where each vertex is assigned
a port (indicated by grey arrows). Several ports remain unassigned (e.g., D).

deg(v;) is even and at least 4 by First assume deg(v;) > 6 (such as v, v13,
v16 in [Fig. 17)). Then, by we know that v; has a bend companion v; with
three ports. Only one of the three ports of v; is assigned to v; itself, so we assign
one of the remaining ports of v; to v;. (In such a port would be supplied
by v11, v14 and v1g, respectively.)

If deg(v;) = 4, then either deg(v;—1) = 4 (such as vy preceding wvs) or
deg(v;—1) = 3 (such as vy; preceding vy3) since, by v;_1 has degree at
most 4. In the former case, v;_; has at least two ports and we can assign
one of the ports to v; (such as vy to vs). In the latter case, we distinguish three
subcases. If v; = v3 in the stacking order of P, then vy has degree 3 and cannot be
closed (as vy and v3 in . If v; = vy in the stacking order of P, then vs or
v has three ports. Otherwise, observe that the common neighboring predecessor
of v;_1 and v; has degree at least 5; hence one of or applies (see vy,
v11, and vq2 in this is the only case where a vertex provides ports for
itself and two other vertices). O

Proposition 4| implies a universal lower bound of (n + 1)/2 for the segment

number of an n-vertex outerpath. In [Thm. 3| we improve this by a constant.

Theorem 8 @ For a 2-tree (or a maximal outerplanar graph) G with n
vertices, seg(G) > (n+17)/5.

Proof. For now, assume that G is a maximal outerplanar graph. We consider the
case that G is a 2-tree at the end of this proof. If the weak dual T" of G has at
least (n + 7)/5 leaves, we are done since G has at least as many segments as T
has leaves.

Otherwise, let P = {P},..., P,} be a minimum-size set of maximal outerpaths
such that when we define G; = P; and G; = G,_1 @ P, for i € {2,...p}, we
get that G = G,. In other words, we can obtain G by p — 1 consecutive gluing
operations of the paths in P. Note that p is at most (n+7)/5—1=(n+2)/5
because P; contains two leaves and, for i € {2,...p}, P; contains one leaf of T.

Next, we show a lower bound on the number of ports on any straight-line
drawing of G. To this end, we use the assignment of ports to vertices that we
established in and apply it to each outerpath P; in P. Further, we use
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> U, ]

7

(a) Initial outerplanar drawing. (b) Drawing after flipping vy, .

Fig. 18: Straight-line drawing of a maximal outerpath where we “flip” v,, over the
rest of the drawing such that the resulting drawing remains planar. This way, we can
append maximal outerpaths to inner faces of 2-trees.

the stacking order of P; that starts at the degree-2 vertex of P; that is not
incident to the gluing face of P;. For i € {1,...,p}, let n, = |V(F;)|. Note that
V(@) =21 ni = 3(p— 1).

First, we compute port(P), the sum of ports counted for Py, ..., P,:

p p
port(P) = Zport(Pi) > Z(nz +1)=n+3p-1)+p=n+4p—3
i=1 i=1

Second, we analyze the number of counted ports that we lose by the p — 1
gluing operations. Consider the gluing operation G; = G;—1 & P; and let fg,_,
and fp, respectively, be the gluing faces identified to face f of G;.

Observe that we counted three ports at fp since neither v,, nor one of its
neighbors needs to assign a port to another vertex (we assign only ports to
vertices coming later in the stacking order except for bend companions, but the
last three vertices cannot be bend companions). We assume to lose all of these
three ports when gluing. This means that every vertex has at most as many
counted ports in G; as it had in G,;_;. For the ports lost at fg, ,, observe that
the vertex that is identified with v,, at P; cannot lose any ports. The other two
vertices are neighbors in G;_1. In the assignment that we established in
any two such vertices provide ports for at most four vertices in total. We assume
also to lose all of these ports, which results in a total loss of at most seven ports
per gluing operation. Hence, with p < (n + 2)/5, we get

_ port(G) S port(P) — loss S n+4p—3—(Tp—17) S ntT
2 T 2 - 2 -5

seg(G)

It remains to consider the case that G is a 2-tree. As for maximal outerplanar
graphs, we can also construct a 2-tree by gluing multiple outerpaths. Similar
to leaves in the dual drawing, each attached outerpath provides at its ending a
vertex of degree 2 with two ports. The only exception is that we are not restricted
on gluing to the outside — we may also draw a outerpath within an inner face of
the current 2-tree drawing.
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Fig. 19: The maximal outerplanar graph Gs with 42 vertices drawn on 18 segments.
(G1 in black)

A difficulty is how to identify the faces fg,_, and fp if we want to draw the
rest of P within this unified face. However, consider an outerplanar straight-line
drawing of P where we “flip” the last vertex v,, over the rest of the drawing
such that the drawing remains planar; see Clearly, the number of ports
in the drawing of the maximal outerpath P did not change and the assignment
scheme from is still applicable. We may use such flips also along inner
edges of a outerpath drawing to obtain a “folded” outerpath drawing with the
same properties. Hence, we can apply gluing operations to inner faces with at
most the same loss as analyzed before. O

We remark that, though we get the same lower bound for maximal outerplanar
graphs and 2-trees, the actual (tight) numbers might be different. In other words,
maybe there are 2-trees requiring less segments than any maximal outerplanar
graph with the same number of vertices. This is because our current analysis is
most likely not tight as we see by comparison with our existential upper bound.

For an existential upper bound of maximal outerplanar graphs, consider the
construction in It defines a family of graphs G, Ga, ... where the base
graph G has 16 vertices and admits a drawing Iz, with eight segments. From
G,_1 to G;, we glue a scaled and rotated copy of I's, to the drawing of G;_1
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(gluing faces are shaded). With each step, we get 13 more vertices with only 5
more segments and hence the following result.

Proposition 5. For every k € N, Gy has ny, = 13k + 3 vertices and seg(Gy) <
Bk + 3 = (5ny + 24)/13.

E Planar 3-Trees

In this section we study the segment number of planar 3-trees. For a 3-tree G
with n > 6 and an arbitrary planar straight-line drawing I" of G, we observe
that we can assign at least (i) one port to each internal face of I" and (ii) twelve
ports to the outer face of I'; see By Euler, any n-vertex triangulation
has 2n — 5 internal faces. Hence, I" has 2n + 7 ports. This yields the following
bound, which is tight up to a constant.

Theorem 6 @ For a planar 3-tree G with n > 6 vertices, seg(G) > n + 4.

Proof. For claim (i), consider a sequence of stacking operations that starts with
a drawing of K, and yields I'. Let v be the current vertex in this process, and let
f be the face into which v is stacked. Let V(f) = {z,y, 2} be the set of vertices
incident to f, and let f;, fy, and f, be the three newly created faces such that
V(fz) = {v,y, 2} etc.; see . Since f is a triangle, no two of the edges zv,
yv, zv can share a segment. Thus, v has three ports. In particular, the segment
xv points into f;, yv points into fy, and zv points into f,. We assign the ports
of v accordingly to f, fy, and f.. When the stacking process ends with I', each
internal face of I" has a port assigned to it.

For claim (ii), note that the number of ports on the outer face equals the
degree sum of the three vertices on the outer face. Thus, K, has nine ports.
The next (fifth) vertex in the stacking sequence is incident to two vertices on
the outer face and hence contributes two more ports. Similarly, the sixth vertex
contributes at least one more port; see [Fig. 20pb. Hence, in total, the outer face

—
z x ‘ a
(a)

a

Fig. 20: (a) Stacking a vertex v into an internal face f = zyz creates a port in each
new face (fz, fy, and f.); (b) a planar 3-tree with n > 6 vertices has at least twelve
ports on the outer face abc.
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U3

V17 V18

V19 V20

U1 V2

Fig. 21: A straight-line drawing of T3 from with 20 vertices and 27 segments.

has at least twelve ports. (Note that this bound is tight since any further vertex
can be stacked into an internal face that is not adjacent to the outer face.)

To finish the proof, we treat the remaining small graphs. For n = 5, we have
one port less on the outer face, and there exists a drawing of this unique graph
using eight segments (see without vertex v). It is easy to verify the claim
for n = 4. a

In we draw an n-vertex planar 3-tree using n + 7 segments. This
yields an existential upper bound as formalized in Hence, the universal
lower bound in [Thm. 6]is tight up to an additive constant of 3.

Proposition 6. For every k > 1 there exists a 3-tree Ty, whose construction is
illustrated in|Fig. 21, with n = 4k + 8 vertices and seg(Ty) < 4k +15=n+7.

Proof. Consider We start by drawing the outer triangle Avjvov3 using
three segments. As fourth vertex, we add the central vertex x introducing three
more segments. For the fifth and sixth vertex, u and w, we re-use the line segments
zv1 and zvy and, consequently, add only four new segments. For the seventh
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Un, V2
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\Un/2+3

U3

U3

U1 U2 Un/2+1 Un /242 U3 Vg

(a) 2n — 2 segments (b) 3n/2 + 1 segments (c) 2n — 2 segments

Fig. 22: Straight-line drawings of the 3-tree B,, (with n > 6 even) for two different
embeddings that were analyzed by Dujmovié et al. [5]

and eighth vertex, y and z, we re-use line segments uvsz and wvs, respectively.
Moreover, they share a segment for the edges yxr and zx, which results in three
new segments. This gives us 13 vertices for the base construction.

Now in k rounds, we iteratively stack four vertices into the faces Auyx, Awzxz,
Avizy, and Avgza. We stack along four new (black) line segments (see e.g. T1019
in such that the final drawing uses four more segments once as well as
four more per iteration (colored line segments through y, z and = in . We
re-use the segments uy, wz, v1y, and voz for one edge each, which saves us two
more segments. Together with the 13 segments of the base construction, we get
seg(Ty) <134+4+4k—2=4k+15=n+7T. O

Consider the universal upper bound of 2n — 2 on the segment number of
planar 3-trees due to Dujmovié et al. [5, Lemma 18]. They show the tightness
of their result in a fixed-embedding setting, that is, they prove that there is a
family (By,)n>4 of plane 3-trees (see such that B,, has n vertices and
requires 2n — 2 segments in any straight-line drawing that adheres to the given
embedding. They remark that, given a different embedding, B,, can be drawn
using roughly 3n/2 segments; see We formalize this to compute the
exact segment number of B,,, which will be useful in [App. F}

Proposition 7. For every n > 6 there exists a 3-tree By, (see with n
vertices and seg(B,) = [3n/2] + 1.

Proof. We first show the lower bound seg(B,,) > [3n/2] + 1.

Let B,, be the graph depicted in with vertex set {vy,va,...,v,} and
edge set {v1v;,v20;: 3 < i < n}pU{vvg1: 1 <i<n—1} If vy and vy are on
the outer face (see [Fig. 22a)), we have at least 2(n — 2) + 2 segments. For n > 6,
2n—2 > [3n/2] + 1.

So w.l.o.g. let v; not be on the outer face. Consequently, vy lies on the outer
face because any triangle of the graph contains at least one vertex of {v1, vs}
and, hence, also the triangle of the outer face. This implies that there are n — 1
distinct segments incident to vs.
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For every i € {3,...,n}, the path (vy,v;,v2) is drawn with a bend at v;
because otherwise it would coincide with the edge vivy. Therefore, the n — 2
edges v1vs, .. .,v10, form at least (n — 2)/2 new segments.

Consider the two other vertices on the outer face — we call them u and w.
The edge uw yields another segment. Moreover, vs and v, cannot both be on the
outer face as they are not adjacent. Therefore, w.l.o.g., u has degree 4. So far,
we have counted the segments of the edges uvy, uvy and uw. This means that
there is another segment for the fourth edge incident to w.

If w, too, has degree 4, we count another segment by the same argument.
Overall, this sums up to at least (n —1) +(n—2)/2+1+2 = 3n/2 + 1 segments.

Otherwise w has degree 3. Assume w.l.o.g. that w = v3. Consequently, the
outer face is the triangle Avguzvy; see Observe now that Awvivyvy
separates vz on the outside from all other vertices in the inside. Thus, the n — 3
edges v1vy,...,V10, reach vy in an angle smaller than 180° and, hence, require
n — 3 distinct segments. This results in at least (n — 1)+ (n —3) + 1+ 1 =
2n — 2 > 3n/2 + 1 segments.

Finally, we show that this lower bound is tight. Consider the drawing of B,,
in It uses exactly the [3n/2] + 1 segments that we counted above for
the lower bound. In particular, u = v|, 241 and w = v|, /2|42 a

F The Ratio of Segment Number and Arc Number

Since circular-arc drawings are a natural generalization of straight-line drawings,
it is natural to also ask about the maximum ratio between the segment number
and the arc number of a graph. In this section, we make some initial observations
regarding this question. Clearly, seg(G)/ arc(G) > 1 for any graph G. Note that
seg(K3)/ arc(K3) = 3. We investigate the ratio for two classes of planar graphs.
We construct families of graphs showing that, for maximal outerpaths, (and,
hence, for maximal outerplanar graphs and 2-trees) the minimum ratio is 1
(Prop. §[Fig. Bh) and the maximum ratio is at least 2 (Prop. 9)[Fig. 5p). For
planar 3-trees, the minimum ratio is at most 4/3 (Prop. 10)|Fig. 21]) and the
maximum ratio is at least 3 (Prop. 11}|Fig. 23).

It would be interesting to find out how much of an improvement in terms
of visual complexity circular-arc drawings offer over straight-line drawings for
arbitrary planar graphs. Can the ratio between segment and arc number be
bounded by 3 for every planar graph?

Proposition 8. Forr € N, let P, be the mazimal outerpath from[Prop. 3; see
. Then, lim,_, seg(P,)/ arc(P,) = 1.

Proof. Consider for a drawing of P, on n/2 + 2 segments where n is the
number of vertices of P,. Observe that the central vertex has degree (n — 1) and,
thus, is contained in at least n/2 different arcs in any arc-drawing. Hence the
segment number and the arc number of P, differ by at most a constant of 2. O

Proposition 9. For every positive integer k, let Q. be the maximal outerpath
with ny = 3k + 3 vertices shown in b. Then limy_, o seg(Qr)/ arc(Qr) > 2.
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<
N

o Un/2+2

Fig. 23: The planar graph Bj, from [Prop. 11| drawn with n/2 = 6 arcs and with
3n/2 = 18 line segments.

Proof. The outerpath @ contains ny /3 —2 degree-6 vertices and for each of them
two degree-3 neighbors, with at least one port each. The degree-6 vertices either
have two ports themselves or their bend companions have three ports. In either
case, we find four ports for each degree-6 vertex. The remaining six vertices around
the first and the last face have at least ten ports. Therefore, seg(Qy) > 2ny /3 + 1.

yields that arc(Qy) < ny/3 + 1. Hence, seg(Q)/ arc(Qr) > 2 —2/(k +2).
O

Proposition 10. For k > 2, let T}, be the planar 3-tree shown in[Fig. 21 Then
limy, o0 seg(Tk)/ arc(Ty) < 4/3.

Proof. See for a drawing of Ty on 4k + 11 segments. Let v be the unique
vertex of degree n — 1 and u, w be the two degree-(n/2 — 1) vertices.

There is a set of 4k + 2 unique paths, one half from « to v and the other from
v to w. Each of these paths needs to be covered by at least one arc. Obviously no
arc may cover more than two paths. Now observe that any arc covering one path
on each side connects all three vertices, such that only one such arc may exist.
Hence, of the remaining 4k paths we may cover only two with the same arc if both
lie on the same side of v. However, every such arc must have the same tangent in
v in order not to cross the other paths. Therefore, we may only do this on one
side of v. Thus, k arcs may suffice for one side, but the other needs 2k arcs, which
yields a total of 3k + 1 necessary arcs. Hence, seg(Ty)/ arc(Ty) < 4/3+29/(9k+3).
O

Proposition 11. For every even n > 8, let B), = B,, — v1v2 be the planar graph
shown in|Fig. 23 Then seg(By,)/ arc(B),) = 3 and lim,,_, o, seg(B,,)/ arc(B,) = 3.

Proof. shows drawings of BJ, with n/2 arcs and with 3n/2 segments.
Clearly, arc(B],) = n/2 since deg(vy) = n — 2 and there are two vertices of odd
degree (vs and v,,), where some arc(s) must start and end. For the same reason
arc(B,) =n/2+ 1. By seg(Bp) = 3n/2 + 1. Recall that removing the
edge v1vy from B,, yields B.,. Observe that B, is still triconnected. Therefore,
the set of embeddings is the same as for B, (except that we have the face
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(v1,vn, v2, v3) instead of the triangular faces Avivgvz and Avqv,vs) and depends
only on the choice of the outer face. Analyzing the different embeddings of B}, as
those of B, in the proof of [Prop. 7] shows that seg(B/,) = 3n/2. In particular,
while we could straighten the path (ve,vs,v1) in this would introduce a
new bend in the path (v, v1,v;,/242), and the number of segments remains 3n,/2.
Hence seg(B.,)/ arc(B),) = 3 and lim,,_, seg(By,)/ arc(B,) = 3. O
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