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Abstract—Cartograms are popular for visualizing numerical data for administrative regions in thematic maps. When there are multiple

data values per region (over time or from different datasets) shown as animated or juxtaposed cartograms, preserving the viewer’s

mental map in terms of stability between multiple cartograms is another important criterion alongside traditional cartogram criteria such

as maintaining adjacencies. We present a method to compute stable stable Demers cartograms, where each region is shown as a

square scaled proportionally to the given numerical data and similar data yield similar cartograms. We enforce orthogonal separation

constraints using linear programming, and measure quality in terms of keeping adjacent regions close (cartogram quality) and using

similar positions for a region between the different data values (stability). Our method guarantees the ability to connect most lost

adjacencies with minimal-length planar orthogonal polylines. Experiments show that our method yields good quality and stability on

multiple quality criteria.

Index Terms—Time-varying data, cartograms, mental map preservation

Ç

1 INTRODUCTION

MANY datasets are georeferenced and relate to places or
regions. A natural way to visualize such spatial data is

to use cartographic maps. One prominent tool is the choro-
pleth map, which colors each region in a map based on its
data value. While choropleth maps work well for data that
correlates to region sizes, when the data is not correlated it
has the drawback that the visual salience of large and small
regions is unequal. Moreover, it is difficult to compare col-
ors to each other, and colors are not the most effective
encoding for numeric data [1], requiring a legend to facili-
tate relative assessment.

One way to overcome these drawbacks is with carto-
grams, which reduce spatial precision in favor of clearer
encoding of data values: the map is deformed such that
each region’s visual size is proportional to its data value.

The visual salience of a region then correspond to its data
value, and comparison of magnitudes becomes a task of
estimating area – which is a more effective encoding for
numeric data [1]. Additionally, the freed up color channel
can be used to visualize secondary data. Cartogram quality
is assessed by multiple criteria [2] including 1. Spatial defor-
mation: regions should be placed close to their geographic
position; 2. Shape deformation: regions should resemble their
geographic shape; 3. Preservation of relative directions: spatial
relations such as north-south and east-west should be main-
tained. 4. Topological accuracy: geographically adjacent
regions should be adjacent in the cartogram, and vice versa.
5. Cartographic error: relative region sizes should be close to
the data values. Criteria 1-4 describe geographical accuracy
of the region arrangement, criterion 5 (also called statistical
error) captures how well data values are represented. Many
techniques aim at (near-)zero cartographic error, often at
the expense of other criteria.

These criteria evaluate a single cartogram, but multiple
cartograms of the same regions can be used to visualize for
example dynamic data such as yearly census data, or differ-
ent demographic variables that we want to explore, com-
pare and relate, yielding a vector or set of values for each
region. Example visualizations for multiple cartograms
include animations (especially for time series; see [3] for an
early example), small multiples showing a matrix of carto-
grams, or letting a user interactively switch the mapped
value in one cartogram. In these cases, we want the carto-
grams to be stable: cartograms of the same regions for differ-
ent data values should have as similar of a layout as the
data values allow. A small change in the data values should
result in a small change in the layout. This helps the viewer
to retain their mental map [4], supporting linking and track-
ing across cartograms. Thus, we obtain an additional impor-
tant criterion with multivariate or time-varying data. 6.
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Stability: cartograms for the same regions with similar data
values should have similar layouts.

The relative importance of criteria depends on the tasks
[2] to be facilitated, and trade-offs between criteria are often
required. Different cartogram types are more suitable for
different tasks. We focus on Demers cartograms (DC) [5]
which represent each region by a square whose area exactly
matches the data value (criterion 5), similar to Dorling carto-
grams [6]. By using squares, DCs facilitate easy comparison
of data values as aspect ratio is no longer a factor, unlike,
e.g., for rectangular cartograms [7]. Moreover, a DC has no
overlap and data values are thus not obfuscated. As abstract
squares incur shape deformation (2), in spatial recognition
tasks the cartogram layout as a whole must be informative
instead. Therefore, the layout must optimize the other geo-
graphic criteria: spatial deformation (1), preservation of relative
directions (3) and topological accuracy (4).

Contributions. Our primary contribution is a linear pro-
gramming (LP) algorithm to compute high-quality stable
DCs for dynamic data. To the best of our knowledge, this is
the first fully automated approach for generating DCs that

guarantees non-overlapping squares. Our DCs have no car-
tographic error (5), satisfy given constraints on spatial rela-
tions (3), and allow trade-offs between the topological error
(4) and stability (6). Linear interpolation between different
DCs generated by our LP yield an overlap-free transforma-
tion suitable for animation. Lost adjacencies can be shown
as minimal-length planar orthogonal polylines called leaders
under a mild assumption, connecting two regions that are
adjacent in the map. Our experiments compare settings of
our LP to each other and to a force-directed layout we intro-
duce (also novel for DCs) to compare different settings for
the LP. The results show that our LP efficiently computes
stable DCs; see Figs. 1, 2, and 3 for example DCs computed
by our method using the recommended default setting.

Organization. After a brief discussion of related work
below, in Section 2 we discuss the problem formalization.
Subsequently, we first solve the problem optimally for a sin-
gle cartogram in Section 3, before we consider multiple
weight functions and include stability into our method in
Section 4. In Sections 5 and 6, we discuss the setup and
results of our experiments. In Section 7 we briefly consider

Fig. 1. Map of the contiguous US and three Demers cartograms: drug poisoning mortality, election turnout and population in 2016. The layout mini-
mizes distance between adjacent regions. A two-dimensional color-gradient is used to facilitate correspondences.

Fig. 2. Map of the world and three Demers cartograms: forest area, total GDP and GDP per capita in 2016. The layout minimizes distance between
adjacent regions. A two-dimensional color-gradient is used to facilitate correspondences.

Fig. 3. Map of the Netherlands and three Demers cartograms: house density, percentage of water surface and population in 2017. The layout mini-
mizes distance between adjacent regions. A two-dimensional color-gradient is used to facilitate correspondences. Region labels are omitted.
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how our results may be used in a visualization system and
the possibility of leaders. We close in Section 8 with a brief
reflection on our results and future work.

Related Work. Cartogram-like representations date back to
the 1800s. By the 1900s, most standard cartogram types we
use now were defined, including early rectangular value-
by-area cartograms [8]. The first automatically generated
cartograms were continuous deformation cartograms from
the 1970s [9] which have been [10], [11], and are still being
improved upon [12], [13]. Dorling [6] and Demers carto-
grams [5] exemplify the non-contiguous type, where the
regions are not necessarily connected. Layouts representing
regions by rectangles or rectilinear polygons have received
much attention in the algorithmic literature [14], [15], [16],
typically focussing on aspect ratio, topological error and
region complexity. Area-universal rectangular layouts [16]
accommodate arbitrary areas without changing their combi-
natorial structure including the topology. Such layouts are
largely stable, but not every map admits such a layout.
Compared to DCs, rectilinear variants can better retain
shapes, but have higher visual complexity and assessing
areas becomes more difficult; Mosaic Cartograms [17] aim
to overcome such issues by using tiles to make sizes count-
able, but this results in a higher visual complexity again.
Spatial deformation and cartographic error are (usually) in
direct conflict and cannot both be achieved perfectly.

DCs also relate to drawing contact representations of
graphs, where adjacencies between neighboring regions are
encoded as touching shapes. The focus in the graph draw-
ing literature is on recognizing which graphs can be per-
fectly represented. However, Even for the unit-disk case
this is NP-hard [18] to determine, but efficient algorithms
exist for some restricted graph classes [19]. Klemz et al. [20]
for example considered a vertex-weighted variant using
varying sized disks. Various other techniques are similar to
DCs, using squares or rectangles for geospatial information.
Examples include algorithms and computational experi-
ments for grid maps [21], [22], [23]. Of particular relevance
is the work of Inoue for circle [24] and simple-shaped [25]
area cartograms, which they construct using a non-linear
constraint programs. Meulemans [26] recently introduced a
linear constraint program to compute optimal solutions
under orthogonal order constraints for diamond-shaped
symbols. We use a similar technique to Meulemans, but
defer a discussion of the differences to the next section, after
we have formally defined our problem.

Several measures for evaluating the quality of cartogram
types and algorithms have been proposed [27], [28], but
there is little work on evaluating or computing stable carto-
grams for time-varying or multivariate data. Yet they are
used in such manner, e.g., as a sequence of contiguous car-
tograms showing the evolution of the Internet [29]. There
has however been recent attention on stability in algorithms
and visualization for both spatial [30], [31], [32] and nonspa-
tial data [33], [34] that can be used as a basis.

2 PROBLEM DEFINITION

The problem of computing a DC can be formally defined as
follows. We are given an input graph G ¼ ðR; T Þ represent-
ing the topology of the underlying map. Each region r 2 R

has a centroid in R2 and a weight wðrÞ, which corresponds
to the side length of the square in the output. A pair of
regions ðr; r0Þ has an edge in T if and only if the regions are
adjacent on the original map. The output – a placement of a
square s for each region r – is stored as a point P : R ! R2

for each region, encoding the center of its square. All
squares must be pairwise disjoint.

For the multivariate or time-varying case, we assume
that each region r has a different weight wiðrÞ for each
dimension or time step i. The centroid is assumed to not
change1, but regions do not need to be present in each
dimension or time step – this is particularly relevant for
time-varying data as the administrative units that determine
the data partitioning (e.g., municipalities) may change over
time. The output is then position PiðrÞ per dimension or
time step in which the region is present.

This gives us the basic setup for DCs. Below, we discuss
quality criteria, additional constraints, and the relation of
our setup to Dorling Cartograms and overlap removal.

2.1 Quality Criteria

We restrict our attention here to a high-level discussion of
the quality criteria mentioned in Section 1. How these are
specifically measured varies slightly between algorithms
and experiments which we will formalize in Section 5.

Following many existing techniques for cartograms, we
focus on topological accuracy as the primary objective, i.e.,
we want adjacent regions in the input to geometrically
touch in the output and vice versa. Instead of considering
such a binary constraint, we consider the distance between
regions that should be adjacent. As we shall see, this makes
a huge difference in problem complexity, and has the fur-
ther advantage to be more nuanced in considering the gen-
eral neighborhood of a region in the cartogram – that is, the
size of gaps between non-adjacent regions that should be
adjacent matters. We consider the spatial deformation and
preservation of relative directions as secondary quality cri-
teria in our algorithms. Cartographic error is zero as all
shapes are squares of the appropriate size.

Finally, for the multivariate or time-varying case, we
want our solution to be stable. We quantify this primarily
through the distance (or movement) between the position of
a region in cartograms for the different weight functions.
However, for our experiments we shall also consider stabil-
ity in terms of relative directions between regions.

2.2 Separation Constraints

While the definition above is sufficient to define a DC, to get
high quality DCs we add the notion of separation con-
straints to the input specification, which represent the
”relative directions” between regions, i.e., North, East,
South, West. To that end, we are additionally given two sets
H, V of ordered region pairs. A pair of regions ðr; r0Þ is inH,
if r should be horizontally separated from r0 such that there
exists a vertical line ‘ with the square of r being left of ‘ and
r0 to its right. Analogously, V encodes the vertical separa-
tion requirements. If r and r0 are adjacent, then ðr; r0Þ is
either in H or in V (but not in both) and they should touch ‘,

1. Algorithmically, this could easily be supported though.
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otherwise we require a strict separation gap to avoid false
adjacencies; we are given a minimum gap " > 0 to ensure
that this non-adjacency can be visually recognized.2 The
sets H and V model the relative direction criterion for DCs
and any two regions are paired in at least one of those sets.
To ensure a DC exists that satisfies the separation con-
straints, the directed graphs DH ¼ ðR;HÞ and DV ¼ ðR; V Þ
must be acyclic (DAGs). We consider these relations transi-
tively: if ðr; r0Þ 2 H and ðr0; r00Þ 2 H, then this enforces a ver-
tical line separating ðr; r00Þ in any DC and thus ðr; r00Þ is inH.

Our output now has to ensure that these separation con-
straints are maintained when placing the squares. A place-
ment P is valid, if it satisfies the separation constraints of H
and V . This implies that all squares are pairwise interior dis-
joint and fully disjoint for nonadjacent regions.

Deriving Separation Constraints. The region weights are
given and adjacencies and centroids are easily derived
from a map, but separation constraints H and V are not.
Various models can be used to determine good direc-
tions or separation constraints [35], we use the following
simple model; it is symmetric and ensures that con-
straints form a DAG.

For two regions ðr; r0Þ represented by their centroids, we
check whether their horizontal or vertical distance is larger.
In the former case, we add ðr; r0Þ to H if r is left of r0 and
ðr0; rÞ to H otherwise. In the latter case, we add the pair sim-
ilarly to V . We call this the weak setting. Constraints added
in this setting are primary separation constraints.

In the strong setting, we add extra constraints for nonadja-
cent region pairs whose bounding boxes admit both hori-
zontal and vertical separating lines: if a pair has a primary
separation constraint in H or V , we add a secondary separa-
tion constraint to V orH respectively.

The lemma below matches an observation from [26] that
carries over to our setting. It implies that DCs for different
weight functions but with the same constraints have a
smooth and simple transition between any such DCs help-
ing to retain the user’s mental map.

Lemma 1 ([26]). Let R be a set of regions with separation con-
straints H and V . Let A and B be two DCs for R, both satisfy-
ing H and V . Then, any linear interpolation between A to B
also satisfiesH and V and is thus overlap-free.

2.3 Comparison to Related Problems

Overlap Removal. In [26], a technique is presented to remove
overlap between squares, based on maintaining structure
between the square centers and the resulting implied sepa-
ration constraints, while minimally displacing these squares
from their original location. It hence differs in objective
from our case, as we optimize for topology and relative
positions. In terms of feasible placements, we observe that
the algorithm of [26] uses a different set of constraints com-
pared to our strong setting, though its “weak order con-
straints” coincides with our weak setting; see Fig. 4.

Extensions in [26] can be applied in our scenario, e.g.,
reducing actively considered separation constraints by
removing transitive relations (“dominance” in [26]). Time-

varying data is briefly considered in [26], but they only con-
ceptualize a trade-off between displacement and stability
for artificial data; we discuss several optimization criteria,
also focusing on adjacencies which are not considered in
[26], use real-world data in our experiments, and compare
to a baseline DC implementation to move beyond the limits
of linear programming.

Dorling Cartograms. We observe that a similar problem
definition can be used for Dorling Cartograms, using wðrÞ
as the radius of the disk representing r in the cartogram.
However, Dorling Cartograms and DCs are in fact two dif-
ferent representations, and neither can perfectly represent
all graphs that the other can. Take a graph G, with eight
regions connected to a central region r1 with no other adja-
cencies and no separation constraints. Assign a weight of 1
to r1 and a weight of 1� � to all other regions with �
approaching zero. A DC can perfectly represent this by
positioning two regions on each side of r1. In a Dorling car-
togram however, we cannot do better than six circles that
touch r1. Conversely, if there are five regions connected to
r1 and the weight of these regions is 1þ �, a Dorling carto-
gram can perfectly represent it, but a DC can maintain at
most four adjacencies, as there cannot be two squares with
side length 1þ � adjacent on the same side.

We further observe that our linear program given in
the next sections results in optimal solutions, following
natural separation constraints, that generally allow the
resulting squares to touch to represent adjacencies. As
mentioned in [26], these techniques can also be applied
to other shapes such as circles, if separation constraints
are chosen suitably. However, for the circles of a Dorling
cartogram, such separation constraints are somewhat
artificial, not allowing two circles to touch (unless per-
fectly positioned) and thus generally showing gaps
where none would be expected.

3 COMPUTING A SINGLE DC

First, we consider a DC for a single weight function. We
compute a layout realizing the weights with disjoint squares
that may touch only if adjacent, such that the separation
constraints are maintained. We quantify the layout quality
via the distances between any two squares representing
adjacent regions. We show that the problem, under appro-
priate distance measures, can be solved optimally via a lin-
ear program (LP) in polynomial time.

Linear Program. For each r 2 R, we introduce variables xr

and yr for the center P ðrÞ ¼ ðxr; yrÞ of the square sðrÞ. For
any originally adjacent regions fr; r0g 2 T we introduce
variables hr;r0 and vr;r0 for the respectively (non-negative)

Fig. 4. Feasibility area (in blue) where r0 may be placed w.r.t r, when r0 is
primarily to the right of r. (a) Our weak setting and the weak order con-
straints in [26] coincide. (b) The (“orthogonal”) order constraint in [26].
(c) Feasibility in our strong setting.

2. In our implementation " is the minimum of the smallest side
length and 5% of the diagonal of the bounding box of the input regions.
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horizontal and vertical distance
between the two squares r and r0. For
any two regions r; r0, we let wr;r0 ¼ðwðrÞþwðr0ÞÞ

2 . This is illustrated on the
right. Finally, we let gapr;r0 ¼ 0 if
fr; r0g 2 T and gapr;r0 ¼ " otherwise.
We use the following constrained optimization objective

min
X

fr;r0g2T
ðhr;r0 þ vr;r0 Þ (1)

xr0 � xr � wr;r0 þ gapr;r0 8r;r0 2 H (2)

yr0 � yr � wr;r0 þ gapr;r0 8r;r0 2 V (3)

hr;r0 ; vr;r0 � 0 8r;r0 2 T (4)

hr;r0 � maxfxr � xr0 ; xr0 � xrg � wr;r0 8r;r0 2 T (5)

vr;r0 � maxfyr � yr0 ; yr0 � yrg � wr;r0 _8r;r0 2 T (6)

The objective (1) minimizes the sum of distances between
adjacent regions in the L1 metric. Constraints (2) and (3)
ensure the separation requirements by forcing the centers of
relevant pairs of squares far enough apart. For nonadjacent
regions, the gap function assures a recognizable gap of
width " between resulting squares. Constraints (4)–(6) bind
distance variables h; v with positional variables x; y. Here,
(5) and (6) encode two linear constraints per line, one for
each term in the ‘max’ function. As (1) minimizes the distan-
ces, it suffices to enforce lower bounds, hence the ‘�’ in the
constraints. In an optimal solution, either one of the two ver-
sions, or the non-negativity constraint (4) will be satisfied
with equality.

Improving Adjacencies. The above model has two minor
flaws. First, two squares ‘touch’ even if they only do so at
corners; we resolve this by adding dr;r0 ¼ 0:25 �
minðwðrÞ; wðr0ÞÞ to the right-hand side of (5) and (6), to pro-
mote overlapping sides. Specifically, this change allows
hr;r0 ¼ 0 (vr;r0 ¼ 0), when squares share a segment at least d
long. Second, in the strong setting the above LP asks for a
minimum gap of size gapr;r0 ¼ � along both axes for two
non-adjacent regions r; r0. This is not needed for visual sepa-
ration, thus when using the strong setting we set gapðr; r0Þ ¼
0 instead of � for the secondary separation constraint (which
can be either inH or V ).

Fine-Tuning the Optimization Criteria. The above LP
minimizes the sum of distances between adjacent
regions. The cartogram literature however emphasizes
counting lost adjacencies between regions in a binary
way. We prefer our measure since: (1) there is a big dif-
ference if two neighboring regions are set apart by a
small or large gap; (2) while the LP can be turned into
an integer linear program to count lost adjacencies, it
greatly increases computational complexity—optimizing
for adjacencies is typically NP-hard, e.g., for disks [18],
[36] or segments [37].

Our LP generally admits several optimal solutions, due
to translation invariance and as touching squares may slide
freely along each other as long as they touch. We can intro-
duce a secondary term to the objective to nuance selection of
preferred layouts, multiplied by cr;r0 ¼ c � ar;r0 , where c is a
small constant and ar;r0 ¼ 1 if r and r0 are adjacent and
ar;r0 ¼ 0:1 otherwise, to not interfere with the original (pri-
mary) objective. Our secondary term optimizes preservation

of relative directions between squares within the freedom of
the optimal solution.

Consider two regions r and r0. We assume, without loss
of generality, that ðr; r0Þ 2 H is the primary separation con-
straint; the case ðr; r0Þ 2 V is handled analogously. We com-
pute a directional deviation dr;r0 ¼ jðyr þ aðxr0 � xrÞÞ � yr0 j,
where a is the (finite) slope of the ray from r to r0 in the
input graph G. Similar to (5), the objective function will
minimize dr;r0 ; we emphasize this term with a higher weight
for adjacent regions via cr;r0 . We thus turn the above formula
into two linear inequalities. Below is the full LP; note that
the first three constraints are identical to the constraints pre-
sented earlier

min
X

fr;r0g2T
ðhr;r0 þ vr;r0 Þ þ

X

fr;r0g2R2

ðcr;r0 � dr;r0 Þ (7)

xr0 � xr � wr;r0 þ gapr;r0 8r;r0 2 H (2)

yr0 � yr � wr;r0 þ gapr;r0 8r;r0 2 V (3)

hr;r0 ; vr;r0 � 0 8r;r0 2 T (4)

hr;r0 �
maxfxr � xr0 ; xr0 � xrg

�wr;r0 þ dr;r0
8r;r0 2 T (8)

vr;r0 �
maxfyr � yr0 ; yr0 � yrg

�wr;r0 þ dr;r0
8r;r0 2 T (9)

dr;r0 � ðyr þ aðxr0 � xrÞÞ � yr0 8r;r0 2 H (10)

dr;r0 � yr0 � ðyr þ aðxr0 � xrÞÞ 8r;r0 2 H (11)

dr;r0 � ðxr þ 1=aðyr0 � yrÞÞ � xr0 8r;r0 2 V (12)

dr;r0 � xr0 � ðxr þ 1=aðyr0 � yrÞÞ 8r;r0 2 V (13)

Alternatives exist for the primary optimization crite-
rion: displacement from the original location helps find
layouts maintaining many adjacencies for grid maps of
equal-size squares [21], [22]. For each region we measure
L1 displacement from its origin (centroid of the original
region in the geographic map) to the square center P ðrÞ.

4 COMPUTING STABLE DCS

Our method can be extended for regions having multiple
weights. In this setting, we are given a set of weight func-
tions W ¼ fw1; . . . ; wkg. We aim to compute a DC for each
wi 2 W , i.e., positions PiðrÞ for each r 2 R and wi 2 W . If
each weight function represents the same data semantic,
say population size, we consider W ordered by the k time
steps; we call this setting time series. If each weight function
represents measurements of different data semantics, say
population and gross domestic product, we treat W as an
unordered set; we call this setting weight vectors.

Stability Models. Before we discuss how to extend our LP
to include multiple weights, we first consider how we may
actually achieve stability. Roughly speaking, we identify
two options: (1) an iterative setting in which we compute a
layout for one weight function wi, and afterwards compute
a layout for a next weight function wiþ1, including stability
to the now-fixed layout Pi; (2) a concurrent setting in which
we combine the computation of the layouts for two or more
weight functions while also incorporating their stability.
Though concurrent computation seems beneficial for overall
quality, this leads to higher and sometimes excessive
computational complexity as k grows.
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We generally capture this idea through a stability
model: a directed graph S ¼ ð½k�; IÞ on the index set ½k� ¼
f1; . . . ; kg with I � ½k�2. We interpret S as follows: an
edge ði; jÞ means we want to consider the stability when
going from Pi to Pj. If i cannot be reached from j, this
means that the layout Pi can be computed and fixed,
before computing the layout Pj: an iterative dependency.
However, if both are reachable from each other, then the
weight functions are to be dealt with concurrently. We
may identify strongly connected components of S in lin-
ear time [38]. We identify five models that we study
experimentally; see also Fig. 5.

(C) S is the complete graph. The C (complete) model
aims to capture that all pairwise stabilities are impor-
tant. This is generally useful for weight vectors but
also time series in a small-multiples setting or when
nonconsecutive time steps are to be compared. How-
ever, this model will lead to a high complexity.

(St) S is a star with a single central weight function with
bidirectional (St) or outgoing (StIt: star iterative) edges
to all other functions. The St model mimics a similar
principle as the C model, but with a single central
weight function, reducing the model complexity: if all
other weight functions are stable with respect to the
central function, they cannot be too dissimilar pairwise
– any path in S has length at most two. For StIt the
other LPs can be run in parallel after computing the
layout for the centralweight function.

(Su) S is a single path of successive weight functions, either
bidirectional (Su) or directed (SuIt: successive itera-
tive). Sumodels aremostly natural for time-series data
in animation, where the main concern is stability
between consecutive time steps. The layout between
time steps further apart may show larger differences
as the paths in S get longer. This is useful if the data
exhibits drift in overall values (e.g., annual population
over a century), such that a good layout for later time
steps does not hinder a good layout for earlier time
steps. For SuIt, while we can not compute the layouts
in parallel, every single layout is computed on its own,
depending only on the previous layout, which reduces
the complexity of computing these layouts.

Extending the LP. Let us now turn to extending the LP to
include multiple weight functions. This LP is set up for every
strongly connected component of S. LPs belonging to weakly
connected components are solved in the order of a topological
sorting on the strongly connected components. Disconnected
components could be computed in parallel. Here we assume
that S ¼ ð½k�; IÞ is one such component. Our goal is to com-
pute the centers PiðrÞ for each region r and weight function
wi 2 W while incorporating stability between the layout for

each function. To do so, we add constraints and optimization
objectives for stability while re-using our previously pre-
sented LP. We extend the notation of Section 3 with
superscript i to denote the respective variables for
weight function wi 2 W . We change objective (1) and
add constraints to minimize displacement between cen-
ters of the same region for different weight functions as
prescribed by stability model S. We treat I as undi-
rected3 and extend the LP as follows:

min
Xk

i¼1

X

fr;r0g2T
ðhi

r;r0 þ vir;r0 Þ þ
X

fi;jg2I

X

r2R
ðai;jr þ bi;jr Þ (14)

ai;j � maxfðxi
r � xjrÞ; ðxj

r � xi
rÞg 8r 2 R; 8i;j 2 I (15)

bi;j � maxfðyir � yjrÞ; ðyjr � yirÞg 8r 2 R; 8i;j 2 I (16)

For each r 2 R, variables ai;j and bi;jr respectively measure
the horizontal and vertical displacement between PiðrÞ and
PjðrÞ due to (15) and (16). In other words, we measure sta-
bility as the L1 (Manhattan) distance between the centers of
the same region in different layouts as specified by I. Any
variant of the LP can be extended in this manner, by chang-
ing their objective function, e.g., if relative directions should
be included, we can adapt 7.

5 EXPERIMENTAL SETUP

Linear Programs. We categorize our method according to
three properties: optimization term, method of deriving
constraints, and the stability model. We implemented our
LP with four different optimization terms:

TOP: distance between topologically adjacent regions;

TOP*: similar to TOP, complemented by the secondary con-
straint of maintaining relative directions, see Equa-
tions 7 and 10 to 13;

ORG: distance to the origin (region’s centroid in the geo-
graphic map);

CNT: number of lost adjacencies.

These LPs are described in full in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2022.3151227.
The CNT setting was used primarily for providing an upper
bound for topological accuracy; the method is too slow to be
considered a feasible solution to the problem – see the end
of the section for running times.

Separation constraints are deduced from the input map
in one of two ways, S andW, matching the strong and weak
case respectively. For stability, we use the five models as
described in the previous section, as well as N – no stability:
no optimization between layouts is added and thus all lay-
outs are completely independent.

We specify our methods by concatenating the three prop-
erties in order, for example, TOP-S-Su indicates the LP opti-
mized for distances of topologically adjacent regions (TOP)

Fig. 5. Graphs defined on four weight functions, showcasing, from left to
right, the C, St, StIt, Su and SuIt stability models. The gray boxes indi-
cate an independent LP, solving the included weight functions.

3. Directed and bidirectional edges within one strongly connected
component are treated equally.
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with strong separation constraints (S) and with successive
weight values linked (Su). We use an asterisk to indicate col-
lections of implementations. For example, TOP-W-* refers to
all TOP-W algorithms with different stability models.

Force-Directed Method. While being used in practice, DCs
are hard to track down in the literature, especially regarding
their automated construction. To our knowledge, there is no
common baseline for computing a DC. Hence, we introduce
a simple one that does not rely on separation constraint,
such that we may also investigate their effect.

As Dorling cartograms and DCs are similar [5], and Dorl-
ing cartograms are commonly computed using a force-
directed method; we implement one here, too: FRC (Force).
For each region pair ðr; r0Þ we define a disjointness force
based on Chebyshev distance between their centers, which
grows quadratically to push squares apart. We use the same
desired distance wr;r0 þ gapr;r0 as in Section 3, at which this
force becomes zero. We also add a force to increase carto-
gram quality, by pulling regions towards their original loca-
tion (FRC-O) or between adjacent regions (FRC-T),
analogously to the optimization terms of the LP. The spe-
cific forces and their relative weights are detailed in Appen-
dix B, available in the online supplemental material.

Stability models are taken into account by initializing the
starting positions of each region with the calculated position
of the previous solution. Therefore only stability models
which depend on a single previous weight value vector
results are considered, specifically N, SuIt and StIt.

Forces towards the origin can clearly be computed in lin-
ear time. The same holds for forces between adjacent
regions when the adjacency graph is planar. The number of
computed disjointness forces is however quadratic. In order
to increase performance, we overlay the map with a grid,
such that every region is strictly smaller than a single grid
cell. As a result, every region has a non-empty intersection
with at most four grid cells. Two overlapping regions need
to intersect the same cell at least once. We only calculate the
disjointness forces between all pairs of regions, which inter-
sect the same cell. This leads to a significant speed-up which
let us run this algorithm on all instances.

We note two significant drawbacks to this approach.
First, this force-directed solution does not always generate a
valid DC as squares may overlap. In our experiments we
compensated for this by considering the output of FRC-* as
input for an ORG instance, i.e., an LP that includes con-
straints for overlap removal and at the same time minimizes
the distance of each region to the position assigned by the
FRC-* method, see Fig. 6. Second, separation constraints are
not considered in this method and are therefore frequently
violated in order to optimize the objectives. This is by
design, to gain insight into the loss of quality due to imposi-
tion of separation constraints, but it also implies that the

overall spatial quality (in terms of relative directions) may
deteriorate, and that certain properties, such as overlap-free
interpolation, are no longer applicable.

Metrics: Cartogram Quality. Our algorithms inherently
yield zero cartographic error, and shape deformation is con-
stant over all possible DCs and these metrics thus require
no evaluation. In our experiments, we will evaluate the car-
togram quality using four metrics.

MADJ: We measure topological accuracy as the number of
lost adjacencies in all k computed layouts.

MADS: We measure the average distance between regions
in T , as a more fine-grained measure for topological
accuracy.

MREL: We measure the preservation of relative directions
with respect to the input map using the Relative
PositionChangeMetric [33]which captures the pres-
ervation of the spatial mental model (orthogonal
order) in a fine-grained way. Here, each rectangle
defines eight zones by extending its sides to infinite
lines. Between a pair of regions of the input map
ðr; r0Þwe consider fractions of the area of the bound-
ing box of r0 that fall into the zones of the bounding
box of r; if the bounding boxes of r and r0 overlap,
we scale values such that they sum to 1. We do the
same between the corresponding squares in the car-
togram layouts. Themeasure between two regions is
half the sum over all absolute differences between
fractions per zone; the value is in [0,1] but is not sym-
metric. Finally, we take the average over all pairs.

MDIS: For spatial deformation we measure distance to
map origins, averaging the L1 distances for each
region r in the DC to its origin (centroid of r in the
geographic map).

Metrics: Stability. To assess stability between the DCs, we
use two quality metrics based on treemap stability metrics
[33], interpreting DCs as special treemaps with added
whitespace. The first metric (SDIS) is based on geometric
distances between the layouts and measures the change in
position of the squares. We use the layout distance change
function as presented by Shneiderman and Wattenberg [39],
measuring the average euclidean distance between all pairs
of squares ðr; r0Þ. This strongly relates to our optimization
term for quality when dealing with multiple weights (see
Section 4). The second metric (SREL) is based on the change
in relative directions between layouts; it is analogous to
MREL, but compares two layouts instead.

Postprocessing. For comparability between the different
experimental setups we included postprocessing steps.
Optimality of the TOP, TOP*, CNT and the FRC-T
approaches is invariant to translating all squares uniformly
in each layout, and if these approaches are not using any
stability implementation (*-N) they are even invariant to
uniformly translating in a single layout. This can artificially
worsen the MDIS and SDIS metrics, respectively. To remedy
this, we move (in the first case) all layouts with a single
translation vector, such that their average position is identi-
cal with the average position of regions in the input. In the

Fig. 6. Part of a force-directed layout before and after overlap removal.
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second case, we apply this translation to each layout
individually.

Datasets. We run experiments on real-world datasets. We
include both time-series datasets where we expect a gradual
change and strong correlation between the different values, and
weight-vectors datasets where we expect more erratic changes
and less correlation. We use three maps with rather different
geographic structures: the first (World) is a map of world coun-
tries, having mixed region (country) sizes in a rather unstruc-
tured manner. This world map was augmented with “sea
regions”: additional regions in themap that model connectivity
between separate landmasses, but are not drawn in the final car-
togram (see Appendix D, available in the online supplemental
material). These sea regions have a size swhich is scaled relative
to the largest region in a cartogram. In our LPs, these regions are
allowed to take on any size in ½s2 ; 3s2 �. The second (US) is amap of
the 48 contiguous US states, having relatively high structure in
sizes of its states, with large states in the middle and along the
west coast and many smaller states along the east coast. The
third (NL) is a map of the Dutchmunicipalities. The exact num-
ber of regions present in themap (and therefore the topology of
the entire map) changes between time steps (between 388 and
483), due to municipalities merging and splitting. If such an
event occurs, we consider all involved regions as unique enti-
ties, i.e., no stability connection persists. Note that a non-present
region is different from a region with size 0, as such a region
would still contribute to the overall topology.

For everymapwe collected four time series; seeAppendixC,
available in the online supplemental material for details. We
construct a (single) weight-vectors dataset by taking the weight
functions of a single time step for each of these four time series.
Figs. 1, 2, and 3 illustrate excerpts of the layouts computed by
TOP-W-St on theseweight-vector datasets.

The values are interpreted as the areas of the squares for
each region. The various datasets have different scales, and
need to be projected into a reasonable square size to com-
pute a DC. For this we scale the region sizes so that the sum
of the region areas equals A

2 , where A is the area of the input
bounding box. For a time-series dataset, we scale all time
steps with the same factor (the maximum over all time
steps). For a weight-vectors dataset, we scale the values for
each weight function separately.

Running Times. All experiments were run on an Intel
Xeon E5-2640 v4, 2.40GHz cpu, using Java 11, IBM ILOG
CPLEX 12.8, and 8 GB (36GB for the NL map) of allocated
memory to solve the (I)LP.

We observe the following running times. In general
*-*-{N, SuIt, StIt} finished faster than *-*-{Co, Su, St}, smaller
maps finished faster than larger maps and *-W-* finished
faster than *-S-*. {TOP,ORG}-*-*It finished within seconds
for all instances, except for the strong separation variant on
the NL map, which finished within minutes on the time-
series datasets. The non-iterative stability models TOP-*-*
finished in seconds on the US map and minutes for every-
thing else, but the NL map in the strong setting with the
larger time series data sets, where completion took 1-3
hours for non-iterative stability models. ORG-*-* variants
without iterative stability models finished on the USA map
within seconds in all cases, on the World map within sec-
onds (weight vector) or minutes (time series), on the NL
map in the weak setting within seconds (weight vector) or

minutes (time series) and on the NL map in the strong set-
ting taking minutes (weight vector) or 1 to 2 hours (time
series). The TOP*-*-* methods were only run without stabil-
ity constraints on the NL map finishing in about 10 (weight-
vector) or 60 hours (time series) and with iterative stability
models on the WORLD map taking minutes (weight vector)
or 1 to 2 hours (time series). On the USA map, this approach
finished in seconds for the iterative models or minutes oth-
erwise. The Force approach was not implemented with a
focus on optimizing its running time, which are therefore
only marginally informative. The FRC-ORG methods fin-
ished within seconds (US), minutes (World) or about half
an hour (NL), while FRC-TOP took seconds (US), half an
hour (World) and up to 4 hours (NL).

In total we compare 36 variants of our LP (plus one ILP)
and 6 variance of FRC with each other. All considered var-
iants are shown in Table 1. Some TOP* variants were run
only on a subset of the maps, indicated in the table. All data-
sets, the source code for the experiments, and a video of the
results are openly available.4

6 EXPERIMENTAL RESULTS

Here, we investigate our proposed LP to compute DCs, and
the effect of choices within setting up the LP. Specifically,
we are interested in the following questions:

1) How do results differ between strong and weak sep-
aration constraints?

2) How is the result affected by the model of stability?
3) How do optimization criteria affect the results?
4) Do the secondary direction constraints help?
5) How much quality and stability is lost due to enforc-

ing weak separation constraints?

Methodology. To visualize our results, we apply the fol-
lowing visualization technique: a small-multiples matrix
where each row matches one of our measures, each column
matches an input, and each frame shows a horizontal bar
chart for the various algorithms. Such a frame should allow
us to compare performance between algorithms easily,
drawing attention to the techniques that perform well. As
most of our measures are not easily normalized in a mean-
ingful way, we normalize to the best performing algorithm
for a specific dataset: s=b for a measure that is to be

TABLE 1
Algorithm-Map Combinations

Stab. M. TOP TOP* ORG CNT FRC

S W S W S W S W -TOP -ORG

C ✓✓ US ✓✓
St ✓✓ US ✓✓
StIt ✓✓ US,Wo ✓✓ ✓ ✓
Su ✓✓ US ✓✓
SuIt ✓✓ US,Wo ✓✓ ✓ ✓
N ✓✓ ✓✓ ✓✓ ✓ ✓ ✓ ✓

A ✓ indicates the setting was run on all three maps, otherwise the maps are
indicated (Wo = World). If an algorithm was run for a map, it was run for
each of its five datasets.

4. https://github.com/loizuf/StableDemersLP
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minimized and b=s for a measure that is to be maximized,
where s and b denote the score of the algorithm and the best
obtained score for that dataset. Thus, the best algorithm has
a fully filled bar, and all other algorithms have shorter bars
accordingly – for example, an algorithm that performs twice
as poorly as the best algorithm will get a bar of half length.

The full matrix can be found in Appendix E, available in
the online supplemental material. With it, we established
that TOP-W-St provides a good trade-off in terms of effi-
ciency, cartogram quality and stability. We recommend using
this as a default setting, and modifying the settings when
the tasks require it. In the remainder, we discuss the results
via aggregated excerpts to arrive at this conclusion. These
excerpts aggregate the datasets according to the underlying
geography, or to the type of weight functions used. More-
over, a selection of the algorithms is usually shown, possi-
bly also combining different settings.

As the force-directed layouts violate the separation con-
straints, these are excluded from normalization in the visu-
alization, unless explicitly indicated otherwise. Note that
this is only relevant in answering our last question.

1) Strong and Weak Separation. To compare the weak and
strong setting, that is, to investigate the influence of the sec-
ondary separation constraints, we compare TOP-W-* to
TOP-S-*. Fig. 7 shows their performance for each map.

The TOP-S-* variants perform better on relative direction
measures, both within a DC (MREL) and between DCs
(SREL). This is to be expected, since the secondary separa-
tion constraints aim at prescribing relative directions more
strongly. However, we see that it performs worse in all
other measures: specifically for MADS, there is a consider-
able drop in performance, implying that gaps between
regions that should be adjacent are significantly larger.

The only exception is that, for World datasets, TOP-S-*
performs slightly better on keeping elements close to their
geographic location (MDIS) and to other layouts (SDIS).
This is likely caused due to the rather weak connection
between continents by the sea regions. As such, the strong
setting helps to better preserve the relations between these
parts and position them appropriately.

A trade-off thus exists between preserving directions
(TOP-S-*) and obtaining a compact DC (TOP-W-*). As the
strong setting has considerably higher computation time,
we select TOP-W-* as the recommended technique and
compare it further.

2) Stability Model. We consider the influence of different
stability models. We aggregate our datasets into time-vary-
ing and weight-vector datasets, and visualize the perfor-
mance per stability model of TOP-W-* in Fig. 8.

We first observe that TOP-W-C and TOP-W-St perform
almost identically. Considering the increased computational
cost, TOP-W-St is the better choice. Comparing TOP-W-St to

TOP-W-Su, we see similar performance, though TOP-W-St
is slightly better: interestingly, the largest difference is in
SDIS for the time-series data. This is likely attributable to
time-varying data increasing or decreasing over time.

When we compare iterative models to their non-iterative
counterparts, we see that iterative models perform worse in
stability measures – though minor improvement in carto-
gram quality can be observed for some measures such as
MADJ. SDIS shows the largest effect: in the iterative model,
regions move unnecessarily between different layouts. This
effect is particularly strong for time-varying data.

However, these measures consider the stability between
all pairs of layouts: this is useful in settings where arbitrary
layouts need to be compared, but less relevant when, e.g.,
creating a video that shows the layouts in a specific
sequence. Hence, we also measure these only on successive
layouts (SDIS-SU and SREL-SU); for time series, this is the
temporal order, for mixed weights this is an arbitrary order.
The main effect is that TOP-W-Su gains in relative perfor-
mance, but the iterative models remain weak even in this
setting. The difference is not very large though, and thus we
generally recommend the St model for stability.

If the algorithm does not consider stability at all (TOP-W-
N), thenwe see a considerable drop in performance for stabil-
ity, as to be expected. However, we see comparatively little
gain in cartogram quality. Mostly, MADJ is slightly higher.
Interestingly, MREL is even lower. This is likely explainable
through stability: by requiring stability between layouts that
can have extremely small or large weights, squares cannot be
placed in extreme positions as this would incur a large cost of
stability. When no stability is considered, they can be placed
in extreme positions to the detriment ofMREL.

3) Optimization Criteria. In Fig. 9 we compare TOP-W-*,
ORG-W-* and CNT-W-* for each map. Generally, we see the
same pattern between the maps, but the magnitude of the
performance differences between these methods is influ-
enced by the map; care needs to be taken when generalizing
the results in terms of magnitude beyond these maps.

Comparing TOP and ORG variants, we see that TOP yields
better results in adjacency-based measures (both MADJ and
MADS), but worse in the other measures. This suggests that
regions need tomove from their original locations more to pre-
serve neighborhoods well. This is in accordance with the

Fig. 8. Average relative scores for stability models of TOP-W-* variants
per weight type. Higher scores indicate better performance.

Fig. 7. Average relative scores for all TOP-W-* and TOP-S-* variants per
map. Higher scores indicate better performance.
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general observations in related problems [21], [22] that optimiz-
ing displacement from the original location performs fairly
well. However, in the literature, cartograms are typically evalu-
ated based on how well they preserve neighborhoods, rather
than distances. As such, we prefer TOP variants over ORG
nonetheless in for DCs; other use cases may rather use ORG
variants. Themain trade-off we see here is better neighborhood
preservation versus reduced stability.We prefer neighborhood
preservation here, as overlap-free animations can be achieved
(Lemma 1), and needless displacement is prevented by our
methods in any case. Also observe that the relative importance
of stability could be increased in the objective function; investi-
gating such effects are beyond the scope of thiswork.

Compared to optimizing the standard quality measure of
counting the number of maintained adjacencies (MADJ), we
see that CNT variants perform best as they explicitly opti-
mize for it. However, the computational complexity makes
this ILP impractical: as indicated earlier, it does not com-
pute on the NL map and is slow on the others. Moreover,
we see that, though it maintains many adjacencies, it is over-
all worse in keeping adjacent regions close together (MADS)
and other measures. Nonetheless, it gives us some insight
into how well TOP and ORG variants maintain adjacencies.
For TOP, we see that it maintains about 75% of the optimum
amount of adjacencies, but its total adjacency distance score
improves by 67% with regards to CNT-W-*.

4) Secondary Direction Constraint. In Fig. 10 we compare
TOP to TOP*, that is, we investigate the effect of adding a
secondary optimization term that considers the relative
direction between all pairs of regions. Because the LP gains
a quadratic number of constraints, the NL map is excluded
from comparison as it is no longer efficiently computable.

As we may expect, the relative position scores (MREL and
SREL) improve slightly for TOP*, at the expense of slightly
worse scores for the other metrics. Given the computational
cost involved, we recommend using TOP rather than the
more nuanced TOP*.Note that TOP* inherently has the ability
to place disconnected parts (islands or different continents) in
the correct relative position. One reason why little difference
is achieved is due to sea regions being added to ensure a

connected topology for the input. If no such action is taken,
TOP*may becomepreferable.

5) No Separation Constraints. Finally, we consider the cost
induced by our separation constraints. Though it allows for
overlap-free animations using simple linear interpolation
between cartograms (Lemma 1), it may affect cartogram
quality. To investigate the degree to which this happens, we
compare TOP-W-* and ORG-W-* variants to FRC-T-* and
FRC-W-* respectively. That is, we use a heuristic approach5

to optimize for the same objective function without the sep-
aration constraints, and compare the resulting cartogram
quality and stability. The results are shown in Fig. 11.

Comparing TOP-W-* to FRC-T-*, we see that they per-
form very similarly in MADJ and MDIS. In other words, the
separation constraints have little influence on how many
adjacencies are present in the cartogram and on how far
regions are to move from their map location. However, we
do see that adding such constraints tends to increase the dis-
tances between adjacent regions if these are not maintained.
We also see that our separation constraints improve the rel-
ative positions between regions. Thus, to improve distances
between neighboring regions, one must violate the separa-
tion constraints. In terms of stability (SDIS and SREL), we
see that our LP-based methods perform better than the
force-based methods. However, this may be attributable to
our FRCmethods using only iterative or no stability models:
FRC methods do not incorporate stability forces. As such,
FRC methods are primarily focused on cartogram quality.

We see similar patterns comparing ORG-W-* to FRC-O-*.
Notably though, there is less advantage for MREL for ORG-
W-* with respect to FRC-O-*, and, for SDIS and SREL, FRC-
O-* even performs better than ORG-W-*; but consistent
with earlier considerations, displacement-based algorithms
such as these perform generally well in terms of stability.

7 DISCUSSION

Our evaluation focused on cartogram quality and stability,
both measure using multiple criteria, and demonstrated
that our LP-based methods are an effective way of solving
the problem. Here, we briefly reflect on how our results
may be used in an eventual system.

Consider a system that shows a cartogram based on
interactively selectable weight functions. By Lemma 1, the

Fig. 9. Average relative scores for TOP-W-*, ORG-W-* and CNT-W-*
variants. Higher scores indicate better performance. Computation for
CNT-W-* on NL did not finish.

Fig. 10. Average relative scores for TOP-W-* and TOP*-W-* variants per
map. Higher scores indicate better performance.

Fig. 11. Average relative scores comparing our solutions leveraging sep-
aration constraints (TOP-W-* and ORG-W-*) to force-based solutions
which do not adhere to such constraints (FRC-T-* and FRC-O-*). Higher
scores indicate better performance.

5. It would be straightforward to define a Mixed Integer Program
that computes the optimal result; however, this did not result in reason-
ably solvable programs in our experience due to our map sizes.
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linear interpolation is free of overlap and can thus be easily
animated when switching between weights to make it easier
to track the items. Based on our findings, we recommend
TOP-W-St as the algorithm to be used for such a setting.

However, regardless of the method, adjacencies may be
lost: not all planar graphs can be represented using touching
squares. A real-world example is Luxembourg having three
pairwise neighbors; the input graph G is aK4, which has no
touching-squares representation. However, in an interactive
system we might want to visualize these lost adjacencies to
better show the user which regions are adjacent in reality.

One way to show this would be to use leaders between
regions that lost adjacencies: non-crossing orthogonal poly-
lines connecting the two squares through the gaps in the
DC . We want these leaders to be short and have few bends,
which we can guarantee under mild assumptions: 1) leaders
can coincide with square boundaries; 2) regions to be con-
nected are realizable, i.e., a valid DC (with possibly different
weights) exists for each pair of regions such that they are
adjacent. Even when these assumptions are not met, we
expect the leaders to have these properties in practice.

Let us first consider leader length. Let LB
1 ðr1; r2Þ denote

the L1 distance between squares of regions r1 and r2 in DC
B. The lemma below states that a leader of minimal length
can always be drawn between two adjacent regions in DCs
that satisfy separation constraints, and thus by extension in
DCs computed by our LP. Note, that since we minimize the
L1 distance between lost adjacencies in our LP (TOP-var-
iants), our optimization criteria corresponds directly to the
total length of all leaders: leaders are as short as possible.

Lemma 2. Consider DCs with separation constraints H;V , and
two regions fr1; r2g 2 T . Let ðr1; r2Þ be a pair inH or V that is
adjacent in the input map. Then, in any DC B, there is a mono-
tone geodesic leader ‘ between r1 and r2 with lengthLB

1 ðr1; r2Þ.
The proof of this lemma (found in Appendix F, available

in the online supplemental material ) readily gives us an
algorithm to compute these minimal leaders. Aside from
minimal length, we also want leaders to have few bends
(low complexity). With strong separation constraints, we
can indeed guarantee this. This is captured by the lemma
below; its proof can be found Appendix F, available in the
online supplemental material.

Lemma 3. Let fr1; r2g 2 T and assume a DC A exists with r1
and r2 adjacent, from which H and V are derived in the strong
setting. Then, for any DC B satisfying H and V , a leader ‘
exists between r1 and r2 with at most two bends.

The proof of this lemma (found in Appendix F, available
in the online supplemental material ) also gives us an algo-
rithm to compute these leaders. For effective use in a sys-
tem, we may however want to slightly modify these leaders
to maintain a small visible gap between the leaders and the
edges of other squares, similar to the gap maintained for
non-adjacent regions, for increased clarity.

Of course, all leaders can be drawn (see Fig. 12), but we
expect that this is particularly effective in an interactive
manner. For example, leaders are drawn or highlighted for
a selected region, to allow seeing the topological adjacencies
immediately in the cartogram. Of course, such interactions
can be complemented by juxtaposing it with a linked view
that shows the geographic map in which the same regions
can be highlighted, which was shown to be effective even
for novice users at least for contiguous area cartograms [40].

8 CONCLUSION AND FUTURE WORK

Wedescribed a linear program to compute stable Demers car-
tograms for dynamic data based on separation constraints
and minimizing distance between adjacent regions. It allows
overlap-free transitions between weight functions, and the
connecting of lost adjacencies with short and low-complexity
leaders. Experiments show it offers a good trade-off between
topological error and other criteria. The LP outperforms basic
force-directed layouts, though there is no unique variant that
does so, suggesting an interplay between separation con-
straints, optimization and qualitymetrics.

In future work we may consider stability in other carto-
gram styles, and perform human-centered comparisons in
addition to computational ones, with methods implemented
in interactive systems; such systems can, e.g., emphasize
adjacent regions by drawing leaders (at all or more clearly)
or link regions back to the geographic map. We focused on
Demers cartograms, but there are many different styles of
cartograms. Future work may also investigate stable var-
iants of such other cartogram styles.
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