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CaTGrasp: Learning Category-Level Task-Relevant
Grasping in Clutter from Simulation

Bowen Wen1,2, Wenzhao Lian1, Kostas Bekris2 and Stefan Schaal1

Abstract— Task-relevant grasping is critical for industrial
assembly, where downstream manipulation tasks constrain
the set of valid grasps. Learning how to perform this task,
however, is challenging, since task-relevant grasp labels are
hard to define and annotate. There is also yet no consensus
on proper representations for modeling or off-the-shelf tools
for performing task-relevant grasps. This work proposes a
framework to learn task-relevant grasping for industrial objects
without the need of time-consuming real-world data collection
or manual annotation. To achieve this, the entire framework
is trained solely in simulation, including supervised training
with synthetic label generation and self-supervised, hand-object
interaction. In the context of this framework, this paper
proposes a novel, object-centric canonical representation at the
category level, which allows establishing dense correspondence
across object instances and transferring task-relevant grasps
to novel instances. Extensive experiments on task-relevant
grasping of densely-cluttered industrial objects are conducted
in both simulation and real-world setups, demonstrating the
effectiveness of the proposed framework. Code and data are
available at https://sites.google.com/view/catgrasp.

I. Introduction
Robot manipulation often requires identifying a suitable

grasp that is aligned with a downstream task. An important
application domain is industrial assembly, where the robot
needs to perform constrained placement after grasping an
object [1], [2]. In such cases, a suitable grasp requires sta-
bility during object grasping and transporting while avoiding
obstructing the placement process. For instance, a grasp
where the gripper fingers cover the thread portion of a screw
can impede its placement through a hole. Grasping a screw
in this manner is not a task-relevant grasp.
There are many challenges, however, in solving task-

relevant grasps. (a) Grasping success and task outcome are
mutually dependent [3]. (b) Task-relevant grasping involves
high-level semantic information, which cannot be easily
modeled or represented. (c) 6D grasp pose annotation in 3D
is more complicated than 2D image alternatives. Achieving
task-relevant grasps requires additional semantic priors in
the label generation process than geometric grasp gener-
ation often studied in stable grasp learning [4], [5]. (d)
Generalization to highly-variant, novel instances within the
category requires effective learning on category-level priors.
(e) In densely cluttered industrial object picking scenarios, as
considered in this work, the growing number of objects, the
size of the grasp solution space, as well as challenging object
1Intrinsic Innovation LLC in CA, USA. {wenzhaol, sschaal}@intrinsic.ai. This

research was conducted during Bowen’s internship at Intrinsic.
2Rutgers University in NJ, USA. {bw344, kostas.bekris}@cs.rutgers.edu. Bowen

Wen and Kostas Bekris were partially supported by the US NSF Grant IIS-1734492.
The opinions expressed here are of the authors and do not reflect the views of the
sponsor.

Learnt Category‐Level Priors

3D Model Training Database

Canonical
NUNOCS

Hand‐Object Contact 
Heatmap 6D Grasp Codebook

Novel Unseen 
Objects

(1,1,0)
(0,0,0)

(1,0,0)

(0,0,1)
(1,0,1)

(1,1,1)

(0,1,0)

Fig. 1: Given a database of 3D models of same category, the proposed method learns:
(a) an object-centric NUNOCS representation that is canonical for the object category,
(b) a heatmap that indicates the task achievement success likelihood dependent on the
hand-object contact region during the grasp, and (c) a codebook of stable 6D grasp
poses. The heatmap and the grasp poses are transferred to real-world, novel unseen
object instances during testing for solving task-relevant grasping.

properties (e.g., textureless, reflective, tiny objects, etc.),
introduce additional combinatorial challenges and demand
increased robustness.
With recent advances in deep learning, many efforts resort

to semantic part segmentation [6], [7] or keypoint detection
[8] via supervised learning on manually labeled real-world
data. A line of research is circumventing the complicated
data collection process by training in simulation [9], [10]. It
still remains an open question, however, whether category-
level priors can be effectively captured through end-to-end
training. Moreover, most of the existing work considers
picking and manipulation of isolated objects [11]–[15]. The
complexity of densely cluttered industrial object picking
scenarios considered in this work, make the task-relevant
grasping task even more challenging.
To tackle the above challenges, this work aims to learn

category-level, task-relevant grasping solely in simulation,
circumventing the requirement of manual data collection
or annotation efforts. In addition, during the test stage,
the trained model can be directly applied to novel object
instances with previously unseen dimensions and shape vari-
ations, saving the effort of acquiring 3D models or re-training
for each individual instance. This is achieved by encoding 3D
properties - including shape, pose and gripper-object contact
experience that is relevant to task performance - shared
across diverse instances within the category. Therefore, once
trained, this category-level, task-relevant grasping knowledge
not only transfers across novel instances, but also effectively
generalizes to real-world densely cluttered scenarios without
the need for fine-tuning. In summary, the contributions of
this work are the following:
• A novel framework for learning category-level, task-
relevant grasping of densely cluttered industrial objects
and targeted placement. To the best of the authors’ knowl-
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edge, this is the first work that effectively tackles task-
relevant grasping of industrial objects in densely cluttered
scenarios in a scalable manner without human annotation.

• Instead of learning sparse keypoints relevant to task-
relevant manipulation, as in [8], [10], this work models
dense, point-wise task relevance on 3D shapes. To do
so, it leverages hand-object contact heatmaps generated
in a self-supervised manner in simulation. This dense
3D representation eliminates the requirement of manually
specifying keypoints.

• It introduces the "Non-Uniform Normalized Object Co-
ordinate Space" (NUNOCS) representation for learning
category-level object 6D poses and 3D scaling, which
allows non-uniform scaling across three dimensions. Com-
pared to the previously proposed Normalized Object Co-
ordinate Space (NOCS) representation [16] developed in
the computer vision community for category-level 6D pose
and 1D uniform scale estimation, the proposed represen-
tation allows to establish more reliable dense correspon-
dence and thus enables fine-grained knowledge transfer
across object instances with large shape variations.

• The proposed framework is solely trained in simulation
and generalizes to the real-world without any re-training,
by leveraging domain randomization [17], bi-directional
alignment [18], and domain-invariant, hand-object contact
heatmaps modeled in a category-level canonical space.
To this end, a synthetic training data generation pipeline,
together with its produced novel dataset in industrial dense
clutter scenarios, is presented.

II. Related Work
Stable Grasping - Stable grasping methods focus on robust
grasps. The methods can be generally classified into two cat-
egories: model-based and model-free. Model-based grasping
methods require object CAD models to be available before-
hand for computing and storing grasp poses offline w.r.t.
specific object instances. During test stage, the object’s 6D
pose is estimated to transform the offline trained grasp poses
to the object in the scene [19]–[22]. More recently, model-
free methods relax this assumption by directly operating over
observations such as raw point cloud [4], [23] or images
[24]–[28], or transferring the category-level offline trained
grasps via Coherent Point Drift [29]. Representative works
[4], [5], [30] train a grasping evaluation network to score
and rank the grasp candidates sampled over the observed
point cloud. For the sake of efficiency, more recent works
[24], [31]–[35] develop grasp pose prediction networks,
which directly output 6D grasp proposals along with their
scores, given the scene observation. Differently, the proposed
CaTGrasp aims to compute grasps that are not only stable
but also task-relevant.
Task-Relevant Grasping - Task-relevant grasping requires
the grasps to be compatible with downstream manipulation
tasks. Prior works have developed frameworks to predict
affordance segmentation [7], [36]–[40] or keypoints [41] over
the observed image or point cloud. This, however, often
assumes manually annotated real world data is available to

perform supervised training [12], [42], [43], which is costly
and time-consuming to obtain. While [6], [44] alleviates
the problem via sim-to-real transfer, it still requires manual
specification of semantic parts on 3D models for generating
synthetic affordance labels. Instead, another line of research
[9], [10], [45] proposed to learn semantic tool manipulation
via self-interaction in simulation. While the above research
commonly tackles the scenarios of tool manipulation or
household objects, [46] shares the closest setting to ours
in terms of industrial objects. In contrast to the above, our
work considers more challenging densely cluttered scenarios.
It also generalizes to novel unseen object instances, without
requiring objects’ CAD models for pose estimation or syn-
thetic rendering during testing as in [46].
Category-Level Manipulation - In order to generalize to
novel objects without CAD models, category-level manipu-
lation is often achieved by learning correspondence shared
among similar object instances, via dense pixel-wise rep-
resentation [47]–[49] or semantic keypoints [8], [10]. In
particular, sparse keypoint representations are often assigned
priors about their semantic functionality and require human
annotation. While promising results on household objects
and tools have been shown [8], [10], it becomes non-trivial
to manually specify semantic keypoints for many industrial
objects (Fig. 4), where task-relevant grasp poses can be
widely distributed. Along the line of work on manipulation
with dense correspondence, [47] developed a framework for
learning dense correspondence over 2D image pairs by train-
ing on real world data, which is circumvented in our case.
[48], [49] extended this idea to multi-object manipulation
given a goal configuration image. Instead of reasoning on 2D
image pairs which is constrained to specific view points, this
work proposes NUNOCS representation to establish dense
correspondence in 3D space. This direct operation in 3D
allows to transfer object-centric contact experience, along
with a 6D grasp pose codebook. Additionally, the task-
relevant grasping has not been achieved in [47]–[49].

III. Problem Statement
We assume novel unseen objects of the same type have

been collected into a bin, forming a densely cluttered pile as
in common industrial settings. The objective is to compute
task-relevant 6D grasp poses 𝜉𝐺 ∈ 𝑆𝐸 (3) that allow a down-
stream constrained placement task. The grasping process is
repeated for each object instance until the bin is cleared. The
inputs to the framework are listed below.
• A collection of 3D models M𝐶 belonging to category
𝐶 for training (e.g., Fig 4 left). This does not include any
testing instance in the same category, i.e., 𝑀 test

𝐶
∉M𝐶 .

• A downstream placement task 𝑇𝐶 corresponding to the
category (e.g., Fig 5), including a matching receptacle and
the criteria of placement success.

• A depth image 𝐼𝐷 of the scene for grasp planning at test
stage.

IV. Approach
Fig. 2 summarizes the proposed framework. Offline, given

a collection of models M𝐶 of the same category, synthetic
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Fig. 2: Overview of the proposed framework. Right: (a) Given a collection of CAD models for objects of the same category, the NUNOCS representation is aggregated to
generate a canonical model for the category. The CAD models are further utilized in simulation to generate synthetic point cloud data for training all the networks (3D U-Net,
NUNOCS Net and Grasping Q Net). Meanwhile, the category-level grasp codebook and hand-object contact heatmap are identified via self-interaction in simulation. Top-left: (b)
A 3D U-Net is leveraged to predict point-wise centers of objects in dense clutter, based on which the instance segmentation is computed by clustering. Center: (c) The NUNOCS
Net operates over an object’s segmented point cloud and predicts its NUNOCS representation to establish dense correspondence with the canonical model and compute its 9D
pose 𝜉𝑜 ∈ {𝑆𝐸 (3) ×𝑅3 } (6D pose and 3D scaling). This allows to transfer the precomputed category-level knowledge to the observed scene. Bottom-left: (d) Grasp proposals
are generated both by transferring them from a canonical grasp codebook and directly by sampling over the observed point cloud. IK-infeasible or in-collision (using FCL [50])
grasps are rejected. Then, the Grasping Q Net evaluates the stability of the accepted grasp proposals. This information is combined with a task-relevance score computed from
the grasp’s contact region. The entire process can be repeated for multiple object segments to find the currently best grasp to execute according to 𝑃 (𝑇 ,𝐺) = 𝑃 (𝑇 |𝐺)𝑃 (𝐺) .
Red dashed arrows occur in the offline training stage only.

data are generated in simulation (Sec. IV-E) for training
the NUNOCS Net (Sec. IV-A), Grasping Q Net (Sec. IV-
B) and 3D U-Net (Sec. IV-D). Then, self-interaction in
simulation provides hand-object contact experience, which
is summarized in task-relevant heatmaps for grasping (Sec.
IV-C). The canonical NUNOCS representation allows the
aggregation of category-level, task-relevant knowledge across
instances. Online, the category-level knowledge is transferred
from the canonical NUNOCS model to the segmented target
object via dense correspondence and 9D pose estimation,
guiding the grasp candidate generation and selection.
A. Category-level Canonical NUNOCS representation
Previous work [47] learned dense correspondence between

object instances using contrastive loss. It requires training on
real-world data and operates over 2D images from specific
viewpoints. Instead, this work establishes dense correspon-
dence in 3D space to transfer knowledge from a trained
model database M𝐶 to a novel instance 𝑀 test𝐶

.
Inspired by [16], this work presents the Non-Uniform Nor-

malized Object Coordinate Space (NUNOCS) representation.
Given an instance model 𝑀 , all the points are normalized
along each dimension, to reside within a unit cube:

𝑝𝑑C = (𝑝𝑑 − 𝑝𝑑𝑚𝑖𝑛)/(𝑝𝑑𝑚𝑎𝑥 − 𝑝𝑑𝑚𝑖𝑛) ∈ [0,1];𝑑 ∈ {𝑥, 𝑦, 𝑧}.
The transformed points exist in the canonical NUNOCS C
(Fig. 1 bottom-right). In addition to being used for synthetic
training data generation (Sec. IV-E), the modelsM𝐶 are also
used to create a category-level canonical template model, to
generate a hand-object contact heatmap (Sec. IV-C) and a
stable grasp codebook (Sec. IV-B). To do so, each model
in M𝐶 is converted to the space C, and the canonical
template model is represented by the one with the minimum
sum of Chamfer distances to all other models in M𝐶 . The
transformation from each model to this template is then
utilized for aggregating the stable grasp codebook and the
task-relevant hand-object contact heatmap.
For the NUNOCS Net, we aim to learn Φ :P𝑜 →PC, where

P𝑜 and PC are the observed object cloud and the canonical
space cloud, respectively. Φ(·) is built with a PointNet-like

architecture [51] given it is light-weight and efficient. The
learning task is formulated as a classification problem by
discretizing 𝑝𝑑

C
into 100 bins. Softmax cross entropy loss

is used as we found it more effective than regression by
reducing the solution space [16]. Along with the predicted
dense correspondence, the 9D object pose 𝜉𝑜 ∈ {𝑆𝐸 (3) ×𝑅3}
is also recovered. It is computed via RANSAC [52] to provide
an affine transformation from the predicted canonical space
cloud PC to the observed object segment cloud P𝑜, while
ensuring the rotation component to be orthonormal.
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Compared to the original NOCS
representation [16], which recov-
ers a 7D pose of novel object in-
stances, the proposed NUNOCS al-
lows to scale independently in each
dimension when converting to the
canonical space. Therefore, more
fine-grained dense correspondence across object instances
can be established via measuring their similarity (𝐿2 distance
in our case) in C. This is especially the case for instances with
dramatically different 3D scales, as shown in the wrapped fig-
ure, where colors indicate dense correspondence similarity in
C and one example correspondence for NUNOCS and NOCS
respectively. A key difference from another related work on
VD-NOC [53], which directly normalizes the scanned point
cloud in the camera frame, is that the proposed NUNOCS
representation is object-centric and thus agnostic to specific
camera parameters or viewpoints.

B. Stable Grasp Learning
During offline training, grasp poses are uniformly sampled

from the point cloud of each object instance, covering the
feasible grasp space around the object. For each grasp 𝐺,
the grasp quality is evaluated in simulation. To compute a
continuous score 𝑠𝐺 ∈ [0,1] as training labels, 50 neighbor-
ing grasp poses are randomly sampled in the proximity of
𝜉𝐺 ∈ 𝑆𝐸 (3) and executed to compute the empirical grasp
success rate. The intuition is that grasp stability should be



continuous over its 6D neighborhood. Once the grasps are
generated, they are then exploited in two ways.
First, given the relative 9D transformation from the current

instance to the canonical model, the grasp poses are con-
verted into the NUNOCS space and stored in a stable grasp
codebook G. During test time, given the estimated 9D object
pose 𝜉𝑜 ∈ {𝑆𝐸 (3) × 𝑅3} of the observed object’s segment
relative to the canonical space C, grasp proposals can be
generated by applying the same transformation to the grasps
in G. Compared with traditional online grasp sampling over
the raw point cloud [4], [5], this grasp knowledge transfer is
also able to generate grasps from occluded object regions. In
practice, the two strategies can be combined to form a robust
hybrid mode for grasp proposal generation.
Second, the generated grasps are utilized for training the

Grasping Q Net, which is built based on PointNet [51].
Specifically, in each dense clutter generated (as in Sec. IV-E),
the object segment in the 3D point cloud is transformed to
the grasp’s local frame given the object and grasp pose. The
Grasping Q Net takes the point cloud as input and predicts
the grasp’s quality 𝑃(𝐺), which is then compared against the
discretized grasp score 𝑠𝐺 to compute softmax cross entropy
loss. This one-hot score representation has been observed to
be effective for training [30].

C. Affordance Self-Discovery
In contrast to prior work [7], which manually anno-

tates parts of segments, or uses predefined sparse key-
points [8], this work discovers grasp affordance via self-
interaction. In particular, the objective is to compute
𝑃(𝑇 |𝐺) = 𝑃(𝑇,𝐺)/𝑃(𝐺) automatically for all graspable re-
gions on the object. To achieve this, a dense 3D point-wise
hand-object contact heatmap is modeled. For each grasp in
the codebook 𝐺 ∈ G (generated as in Sec. IV-B), a grasping
process is first simulated. The hand-object contact points
are identified by computing their signed distance w.r.t the
gripper mesh. If it’s a stable grasp, i.e., the object is lifted
successfully against gravity, the count 𝑛(𝐺) for all contacted
points on the object are increased by 1. Otherwise, the grasp
is skipped. For these stable grasps, a placement process is
simulated, i.e., placing the grasped object on a receptacle,
to verify the task relevance (Fig. 2 top-right). Collision is
checked between the gripper and the receptacle during this
process. If the gripper does not obstruct the placement and
if the object can steadily rest in the receptacle, the count of
joint grasp and task success 𝑛(𝐺,𝑇) on the contact points is
increased by 1. After all grasps are verified, for each point on
the object point cloud, its task relevance can be computed as
𝑃(𝑇 |𝐺) = 𝑛(𝐺,𝑇)/𝑛(𝐺). Examples of self-discovered hand-
object contact heatmaps are shown in Fig. 3. Interestingly,
these heatmaps achieve similar performance to human an-
notated part-segmentation [36] but can be interpreted as a
“soft” version.
Eventually, for each of the training objects within the

category, the hand-object contact heatmap 𝑃(𝑇 |𝐺) is trans-
formed to the canonical model. The task-relevant heatmaps
over all training instances are aggregated and averaged to be

the final canonical model’s task-relevance heatmap. During
testing, due to the partial view of the object’s segment,
the antipodal contact points 𝑝𝑐 are identified between the
gripper mesh and the transformed canonical model (Fig. 2
bottom-left). For each grasp candidate, the score 𝑃𝐺 (𝑇 |𝐺) =
1

|𝑝𝑐 |
∑

𝑝𝑐
𝑃𝑝𝑐 (𝑇 |𝐺) is computed. It is then combined with

the predicted 𝑃𝐺 (𝐺) from Grasping Q Net (Sec. IV-B)
to compute the grasp’s task-relevance score: 𝑃𝐺 (𝑇,𝐺) =
𝑃𝐺 (𝑇 |𝐺)𝑃𝐺 (𝐺).

Nuts HMN Screws

Fig. 3: Examples of task-relevant hand-object contact heatmaps 𝑃 (𝑇 |𝐺) . Warmer
color indicates higher values of 𝑃 (𝑇 |𝐺) . The white areas are the small concave
regions for which the rigid parallel-jaw gripper can’t touch. They remain unexplored
and set to the default 𝑃 (𝑇 |𝐺) = 0.5 though they are also unlikely to be touched
during testing. The collected contact heatmap is object-centric and domain-invariant.
Once identified in simulation, it is directly applied in the real world.

D. Instance Segmentation in Dense Clutter

This work employs the Sparse 3D U-Net [54], [55] due
to its memory efficiency. The network takes as input the
entire scene point cloud P ∈ 𝑅𝑁×3 voxelized into sparse
volumes and predicts per point offset Poffset ∈ 𝑅𝑁×3 w.r.t.
to predicted object centers. The training loss is designed
as the 𝐿2 loss between the predicted and the ground-truth
offsets [56]. The network is trained independently, since joint
end-to-end training with the following networks has been
observed to cause instability during training.
During testing, the predicted offset is applied to the

original points, leading the shifted point cloud to condensed
point groups P+Poffset, as shown in Fig. 2. Next, DBSCAN
[57] is employed to cluster the shifted points into instance
segments. Additionally, the segmented point cloud is back-
projected onto the depth image 𝐼𝐷 to form 2D segments.
This provides an approximation of the per-object visibility
by counting the number of pixels in each segment. Guided
by this, the remaining modules of the framework prioritize
the top layer of objects given their highest visibility in the
pile during grasp candidate generation.

E. Training Data Generation in Simulation
The entire framework is trained solely on synthetic data.

To do so, synthetic data are generated in PyBullet simulation
[58], aiming for physical plausibility [18], [59], while lever-
aging domain randomization [17] and bi-directional domain
alignment on the depth modality [18]. At the start of each
scene generation, an object instance type and its scale is
randomly chosen from the associated category’s 3D model
databaseM𝐶 . The number of object instances in the bin, the
camera pose relative to the bin, and physical parameters (such
as bounciness and friction) are randomized. To generate
dense clutter, object poses are randomly initialized above the
bin. The simulation is executed until the in-bin objects are
stabilized. The ground-truth labels for NUNOCS, grasping
quality and instance segmentation are then retrieved from
the simulator.
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Fig. 4: Left: The 3 object categories: Nuts, HMN and Screws. For each category, the first row is a collection of 3D models used for learning in simulation. The second row is
the novel unseen instances with challenging properties (tiny, texture-less, glossy, etc), used during testing both in simulation and in the real-world. Right: Instance-level grasp
performance evaluated in simulation (top) and real-world (bottom). For each object instance, the group of 4 stacked bars from left to right are PointNetGPD [30], Ours-NA,
Ours-NOCS and Ours, where the column corresponding to Ours is marked with a black boundary. Stable grasps include both task-irrelevant and task-relevant grasps, while the
missing blanks are grasp failures.

V. Experiments
This section aims to experimentally evaluate 3 questions: i)

Is the proposed dense correspondence expressive and reliable
enough to represent various object instances within a cate-
gory? ii) How well does the proposed model, only trained in
simulation, generalize to real-world settings for task-relevant
grasping? iii) Does the proposed category-level knowledge
learning also benefit grasp stability? Our proposed method
is compared against:
• PointNetGPD [30]: A state-of-the-art method on robust
grasping. Its open-source code1 is adopted. For fair com-
parison, the network is retrained using the same synthetic
training data of industrial objects as our method. At test
time, it directly samples grasp proposals over the raw point
cloud without performing instance segmentation [30].

• Ours-NA: A variant of our method that does not consider
task-relevant affordance but still transfers category-level
grasp knowledge. Only 𝑃(𝐺) is used for ranking grasp
candidates.

• Ours-NOCS: A variant of our method by replacing the
NUNOCS representation with NOCS [16] for solving the
category-level pose, while the remainings are the same as
our framework. This serves as an ablation to study the
effectiveness of capturing cross-instance large variations
by using the proposed NUNOCS representation.
Some other alternatives are not easy to compare against

directly. For instance, KETO [10] and kPAM [8] focused on
singulated household object picking from table-top, which is
not easy to adapt to our setting. In addition, kPAM requires
human annotated real-world data for training.

A. Experimental Setup
In this work, 3 different industrial object categories are

included: Nuts, Screws and HMN series connectors. Their
training and testing splits are depicted in Fig. 4(left). For each
category, the first row is a collection of 3D models crawled
online. This inexpensive source for 3D model training is used
to learn category-level priors. The second row is 4 novel
unseen object instances used for testing. Different from the
training set, the testing object instances are real industrial ob-

1https://github.com/lianghongzhuo/PointNetGPD

jects purchased from retailers2 for realistic evaluation. They
are examined and ensured to be novel unseen object instances
separated from the training set. The testing object instances
are chosen so as to involve sufficient variance to evaluate
the cross-instance generalization of the proposed method,
while being graspable by the gripper in our configuration.
The CAD models of the testing object instances are solely
used for setting up the simulation environment.
Evaluations are per-

formed in similar se-
tups in simulation and
the real-world. The
hardware is composed
of a Kuka IIWA14
arm, a Robotiq Hand-
E gripper, and a Photoneo 3D camera, as in the wrapped
figure. Simulation experiments are conducted in PyBullet,
with the corresponding hardware components modeled and
gravity applied to manipulated objects. At the start of the
bin-picking process, a random number (between 4 to 6)
of object instances of the same type are randomly placed
inside the bin to form a cluttered pile. Experiments for
each of the 12 object instances have been repeated 10
times in simulation and 3 times in real-world, with different
arbitrarily formed initial pile configurations. This results in
approximately 600 and 180 grasp evaluations in simulation
and real-world respectively for each evaluated approach. For
each bin-clearing scenario, its initial pile configuration is
recorded and set similarly across all evaluated methods for
fair comparison.
After each grasp, its stability is evaluated by a lifting

action. If the object drops, the grasp is marked as failure.
For stable grasps, additional downstream category-specific
placement tasks are performed to further assess the task-
relevance. A stable grasp is further examined and marked
as a task-relevant grasp, if the placement also succeeds.
Otherwise, it is marked as a task-irrelevant grasp, though
being stable. The placement receptacles are CAD designed
and 3D printed for each object instance with tight placement
tolerances (< 3𝑚𝑚). For evaluation purposes, the placement

2https://www.digikey.com; https://www.mcmaster.com

https://github.com/lianghongzhuo/PointNetGPD
https://www.digikey.com
https://www.mcmaster.com
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Fig. 5: Qualitative comparison of the grasping and placement evaluation in the real-world. The snapshots are taken for one of the test objects per category during the bin-clearing
process, where the initial pile configuration is similar across different methods. For the placement verification images (second row), red boxes indicate either failure grasps, or
stable but task-irrelevant grasps. Blue boxes indicate task-relevant grasps resulting in successful placement. Note that given the similar pile configuration, the methods do not
necessarily choose the same object instance as the target due to different grasp ranking strategies. See the supplementary media for the complete video.

planning is performed based on manually annotated 6D in-
hand object pose post-grasping. This effort is beyond the
scope of this work.

Nuts HMN Screws Total

PointnetGPD 53.3% 49.2% 45.0% 49.2%
Ours-NA 51.1% 58.3% 50.0% 53.1%
Ours-NOCS 75.6% 71.7% 80.0% 75.7%
Ours 97.8% 88.3% 93.3% 93.1%

TABLE I: Results of task-relevant grasp percentage out of the total grasp attempts in
simulation. For each method, approximately 600 grasps are conducted.

Nuts HMN Screws Total

PointnetGPD 33.3% 35.0% 38.0% 35.4%
Ours-NA 40.0% 43.3% 42.9% 42.1%
Ours-NOCS 70.0% 58.3% 52.5% 60.3%
Ours 93.3% 83.3% 86.7% 87.8%

TABLE II: Results of task-relevant grasp percentage out of the total grasp attempts
in real-world. For each method, approximately 180 grasps are conducted.

B. Results and Analysis
The quantitative results in simulation and real-world are

shown in Table I and II respectively. The success rate
excludes the task-irrelevant or failed grasps. As demonstrated
in the two tables, Ours significantly surpasses all baselines
measured by the success rate on task-relevant grasping in
both simulation and real-world. Example real-world qualita-
tive results are shown in Fig. 5.
Fig. 4 (right) decomposes the semantic grasping attempts

of all the methods at the object instance level. Thanks to
the task-relevant hand-object contact heatmap modeling and
knowledge transfer via 3D dense correspondence, most of the
grasps generated by Ours and Ours-NOCS are task-relevant
semantic grasps. In comparison, a significant percentage
of grasps planned by PointNetGPD and Ours-NA are not
semantically meaningful, i.e., the objects, though stably
grasped, cannot be directly manipulated for the downstream
task without regrasping.
The fact that Ours reaches comparable or better per-

formance than Ours-NOCS indicates that the proposed
NUNOCS is a more expressive representation for 3D dense
correspondence modeling and task-relevant grasp knowledge
transfer. In particular, for the object “HMN2” (Fig. 4 left),
the performance gap is more noticeable as its 3D scales vary
significantly from the canonical model along each of the 3
dimensions. Additionally, the number of 3D training models

available for the HMN category is more limited compared
to the Screws or Nuts category. This requires high data-
efficiency to capture the large variance. Despite these adverse
factors, Ours is able to learn category-level task-relevant
knowledge effectively, by virtue of the more representative
NUNOCS space.
Although our proposed method targets at task-relevance,

it also achieves a high stable grasp success rate, as shown in
Fig. 4 (right). This demonstrates the efficacy of the proposed
hybrid grasp proposal generation, where additional grasps
transferred from the category-level grasp codebook span a
more complete space around the object including occluded
parts. This is also partially reflected by comparing Ours-NA
and PointNetGPD, where PointNetGPD generates grasp
candidates by solely sampling over the observation point
cloud.
Comparing the overall performance across simulation and

real-world experiments indicates a success rate gap of a few
percent. This gap is noticeably larger for Screws, of which
the instances are thin and tiny. Therefore, when they rest
in a cluttered bin, it is challenging to find collision-free
grasps and thus requires high precision grasp pose reasoning.
In particular, as shown in Fig. 4, the instance “Screw3”
challenges all evaluated methods in terms of grasp stability.
Improving the gripper design [60] for manipulating such tiny
objects is expected to further elevate the performance. In
addition, during gripper closing, the physical dynamics of
Screws is challenging to model when they roll inside the bin
in simulation. With more advanced online domain adaptation
techniques [61], the performance is expected to be boosted.

VI. Conclusion
This work proposed CaTGrasp to learn task-relevant

grasping for industrial objects in simulation, avoiding the
need for time-consuming real-world data collection or man-
ual annotation. With a novel object-centric canonical repre-
sentation at the category level, dense correspondence across
object instances is established and used for transferring task-
relevant grasp knowledge to novel object instances. Extensive
experiments on task-relevant grasping of densely cluttered
industrial objects are conducted in both simulation and real-
world setups, demonstrating the method’s effectiveness. In
future work, developing a complete task-relevant framework
with visual tracking [62] in the feedback loop for manipu-
lating novel unseen objects is of interest.
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