
Multicriteria Scalable Graph Drawing via
Stochastic Gradient Descent, ðSGDÞ2

Reyan Ahmed , Felice De Luca, Sabin Devkota , Stephen Kobourov , and Mingwei Li

Abstract—Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of

graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such

criterion, usually at the expense of others. We propose a layout approach, Multicriteria Scalable Graph Drawing via Stochastic Gradient

Descent, ðSGDÞ2, that can handle multiple readability criteria. ðSGDÞ2 can optimize any criterion that can be described by a

differentiable function. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier

(e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly

optimized in such fashion (e.g., node resolution, angular resolution, aspect ratio). The approach is scalable and can handle large

graphs. A variation of the underlying approach can also be used to optimize many desirable properties in planar graphs, while

maintaining planarity. Finally, we provide quantitative and qualitative evidence of the effectiveness of ðSGDÞ2: we analyze the

interactions between criteria, measure the quality of layouts generated from ðSGDÞ2 as well as the runtime behavior, and analyze the

impact of sample sizes. The source code is available on github and we also provide an interactive demo for small graphs.

Index Terms—Graph drawing, gradient descent, quality metrics

Ç

1 INTRODUCTION

GRAPHS represent relationships between entities and
visualization of this information is relevant in many

domains. Several criteria have been proposed to evaluate
the readability of graph drawings, including the number of
edge crossings, distance preservation, and neighborhood
preservation. Such criteria evaluate different aspects of the
drawing and different layout algorithms optimize different
criteria. It is challenging to optimize multiple readability cri-
teria at once and there are few approaches that can support
this. Examples of approaches that can handle a small num-
ber of related criteria include the stress majorization frame-
work of Wang et al. [46], which optimizes distance
preservation via stress as well as ideal edge length preserva-
tion. The Stress Plus X (SPX) framework of Devkota et al.
[15] can minimize the number of crossings, or maximize the
minimum angle of edge crossings. While these frameworks
can handle a limited set of related criteria, it is not clear
how to extend them to arbitrary optimization goals, as such
frameworks are dependent on particular mathematical for-
mulations. For example, the SPX framework was designed
for crossing minimization, which can be easily modified to
handle crossing angle maximization (by adding a cosine fac-
tor to the optimization function). This idea can be applied

only to a limited set of criteria but the majority of other crite-
ria are incompatible with the basic formulation.

In this paper, we propose a general approach, Multicrite-
ria Scalable Graph Drawing via Stochastic Gradient
Descent, ðSGDÞ2, that can optimize a large set of drawing
criteria, provided that the corresponding metrics that evalu-
ate the criteria are differentiable functions. If the criterion is
not naturally differentiable, we design a differentiable sur-
rogate function to approximate and optimize the original
criterion. In ðSGDÞ2, auto-differentiation tools are used for
the gradient-based optimization. To demonstrate the flexi-
bility of the approach, we consider a set of nine criteria:
minimizing stress, maximizing node resolution, obtaining
ideal edge lengths, maximizing neighborhood preservation,
maximizing crossing angle, optimizing total angular resolu-
tion, minimizing aspect ratio, optimizing the Gabriel graph
property, and minimizing edge crossings. We evaluate the
effectiveness of our approach quantitatively and qualita-
tively with evidence drawn from a set of experiments. To
illustrate the effectiveness and efficiency of multicriteria
optimization, we evaluate the compatibility of every pair of
criteria, measure the quality of each criterion, and demon-
strate the distinctive looks of graph layouts under different
drawing objectives. We also evaluate the runtime perfor-
mance and the impact of sample sizes used in the optimiza-
tion, and compare our methods with existing ones. We
implemented our method with PyTorch. The code is avail-
able at: https://github.com/tiga1231/graph-drawing/
tree/sgd. For demonstration purposes, we also built an
interactive prototype (that implements full-batch gradient
descent on small graphs) in JavaScript using tensorflow.js
and D3.js, which is available on http://hdc.cs.arizona.edu/
�mwli/graph-drawing/. This interactive prototype allows
nodes to be moved manually and combinations of criteria
can be optimized by selecting a weight for each; see Fig. 1.

� The authors are with the Department of Computer Science, University of
Arizona, Tucson, AZ 85721 USA. E-mail: {abureyanahmed, devkotasabin,
mwli}@email.arizona.edu, felicedeluca@me.com, kobourov@cs.arizona.edu.

Manuscript received 14 June 2021; revised 31 Jan. 2022; accepted 15 Feb.
2022. Date of publication 1 Mar. 2022; date of current version 2 May 2022.
This work was supported in part by NSF under Grants CCF-1740858, CCF-
1712119, and DMS-1839274.
(Corresponding author: Reyan Ahmed.)
Recommended for acceptance by T. Dwyer.
Digital Object Identifier no. 10.1109/TVCG.2022.3155564

2388 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 6, JUNE 2022

1077-2626 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6830-9053
https://orcid.org/0000-0001-6830-9053
https://orcid.org/0000-0001-6830-9053
https://orcid.org/0000-0001-6830-9053
https://orcid.org/0000-0001-6830-9053
https://orcid.org/0000-0002-0610-6573
https://orcid.org/0000-0002-0610-6573
https://orcid.org/0000-0002-0610-6573
https://orcid.org/0000-0002-0610-6573
https://orcid.org/0000-0002-0610-6573
https://orcid.org/0000-0002-0477-2724
https://orcid.org/0000-0002-0477-2724
https://orcid.org/0000-0002-0477-2724
https://orcid.org/0000-0002-0477-2724
https://orcid.org/0000-0002-0477-2724
https://orcid.org/0000-0002-0457-8091
https://orcid.org/0000-0002-0457-8091
https://orcid.org/0000-0002-0457-8091
https://orcid.org/0000-0002-0457-8091
https://orcid.org/0000-0002-0457-8091
https://github.com/tiga1231/graph-drawing/tree/sgd
https://github.com/tiga1231/graph-drawing/tree/sgd
http://hdc.cs.arizona.edu/~mwli/graph-drawing/
http://hdc.cs.arizona.edu/~mwli/graph-drawing/
mailto:abureyanahmed@email.arizona.edu
mailto:devkotasabin@email.arizona.edu
mailto:mwli@email.arizona.edu
mailto:felicedeluca@me.com
mailto:kobourov@cs.arizona.edu

2 RELATED WORK

Many criteria for the readability of graph drawings have
been proposed [48], but graph layout algorithms are
designed to (explicitly or implicitly) optimize a single one.
For instance, a classic layout criterion is stress minimization
[31], where stress is defined by

P
i < j wijðjXi �Xjj � dijÞ2.

Here, X is a n� 2 matrix containing coordinates for the n
nodes, dij is typically the graph-theoretical distance between
two nodes i and j and wij ¼ d�aij is a normalization factor
with a equal to 0; 1 or 2. Thus reducing the stress in a layout
corresponds to computing node positions so that the actual
distance between pairs of nodes is proportional to the graph
theoretic distance between them. Optimizing stress can be
accomplished by stress minimization, or stress majorization,
which can speed up the computation [24].

Stress minimization corresponds to optimizing the global
structure of the layout, as the stress metric takes into account
all pairwise distances in the graph. The t-SNET algorithm of
Kruiger et al. [34] optimizes neighborhood preservation,
which captures the local structure of a graph, as the neigh-
borhood preservation metric only considers distances
between pairs of nodes that are close to each other. Optimiz-
ing local or global distance preservation can be seen as spe-
cial cases of the more general dimensionality reduction
approaches such asmulti-dimensional scaling [35].

Purchase et al. [39] showed that the readability of graphs
increases if a layout has fewer edge crossings. The underly-
ing optimization problem is NP-hard and several graph
drawing contests have been organized with the objective of
minimizing the number of crossings in the graph draw-
ings [1], [9]. Recently several algorithms that directly mini-
mize crossings have been proposed [40], [42].

The negative impact on graph readability due to edge
crossings can be mitigated if crossing pairs of edges have a
large crossings angle [28]. Formally, the crossing angle of a
straight-line drawing of a graph is the minimum angle
between two crossing edges in the layout, and optimizing
this property is also NP-hard. Recent graph drawing con-
tests have been organized with the objective of maximizing
the crossings angle in graph drawings and this has led to
several heuristics for this problem [4], [13].

The algorithms above are very effective at optimizing the
specific readability criterion they are designed for, but they
cannot be directly used to optimize additional criteria. This
is a desirable goal, since optimizing one criterion often leads
to poor layouts with respect to one or more other criteria: for
example, algorithms that optimize the crossing angle tend
to create drawings with high stress and no neighborhood
preservation [15].

Davidson and Harel [11] used simulated annealing to
optimize different graph readability criteria (keeping nodes
away from other nodes and edges, uniform edge lengths,
minimizing edge crossings). Huang et al. [28] extended a
force-directed algorithm to optimize crossing angle and
angular resolution by incorporating two additional angle
forces. The authors show that in addition to optimizing
crossing angle and angular resolution, the algorithm also
improves other desirable properties (average size of crossing
angles, standard deviation of crossing angles, standard devi-
ations of angular resolution, etc.). In a force-directed method

similar to the algorithm proposed by Huang et al. [28], to
optimize each criterion one needs to design a new force. The
new force can be considered as a gradient update by hand,
whereas ðSGDÞ2 is a gradient descent based algorithmwhere
the gradients are computed automatically using auto-differ-
entiation tools. Recently, several approaches have been pro-
posed to simultaneously improve multiple layout criteria.
Wang et al. [46] propose a revised formulation of stress that
can be used to specify ideal edge direction in addition to
ideal edge lengths in a graph drawing. Wang et al. [47]
extended that stress formulation to produce structure-aware
and smooth fish-eye views of graphs. Devkota et al. [15] also
use a stress-based approach to minimize edge crossings and
maximize crossing angles. Eades et al. [20] provided a tech-
nique to draw large graphs while optimizing different geo-
metric criteria, including the Gabriel graph property.
Although the approaches above are designed to optimize
multiple criteria, they cannot be naturally extended to han-
dle other optimization goals.

Constraint-based layout algorithms such as COLA [17], can
be used to enforce separation constraints on pairs of nodes to
support properties such as customized node ordering or
downward pointing edges. The coordinates of two nodes are
related by inequalities in the form of xi � xj þ gap for a node
pair ði; jÞ. Dwyer et al. [18] use gradient projection to handle
these constraints, bemoving nodes as little as needed to satisfy
the inequalities/ equalities after each iteration of the layout
method. The gradient projectionmethod has been extended to
also handle non-linear constraints [19]. These hard constraints
are powerful but a bit restrictive and are different from the
soft constraints in our ðSGDÞ2 framework.

Our earlier approach, ðGDÞ2 [2] optimizes several crite-
ria already considered in the literature (e.g., stress, neigh-
borhood preservation) as well as other criteria which had
not yet been explicitly optimized in such fashion (e.g., ver-
tex resolution, angular resolution, aspect ratio). While the
full-batch gradient descent works for small graphs it does
not scale well. The ðSGDÞ2 framework discussed in this
paper reformulates the optimizations using stochastic gradi-
ent descent, resulting in much faster running times and
making it possible to work with larger graphs.

3 THE ðSGDÞ2 FRAMEWORK

The ðSGDÞ2 framework is a general optimization approach
to generate a layout with any desired set of aesthetic

Fig. 1. An interactive prototype of ðSGDÞ2 simutaneously optimizing
stress, edge uniformity and crossing angles on a dodecahedron.

AHMED ETAL.: MULTICRITERIA SCALABLE GRAPH DRAWING VIA STOCHASTIC GRADIENT DESCENT, ðSGDÞ2 2389

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

metrics, provided that they can be expressed by a smooth
function. The basic principles underlying this framework
are simple. The first step is to select a set of layout readabil-
ity criteria and loss functions that measure each of them.
Then we define the function to optimize as a linear combi-
nation of the loss functions for each individual criterion.
Finally, we iterate the gradient descent steps, from which
we obtain a slightly better drawing at each iteration. Fig. 2
depicts the framework of ðSGDÞ2: Given any graph with n
nodes and a readability criterion c 2 C, we design a loss
function Lc : R

n�2 ! R that maps the current layout X 2
Rn�2 to a measure LcðXÞ with respect to the readability cri-
terion. Then we combine multiple loss functions from dif-
ferent criteria into a single one by taking a weighted sum,
LðXÞ ¼ ScwcLcðXÞ, where a lower value is always desirable.
At each iteration, a slightly better layout can be found by
taking a small (h) step, often refer to as learning rate, along
the (negative) gradient direction: XðnewÞ ¼ X � h � r LðXÞ.
The learning rate and all weights vary according to the cur-
rent stage t of the optimization. In ðSGDÞ2, we decrease the
learning rate hðtÞ adaptively based on the recent changes in
the loss function; see Section 3.1 and supplementary materi-
als for details, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2022.3155564. Given a specific criteria set C,
we design a weight schedule wcðtÞ for each c 2 C; see Sec-
tion 5.2. Algorithm 1 summarizes the ðSGDÞ2 optimization
procedure.

3.1 Gradient Descent Optimization

There are different kinds of gradient descent algorithms.
The standard method considers all nodes, computes the gra-
dient of the objective function, and updates node coordi-
nates based on the gradient. Some objectives may consider
all the nodes in every step. For example, the basic stress for-
mulation [31] falls in this category. To compute the gradient
for optimization, one has to iterate through all the nodes
which makes it not scalable to very large graphs. Fortu-
nately, most of these objectives can be decomposed into
optimization over only subsets of nodes. Consider stress
minimization again, if we sample a set of node pairs ran-
domly and minimize the stress between the nodes in each
pair, the stress of the whole graph is also minimized [50].
This approach is known as stochastic gradient descent
(SGD) and we use this idea extensively. In Section 4, we
specify the objective loss functions and sampling methods
we used for each readability criterion we consider.

Not all readability criteria come naturally in the form of
differentiable functions. We cannot compute the gradient of
or apply SGD on non-differentiable functions. In cases that
the original objective is continuous but not everywhere dif-
ferentiable e.g., a ’hinge’ function f(x)=max(0,x), we can
compute the subgradient and update the objective based on
the subgradient. Hence, as long as the function is continu-
ously defined on a connected component in the domain, we
can apply the subgradient descent algorithm.

Algorithm 1. The ðSGDÞ2 Algorithm

Input:
G ¼ ðV;EÞ; C ¼ f. . . c . . .g // graph, criteria

S : c 7! sc // sample sizes for each c
Lc : R

sc�2 ! Rþ // loss functions

W : c 7! wc; h // weights & learning rate

q;Qq // safe update criterion & quality

Output:X // layout

Function Layout(G;C; S;W;maxiter; h):
X InitializeLayout(G)
if ‘crossings’ 2 C then
cd InitializeCrossingDetector()

for t ¼ 1; . . .;maxiter do
l 0
for c 2 C s.t. wcðtÞ > 0 do
sample Sample(c; sc)
if c == ‘crossings’ then
UpdateCrossingDetector(cd; sample)
lc Lcðsample;G; cdÞ

else
lc Lcðsample;GÞ

l lþ wcðtÞ � lc
if ‘Safe update’ is enabled then
Xprev X
Xnew X � hðtÞ � rXl
X SafeUpdate(Xprev;Xnew;G;Qq) // Algorithm 2

else
X X � hðtÞ � rXl

Return X

When a function is not defined in a connected domain,
we use surrogate loss functions to ‘connect the pieces’. For
example, maximizing the Jaccard similarity between graph
neighbors and the nearest neighbors in the layout optimizes
neighborhood preservation. However, as Jaccard similarity
is defined between two binary vectors, we use Lov�asz exten-
sion [6] to all real vectors and apply that to optimize neigh-
borhood preservation. An essential part of gradient descent
based algorithms is to compute the gradient/subgradient of
the objective function. In practice, it is not necessary to write
down the gradient analytically as it can be computed auto-
matically via (reverse-mode) automatic differentiation [26].
Deep learning packages such as Tensorflow.js [43] and
PyTorch [38] apply automatic differentiation to compute
the gradient of complicated functions.

Most of the objective functions that we consider here are
not convex and do not have unique global minimizers.
Therefore, even though SGD is known to converge (to at
least a local optimum) in relatively relaxed settings [3], [25],
few optimization objectives are guaranteed to find the
global optimum. In particular, unlike methods such as

Fig. 2. The ðSGDÞ2 framework: formulate an objective function based on
the given a graph and criteria set. Then compute the quality (value) of
the objective function for the current layout, generate the gradient,
update the coordinates of the layout, and update the objective function.
This process is repeated for a fixed number of iterations.

2390 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 6, JUNE 2022

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3155564
http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3155564

stress majorization [24], most of our optimization objectives
are not guaranteed to converge to the global optimum.
Meanwhile, most of the objective functions for which SGD
works well in practice (e.g., in deep learning) are neither
convex nor have unique global minimizers [36]. With this in
mind, we follow the common practice of applying an
annealing process, if necessary, to ensure convergence (to a
possibly local minimum).

When optimizing multiple criteria simultaneously, we
combine them via a weighted sum. However, choosing a
proper weight for each criterion can be tricky. Consider, for
example, maximizing crossing angles and minimizing stress
simultaneously with a fixed pair of weights. At the very
early stage, the initial drawing may have many crossings
and stress minimization often removes most of the early
crossings. As a result, maximizing crossing angles in the
early stage can be harmful as it moves nodes in directions
that contradict those that come from stress minimization.
Therefore, a well-tailored weight scheduling is needed for a
successful outcome. Continuing with the same example, a
better outcome can be achieved by first optimizing stress
until it converges, and later adding weights for the crossing
angle maximization. In order to measure the compatibility
of a combination of criteria, in Section 5.1 we analyze the
interactions between any pair of criteria using constant
weights. We provide an interface that allows manual tuning
of the weights and discuss weight schedules for different
criteria sets in Section 5.2.

To encourage convergence, we decrease the SGD’s learn-
ing rate when the loss does not improve after a certain num-
ber of iterations, often referred to as “patience”. In machine
learning frameworks such as PyTorch [38] or Keras [10],
this learning rate schedule is called ReduceLROnPlateau

hðtÞ ¼ ReduceLROnPlateauðLt; factor; patienceÞ; (1)

where Lt is the loss used to determine the timing of the
learning rate deduction. To further improve the robustness
of the learning schedule, we use the exponential moving
average of sample loss as Lt; see the supplementary mate-
rial, available online, (Section A) for the definition of Lt, fac-
tor and patience.

3.2 Implementation

The ðSGDÞ2 framework is implemented in Python and relies
on PyTorch [38] for automatic differentiation, NetworkX [27]
for processing graphs, and matplotlib [29] for drawing. To
demonstrate our method we provide an interactive Java-
Script prototype which uses the automatic differentiation
tools of tensorflow.js [43] and the D3.js library [8].

4 PROPERTIES AND MEASURES

In this section we specify the aesthetic goals, definitions,
quality measures and loss functions for each of the 9 graph
drawing properties we optimized: stress, ideal edge lengths,
neighborhood preservation, crossing number, crossing
angle, aspect ratio, angular resolution, node resolution and
Gabriel graph property. In each subsection, we first define
our loss function for the entire graph. For small graphs, one
could apply (full-batch) gradient descent directly on this

loss, which corresponds to the method we used in our early
work [2]. To speed up the method for larger graphs, we
sample portions of our loss functions at each iteration and
apply (mini-batch) stochastic gradient descent on them.
Even though full-batch gradient descent works reasonably
well for small graphs, sampling still provides some speedup
while maintaining comparable quality. Therefore, in
ðSGDÞ2 we always use sampling, independent of graph
size. The definition of a sample can be different for each cri-
terion. For example, for stress minimization we sample
pairs of nodes; for ideal edge length, we sample edges.
Hence, the sample sizes of different criteria can be set inde-
pendently. Moreover, for a given objective function, when
the sample size for a certain criterion exceeds the number of
possible samples, our method defaults to (full-batch) gradi-
ent descent. In Section 5.3, we discuss the effect of the sam-
ple sizes on the convergence rates. The analysis has helped
us set the default values for each readability criterion. In
general, for each criterion we sample mini-batches from a
pool of all sample points (e.g., all pairs of nodes for stress,
all edges for ideal edge length) without replacement, and
‘refill the pool’ when all sample points are drawn. In prac-
tice, we shuffle the list of data points, draw mini-batches
from the list in consecutive order, and re-shuffle the list
once every data point is drawn.

4.1 Stress

We minimize stress, LST , to draw a graph that matches the
euclidean distances between pairs of nodes in the drawing
to their graph theoretic distances. Following the original
definition of stress [31], we minimize

LST ¼
X
i < j

wijðjjXi �Xjjj2 � dijÞ2: (2)

Where dij is the graph-theoretical distance between nodes i
and j, Xi and Xj are the coordinates of nodes i and j in the
layout. The normalization factor wij ¼ d�2ij balances the
influence of short and long distances: the longer the graph
theoretic distance, the more tolerance we give to the dis-
crepancy between two distances. When comparing two
drawings of the same graph with respect to stress, a smaller
value (lower bounded by 0) corresponds to a better draw-
ing. To work with large graphs, we take the mean loss for
any pairs of nodes to turn it into the expectation of stress

L̂ST ¼ Ei 6¼j ½wijðjjXi �Xjjj2 � dijÞ2�: (3)

The quality measure for stress, QST , is equal to the loss L̂ST

over all pairs of nodes. In each SGD iteration we minimize
the loss by sampling a number of node pairs. Since the
expectation of the gradient of the sample loss equals the
true loss, we can use the gradient of the sample loss as an
estimate of the true gradient and update the drawing
through SGD accordingly. In each SGD iteration, we sample
m pairs of nodes. By default, we set m ¼ 32 based on our
experiments with different sample sizes in Section 5.3.
Before a round that goes over all pairs of nodes, we shuffle
a list of node-pairs and take mini-batches from the shuffled
list. This guarantees that we process every pair of nodes
exactly once per round.

AHMED ETAL.: MULTICRITERIA SCALABLE GRAPH DRAWING VIA STOCHASTIC GRADIENT DESCENT, ðSGDÞ2 2391

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

4.2 Ideal Edge Length

Given a set of ideal edge lengths flij : ði; jÞ 2 Eg we mini-
mize the variance from the ideal lengths

LIL ¼
X
ði;jÞ2E

jjXi �Xjjj � lij

lij

!2

: (4)

For unweighted graphs, by default we use 1 as the ideal
edge length for all edges ði; jÞ 2 E. As with stress minimiza-
tion, for large graphs we replace the summation by the
expectation and estimate it through sampling the edges.

L̂IL ¼ Eði;jÞ2E

"
jjXi �Xjjj � lij

lij

!2#
: (5)

The quality measure QIL ¼ L̂IL is lower bounded by 0 and a
lower score yields a better layout. Similar to the sampling
strategy for stress, here we keep a list of all edges in random
order, draw mini-batches (by default, of size m ¼ 32) from
it, and re-shuffle the list after all edges are processed once.

4.3 Neighborhood Preservation

Neighborhood preservation aims to keep adjacent nodes
close to each other in the layout. Similar to Kruiger et al. [34],
the idea is to have the k-nearest (euclidean) neighbors (k-
NN) of node i in the drawing to match the k nearest nodes
(in terms of graph distance from i). Here we set k to be the
degree of node. A natural quality measure for the match is
the Jaccard index between the two pieces of information. Let,

QNP ¼ JaccardIndexðK;AdjÞ ¼ jfði;jÞ:Kij¼1 and Aij¼1gj
jfði;jÞ:Kij¼1 or Aij¼1gj , where

Adj is the adjacency matrix and the ith row inK denotes the
k-nearest neighborhood information of i:Kij ¼ 1 if j is one of
the k-nearest neighbors of i and 0 otherwise. To express the
Jaccard index as a differentiable minimization problem, we
first express the neighborhood information in the drawing as
a smooth function of node positions Xi and store it in a
matrix K̂. In K̂, a positive entry K̂i;j means node j is one of
the k-nearest neighbors of i, otherwise the entry is negative.
Next, we take a differentiable surrogate function of the Jac-
card index, the Lov�asz hinge loss (LHL) [6], to make the Jac-
card loss optimizable via gradient descent.Weminimize

LNP ¼ LHLðK̂; AdjÞ; (6)

where K̂ denotes the k-nearest neighbor estimation. For
simplicity, let di;j ¼ jjXi �Xjjj denote the euclidean dis-
tance between node i and j, then we design K̂ as

K̂i;j ¼ �ðdi;j � di;pkþdi;pkþ1
2 Þ if i 6¼ j

0 if i ¼ j

(
; (7)

where pk denotes the k
th nearest neighbor of node i. That is,

for every node i, we treat the average distance to its kth and
ðkþ 1Þth nearest neighbor as a threshold, and use it to mea-
sure whether node j is in the neighbor or not. Note that di;j,
di;pk and di;pkþ1 are all smooth functions of node positions in
the layout, so K̂i;j is also a smooth function of node posi-
tions X. K̂i;j is positive if node j is a k-NN of node i, other-
wise it is negative, as is required by LHL [6].

We then sample nodes for stochastic gradient descent.
Note that the nearest neighbors pk and pkþ1 in K̂i;j depend
on distances from all nodes. To derive a reliable estimate of
the Jaccard index, instead of letting k equal to the degree of
node i in the full graph, we let k equal to the degree of i in
the subgraph that we sample. In other words, in every gra-
dient descent iteration we sample a subgraph from the full
graph and compute LHL of the subgraph. In practice, we
randomly select a small set of m nodes (by default, m ¼ 16),
along with nodes that are 1 or 2 hops away from any of
them. We also include a fraction of nodes that are not
already in the sample. We extract the subgraph induced by
this set of nodes and apply stochastic gradient descent.

4.4 Crossing Number

Reducing the number of edge crossings is one of the classic
optimization goals in graph drawing, known to affect read-
ability [39]. Shabbeer et al. [42], employed an expectation-
maximization-like algorithm. Since two edges do not cross
if and only if there exists a line that separates their extreme
points, they trained support vector machine (SVM) classi-
fiers to separate crossing pairs and use the classifiers as a
guide to eliminate crossings. Since one has to train as many
SVM classifiers as the number of crossings in the graph and
knowledge learned by one SVM does not naturally transfer
to another, this approach does not work well for large
graphs. With this in mind we modified our initial approach
to that of Tiezzi et al.[45], which uses Graph Neural Net-
works to reduce the number of crossings in two steps. First,
a generic neural network is trained to predict if any two
edges cross. Since neural networks are differentiable, the
well-trained edge crossing predictor from this step serves as
a guide to gradient descent steps later on. Second, a Graph
Neural Network is trained to use the edge crossing predic-
tor as a guide to improve the layout. Our method uses only
the first step above and utilizes a different training strategy.
Instead of training the edge crossing predictor using a syn-
thetic dataset before the layout optimization, we train the
crossing predictor directly on the current graph layout
while simultaneously updating the node coordinates, using
the crossing predictor as a guide. Formally, let fb denote a
neural network with trainable parameters b that takes the
coordinates of the four nodes of any two edges XðiÞ 2 R4�2

and outputs a scalar from the (0,1) interval. An output close
to 0 means “no crossing” and one close to 1 means
“crossing”. In practice, fb is a simple multi-layer perceptron
(MLP) with batch normalization [30] and LeakyReLU acti-
vation. To train a neural crossing detector fb, we feed differ-
ent edge pairs XðiÞ 2 R4�2 to approximate the ground truth
tðiÞ 2 f0; 1g where 0 means “no crossing” and 1 means
“crossing”. We optimize the parameters b to minimize the
cross entropy (CE) loss Lb between the prediction fbðXðiÞÞ
and the ground truth tðiÞ, averaging over a sample of n
instances of edge pairs

Lbðb;Xð1Þ. . .XðnÞÞ ¼ 1

n

Xn
i¼1

CEðfbðXðiÞÞ; tðiÞÞ;
where

CEðy; tÞ :¼ �t � logðyÞ � ð1� tÞ � logð1� yÞ: (8)

2392 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 6, JUNE 2022

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

We use the neural crossing detector fb to construct a differ-
entiable surrogate loss function for crossing minimization.
Specifically, given a well-trained fb, we can reduce the num-
ber of crossings in a layout by minimizing the cross entropy
between the prediction of edge pairs fbðXðiÞÞ and the
desired target (i.e., no crossing t ¼ 0)

LCRðX;bÞ ¼ 1

n

Xn
i¼1

CEðfbðXðiÞÞ; 0Þ: (9)

In practice, we minimize Lb and LCR simultaneously in each
ðSGDÞ2 iteration. We first improve the neural crossing pre-
dictor using a sample of edge pairs from the graph. For sim-
plicity, we describe the training by SGD, although in
practice one can utilize any SGD variants (e.g., SGD with
momentum, ADAM [33] or RMSProp [44]) to train the pre-
dictor more efficiently.

bðnewÞ ¼ b� �0 � rLb: (10)

In the meantime we update the layout in a similar manner

XðnewÞ ¼ X � � � rLCR: (11)

Although one could improve the neural crossing predictor
by multiple steps in every ðSGDÞ2 iteration, we found little
difference when varying the number of steps. Therefore, we
only take one step to improve the neural crossing predictor
in every ðSGDÞ2 iteration. As with other criteria, we ran-
domly draw mini-batches (by default, of size m ¼ 128) and
iterate through all edge pairs over the course of the SGD
iterations.

When a graph layout does not have many crossings (e.g.,
a stress-minimized layout of a near-planar graph), this sam-
pling strategy is not efficient. In that case, we use an efficient
algorithm (Bentley-Ottmann [5]) to find all crossing edges in
a graph, and sample a mini-batch of crossings. Since finding
all crossings can be slow for large graphs, we only do this
once every few iterations and reuse the finding across a few
iterations. Specifically, when we draw mini-batches from
the pool of all crossings, we recompute all crossings again
once the pool is drained. To evaluate the quality we simply
count the number of crossings.

4.5 Crossing Angle Maximization

When edge crossings are unavoidable, the graph drawing can
still be easier to read when edges cross at angles close to 90
degrees [48]. Heuristics such as those by Demel et al. [13] and
Bekos et al. [4] have been proposed and have been successful
in graph drawing challenges [14].We use an approach similar
to the force-directed algorithm given by Eades et al. [21] and
minimize the squared cosine of crossing angles

LCAM ¼
X

all crossed edge pairs ði;jÞ;ðk;lÞ2E

hXi �Xj;Xk �Xli
jXi �Xjj � jXk �Xlj
� �2

:

(12)

We evaluate quality by measuring the worst (normalized)
absolute discrepancy between each crossing angle u and the
target crossing angle (i.e., 90 degrees): QCAM ¼ maxuju �
p
2 j= p

2 . As with crossing numbers, for large graphs we sample
a subset (by default, of size m ¼ 16) of edge pairs and

consider their crossing angles if the edge pair cross each
other. Again, if there are not many crossing pairs we use an
efficient algorithm to find all crossings. When optimizing
the number of crossings and crossing angles simulta-
neously, we sample from the same pool of crossings formed
via the Bentley-Ottmann algorithm.

4.6 Aspect Ratio

Good use of drawing area is often measured by the aspect
ratio [16] of the bounding box of the drawing, with 1:1 as
the optimum. The idea here is to consider different rotations
of the current layout and try to “squarify” the correspond-
ing bounding boxes. In practice, we rely on the singular val-
ues of the matrix of node coordinates to approximate the
worst aspect ratio. Formally, assume vertex coordinates are
centered with zero mean and let X denote the collection of
(centered) vertex coordinates as rows in a matrix. Since the
coordinates are two dimensional,X has only two (non-zero)
singular values, denoted by s1 and s2 and each measures
the standard deviation of the layout along with two orthog-
onal directions. Then we approximate the aspect ratio using
the quotient of the two singular values of X and encourage
the ratio to be close to the target ratio r ¼ 1 using the cross
entropy (CE) in Eq. (8)

LAR ¼ CE
� s2

s1
; r
�
:

Note that although we only consider 1:1 ratios, the formula-
tion of cross entropy let us consider arbitrary ratios. During
mini-batch SGD, we simply sample a subset of nodes (by
default, of size m ¼ 128) and use the singular values of the
matrix formed by the subset to optimize the aspect ratio.

Finally, we evaluate the drawing quality by measuring
the worst aspect ratio on a finite set of rotations. The quality
score ranges from 0 to 1. In our case, 1 is optimal and the
minimal ratio among different rotations is the worst: QAR ¼
min

u2f2pkN ; for k¼0;...ðN�1Þg
minðwu ;huÞ
maxðwu ;huÞ , where N is the number of

rotations sampled (e.g., N ¼ 7), and wu, hu are the width
and height of the bounding box when rotating the drawing
around its center by an angle u.

4.7 Angular Resolution

Distributing edges adjacent to a node makes it easier to per-
ceive the information presented in a node-link diagram [28].
Angular resolution [28], defined as the minimum angle
between incident edges, is one way to quantify this goal.
Formally, ANR ¼ minj2Vminði;jÞ;ðj;kÞ2E’ijk, where ’ijk is the
angle formed by between edges ði; jÞ and ðj; kÞ. Note that
for any given graph, an upper bound of this quantity is 2p

dmax

where dmax is the maximum degree of nodes in the graph.
We use this upper bound to normalize the quality measure
to [0,1], i.e., QANR ¼ ANR

2p=dmax
. To achieve a better drawing

quality via gradient descent, we define the angular energy
of an angle ’ to be e�s�’, where s is a constant controlling
the sensitivity of angular energy with respect to the angle
(by default s ¼ 1), and minimize the total angular energy
over all incident edges

LANR ¼
X

ði;jÞ;ðj;kÞ2E
e�s�’ijk : (13)

AHMED ETAL.: MULTICRITERIA SCALABLE GRAPH DRAWING VIA STOCHASTIC GRADIENT DESCENT, ðSGDÞ2 2393

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

When the graph is large, it is expensive to compute the
energy of all pairs of incident edges. Therefore, in ðSGDÞ2
we randomly sample a minibatch of pairs of incident edges
(by default, of sizem ¼ 128) and minimize the energy of the
sample accordingly.

4.8 Node Resolution

Good node resolution is associated with the ability to distin-
guish different nodes by preventing nodes from occluding each
other. Node resolution is typically defined as the minimum
euclidean distance between two nodes in the drawing [41].
However, in order to align with the units in other objectives
such as stress, we normalize the minimum euclidean distance
with respect to a reference value. Hencewe define the node res-
olution to be the ratio between the shortest and longest distan-
ces between pairs of nodes in the drawing, VR ¼ mini6¼jjjXi�Xjjj

r�dmax
,

where dmax ¼ maxk;ljjXk �Xljj. To achieve a certain target res-
olution r 2 ½0; 1� byminimizing a loss function,weminimize

LVR ¼
X

i;j2V;i6¼j
max

0;

1� jjXi �Xjjj

r � dmax

!2!
: (14)

In practice, we set the target resolution to be r ¼ 1ffiffiffiffiffi
jV j
p , where

jV j is the number of nodes in the graph. In this way, an opti-
mal drawing will distribute nodes uniformly in the drawing
area. Each term in the summation vanishes when the dis-
tance between two nodes meets the required resolution r,
otherwise it is greater than zero. In the evaluation, we
report, as a quality measure, the ratio between the actual
and target resolution and cap its value between 0 (worst)

and 1 (best). QVR ¼ minð1:0;mini;jjjXi�Xjjj
r�dmax

Þ
For large graphs, we sample a subset of nodes (by

default, of size m ¼ 256) and compute the approximate loss
of node resolution on the sample.

4.9 Gabriel Graph Property

A graph is a Gabriel graph if it can be drawn in such a way
that any disk formed by using an edge in the graph as its
diameter contains no other nodes. Not all graphs are Gabriel
graphs, but drawing a graph so that as many of these edge-
based disks are empty of other nodes has been associated
with good readability [20]. This property can be enforced by
a repulsive force around the midpoints of edges. Formally,
we establish a repulsive field with radius rij equal to half of
the edge length, around the midpoint cij of each edge ði; jÞ 2
E, and we minimize the total potential energy

LGA ¼
X

ði;jÞ2E;k2V nfi;jg
maxð0; rij � jXk � cijjÞ 2; (15)

where cij ¼ XiþXj

2 and rij ¼ jXi�Xjj
2 . We use the (normalized)

minimum distance from nodes to centers to characterize the
quality of a drawing with respect to Gabriel graph property:

QGA ¼ minð1;minði;jÞ2E;k2V
jXk�cijj

rij
Þ.

For large graphs, we sample a mini-batch of node-edge
pairs (by default, of size m ¼ 64) and compute the approxi-
mate loss from the sample.

Algorithm 2. Update Coordinates Without Quality
Decline

Function SafeUpdate(Xprev;Xnew;G;Qq):
X Xprev

q0 QqðX;GÞ
for each node u 2 V do
X½u� Xnew½u�
qtmp QqðXÞ
if QualityDeclines(q0; qtmp) then
X½u� Xprev½u�

return X

4.10 Optimizing Layouts Without Quality Decline

Many optimization criteria (e.g., stress minimization) tend
to reduce edge crossings but cannot guarantee a crossing-
free drawing even when the graph is planar. One of the rea-
sons for the popularity of stress-based layout methods is
that they capture the underlying graph topology well. On
the other hand, algorithms that are guaranteed to produce
planar drawing (for planar graphs) are well known to dis-
tort the graph topology.

Our crossing minimization optimization is a soft con-
straint and does not guarantee a planar drawing when
graph is planar. Hence, we provide an extra feature in our
system that if we start with a planar drawing we can opti-
mize any of the criteria above, while guaranteeing that no
edge crossing will arise at any time. To do this, we add one
additional test for every gradient descent step: for each pro-
posed coordinate, we first check whether moving a node to
this coordinate will introduce a crossing and if so, we do
not update the coordinate. Using this method starting with
an initial planar drawing, we can improve it, and provide a
layout that is also planar and preserves the topology; see
Fig. 3. This technique can be useful in other force-directed
algorithms that do not guarantee crossing-free drawing
when the initial layout is without crossings [23].

We can generalize this idea for any graphs while opti-
mizing any criterion. In the above scenario, we maintained
the number of crossings of the layouts equal to zero since
we started with a planar layout. If the graph is non-planar
then we can update the coordinates in a similar way and the
number of crossings in the progressive layouts will be
decreasing. Similarly, we can consider other criteria, for
example, the edge uniformity loss to decrease in the pro-
gressive layouts. If we are optimizing another criterion, for
example, stress, there is no guarantee that edge uniformity
will improve; see Fig. 4. The general algorithm for safely
update the layout with respect to any quality measure is
described in Algorithm 2. Note that Algorithm 2 is applied
in each SGD iteration of Algorithm 1. Furthermore, it goes

Fig. 3. Optimizing Planar Graphs: (a) An initial layout without crossings,
(b) A layout after optimizing stress while maintaining planarity.

2394 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 6, JUNE 2022

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

through all nodes in the graph and the quality measure is
evaluated every time an intermediate layout is generated by
a single node update. Hence, this approach does not scale
well to large graphs when the quality measure requires
high computational overhead.

5 EXPERIMENTAL EVALUATION

In this section, we assess the effectiveness and limitations of
our approach. Since multiple criteria are not necessarily
compatible with each other during optimization, we first
identify all compatible pairs of criteria. After identifying all
compatible pairs, we hand-craft weight schedules to opti-
mize multiple criteria using ðSGDÞ2 and compare our lay-
outs from multicriteria optimization with classic drawing
algorithms. Finally, we analyze the runtime behavior and
the impact of sample size in our approach.

5.1 Interactions Between Criteria

We test the interactions between every pair of criteria using
two regular graphs, a 6x10 grid (60 nodes) and a balanced
binary tree with depth 5 (63 nodes). Before dealing with
pairs of criteria, we first test every single criterion to estab-
lish a lower bound of the quality measure. In this section,
we invert some quality measures (e.g., neighborhood pres-
ervation, and angular resolution) such that lower values are
always better in all quality measures. Then, we optimize
every pair of criteria, monitor the quality measures of the
pair over the course of training, and compare them with the

corresponding lower bound found when optimizing each
single criterion.

As expected, we observe that all but one criterion, when
optimized on their own, improve or maintain high quality
during improvement iterations. The exception is crossing
angle maximization, with a quality measure that depends
on the worst crossing in the graph. The initial random lay-
out usually has many crossings and maximizing crossing
angles on its own (e.g., without also minimizing the number
of crossings) does not necessarily lead to high-quality
results. Later we will see that optimizing other criteria
together with crossing angle maximization helps. Further,
when weight factors can be adjusted with a schedule, we
recommend assigning positive weight to crossing angle
maximization only at the later iterations.

When optimizing pairs of aesthetic criteria, we see three
types of pairs: compatible pairs, better pairs and worse
pairs. Fig. 5 shows an example for each of the three cases.
Most pairs are compatible pairs. For example, stress mini-
mization is compatible with most other drawing aesthetics,
as the qualities of both optimization goals can improve over
time and they both achieve their lower bounds. Some pairs
of criteria even do better together than alone. For example,
crossing angle maximization together with stress minimiza-
tion leads to better results than just crossing angle maximi-
zation, confirming the results of Huang et al. [28]. A few
pairs of criteria are not fully compatible, leading to worse
joint optimization. For example, when simultaneously opti-
mizing vertex resolution and angular resolution, neither
value can reach their corresponding lower bound.

Out of all 36 pairs, we find 20 compatible pairs, 9 better
pairs and 7 worse pairs for the 6� 10 grid; for the binary
tree with depth 5, we find 13 compatible pairs, 9 better pairs
and 14 worse pairs. Comparing the compatibility between
the two graphs, we note that all worse pairs in the grid are
also worse pairs in the tree, and most of the better pairs and
compatible pairs are shared between two graphs. See the
supplementary materials, available online, for the drawings
and quality curves of all criteria pairs and singletons. It is
worth noting that the compatibility of criteria also depends
on the specific choice of weight factors. For example, having
a dominating criterion by assigning a large weight to it can

Fig. 4. (a) The edge uniformity loss is increasing when we optimize the
stress of a nested triangular graph, (b) The loss is decreasing when we
update the coordinates carefully.

Fig. 5. We observed three types of interactions between criteria pairs: (a) compatible pairs can be optimized together; (b) better pairs do even better
together than alone; (c) worse pairs are not fully compatible with each other. In the second row, stress is normalized to [0,1] based on its maximum
value in each chart; angular resolution and vertex resolution are inverted Q 7! 1�Q so that for all criteria smaller values are always better and the
worst value is always 1.

AHMED ETAL.: MULTICRITERIA SCALABLE GRAPH DRAWING VIA STOCHASTIC GRADIENT DESCENT, ðSGDÞ2 2395

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

deteriorate the quality of the other. In this analysis, we
assign a fixed weight factor (and sample size) to each crite-
rion so that every pair yields a reasonable outcome.

5.2 Quality Analysis

We compare layouts obtained with ðSGDÞ2 when optimiz-
ing different aesthetic goals to layouts obtained by neato [22]
and sfdp [22], which are classic implementations of stress-
majorization and scalable force-directed methods. Fig. 6
shows the layouts along with information about each graph.
The graphs are chosen to represent a variety of classes such
as trees, grids, regular shapes, and to also include real-
world examples. In particular, the last four graphs in Fig. 6
are from the Sparse Matrix Collection [12] and are also used
to evaluate stress minimization via SGD in [50]; see the sup-
plementary materials for more layouts, available online.

Next, we evaluate each layout on 9 readability criteria:
stress (ST), node resolution (VR), ideal edge lengths (IL),
neighbor preservation (NP), crossings (CR), crossing angle
(CA), angular resolution (ANR), aspect ratio (AR), and Gabriel
graph property (GB). Our experiment utilizes 8 graphs and
layouts computed by neato, sfdp, and 7 runs of ðSGDÞ2
using various combinations of objectives. Tables 1 and 2
summarize 2 of the 9 quality measures for the layouts in
Fig. 6. More combinations of criteria used for ðSGDÞ2 and
the remaining quality measures are included in the supple-
mentary materials, available online. The quality measure
for crossings is the actual number of edge crossings in the

layout. For all other criteria, we use the formulas defined in
Section 4. All quality measures produce values greater than
or equal to zero: the lower the value the better the measure.
In each column, the best score is bold. When optimizing via
multicriteria ðSGDÞ2, we choose compatible pairs, better
pairs, or compatible triples among the 9 criteria. When opti-
mizing incompatible pairs or triples, we fix the number of
iterations in ðSGDÞ2, select and prioritize one criterion (or
compatible pair) in an early stage of the training and post-
pone the others to the later stage. For example, when simul-
taneously optimizing ideal edge length (IL), neighborhood
preservation (NP) and vertex resolution (VR), we assign
zero weight to VR and positive weights to IL and NP in the
first half of the iterations. Then we gradually decrease the
weights of IL and NP to 0 (by a smooth function that inter-
polates the highest and lowest weights) and increase the
weight of VR in the second half of the iterations with a simi-
lar smooth growth function. At each stage, we interpolate
the two weight levels of each criterion wstart and wstop

between the start and stopping iterations tstart to tstop by a
scaled and translated smooth-step function wðtÞ

wðtÞ ¼ ðwstop � wstartÞ � f

t� tstart
tstop � tstart

!
þ wstart; (16)

where fðxÞ ¼ 3x2 � 2x3 for x 2 ½0; 1� is typically called the
(standard) smooth-step function.

The experimental results confirm that ðSGDÞ2 yields bet-
ter or comparable results for most quality measures and on

Fig. 6. Distinctive layouts of 8 graphs obtained with neato, sfdp and ðSGDÞ2 optimizing selected combinations of the 9 criteria: stress (ST), ideal edge
length (IL), neighborhood preservation (NP), crossings (CR), crossing angle maximization (CAM), aspect ratio (AR), angular resolution (ANR), vertex
resolution (VR), and Gabriel (GB). The supplementary materials, available online, include more layouts for more such combinations.

2396 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 6, JUNE 2022

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

most graphs. We do note that some criteria (e.g., CR and
GB) are harder to optimize on real-world large graphs;
improving the performance on such tough criteria is natural
direction for future work.

5.3 Analysis of Sample Size

Here we analyze the impact of sample size on the conver-
gence rate of ðSGDÞ2. In deep learning, models trained with
different sample sizes can converge to different types of
minima; e.g., smaller samples tend to lead to a better gener-
alization[32]. In ðSGDÞ2, smaller samples usually results in
faster run time per iteration but does not necessarily yield
faster per-second convergence. As described in Section 4, we
use different sampling strategies and sample sizes for each
readability criterion. Consider, for example, stress minimi-
zation and how optimal sample size closely depends on
other factors in the optimization. In other words, there is no
“one size fits all” sample size. In particular, for any given
graph, the optimal sample size depends on the learning rate
of the SGD algorithm. Fig. 7 shows the quality (i.e., stress)
of layouts for a binary tree with 9 levels (1,023 nodes) as a
function of total run time of the ðSGDÞ2 algorithm. In each
plot, we visualize the convergence of the algorithm under a
fixed learning rate with various sample sizes. When the
learning rate is small we observe that smaller sample sizes

(e.g., 4 or 8) converge faster, while medium sample sizes
(e.g., 16 or 32) can benefit from larger learning rates and
converge faster than any cases that use a smaller learning
rate. Moreover, when using a large learning rate, the train-
ing with a smaller sample size becomes less stable (due to
the high variance of gradients). We illustrate this observa-
tion on the binary tree with 9 levels (1,023 nodes). This
impact of the interplay between sample size and learning
rate on convergence rate is less obvious in variants of the
SGD algorithm. When replacing SGD with some of its var-
iants (e.g., AdaDelta [49], RMSProp [44] or ADAM [33]) that
takes adaptive step size based on the gradient of previous
steps, the convergence rate of stress minimization becomes
less sensitive to sample size or learning rate.

5.4 Analysis of Run Time

To test the scalability of our method, we test the runtime of
our method on larger graphs. We tested our code on a Mac-
Book Pro with a 2.9 GHz Dual-Core Intel Core i5 CPU and
16GB of memory. We picked two families of graphs: bal-
anced binary trees and 2D grids, and measured the conver-
gence time as the size of the graph grows. For balanced
binary trees, we start with a tree with 4 levels (15 nodes)
and gradually increase the depth to 12 levels (4095 nodes).
For grids, we start with a grid of size 16� 2 (32 nodes) and

TABLE 1
Quality Measures of Neighborhood Preservation

methods \ graphs dodecahedron tree-2-6 grid-12-24 spx-teaser 494-bus grid1 dwt-307 dwt-1005

neato 0.723 0.718 0.000 0.474 0.846 0.558 0.699 0.545
sfdp 0.571 0.592 0.063 0.533 0.750 0.651 0.584 0.653
ðSGDÞ2 (NP) 0.400 0.225 0.276 0.487 0.659 0.480 0.428 0.516
ðSGDÞ2 (ST+AR) 0.500 0.727 0.418 0.492 0.842 0.560 0.757 0.584
ðSGDÞ2 (ST+IL+ANR) 0.500 0.749 0.000 0.539 0.823 0.622 0.705 0.520

TABLE 2
Quality Measures of Aspect Ratio

methods \ graphs dodecahedron tree-2-6 grid-12-24 spx-teaser 494-bus grid1 dwt-307 dwt-1005

neato 0.062 0.145 0.483 0.010 0.143 0.314 0.065 0.012
sfdp 0.068 0.084 0.536 0.010 0.192 0.452 0.095 0.018
ðSGDÞ2 (NP) 0.047 0.124 0.481 0.176 0.162 0.049 0.109 0.282
ðSGDÞ2 (ST+AR) 0.047 0.017 0.048 0.008 0.118 0.154 0.043 0.057
ðSGDÞ2 (ST+IL+ANR) 0.048 0.197 0.508 0.045 0.178 0.269 0.058 0.084

Fig. 7. Optimal sample size for stress minimization depends on the learning rate. (two figures on the left) a smaller sample size (e.g., 4 or 8) gives
faster convergence when the learning rate is relatively small; (two figures on the right) a medium sample size (e.g., 16 or 32) benefits from larger
learning rate when training with smaller sample sizes becomes less stable and may give even faster convergence rate than using smaller sample
size in the low-learning-rate cases.

AHMED ETAL.: MULTICRITERIA SCALABLE GRAPH DRAWING VIA STOCHASTIC GRADIENT DESCENT, ðSGDÞ2 2397

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

double the number of columns until we have a grid of size
16� 256 (4096 nodes). For each criterion, we randomly ini-
tialize nodes in the layout from standard Gaussian, opti-
mize the layout with respect to only one criterion using
SGD and stop as soon as the layout converges.

Fig. 8 summarizes the runtime analysis for the two fami-
lies of graphs (trees and grids) for all 9 criteria. Note that we
are using log-log plots (log scales for both the x and y axes).
This experimental analysis shows linear or near-linear time
for the underlying algorithms. This is shown as steeper
slopes in the log-log plots.

6 CONCLUSION, LIMITATIONS, FUTURE WORK

We introduced the graph drawing framework, ðSGDÞ2, for
multicriteria graph drawing and showed how this approach
can be used to optimize different graph drawing criteria
and combinations thereof. We showed that multiple read-
ability criteria can be optimized jointly via SGD if each of
them can be expressed as a differentiable function. In cases
that some readability criteria are not naturally differentiable
(e.g., neighborhood preservation or crossing number), one
can find differentiable surrogate functions and optimize the
criteria indirectly. We measured the quality of generated
layouts and analyzed interactions between criteria, the run-
time behavior, and the impact of sample sizes; all of which
provide evidence of the effectiveness of ðSGDÞ2.

Support for More Constraint Types. Although ðSGDÞ2 is a
flexible framework that optimizes a wide range of criteria,
we did not consider constraints where node coordinates are
related by some inequalities (i.e., hard constraints). Simi-
larly, in the ðSGDÞ2 framework we do not naturally support
shape-based drawing constraints such as those in [17], [46].
Incorporating a wider range of constraint types and study-
ing the interactions between them in the multi-objective set-
ting are natural directions for future work.

Weight Balancing for Multicriteria Objectives. The ðSGDÞ2
framework is flexible and natural directions for future work
include adding further drawing criteria and better ways to
combine them. An appropriate balance between weights for
the different criteria can be crucial as more and more criteria
are incorporated into the optimization. Currently, we manu-
ally choose appropriate weight schedules based on specific
combinations of criteria. In the future, we would like to
explore ways to automatically design and balance weight
schedules in multicriteria graph drawing.

Applications of Different Techniques and Frameworks.
Besides gradient descent, there are other optimization tech-
niques that could be deployed to multi-objective prob-
lems [37]. Similarly, while we used Tensorflow.js and

PyTorch to implement ðSGDÞ2, there are other frameworks
(e.g., pymoo [7]) with support for multi-objective optimiza-
tion. The application of different optimization techniques
and frameworks to multicriteria network visualization
seems like an interesting direction for future work.

Scalability for Larger Graphs. Currently, not all criteria are
fully optimized for speed. Alternative objective functions,
for example tsNET by Kruiger et al. [34] for neighborhood
preservation, could be considered in the ðSGDÞ2 framework
as further runtime scalability and quality improvements are
needed for graphs with millions of nodes and edges. One
possible direction for improving scalability is to employ a
multi-level algorithmic framework.

ACKNOWLEDGMENTS

This is an extended version of the work that appeared in
GD’20 [2].

REFERENCES

[1] B. M. �Abrego, S. Fern�andez-Merchant, and G. Salazar, “The recti-
linear crossing number of kn: Closing in (or are we?),” in Proc.
30th Essays Geometric Graph Theory, 2013, pp. 5–18.

[2] R. Ahmed, F. D. Luca, S. Devkota, S. Kobourov, and M. Li, “Graph
drawing via gradient descent, ðGDÞ2,” in Proc. 28th Int. Symp.
Graph Drawing Netw. Vis., 2020, pp. 3–17.

[3] R. Bassily, M. Belkin, and S. Ma, “On exponential convergence of
SGD in non-convex over-parametrized learning,” 2018, arXiv:
1811.02564.

[4] M. A. Bekos et al., “A heuristic approach towards drawings of
graphs with high crossing resolution,” in Proc. 26th Int. Symp.
Graph Drawing Netw. Vis., 2018, pp. 271–285.

[5] J. L. Bentley and T. A. Ottmann, “Algorithms for reporting and
counting geometric intersections,” IEEE Comput. Archit. Lett., vol.
28, no. 09, pp. 643–647, Sep. 1979.

[6] M. Berman, A. Rannen Triki, and M. B. Blaschko, “The lov�asz-
softmax loss: A tractable surrogate for the optimization of the
intersection-over-union measure in neural networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4413–4421.

[7] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in
python,” IEEE Access, vol. 8, pp. 89 497–89 509, 2020.

[8] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven doc-
uments,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12, pp.
2301–2309, Dec. 2011.

[9] C. Buchheim, M. Chimani, C. Gutwenger, M. J€unger, and P.
Mutzel, “Crossings and planarization,” in Handbook of Graph
Drawing and Visualization, Boca Raton, FL, USA: CRC Press,
2013, pp. 43–85.

[10] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io
[11] R. Davidson and D. Harel, “Drawing graphs nicely using simu-

lated annealing,” ACM Trans. Graph., vol. 15, no. 4, pp. 301–331,
1996.

[12] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, 2011.

[13] A. Demel, D. D€urrschnabel, T. Mchedlidze, M. Radermacher, and
L. Wulf, “A greedy heuristic for crossing-angle maximization,” in
Proc. 26th Int. Symp. Graph Drawing Netw. Vis., 2018, pp. 286–299.

[14] W. Devanny, P. Kindermann, M. L€offler, and I. Rutter, “Graph
drawing contest report,” in Proc. 25th Int. Symp. Graph Drawing
Netw. Vis., 2017, pp. 575–582.

[15] S. Devkota, R. Ahmed, F. De Luca, K. E. Isaacs, and S. Kobourov,
“Stress-plus-x (SPX) graph layout,” in Proc. 27th Int. Symp. Graph
Drawing Netw. Vis., 2019, pp. 291–304.

[16] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov, “Balanced
aspect ratio trees and their use for drawing very large graphs,” in
Proc. 6th Int. Symp. Graph Drawing, 1998, pp. 111–124.

[17] T. Dwyer, “Scalable, versatile and simple constrained graph
layout,” Comput. Graph. Forum, vol. 28, pp. 991–998, 2009.

[18] T. Dwyer, Y. Koren, and K. Marriott, “Constrained graph layout
by stress majorization and gradient projection,” Discrete Math.,
vol. 309, no. 7, pp. 1895–1908, 2009.

Fig. 8. Runtime of balanced trees (top) and 2D grids (bottom). The plots
have log scales on both x and y axes.

2398 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 6, JUNE 2022

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

https://keras.io

[19] T. Dwyer and G. Robertson, “Layout with circular and other non-
linear constraints using procrustes projection,” in Proc. Int. Symp.
Graph Drawing, 2009, pp. 393–404.

[20] P. Eades, S.-H. Hong, K. Klein, and A. Nguyen, “Shape-based
quality metrics for large graph visualization,” in Proc. 23rd Int.
Conf. Graph Drawing Netw. Vis., 2015, pp. 502–514.

[21] P. Eades, W. Huang, and S.-H. Hong, “A force-directed method
for large crossing angle graph drawing,” 2010, arXiv:1012.4559.

[22] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz–open source graph drawing tools,” in Proc. 9th Int.
Symp. Graph Drawing, 2001, pp. 483–484.

[23] J. J. Fowler and S. G. Kobourov, “Planar preprocessing for spring
embedders,” in Proc. Int. Symp. Graph Drawing, 2012, pp. 388–399.

[24] E. R. Gansner, Y. Koren, and S. North, “Graph drawing by stress
majorization,” in Proc. Int. Symp. GraphDrawing, 2004, pp. 239–250.

[25] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and
P. Richt�arik, “SGD: General analysis and improved rates,” in Proc.
Int. Conf. Mach. Learn., 2019, pp. 5200–5209.

[26] A. Griewank and A. Walther, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation, vol. 105. Philadelphia, PA,
USA: SIAM, 2008.

[27] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proc. 7th
Python Sci. Conf., 2008, pp. 11–15.

[28] W. Huang, P. Eades, S.-H. Hong, and C.-C. Lin, “Improving multi-
ple aesthetics produces better graph drawings,” J. Vis. Lang. Com-
put., vol. 24, no. 4, pp. 262–272, 2013.

[29] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput.
Sci. Eng., vol. 9, no. 3, pp. 90–95, 2007.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int.
Conf. Mach. Learn., 2015, pp. 448–456.

[31] T. Kamada and S. Kawai, “An algorithm for drawing general
undirected graphs,” Inf. Process. Lett., vol. 31, no. 1, pp. 7–15, 1989.

[32] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T.
P. Tang, “On large-batch training for deep learning: Generaliza-
tion gap and sharp minima,” 2016, arXiv:1609.04836.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980.

[34] J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov,
and A. C. Telea, “Graph layouts by t-SNE,” Comput. Graph. Forum,
vol. 36, no. 3, pp. 283–294, 2017.

[35] J. B. Kruskal, “Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp.
1–27, 1964.

[36] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing
the loss landscape of neural nets,” 2017, arXiv: 1712.09913.

[37] T. Orosz et al., “Robust design optimization and emerging tech-
nologies for electrical machines: Challenges and open problems,”
Appl. Sci., vol. 10, no. 19, 2020, Art. no. 6653.

[38] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 8024–8035.

[39] H. Purchase, “Which aesthetic has the greatest effect onhumanunder-
standing?,” inProc. 5th Int. Symp. GraphDrawing, 1997, pp. 248–261.

[40] M. Radermacher, K. Reichard, I. Rutter, and D. Wagner, “A geo-
metric heuristic for rectilinear crossing minimization,” in Proc.
20th Workshop Algorithm Eng. Exp., 2018, pp. 129–138.

[41] A. Schulz, “Drawing 3-polytopes with good vertex resolution,”
J. Graph Algorithms Appl., vol. 15, no. 1, pp. 33–52, 2011.

[42] A. Shabbeer, C. Ozcaglar, M. Gonzalez, and K. P. Bennett, “Optimal
embedding of heterogeneous graph data with edge crossing con-
straints,” inProc. Int. Conf. Neural Inf. Process. Syst.WorkshopChallenges
Data Vis., 2010, p. 1.

[43] D. Smilkov et al., “Tensorflow.js: Machine learning for the web
and beyond,” in Proc. Mach. Learn. Syst., 2019, pp. 309–321.

[44] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude,” COUR-
SERA: Neural Networks for Machine Learning, 2012.

[45] M. Tiezzi, G. Ciravegna, and M. Gori, “Graph neural networks for
graph drawing,” 2021, arXiv:2109.10061.

[46] Y. Wang et al., “Revisiting stress majorization as a unified frame-
work for interactive constrained graph visualization,” IEEE Trans.
Vis. Comput. Graphics, vol. 24, no. 1, pp. 489–499, Jan. 2018.

[47] Y. Wang et al., “Structure-aware fisheye views for efficient large
graph exploration,” IEEE Trans. Vis. Computer Graphics, vol. 25,
no. 1, pp. 566–575, 2018.

[48] C.Ware,H. Purchase, L. Colpoys, andM.McGill, “Cognitivemeas-
urements of graph aesthetics,” Inf. Vis., vol. 1, no. 2, pp. 103–110,
2002.

[49] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,”
2012, arXiv:1212.5701.

[50] J. X. Zheng, S. Pawar, and D. F. Goodman, “Graph drawing by
stochastic gradient descent,” IEEE Trans. Vis. Comput. Graphics,
vol. 25, no. 9, pp. 2738–2748, Sep. 2019.

Reyan Ahmed received the BS and MS degrees in computer science
and engineering from the Bangladesh University of Engineering and
Technology, Bangladesh. He is currently working toward the PhD degree
with the Department of Computer Science, University of Arizona, Tuc-
son, Arizona. His research interests include graph algorithms, network
visualization, and data science.

Felice De Luca received theMS and PhD degrees in computer and auto-
mation engineering from the University of Perugia, Italy. He is currently a
postdoctoral researcher with the Department of Computer Science, Uni-
versity of Arizona, Tucson, Arizona. His research interests include graph
drawing, information visualization, algorithm engineering, and computa-
tional geometry.

Sabin Devkota received the BE degree in electronics and communica-
tion engineering from Tribhuvan University, Nepal. He is currently work-
ing toward the PhD degree with the Department of Computer Science,
University of Arizona, Tucson, Arizona. His research is in data visualiza-
tion.

Stephen Kobourov received the BS degree in mathematics and com-
puter science from Dartmouth College, Hanover, New Hampshire, and
the MS and PhD degrees from Johns Hopkins University, Baltimore,
Maryland. He is currently a professor with the Department of Computer
Science, University of Arizona, Tucson, Arizona. His research interests
include information visualisation, graph theory, and geometric algorithms.

Mingwei Li received the BE degree in electronics engineering from the
Hong Kong University of Science and Technology, Hong Kong. He is cur-
rently working toward the PhD degree with the Department of Computer
Science, University of Arizona, Tucson, Arizona. His research interests
include data visualization and machine learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

AHMED ETAL.: MULTICRITERIA SCALABLE GRAPH DRAWING VIA STOCHASTIC GRADIENT DESCENT, ðSGDÞ2 2399

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 21:00:00 UTC from IEEE Xplore. Restrictions apply.

