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STRATIFIED SURGERY
AND K-THEORY INVARIANTS

OF THE SIGNATURE OPERATOR

by Pierre ALBIN and Paolo PIAZZA

Abstract. – In the works of Higson-Roe the fundamental role of the signature as a homotopy and
bordism invariant for oriented manifolds is the starting point for an investigation of the relationships
between analytic and topological invariants of smooth orientable manifolds. The signature and related
K-theory invariants, primary and secondary, are used to define a natural transformation between the
(Browder-Novikov-Sullivan-Wall) surgery exact sequence and a long exact sequence of C⇤-algebra
K-theory groups.

In recent years the primary signature invariants have been extended from closed oriented manifolds
to a class of stratified spaces known as L-spaces or Cheeger spaces. In this paper we show that secondary
invariants, such as the ⇢-class, also extend from closed manifolds to Cheeger spaces. We give a rigorous
account of a surgery exact sequence for stratified spaces originally introduced by Browder-Quinn
and obtain a natural transformation analogous to that of Higson-Roe. We also discuss geometric
applications.

RÈsumÈ. – Dans les travaux de Higson-Roe le rôle fondamental de la signature comme invariant
par homotopie et par bordisme de variétés orientées est le point de départ des recherches sur les liens
entre les invariants analytiques et topologiques des variétés régulières orientées. La signature et certains
invariants de K-théorie associés, primaires et secondaires, définissent une transformation naturelle
entre la suite exacte de chirurgie de Browder-Novikov-Sullivan-Wall et une suite exacte longue des
groupes de K-théorie pour des algèbres C⇤.

Dans les dernières années l’étude des invariants de signature primaires des variétés orientées a été
étendue à une classe d’espaces stratifiés connue sous le nom de L-espaces ou espaces de Cheeger. Dans
ce papier, nous démontrons que les invariants secondaires, tels que la classe ⇢, peuvent être étendus aux
espaces de Cheeger. Nous traitons rigoureusement une suite exacte de chirurgie pour espaces stratifiés
introduite originalement par Browder-Quinn et nous obtenons une transformation naturelle analogue
à celle de Higson-Roe. Nous discutons aussi des applications géométriques.
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1. Introduction

The discovery by Milnor of smooth manifolds that are homemorphic to S7 but not diVeo-
morphic to it, a milestone of modern mathematics, gave rise to the development of methods
for classifying smooth manifolds within a given homotopy class. (The undecidability of the
word problem makes an unrestricted classification impossible.) The fundamental object to be
studied in this context is the structure set S.X/ associated to a smooth compact manifold X .

The set S.X/ is defined as the quotient of the set of triples .M
h

�! X/, with M a smooth

compact manifold and h an homotopy equivalence, modulo h-cobordism: .M0

h0
�! X/ is

h-cobordant to .M1

h1
�! X/ if there exists a bordismF W W ! X⇥Œ0; 1çwith @W D M0tM1,

F restricting to fj onMj and F a homotopy equivalence. Notice that S.X/ is a pointed set,

with ŒX
Id
�! X ç as a distinguished point. It is in general very diYcult to compute explicitly

the structure set associated to X , a notable exception being the structure set of the spheres,
S.Sn/. In this particular case, S.Sn/ can be identified with‚n, the Kervaire-Milnor group of
h-cobordism classes of oriented homotopy n-spheres [33, 51]. ‚n is a finite Abelian group,
of cardinality 1 for n  6, and, for example, cardinality 28 for n D 7. (The structure set of
other simple spaces such as complex projective spaces, tori, and lens spaces are also known
[57, Part 3].) In general there is no group structure on S.X/ (1).

Even if an explicit computation is often out of reach, one would like to determine, for
example, the cardinality of S.X/, in particular whether it is greater than one, finite or infinite.
A smooth manifold with j S.X/j D 1 is said to be rigid and so S.X/ is a measure of the non-
rigidity of X:

A powerful method to get information about the structure set is provided by the surgery
exact sequence of Browder, Novikov, Sullivan, and Wall which, roughly speaking, relates
the structure set S.X/ with the set N.X/ of degree one maps preserving normal bundle
information, known as ‘normal invariants’, (also with a bordism equivalence relation) and
an algebraically definedL-group depending only on Ä D ⇡1X; the fundamental group ofX;

(1.1) � � �
// LmC1.ZÄ/ // S.X/ // N.X/ // Lm.ZÄ/ :

with m D dimM . (See below and, e.g., [57, 51, 36, 19] for more on the surgery exact
sequence.)

In a series of papers Higson and Roe [27, 28, 29] established the remarkable result that
there are natural maps out of the surgery sequence (1.1), into a long exact sequence of
K-theory groups of certain C ⇤-algebras and that these maps make the resulting diagram
commute. TheC ⇤-algebras in question areC ⇤.XÄ/Ä andD⇤.XÄ/Ä , obtained as the closures
of theÄ-equivariant operators on the universal coverXÄ ofX that satisfy a finite propagation
property and, in addition, are respectively ‘locally compact’ or ‘pseudolocal’. The former
C ⇤-algebra is an ideal in the latter so we have a short exact sequence

0 ! C ⇤.XÄ/Ä ! D⇤.XÄ/Ä ! D⇤.XÄ/Ä=C ⇤.XÄ/Ä ! 0;

(1) The analogous set in the topological category, Stop
.X/,X a topological manifold, can be given a group structure

through the Siebenmann periodicity theorem, see for example [15].
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which gives rise to a long exact sequence in K-theory known as the analytic surgery sequence
of Higson and Roe. Making use of the canonical isomorphisms

K⇤C1.D⇤.XÄ/Ä=C ⇤.XÄ/Ä/ D K⇤.X/ and K⇤.C ⇤.XÄ/Ä/ D K⇤.C ⇤
r
Ä/;

with theK-homology of X and the K-theory of the reduced C ⇤-algebra of Ä; the long exact
sequence reads

(1.2) � � � ! KmC1.C ⇤
r
Ä/ ! KmC1.D⇤.XÄ/Ä/ ! Km.X/ ! Km.C

⇤
r
Ä/ ! � � � :

The result of Higson and Roe is thus a commutative diagram of long exact sequences

(1.3) LmC1.ZÄ/ //

�

✏✏

S.X/ //

⇢

✏✏

N.X/ //

ˇ

✏✏

Lm.ZÄ/

�

✏✏

KmC1.C ⇤
r
Ä/Œ1

2
ç // KmC1.D⇤.XÄ/Ä/Œ12 ç

// Km.X/Œ
1

2
ç // Km.C

⇤
r
Ä/Œ1

2
ç;

where we use the short-hand AŒ1
2
ç to indicate A ˝Z ZŒ1

2
ç whenever A is an Abelian group.

These maps were recast by the second author and Schick [46] in a more index-theoretic
light, using in a crucial way properties of the signature operator on Galois Ä-coverings. In
particular, the homomorphism � is shown to be realized by an Atiyah-Patodi-Singer index
map. The approach by Piazza and Schick also allowed for a treatment of the Stolz surgery
sequence for positive scalar curvature metrics and its mapping to the Higson-Roe surgery
sequence using the spin-Dirac operator:
(1.4)

R
spin
mC1.BÄ/ //

g

✏✏

Posspin
m
.BÄ/ //

⇢

✏✏

�
spin
m .BÄ/ //

b

✏✏

R
spin
mC1.BÄ/

g

✏✏

KmC1.C ⇤
r
Ä/Œ1

2
ç // KmC1.D⇤.EÄ/Ä/Œ1

2
ç // Km.BÄ/Œ

1

2
ç // Km.C

⇤
r
Ä/Œ1

2
ç;

see [45]. For alternative treatments see also [63, 66, 67, 68, 65]. While the vertical maps
in these diagrams are in general not known to be injective or surjective (though see [64,
Corollary 1.3] where this is related to the Baum-Connes conjecture), it is still possible to
get interesting geometric applications from the interplay between the geometric sequence
upstairs and the analytic sequence downstairs. This is true both for (1.3) and (1.4). See for
example, [29, 17, 56, 66, 61, 60, 65, 10].

In this paper we generalize (1.3) to the setting of stratified spaces.

Theorem 1.1. – Every m-dimensional, oriented, smoothly stratified Cheeger space, bX;
with fundamental group Ä, gives rise to a commutative diagram

(1.5) LBQ;dcX⇥I .
bX ⇥ I / //

IndAPS

✏✏

SBQ.bX/ //

⇢

✏✏

NBQ.bX/ //

ˇ

✏✏

LBQ;dcX .
bX/

IndAPS

✏✏

KmC1.C ⇤
r
Ä/Œ1

2
ç // KmC1.D⇤.bXÄ/Ä/Œ12 ç // Km.bX/Œ12 ç // Km.C

⇤
r
Ä/Œ1

2
ç
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between the Browder-Quinn surgery exact sequence and the Higson-Roe analytic surgery
sequence. Here I WD Œ0; 1ç and d bX , d bX⇥I are dimension functions associated to the stratifica-
tions of bX and bX ⇥ I respectively. Our result holds, in particular, if bX is a Witt space.

The group LBQ;dcX .
bX/ is the analogue of Ld .Z⇡1.bX// in the Browder-Novikov-Sullivan-

Wall surgery sequence (1.1). The subscript d bX refers to the dimension function of bX , the
function on the poset of strata that assigns to each stratum its dimension. If bX is smooth
of dimension d , bX ⌘ X , then LBQ;d .X/ D Ld .Z⇡1.X//, where on the left we now have the
dimension function that assigns to the unique (smooth) stratum X the value d D dimX . In
the general stratified case LBQ;dcX .

bX/ depends in principle on all of bX and not only on its
fundamental group.

We prove a better version of this diagram in §6.6 involving the signature operator on all
of the strata of bX and their fundamental groups, but refer the reader to the text so as not to
introduce more notation.

As a geometric application of our techniques we prove:

Corollary 1.2. – Let bX be a Cheeger space of dimension 4` � 1; ` > 1; with smooth

stratum equal to X , X
i

,�! bX . Assume that ⇡1.X/ has an element of finite order and that i⇤ W

⇡1.X/ �! ⇡1.bX/ is injective. Then

j SBQ.bX/j D 1:

The top row of (1.5) is the surgery sequence for stratified spaces of Browder-Quinn [13].
One of our contributions in this paper is a detailed treatment in §2 of the Browder-Quinn
surgery exact sequence in the setting of smoothly stratified spaces (a.k.a. Thom-Mather
stratified spaces). The original treatment in [13] is quite sparse and its generalization in
[59] uses algebraic tools applicable in its setting of homotopically stratified spaces. For our
purposes it is necessary to have geometric proofs that stay within the category of smooth
stratifications. Our treatment naturally draws heavily from these two sources.

A feature of the Browder-Quinn surgery sequence is that if bX is a Witt space [53] or a
Cheeger space [9, 2, 5] then all of the spaces that arise in the surgery sequence are also Witt
spaces, respectively Cheeger spaces. This allows us to bring to bear the analysis that we have
developed in joint work with Eric Leichtnam and Rafe Mazzeo [3, 5, 4] to define the vertical
maps in (1.5) and to show that the diagram commutes. Notice that while the vertical maps
are defined in analogy with [46], there are substantial technical diVerences, especially in the
Cheeger case, where ideal boundary conditions must be chosen.

In detail, the vertical maps out of the Browder-Quinn L-groups are Atiyah-Patodi-Singer
index classes; the map out of the normal invariants NBQ.bX/ is given in terms of the funda-
mental class, in K-homology, associated to the signature operator on a Cheeger space;
finally the rho-map is a true secondary invariant associated to a suitable perturbation of the
signature operator. In the smooth case this rho-map is directly connected with well-known
numeric rho invariants; we comment on the validity of this principle in the singular case at
the end of the paper. As already remarked, all of these constructions depend upon the defini-
tion of ideal boundary conditions; these depend, in turn, on the choice of a mezzoperversity
and a major theme in this article is the detailed analysis of the dependence of these classes
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on the choice of a mezzoperversity and the proof of the remarkable fact that our maps are
in fact all independent of the choice of a mezzoperversity.

The paper is organized as follows. In Section 2 we give a rigorous and detailed treatment
of the relevant results stated in the paper by Browder and Quinn. In Section 3 we specialize
to Cheeger spaces and give a coarse theoretic treatment of some of the results in [3, 5, 4];
in particular we define the fundamental K-homology class of a Cheeger space without
boundary and the associated index class. Finally, in the invertible case, we introduce the rho
class of an invertible perturbation of the signature operator. In Section 4 we pass to manifolds
with boundary, with a particular emphasis on the notion of Cheeger space bordism. It
is in this section that we explain the statement of the delocalized Atiyah-Patodi-Singer
index theorem on Cheeger spaces, a key tool in our analysis, and we illustrate its proof,
building on [45, 46]. In Section 5 we recall and expand results around the Hilsum-Skandalis
perturbation for the signature operator on the disjoint union of two Cheeger spaces that are
stratified homotopy equivalent. In Section 6 we finally define the vertical maps in the diagram
that maps the Browder-Quinn surgery sequence to the Higson-Roe surgery sequence; we
prove the well-definedness of these maps and that they are independent of the choice of a
mezzoperversity. We then prove the commutativity of the squares of the diagram. We end
this section by observing that it is in fact possible to consider diVerent diagrams, each one
associated to an individual closed stratum. Section 7, the last section of the paper, presents
some geometric applications of our main result, in the spirit of [17].
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Notation

Below we will occasionally use diagrams such as

.cM I @1cM; @2cM/
f

���! .bY I @1bY ; @2bY /:
This should be understood to imply that @cM D @1cM [ @2cM; @bY D @1bY [ @2bY ; also
that @1cM \ @2cM D @.@icM/ (and similarly for bY ), and that f restricts to maps

f j W @1cM �! @1bY ; f j W @2cM �! @2bY ;
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which we sometimes denote @1f; @2f; respectively. Occasionally it will be useful to decom-
pose the boundary of a space into more than two pieces, in which case similar conventions
are in eVect.

Our main object of study will be smoothly stratified spaces. As reviewed below, this will
mean Thom-Mather stratified pseudomanifolds. A bordism between two stratified spaces
will be a stratified space with boundary and a bordism between two stratified spaces with
boundary will be a stratified space with corners (as is well known, e.g., [58, §8.3], this is only
useful if restrictions are placed on part of the boundary). For a careful discussion of these
concepts we refer the reader to [55] (see also [1, §6]). While we do not use the language of
‘n-ads’ as in [57], it is clear that the constructions below extend to ‘n-ads of stratifed spaces’.

Note that the boundary of a manifold with corners is not itself a manifold with corners,
but rather a union of manifolds with corners with various identifications of boundary faces.
Following Melrose (see, e.g., [40]), an ‘articulated manifold (without boundary)’ is a finite
union of connected components of the boundary of a compact manifold with corners (thus
guaranteeing that the identifications of boundary faces are consistent). More generally,
an ‘articulated manifold with corners’ is a finite union of boundary hypersurfaces of the
boundary of a compact manifold with corners (not necessarily making up full connected
components of the boundary).

Similarly an ‘articulated stratified space (without boundary)’ refers to a finite union of
connected components of the boundary of a compact stratified space with corners, and an
‘articulated stratified space with corners’ is a finite union of boundary hypersurfaces of a
stratified space with corners.

Working with ‘articulated stratified spaces’ is analogous to working with n-ads in the
category of stratified spaces; for instance, if .cM I @1cM; @2cM/ is as above and cM is a stratified
space with corners then @icM are articulated stratified spaces with corners. An alternate
approach, see, e.g., [58, §2.6], is to ‘round the corners’ and work with spaces with boundary.

2. Browder-Quinn Surgery

We will make use of the surgery theory for stratified spaces of Browder and Quinn [13].
Some of the results we need for the purpose of defining maps into K-theory are only implicit
in their exposition so we have decided to include a more explicit description of this surgery
theory. In carrying this out we have benefitted from Weinberger’s exposition [59, §7.1] where
some of the proofs below are sketched (e.g., the …-… theorem, Theorem 2.1), as well as
from [57, 51, 20, 19, 6, 49] and [21] (from which we adapted the proof of the Wall realization
theorem, Theorem 2.5). We are also happy to acknowledge useful conversations and email
exchanges with Markus Banagl, Jim Davis, Wolfgang Lück, Tibor Macko and Shmuel
Weinberger.

2.1. Browder-Quinn stratified spaces and transverse maps

Although there are many notions of stratified spaces, perhaps the most common is that
of a Whitney stratified space. If L is a smooth manifold then a Whitney stratification of
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a subset bX ✓ L is a locally finite collection of pairwise disjoint smooth submanifolds
covering bX; known as strata, satisfying the ‘frontier condition’

Y \ Y 0
¤ ; H) Y ✓ Y 0

and ‘Whitney’s condition (B)’ concerning the relations of the tangent spaces of the strata.
For example, Whitney showed [62] that algebraic varieties admit Whitney stratifications.
It was subsequently shown by Thom and Mather [39] that in a Whitney stratified space
neighborhoods of the strata have geometric structure and this was abstracted in the notion
of Thom-Mather stratified space.

A further abstraction was given by Browder and Quinn [13] (cf. [32, 22, 59]). They fix
a category F of ‘manifolds with fibrations’ such as smooth manifolds and locally trivial
smooth fiber bundles, PL manifolds and block bundles with manifold fibers, topological
manifolds and locally trivial topological fiber bundles, or Poincaré spaces and maps whose
homotopy fiber satisfies Poincaré duality. Although Browder-Quinn do not specify what
properties are necessary in the category F ; an important property is that there be a notion
of pull-back in the category F :

An F -stratified space is a topological space bX filtered by subsetsXa indexed by a partially
ordered set A satisfying the following. If for each a 2 A we let

X@a D

[
fXb W b 2 A; b < ag;

then each Xa is equipped with a closed neighborhood Na D N.Xa/ of X@a in Xa and a
projection ⌫a W @Na �! X@a such that

(i) Xa nX@a and @Na are manifolds in F ;

(ii) Na is the mapping cylinder of ⌫a (with @Na and X@a corresponding to the top and
bottom of the cylinder),

(iii) If a; b 2 A; b < a; Wb D Xb n int.Nb/; then

⌫aj W ⌫�1
a
.Wb/ �! Wb

is a fibration in F :

If bX and cM are two F -stratified spaces whose filtrations are indexed by the same partially
ordered set A; then a filtration-preserving map f W

bX �!
cM of F -stratified sets is said to

be transverse if each fibration in bX is the pull-back along f of the corresponding fibration
in cM:

Remark 1. – When F is equal to the category of smooth manifolds and locally trivial
smooth fiber bundles, Browder-Quinn F-stratified spaces are the same as Thom-Mather
stratified spaces. One could show this by, for example, proceeding as in [3] and proving that
any Browder-Quinn F -stratified space can be ‘resolved’ to an F -space ‘with corners’ and
iterated fibration structures, and any such can be collapsed to a Browder-Quinn F -stratified
space. Instead of developing this, we will work directly with Thom-Mather stratified spaces in
establishing the Browder-Quinn surgery sequence below.
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2.2. Smoothly stratified spaces and transverse maps

From now on we will only work with F equal to smooth manifolds and locally trivial
smooth fiber bundles, i.e., the setting of Thom-Mather stratified spaces. For this class of
spaces there is a construction going back to Thom [54] and carried out in [3] that replaces a
stratified space, bX; with its ‘resolution’, eX; a manifold with corners and an iterated fibration
structure. We now recall this construction.

Let bX be a stratified space with singular strata

S.bX/ D fY1; Y2; : : : ; Y`g:

Each Yi is subset of bX that inherits the structure of an open manifold (indeed, of the interior
of a manifold with corners). We write Yi < Yj if the closure of Yj in bX contains Yi : The
closure of Yj in bX is given by

bYj D

[
fYi W Yi  Yj g

and is itself a stratified space. Every point in Yi has a neighborhood in bX homeomorphic to
a ball in RdimYi times the cone over a stratified space bZi ; known as the link of Yi in bX:

The resolution of bX; denoted eX; is a smooth manifold with corners. Each stratum Yi of bX
corresponds to a collective boundary hypersurfaceBYi of bX; by which we mean a collection
of boundary hypersurfaces no two of which intersect. Each collective boundary hypersurface
participates in a fiber bundle,

eZi �BYi
�Yi

����!
eYi ;

where the base is the resolution of bYi and the typical fiber is the resolution of bZi : If Yi and
Yj are strata of bX with Yi < Yj thenBYi \BYj ¤ ; and we have a commutative diagram of
fiber bundle maps

BYi \BYj
�Yj

//

�Yi
$$

BYiYj ✓ BYj

�YiYj
yyeYi ;

where BYiYj is a collective boundary hypersurface of BYj : We refer to a manifold with
corners together with these collective boundary hypersurface fiber bundle maps as a manifold
with an iterated fibration structure.

There is a canonical ‘blow-down map’ between a manifold with corners and an iterated
fibration structure eX and a stratified space bX;

ˇ W
eX �!

bX;
which collapses the fibers of the boundary fiber bundles to their base. Note that ˇ is a
diVeomorphism between the interior of eX and the regular part of bX:

A continuous map between stratified spaces is stratum preserving if the inverse image of

a stratum is a union of strata. A stratum preserving map cM bF
���!

bX is smooth if it lifts to a

smooth map fM eF
���!

eX: We denote the space of such maps by

C1
ˆ
.fM; eX/ ✓ C1.fM; eX/
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and the corresponding maps between cM and bX by C1.cM; bX/: Directly from the definition
we have a natural identification

ˇ⇤ W C1
ˆ
.fM; eX/ �! C1.cM; bX/:

The smooth map eF necessarily induces a fiber bundle map between the collective boundary
hypersurfaces of fM and those of eX;
(2.1) fM ◆ BN

eF
//

�N

✏✏

BY

�Y

✏✏

✓
eX

eN
gF
jcN
// eY :

We will say that cM bF
���!

bX and fM eF
���!

eX are transverse if the commutative diagram of
fiber bundles (2.1) is a pull-back diagram, that is,

(2.2) BN D .gF
jbN /

⇤BY :

We denote the class of such maps by C1�t .fM; eX/ and C1�t .cM; bX/I the identificationˇ⇤ restricts
to an identification

ˇ⇤ W C1�t .fM; eX/ �! C1�t .cM; bX/:
Note that C1�t .cM; bX/ are the transverse maps of Browder-Quinn. (Indeed, the fibrations ⌫a
of a Browder-Quinn stratified space correspond in the smooth category to the fiber bundle
maps �Y :)

2.3. Examples of transverse maps

Here is a list of examples of transverse maps.

— Transverse maps are used in [23, Part I, §4] and [24, §5.4] where they are called ‘normal
non-singular’. A weaker notion called ‘homotopy transverse’ was used by Weinberger
[59, §5.2].

— An example from [24] is the inclusion H \
bX ,! bX where bX is a stratified subset of a

smooth manifold and H is a smooth submanifold transverse to the strata of bX:
— Another example from the same source is the fiber bundle projection map for a fiber

bundle over a stratified space with fiber a smooth manifold.
— Browder-Quinn considered these maps first in an equivariant situation. If G is a

compact Lie group and L; L0 are spaces with G-actions then a map f W L �! L0 is
isovariant if, for any x 2 L; g 2 G;

f .gx/ D gf .x/; and gf .x/ D f .x/ ” gx D x:

An isovariant map is transverse linear if whenever H ✓ G is a subgroup, and LfHg

denotes the subset of L consisting of points whose isotropy group is conjugate to H;
there are G-vector bundle tubular neighborhoods

LfHg
✓ U; .L0/fHg

✓ U 0

such that f restricts to a G-linear vector bundle map U �! U 0: Transverse linear
isovariant maps are examples of transverse maps for the stratification of a space into
the orbit types of a group action.
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2.4. Properties preserved by transverse maps.

There are some properties of a stratified space bX such that the existence of a transverse
map bf W

cM �!
bX implies that cM also has this property. For example, if the dimensions

of all of the links of bX are odd, then the dimensions of all of the links of cM must be
odd as well. A class of stratified spaces determined by such a property will be said to
be preserved by transverse maps. As examples of such classes let us mention, in order of
increasing generality: IP spaces, Witt spaces, and Cheeger spaces or L-spaces. Recall that
a stratified space is a Witt space if, whenever the link of a stratum is even dimensional, its
middle degree middle perversity intersection homology vanishes. A Witt space is an IP space
(intersection Poincaré space) if, whenever the link bZ of a stratum is odd dimensional, its
middle perversity homology in degree 1

2
.dim bZ � 1/ is torsion-free. A stratified space is an

L-space if there is a self-dual sheaf compatible with the intersection homology sheaves of
upper and lower middle perversity [9]. Smoothly stratified L-spaces are known as Cheeger
spaces [5].

A property of transverse maps that we will use repeatedly below is that the restriction of
a transverse map to the closure of a stratum is again a transverse map.

2.5. Surgery definitions

When carrying out surgery constructions we will need to use stratified spaces with corners.
By a stratified space with corners we mean a stratified space with collared corners [1, Defini-
tion 2] or an ‘abstract stratification with faces’ in the sense of Verona [55, §5]. An ‘articulated
stratified space with corners’ is a union of boundary hypersurfaces of a stratified space with
corners; thus it is a union of stratified spaces with corners together with identifications of
certain of their boundary hypersurfaces. Smoothness of maps to and from articulated spaces
is defined in the natural way, i.e., continuity on the whole and smoothness on each stratified
space with corners.

Definition 1. – Let cM and bX be oriented stratified spaces.

(i) A BQ-transverse map f W
cM �!

bX is a transverse map that is orientation preserving
and restricts to a diffeomorphism between strata of dimension less than five.

(ii) A BQ-normal map f W
cM �!

bX is a BQ-transverse map such that, in the notation of
§2.1, for each a 2 A; f restricts to a degree one normal map

fa W Ma n int.N.Ma// �! Xa n int.N.Xa//;

meaning that there is a smooth vector bundle ⌧ �! Xa n int.N.Xa// and a stable bundle
isomorphism of the stable normal bundle NorManint.N.Ma//; b W NorManint.N.Ma// �! f ⇤

a
⌧ ,

covering fa: (We will not explicitly keep track of the bundle data as it will not affect our
analytic maps.)

(iii) A BQ-equivalence f W
cM �!

bX is a BQ-transverse map whose restriction to each
stratum is a homotopy equivalence. (By Miller’s criterion [41] (see [4, Corollary 1.11]),
f is a BQ-equivalence if and only if there is a BQ-transverse map g W

bX �!
cM and

homotopies of f ı g and g ı f to the respective identities through BQ-transverse maps.)
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One could also work with simple homotopy equivalences and there is an s-cobordism
theorem in this context [13, pg. 34].

Given a stratified space, its dimension function will refer to the function on the poset of
strata that assigns to each stratum its dimension.

Definition 2. – Let bX be a smooth oriented stratified space, possibly with boundary. (Our
convention is that the spaces below are allowed to be empty and a map between empty sets counts
as an equivalence.)

(a) Let LBQ;d .bX/ denote the set of diagrams

(2.3) .cM I @cM/
�

��! .bY I @bY / !

���!
bX

where cM and bY are oriented stratified spaces with corners, d is the dimension function of cM ,
� is BQ-normal, @� is a BQ-equivalence (between articulated stratified spaces with corners),
and ! is BQ-transverse.

The set LBQ;dcX .
bX/; where d bX denotes the dimension function of bX; will sometimes be

abbreviated as LBQ.bX/; with the dimension function omitted.
We refer to these diagrams as (Browder-Quinn) L-cycles over bX:
A null bordism of an L-cycle over bX as above will mean a diagram

.bN I @1bN; @2bN/ ˆ

���! .bZI @1bZ; @2bZ/ �

���!
bX ⇥ I

between stratified spaces with corners, with the same dimension function as cM ⇥ I; where ˆ is
BQ-normal, ˆj W @2bN �! @2bZ is a BQ-equivalence, � is BQ-transverse, and✓

.@1bN; @12bN/ ˆj
���! .@1bZ; @12bZ/ ⇡ı�j

�����!
bX
◆

D

✓
.cM I @cM/

�

��! .bY I @bY / !

���!
bX
◆

(with ⇡ W
bX ⇥ I �!

bX the projection). In this case we say that the L-cycle is null bordant.
The L-cycles over bX naturally form an Abelian monoid with addition induced by disjoint

union and zero given by the diagram with cM D
bY D ;: We say that two L-cycles over bX; ˛;

ˇ are equivalent if ˛ C ˇop is null bordant, where ˇop denotes ˇ with orientations reversed.
This is an equivalence relation, known as L-bordism, and the set of equivalence classes, denoted
LBQ;d .bX/; is known as the Browder-Quinn L-group of bX: (The equivalence classes form a
group with the inverse of Œ˛ç being Œ˛opç:)

(b) The (Browder-Quinn) normal invariants, denotedNBQ.bX/ are the subset of LBQ.bX/ in
which, with notation as above, bY D

bX and! D id :A normal bordism is anL-bordism between
normal invariants which, in the notation above, has bZ D

bX ⇥ I and� D id : The set of normal
invariants modulo normal bordisms is denoted NBQ.bX/:

If bX has boundary we denote by NBQ.bX; @bX/ the subset of NBQ.bX/ in which, with notation
as above, �

j@cM is a (stratum preserving) diffeomorphism. A normal bordism, relative to @bX;
will be a normal bordism as above in which @2bN D

bK ⇥ I and ˆ
j@2

bN D �
j@cM ⇥ id : The

corresponding set of normal invariants is denoted NBQ.bX; @bX/:
(c) The (Browder-Quinn) Thom-Mather structures, denoted SBQ.bX/ are the subset

of NBQ.bX/ in which, with notation as above, � is a BQ-equivalence. Two such objects are
equivalent if there is a normal bordism between them which, in the notation above, has ˆ
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a BQ-equivalence. The set of equivalence classes is denoted SBQ.bX/ and is known as the
(Browder-Quinn) structure set.

Similarly, if bX has boundary then SBQ.bX; @bX/ is the subset of N .bX; @bX/ in which � is a
BQ-equivalence. Equivalence classes modulo normal bordism relative to @bX in which ˆ is a
BQ-equivalence form the set SBQ.bX; @bX/:

Remark 2. – A BQ-transverse map f W
bX �!

bW induces a homomorphism

f⇤ W LBQ;d .bX/ �! LBQ;d .bW /:
(Recall that d is the dimension function of cM in (2.3).) It is easy to see that if f is a
BQ-equivalence then it induces an isomorphism LBQ;d .bX/ ä LBQ;d .bW /: Browder and Quinn
point out [13, Proposition 4.7] that this is true for any BQ-transverse f that satisfies the…-…
condition below. For example, LBQ;d .bX/ ä LBQ;d .bX ⇥ I /:

Remark 3. – The Pontrjagin-Thom constructions on the various strata can be fit together
using transversality to identify NBQ.bX/ with homotopy classes of maps from bX into G=O that
are constant on strata of dimension less than five. Since we do not use this we do not elaborate,
see [59, pg. 140].

Remark 4. – If bX ⌘ X is a smooth manifold of dimension d , then LBQ;d .X/, with
d the dimension function that assigns to the unique stratum X its dimension, is precisely
equal to Ld .Z⇡1.X//: Indeed, our definition of LBQ;d .X/ coincides with Wall’s L1

d
.X/ from

[57, Chapter 9] save that we required Y in Definition 2 to be smooth (by the transversality
requirement on !). However X smooth and Wall’s realization theorem ([57, Theorem 10.4]
and Theorem 2.5 below) shows that this does not change the group we obtain.

The inclusion maps between the sets above descend to maps between the equivalence
classes

SBQ.bX/ ⌘

��! NBQ.bX/ ✓

��! LBQ;dcX .
bX/;

where d bX is the dimension function of bX: We will show that this sequence is exact in an
appropriate sense and extends to the left

LBQ;dcX⇥I .
bX ⇥ I / // SBQ.bX/ ;

in that there is an action of the L-group of bX ⇥ I on the structure set of bX: Moreover the
extended sequence is exact in that two elements of SBQ.bX/ have the same image under ⌘ if
and only if they are in the same orbit of the L-group. For stratified spaces with boundary
there are analogous sequences relative to the boundary. In fact the extension to the left of
the sequence above, for a stratified space without boundary, is

SBQ.bX ⇥ I; bX ⇥ @I /
⌘
// NBQ.bX ⇥ I; bX ⇥ @I /

✓
// LBQ;dcX⇥I .

bX ⇥ I /

// SBQ.bX/ ⌘
// NBQ.bX/ ✓

// LBQ;dcX .
bX/:
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2.6. The …-… condition

Definition 3. – We say that a map h W
cM �!

bN between stratified spaces with corners
satisfies the …-… condition if:

For every connected component of a stratum of bN; SN ; there is exactly one connected
component of a stratum of cM; SM ; such that h.SM / \ SN ¤ ;: Moreover, h.SM / ✓ SN
and h⇤ W ⇡1.SM / �! ⇡1.SN / is an isomorphism.

The ⇡-⇡ theorem (or surgery lemma) in our context is implicit in [13] and presented by
Weinberger in [59, pg. 140], where a proof is also sketched. We formulate it as in Quinn’s
thesis [50, Theorem 2.4.4] and prove it following [59].

Theorem 2.1 (BQ …-… theorem). – Let cM; bY ; bX be stratified spaces with boundary,
with the same dimension function, together with decompositions of their boundaries, e.g.,
@bX D @0 bX [ @1 bX , into two codimension zero stratified spaces with common boundary.
Consider a diagram

(2.4) .cM I @0cM; @1cM/
f

���! .bY I @0bY ; @1bY / !

���!
bX;

in which f is BQ-normal, f j W @0cM �! @0bY is a BQ-equivalence, ! is BQ-transverse and
orientation preserving.

If the inclusion of @1bY into bY satisfies the …-… condition then there is a bordism between
(2.4) and

(2.5) .cM 0
I @0cM; @1cM 0/

f
0

���! .bY I @0bY ; @1bY / !

���!
bX;

where f 0 satisfies the same properties as f but is moreover a BQ-equivalence. Explicitly this
bordism is a diagram of oriented stratified spaces with corners

bN F

���!
bY ⇥ I

!⇥id
�����!

bX ⇥ I;

in which @bN D
cM [

cM 0
[ @0cM ⇥ I [

bP ; with F a BQ-normal map satisfying

(2.6) .bN I
cM;cM 0; @0cM⇥I; bP / .F If;f 0

;f j⇥id;F j/
��������������! .bY ⇥I I

bY ⇥f0g; bY ⇥f1g; @0bY ⇥I; @1bY ⇥I /:

Proof. – We proceed by induction on the depth of the stratified space. Our base case is
when bY ; cM; and bX are smooth manifolds with boundary and this is Theorem 3.3 in Wall’s
book [57], since in dimension less than five our maps are diVeomorphisms by definition.

Suppose the theorem is established for all stratified spaces with boundary whose stratifi-
cation has depth less than k and consider (2.4) where bY (and hence cM; bX ) has a stratification
of depth k: Denote the subsets of depth k by a é decoration and note that these are smooth
manifolds and that transversality of the maps in (2.4) implies that these subsets are preserved
by these maps. Thus we obtain

(2.7) .M é
I @0M

é; @1M
é/

f
é

����! .Y éI @0Y
é; @1Y

é/
!
é

���! Xé

satisfying the same conditions as the diagram (2.4). Since the …-… condition holds, there is
a bordism satisfying the same conditions as (2.6),

(2.8) N é
F
é

����! Y é ⇥ I
!
é⇥id

������! Xé ⇥ I
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between (2.7) and

.M é0
I @0M

é0
; @1M

é0
/

f
é

0
����! .Y éI @0Y

é; @1Y
é/

!
é

���! .XéI @0X
é; @1X

é/;

with f é0 a homotopy equivalence.

Transversality of f and ! guarantees that we can find neighborhoods T
Mé ✓

cM; T
Y é

✓

bY ; and T
Xé

✓
bX that fiber over M é; Y é; and Xé respectively, such that each square in

(2.9) T
Mé

f j
//

�
é

M

✏✏

T
Y é

!j
//

�
é

Y

✏✏

T
Xé

�
é

X

✏✏

M é
f
é

// Y é
!
é

// Xé;

where f j and !j denote the restrictions of f and ! respectively, is a pull-back square. Note
that for i D 0; 1 we have

@icM \ T
Mé D .�

é

M
/�1.@iM é/

and similarly for bY and bX; so the top row of (2.9) is a diagram satisfying conditions analogous
to (2.4).

We have an extension of this diagram to a similar diagram over the bordism (2.8)

(2.10) F é
⇤
.T
Y é

⇥ I /
F
é

//

✏✏

T
Y é

⇥ I
!j⇥id

//

✏✏

T
Xé

⇥ I

✏✏

N é F
é

// Y é ⇥ I
!
é⇥id

// Xé ⇥ I

with F é
⇤
.T
Y é
/
jMé

D T
Mé and F

é

the induced map on the pull-back. Restricting this
diagram to the ‘fixed’ @0 part of the boundary we get

.@0cM \ T
Mé/ ⇥ I

f j⇥id
//

✏✏

.@0bY \ T
Y é
/ ⇥ I

!j⇥id
//

✏✏

.@0 bX \ T
Xé
/ ⇥ I

✏✏

@0M
é

⇥ I
f
éj⇥id

// @0Y
é

⇥ I
!
éj⇥id

// @0X
é

⇥ I

and so the top row of (2.10) is a bordism, satisfying conditions analogous to (2.6), from the
top row of (2.9) to

(2.11) .f é
0
/⇤T

Y é

f
é

0

����! T
Y é

!j
���! T

Xé
;

in which f
é0

is a BQ-equivalence.
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Now, as in [12, Theorem 2.14] [59, §4.3], we multiply each space in (2.4) by the unit interval
and attach the top row of (2.10) to get a bordism

cM ⇥ I
[

T
Mé⇥f1g⇠F é⇤

.T
Y é
/
j
Mé

F é
⇤
.T
Y é
/

.f ⇥id/[F é
���������!

bY ⇥ I
[

T
Y é

⇥f1g⇠T
Y é

⇥f0g
T
Y é

⇥ I

!⇥id [!j⇥id
����������!

bX ⇥ I
[

T
Xé

⇥f1g⇠T
Xé

⇥f0g
T
Xé

⇥ I

from (2.4) to a similar diagram over bX which we denote

(2.12) .bP I @0bP ; @1bP / g

��! .bY I @0bY ; @1bY / !

���! .bX I @0 bX; @1 bX/
and which restricts to (2.11) in a neighborhood of the subsets of depth k:

Now we remove these neighborhoods of the subsets of depth k to form

bPC
D
bP n .f é

0
/⇤T

Y é
; bY C

D
bY n T

Y é
; bXC

D
bX n T

Xé
:

These are stratified spaces with corners (see, e.g., [1, §6], [55]) and we define

@0bY C
D .@0bY \

bY C/ [ @T
Y é
; @1bY C

D @1bY \
bY C

and similarly for bPC and bXC: Note that the restrictions of g and ! to @0bPC and @0bY C are
BQ-equivalences so we have a diagram

.bPC
I @0bPC; @1bPC/

gj
���! .bY C

I @0bY C; @1bY C/
!j

���! .bXC
I @0 bXC; @1 bXC/

satisfying conditions analogous to (2.4). (Note that though the stratified space now has
corners of codimension two, one can ‘smooth out the corners’ as in [58, §2.6], [25, §3].)

Moreover, the compatibility between the stratifications and the boundary faces implies
that each stratum of bY C is homotopy equivalent to the corresponding stratum of bY ; and
the same is true for the strata of @1bY C: (Indeed iterating this process of removing tubular
neighborhoods of deepest strata produces the resolution of bY which does not change the
homotopy type of the strata.) Significantly, the inclusion of @1bY C into bY C satisfies the…-…
condition and since bY C has depth less than k we can apply our inductive hypothesis to find
a bordism, satisfying conditions analogous to (2.6),

bNC G

���!
bY C

⇥ I
�

���!
bXC

⇥ I

between

.dPC
I @0dPC; @1dPC/

gj
���! .dY C

I @0dY C; @1dY C/
!j

���! .dXC
I @0dXC; @1dXC/

and .dPC0
I @0

dPC0; @1dPC0/
g

0
���! .dY C

I @0dY C; @1dY C/
!j

���! .dXC
I @0dXC; @1dXC/;

with g0 a BQ-equivalence. Since the bordism does not change the spaces @..f é0
/⇤T

Y é
/; @T

Y é
;

@T
Xé

or the maps between them, we can glue in the bordism (2.11) to finally obtain a bordism
between (2.4) and (2.5) with

cM 0
D PC0

[ .f é
0
/⇤T

Y é

and f 0
D g0

[ f
é0

a BQ-equivalence as required.
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The key to applying the…-… theorem is a result of Wall that allows us to represent every
class in LBQ.bX/ by a ‘restricted’ representative. This is sometimes referred to as “L1 D L2"
evoking the notation of [57, Chapter 9].

Definition 4. – Let bX be a stratified space (possibly with boundary). An L-cycle over bX;
.cM I @cM/

�

��! .bY I @bY / !

���!
bX

is a restricted L-cycle if ! W
bY �!

bX satisfies the …-… condition.
A null bordism of a restricted L-cycle over bX;

.bN I @1bN; @2bN/ ˆ

���! .bZI @1bZ; @2bZ/ �

���!
bX ⇥ I

is a restricted null bordism if � W
bZ �!

bX ⇥ I satisfies the …-… condition.

Remark 5. – If bX has depth zero then these are the restricted cycles of [57, Chapter 9], see
Remark 4.

Theorem 2.2. – Let bX be a stratified space (possibly with boundary). Every element
of LBQ.bX/ is L-bordant, relative to the boundary, to a restricted L-cycle over bX: If a restricted
L-cycle over bX is null bordant, then it participates in a restricted null bordism.

Proof. – Our proof is parallel to that of the…-… theorem. When possible we will simply
refer back to the latter proof.

We will prove by induction on the depth of the stratifications that, whenever we have

(2.13) cM �

��!
bY !

���!
bX

with � BQ-normal, ! BQ-transverse, and cM; bY ; bX stratified spaces with corners with the
same dimension functions, there is a bordism relative to the boundary to a similar diagram

cM 0 �
0

���!
bY 0 !

0
���!

bX;
in which !0 satisfies the …-… condition. Specifically, there is a diagram

.bN I
cM;cM 0; @cM ⇥ I /

.ˆI�;�0
;�j⇥id/

�����������! .bZI
bY ; bY 0; @bY ⇥ I /

.�I!;!0
;!j⇥id/

������������!
bX ⇥ I;

in which ˆ is BQ-normal and � is BQ-transverse and moreover

cM \
cM 0

D ;; cM \ .@cM ⇥ I / D @cM; cM 0
\ .@cM ⇥ I / D @cM 0

and similarly for bZ:
We proceed by induction on the depth of the stratified space. Our base case is for smooth

manifolds with corners. If dimY < 5 then the theorem is automatic since f and ! are then
both diVeomorphisms. Assuming dimY � 5; this case is handled by Wall in [57, Theo-
rems 9.4, 9.5], where he shows that this can be arranged by carrying out surgery on Y along
1-handles and 2-handles and then modifying M along the preimages of the corresponding
embeddings. As pointed out in [42, Proof of Lemma 3], a theorem of Whitney implies that
for dimY > 4 any homotopy class of maps from S1 or S2 into Y contains an embedding
with image contained in the interior of Y: Thus all of the modifications in M and Y can be
carried out in their interiors.
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Suppose the theorem is established for all stratified spaces with boundary whose strati-
fication has depth less than k and consider (2.13) where bY (and hence cM; as they have the
same dimension function) has a stratification of depth k: Denote the subsets of depth k by
a é decoration and note that these are smooth manifolds and that transversality of the maps
in (2.13) implies that these subsets are preserved by these maps. Thus we obtain

.dM é; @dM é/
f
é

����! .cY é; @cY é/ !
é

���!
bXé;

an element of LBQ.
cXé/: Applying the base case to this situation we obtain an L-bordism,

relative to the boundary, to an element satisfying the desired …-… condition. Proceeding as
in the proof of Theorem 2.1 we can lift thisL-bordism to neighborhoods of these subsets and
then graft it onto the product of (2.13) with the unit interval to obtain anL-bordism, relative
to the boundary, between (2.13) and an element of LBQ.bX/ analogous to (2.12),

.bP ; @bP / g

��! .bV ; @bV / ˛

��!
bX;

where ˛ W
bV �!

bX satisfies the …-… condition for strata of depth k:
Now we remove consistent tubular neighborhoods of the subsets of depth k to form bPC;

bV C; and bXC as in the proof of Theorem 2.1. This gives a diagram

.dPC
I @0dPC; @1dPC/

gj
���! .dV C

I @0dV C; @1dV C/
˛j

���! .bX I @0 bX; @1 bX/C
in which the stratification on bV C has depth less than k: By our inductive hypothesis there is
a bordism, relative to the boundary, between this and another diagram

.dPC0
I @0

dPC0; @1dPC0/
g

0
���! .dV C0

I @0
dV C0; @1dV C0/

˛
0

���! .bX I @0 bX; @1 bX/C
for which ˛0

W V C0
�!

bXC satisfies the …-… condition. Since the bordism is relative to
the boundary we may glue in the previous bordism between neighborhoods of the strata of
depth k to obtain a bordism, relative to the boundary, between our original diagram and

dPC0
[ T

P é

g
0[.gj/

�������!
dV C0

[ T
V é

˛
0[.˛j/

�������!
bX:

Finally, because of the compatibility between the stratifications and the boundary faces, the
fact that ˛ satisfies the…-… condition between the strata of depth k and ˛0 satisfies the…-…
condition between strata of depth less than k means that ˛0

[.˛j/ satisfies the…-… condition
on all strata.

Our final preliminary result is to point out that the sum in LBQ.bX ⇥ I / which is induced
by disjoint union can, when appropriate, be carried out by identifying boundary faces.

Lemma 2.3. – Let

˛ W .cM I @cM/
�

��! .bY I @bY / !

���!
bX ⇥ I

ˇ W .bLI @bL/  

���! .bW I @bW / ✓

��!
bX ⇥ I

be two L-cycles over bX ⇥ I: Suppose that the pre-images in ˛ lying above bX ⇥ f0g coincide with
the pre-images in ˇ lying above bX ⇥ f1g; both equal to

� W .bP I @bP / ⇢

��! .bV I @bV / ⇠

��!
bX:
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The class of ˛Cˇ in LBQ.bX⇥I / is represented by the union of the diagrams along their common
boundary, ˛ [� ˇ:

Proof. – Let bN D .cM [bP bL/ ⇥ I; bZ D .bY [bV bW / ⇥ I; and consider a diagram

(2.14) bN ˆ

���!
bZ �

���!
bX ⇥ I;

whereˆ has the formˆ.x; t/ D .ˆt .x/; t/ and similarly�.x; t/ D .�t .x/; t/: By definition,
bP has a collar neighborhood in each of cM and bL and gluing these together we have a
neighborhood of the form .�"; "/ ⇥

bP in cM [bP bL and of the form .�"; "/ ⇥
bP ⇥ I in bN:

Similarly, we have a neighborhood of the form .�"; "/⇥bV in bY [bV bW and of the form .�"; "/⇥
bV ⇥ I in bZ: Note that

cM [bP bL n ..�"; "/ ⇥ P / D
cM t

bL; bY [bV bW n ..�"; "/ ⇥ V / D
bY t

bW :
We choose ˆ so that ˆ0 D � [  and for t > 0; ˆt j.�t";t"/⇥P D id ⇥⇢; while oV of this
neighborhoodˆ is essentially �t :We similarly choose�t :With these choices, since �

j@cM
and  

j@bL are BQ-equivalences, we recognize (2.14) as an L-bordism between the disjoint
union of ˛ and ˇ and their union along �:

2.7. Surgery theorem

With the preliminary results out of the way, we can establish the fundamental result
of surgery: a normal map is normal bordant to an equivalence precisely when its surgery
obstruction vanishes.

Theorem 2.4 (Exactness part 1). – Let bX be an oriented stratified space with boundary
(possibly empty) and let

h W
bK �! @bX

be a (stratum preserving) diffeomorphism.
Given a stratified space cM with boundary @cM D

bK; and a BQ-normal map

� W
cM �!

bX
extending h; there is a normal bordism relative to h between � and a BQ-equivalence if and only
if � is L-null-bordant.

We briefly encode this property by saying that the sequence of pointed sets (not groups)

(2.15) SBQ.bX; @bX/ ⌘

��! NBQ.bX; @bX/ ✓

��! LBQ.bX/
is exact.

Proof. – If there is a normal bordism, relative to h; between � and a BQ-equivalence,
�0

W
cM 0

�!
bX; say

.bN I
cM;cM 0; bK ⇥ I /

ˆ

���! .bX ⇥ I I
bX ⇥ f0g; bX ⇥ f1g; @bX ⇥ I /

id
���!

bX ⇥ I;

then this bordism witnesses the triviality of � in LBQ.bX/:
On the other hand, if

.cM I
bK/ .�Ih/

�����! .bX I @bX/ id
���!

bX
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is a null bordant L-cycle over bX then, since it is a restricted cycle, there is by Theorem 2.2 a
restricted null bordism. That is to say, there are maps of stratified spaces with corners

.bN I @1bN; @2bN/ ˆ

���! .bZI @1bZ; @2bZ/ �

���!
bX ⇥ I

with ˆ BQ-normal, ˆj W @2bN �! @2bZ a BQ-equivalence, � BQ-transverse,✓
.@1bN; @12bN/ ˆj

���! .@1bZ; @12bZ/ ⇡ı�j
�����!

bX
◆

D

✓
.cM I @cM/

�

��! .bX I @bX/ id
���!

bX
◆
;

and � satisfies the …-… condition. Now @1bZ D
bX and �

j@1
bZ D id; so the inclusion of @1bZ

into bZ satisfies the …-… condition. Since ˆ
j@2

bN is a BQ-equivalence we can apply the …-…

theorem and find a bordism (not necessarily an L-bordism) between bN ˆ

���!
bZ �

���!
bX ⇥ I

and
.bN 0

I @1bN 0; @2bN 0/
ˆ

0
���! .bZI @1bZ; @2bZ/ �

���!
bX ⇥ I

with ˆ0 a BQ-equivalence, and✓
@2bN 0 ˆ

0j
����! @2bZ

◆
D

✓
@2bN ˆj

���! @2bZ
◆
:

The bordism itself has the form

bL ‰

���!
bZ ⇥ I

Ä

���!
bX ⇥ I 2

or, more explicitly,

.bLI
bN; bN 0; @2bN ⇥ I; bP / .‰Iˆ;ˆ0

;ˆj⇥I;‰j/
��������������! .bZ ⇥ I I

bZ ⇥ f0g; bZ ⇥ f1g; @2bZ ⇥ I; @1bZ ⇥ I /
�⇥id

�����!
bX ⇥ I 2;

where this diagram serves to define bP : Note that

@bP D
bP \ .bN [

bN 0
[ @2bN ⇥ I / D @1bN [ @1bN 0

[ @12bN ⇥ I D
cM [ @1bN 0

[
bK ⇥ I

and recall that @1bZ D
bX; so if we restrict this diagram to the boundary face bP ; we find

.bP I
cM; @1bN 0; bK ⇥ I /

.‰jI�;ˆ0j;h⇥id/
������������! .bX ⇥ I I

bX ⇥ f0g; bX ⇥ f1g; @bX ⇥ I /
id

���!
bX ⇥ I:

We recognize this as a normal bordism, relative to h W
bK �! @bX; (i.e., without changing h)

between

.cM I
bK/ .�Ih/

�����! .bX I @bX/ id
���!

bX and .@1bN 0
I
bK/ .ˆ

0jIh/
������! .bX I @bX/ id

���!
bX

which, since ˆ0
j is a BQ-equivalence, proves the theorem.

2.8. Wall realization

In this section we follow Dovermann-Rothenberg [21, §8].

Theorem 2.5 (Wall realization). – Let bX be a stratified space (without boundary) and
bL f

���!
bX a BQ-equivalence. Every element ˛ 2 LBQ.bX ⇥ I / has a representative of the

form

.bW I @� bW ; @C bW / F

���! .bX ⇥ I I
bX ⇥ f0g; bX ⇥ f1g/

id
���!

bX ⇥ I

with 
@� bW F j

���!
bX ⇥ f0g

�
D


bL f

���!
bX
�
:
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Note that this representative is an element of NBQ.bX ⇥ I / and that the restriction

@C bW F j
���!

bX ⇥ f1g

gives another Thom-Mather structure on bX:
Proof. – Choose an L-cycle representing ˛;

.cM I @cM/
�

��! .bY I @bY / !

���!
bX ⇥ I

and consider the null bordant L-cycle obtained from f;

.bL ⇥ I I
bL ⇥ @I /

f ⇥id
�����! .bX ⇥ I I

bX ⇥ @I /
id

���!
bX ⇥ I:

Adding these L-cycles together produces another representative of ˛;

.cM t
bL ⇥ I I @cM t

bL ⇥ @I /
�tf ⇥id

�������! .bY t
bX ⇥ I I @bY t

bX ⇥ @I /
!tid

�����!
bX ⇥ I:

We can improve this representative using Theorem 2.2 to obtain

.cM 0
I @cM t

bL ⇥ @I /
�

0
���! .bY 0

I @bY t
bX ⇥ @I /

!
0

���!
bX ⇥ I;

with �0 and !0 equal to � and ! when restricted to the boundary, and with !0 satisfying the
…-… condition. Let us write

@1cM 0
D @cM t

bL ⇥ f1g; @2cM 0
D
bL ⇥ f0g D

bL
@1bY 0

D @bY t
bX ⇥ f1g; @2bY 0

D
bX ⇥ f0g D

bX:
By commutativity of

bX ⇥ f0g

!
0j
✏✏

� �
// bY 0

!
0
✏✏

bX ⇥ f0g
� �

// bX ⇥ I

we see that the inclusion @2bY 0 ,! bY 0 satisfies the …-… condition. Since moreover the map

�0
j W @1cM 0

�! @1bY 0

is a BQ-equivalence, we can apply Theorem 2.1, the…-… theorem, relative to this part of the
boundary to find a BQ-equivalence

cM 00 �
00

���!
bY 0;

where @cM 00
D @1cM 00

t @2cM 00; with @1cM 00
D @1cM 0 and �00 is equal to �0 on @1cM 0; and

�00
W @2cM 00

�! @2bY 00 a BQ-equivalence. The BQ-equivalence �00 is related to �0 by a bordism

bN ˆ

���!
bY 0

⇥ I;

where @bN D
cM 0

[
cM 00

[ .@1cM 0
⇥ I / [

bP ;
cM 0

\
cM 00

D ;; cM 0
\ .@1cM 0

⇥ I / D @1cM 0
D
cM 00

\ .@1cM 0
⇥ I /; @bP D @2cM 0

t @2cM 00:

The restriction of ˆ to bP yields an element � of LBQ.bX ⇥ I /

.bP I
bL; @2cM 00/

ˆj
���! .@2bY 0

⇥ I D
bX ⇥ I I

bX ⇥ f0g; bX ⇥ f1g/
id

���!
bX ⇥ I
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of the kind required in the statement of the theorem. (Incidentally, note that the fact
that ˆ

jbP is BQ-normal and not a BQ-equivalence is why the bordism bN is not a null
bordism for ˛:)

The BQ-normal map ˆ W
bN �!

bY 0
⇥ I is a null bordism of the L-cycle

cM 0
[bL bP �!

bY 0
[ bX bX ⇥ I �!

bX ⇥ I;

which shows, by Lemma 2.3, that ˛ and � represent the same class in LBQ.bX ⇥ I /:

Corollary 2.6. – Given Œ˛ç 2 LBQ.bX ⇥ I / and Œˇç 2 SBQ.bX/ we can use the theorem to
choose representatives of the form

ˇ W
cM f

���!
bX

˛ W .bW I
cM;cM 0/

.�Iid;�2/
�������! .cM ⇥ Œ0; 1çI cM ⇥ f0g;cM ⇥ f1g/

id
���!

cM ⇥ I;

and then the class of f ı �2 W
cM 0

�!
bX in SBQ.bX/ is well-defined and denoted @.˛/.ˇ/: The

map

LBQ.bX ⇥ I / ⇥ SBQ.bX/ // SBQ.bX/
.Œ˛ç; Œˇç/

�
// @.˛/.ˇ/

defines a group action of the Browder-Quinn L-group of bX ⇥ I on the structure set of bX:
Proof. – Since f W

cM �!
bX is a BQ-equivalence, LBQ.bX ⇥ I / D LBQ.cM ⇥ I / and we

can use the Wall representation theorem starting with the BQ-equivalence cM id
���!

cM to
represent ˛ as above.

If we fix the representative ˇ then any two representatives ˛; ˛0 of Œ˛ç as above can be glued
together along their common boundary and the result � 2 LBQ.M ⇥ I / represents the zero
element of LBQ.M ⇥ I /: It follows, from Theorem 2.4 applied to cM ⇥ I; that � is normal
bordant relative to the boundary to a BQ-equivalence. Thus f ı�2 and f ı�0

2
represent the

same element of SBQ.M/:

If the BQ-equivalence ˇ0
W
bL f

0
���!

bX represents the same class as ˇ; then there is a
bordism between them

.bN I
cM;bL/ .F If;f 0

/

�������! .bX ⇥ I I
bX ⇥ f0g; bX ⇥ f1g/:

Using the theorem we can find a representative of Œ˛ç of the form

˛0
W .bV I

bL;bL0/
. Wid; 2/

��������! .bL ⇥ Œ0; 1çIbL ⇥ f0g;bL ⇥ f1g/:

Now let us glue these, and ˛; together in the following order by matching the ‘lower
boundary’ of one row with the ‘upper boundary’ of the following row,

.bV I
bL;bL0/

. Wid; 2/
// .bL ⇥ Œ0; 1çIbL ⇥ f0g;bL ⇥ f1g/

f
0⇥id
// bX ⇥ I

.bN I
cM;bL/ id

// .bN I
cM;bL/ .F If;f 0

/
// bX ⇥ I

.bW op
I
cM 0;cM/

.�I�2;id/
// .cM ⇥ Œ0; 1çI cM ⇥ f0g;cM ⇥ f1g/

f ⇥id
// bX ⇥ I
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We end up with a cycle in LBQ.X ⇥ I / with @.˛0/.ˇ0/ along the upper boundary and @.˛/.ˇ/
along the lower boundary. Moreover, this cycle is null bordant since by Lemma 2.3, it
represents the class Œ˛ç C 0 � Œ˛ç D 0: It follows as in the previous case that @.˛0/.ˇ0/ and
@.˛/.ˇ/ represent the same element in SBQ.bX/:

Compatibility with the group operation on LBQ.bX ⇥ I / is easy as the operation is given
by stacking normal bordisms together as in Lemma 2.3.

Corollary 2.7 (Exactness part 2). – Let bX be a stratified space (without boundary).
The sequence

NBQ.bX ⇥ I; bX ⇥ @I /
✓
// LBQ.bX ⇥ I /

@
// SBQ.bX/ ⌘

// NBQ.bX/
is exact in that two elements of the L-group have the same action on the class of the identity
map precisely when their difference is in the image of ✓; and two elements in the structure set
are in the same orbit precisely when they have the same image under ⌘:

Proof. – Given x1; x2 2 LBQ.bX ⇥ I / such that @.x1/.id/ D @.x2/.id/ we can use the Wall
representation theorem to find

.bWi I bX; @C bWi / Fi
���! .bX ⇥ I I

bX ⇥ f0g; bX ⇥ f1g/
id

���!
bX ⇥ I

representing xi : Without loss of generality @C bW1 F1
���!

bX and @C bW2 F2
���!

bX can be taken
to be the same representative of @.x1/.id/; so that we may form

.bW1 t
@CcWi �

bW2I bX; bX/ F1tF2
������! .bX ⇥ I I

bX ⇥ f0g; bX ⇥ f1g/
id

���!
bX ⇥ I

and recognize this as a representative of a class in NBQ.bX ⇥ I; bX ⇥ @I / representing x1 � x2:

The converse follows by similar reasoning.
If Œˇç; Œˇ0ç 2 SBQ.bX/ have the same image under ⌘ then there is a normal bordism ˛

between ˇ and ˇ0: This normal bordism defines an element of LBQ.bX ⇥ I / whose action
on SBQ.bX/ sends Œˇç to Œˇ0ç: For the same reason elements in the structure set that are in an
orbit of the action of an element of the L-group have the same image under ⌘:

3. K-theory classes associated to the signature operator on Witt and Cheeger spaces

3.1. Metric structures

In order to do analysis we endow a stratified space with a Riemannian metric. Let bX be
a smoothly stratified space and eX its resolution to a manifold with corners and an iterated
fibration structure.

Recall from, e.g., [3, 5, 4], that an iterated incomplete edge metric (briefly, an iie-metric) is a
Riemannian metric on the interior of eX (or, better, a bundle metric on the iterated incomplete
edge tangent bundle over all of eX ) that in a collar neighborhood of each collective boundary
hypersurfaceBY takes the form

dx2 C x2gZ C �⇤
Y
gY :

Here x is a boundary defining function for BY ; i.e., a smooth non-negative function on eX
that is positive except at BY D fx D 0g where it vanishes to exactly first order, and gZ
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and gY are metrics with the same structure on the spaces Z and Y: (Thus this is really an
inductive definition over the depth of a stratified space, with spaces of depth zero being
assigned smooth Riemannian metrics, see loc. cit..)

In particular we point out that an iie-metric on bX includes a Riemannian metric on
each stratum of bX and that these metrics fit together continuously (even smoothly in that
they lift to a smooth section over eX ). Thus endowing bX with an iie-metric in particular
gives bX the structure of a ‘Riemannian Whitney (A) space’ in the sense of Pflaum [43, §2.4].
(Note that the latter concept is more general, e.g., if we were working with metrics that
were asymptotically of the form dx2 C x2`gZ C �⇤

Y
gY for any ` > 0 we would still get

a ‘Riemannian Whitney (A) space’.) In particular, by Theorem 2.4.7 in [43], the topology
on bX is that of the metric space with distance between two points given by taking the infimum
over rectificable curves joining them. As a metric space, bX is complete and locally compact
[43, Theorem 2.4.17] and hence a ‘length space’.

3.2. Galois coverings

Let bX be a smoothly stratified pseudomanifold of arbitrary depth. Consider a Galois
covering ⇡ W

bXÄ !
bX with Galois group Ä and fundamental domain bFÄ . There is a natural

way to define a topological stratification on bXÄ . Decompose bXÄ into the preimages under ⇡
of the strata in bX . Surjectivity of ⇡ ensures that each stratum in the covering is mapped
surjectively onto the corresponding stratum in bX . Since ⇡ is a local homeomorphism, it is
straightforward to check that bXÄ and its fundamental domain are again topological stratified
spaces.

In fact, more is true: by using these local homeomorphisms we can induce a smooth
stratification on bXÄ by simply pulling it up from the base, in either the Whitney as well
as the Thom-Mather cases. It is important to point out that, by definition, the link of a
point ep 2

bXÄ is equal to the link of its image, p, in the base. This construction exhibits
the covering map ⇡ as a transverse map and thus if bX belongs to a class C as above, then so
does bXÄ :

Needless to say, if bXÄ is the universal covering space of bX , the individual strata in bXÄ
need not be the universal covering of the corresponding strata in the base. We denote by XÄ
the regular stratum of bXÄ and observe that it is a Galois covering of the regular stratum X

of bX with fundamental domain FÄ equal to the regular part of bFÄ . Let g be an admissible
incomplete edge metric on X . We can lift g to the Galois covering XÄ where it becomes a
Ä-invariant admissible incomplete edge metriceg. Moreover, there is an isometric embedding
of FÄ into X with complement of measure zero. We denote by DÄ the signature operator
on XÄ associated to such a metric.

3.3. C ⇤
and D⇤

algebras

First of all, we need to fix an Hilbert spaceH with a unitary action of Ä and a C ⇤-repre-
sentation from C0.bXÄ/ to B.H/ intertwining the two actions of Ä. Notice that the represen-
tation is associated to the stratified Galois covering bXÄ (and not to its regular part XÄ ). We
take H D L2.XÄ ; ƒ

⇤XÄ/; the representation is given by the multiplication operator associ-
ated to the restriction of a function to the regular part XÄ . To these data we can associate
two C ⇤-algebras: the Roe algebra C ⇤.bXÄ ;H/Ä , obtained as the closure of the Ä-equivariant
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finite propagation locally compact bounded operators on H , and the Higson-Roe algebra
D⇤.bXÄ ;H/Ä , obtained as the closure of the Ä-equivariant finite propagation pseudolocal
bounded operators on H . Since we shall be eventually interested in the K-theory groups
of these C ⇤-algebras and since the K-theory groups are independent of the choice of the
(adequate) Ä equivariant Cc.bXÄ/-module H , we shall adopt the notation C ⇤.bXÄ/Ä and
D⇤.bXÄ/Ä for these two C ⇤-algebras. (2)

We shall also use the universal versions of these algebras, defined as

(3.1) C ⇤
Ä

WD C ⇤.EÄ/Ä ; D⇤
Ä

WD D⇤.EÄ/Ä :

See for example [45, Definition 2.19].

We have the following fundamental

Proposition 3.1. – Let .bX; g/ and .bXÄ ;eg/ as above. Assume that bX is a Cheeger-space
and let W be a self-dual mezzoperversity for D. Then:

(1) there exists a closed Ä-equivariant self adjoint extension of DÄ associated to W ,
denoted DW

Ä
;

(2) if � 2 C0.R/, then �.DW
Ä
/ 2 C ⇤.bXÄ/Ä .

(3) if � is a chopping function (i.e., � W R ! Œ�1; 1ç is odd and limx!˙1 �.x/ D ˙1); then
�.DW

Ä
/ 2 D⇤.bXÄ/Ä .

Proof. – (1) The pull-back of the mezzoperversity W along the covering map ⇡ is a
mezzoperversity onXÄ ;which we briefly denoteWÄ :The definition of the domain associated
to a mezzoperversity in [5] applies in the setting ofXÄ ; as the asymptotic expansions on which
it relies are carried out in distinguished neighborhoods of points on the singular strata and
these are the same on bX or bXÄ : Similarly we can define DWÄ

.d/ and DWÄ
.ı/ as in [5] and

see that they are mutually adjoint and that

DWÄ
.DW

Ä
/ D DWÄ

.d/ \DWÄ
.ı/

so that DW
Ä

with this domain is self-adjoint.
The analysis of [5] that establishes that DW.D/ includes compactly into L2.X Iƒ⇤X/

implies that, for any compact subset K ✓
bXÄ ;

fu 2 DWÄ
.DW

Ä
/ W supp.u/ ✓ Kg

includes compactly into H: See [5, Section 5.1].
(2) As far as the second item is concerned we initially tackle the local compactness

of �.DW
Ä
/. We have to prove that if g 2 Cc.bXÄ/ then g�.DW

Ä
/ and �.DW

Ä
/g are compact

operators. By taking adjoints it suYces to see that g�.DW
Ä
/ is compact. Using the Stone-

Weierstrass theorem it suYces to establish this property for the function �.x/ D .i C x/�1.
As this maps H into DWÄ

.DW
Ä
/; the local compactness of the inclusion of the latter into H

implies that of �.DW
Ä
/:

Next we consider the finite propagation property: by a density argument it suYces to see
such a property for smooth functions � that are of rapid decay and have compactly supported
Fourier transform. Thus, let b� be the Fourier transform of a smooth rapidly decaying � and

(2) For technical reasons having to do with functoriality one actually takesH D L
2
.XÄ ;ƒ

⇤
XÄ/˝ `

2
.N/:
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let us assume that the support of b� is contained in Œ�R=2;R=2ç. We must show that there
exists S 2 RC such that f �.DW

Ä
/g D 0whenever the distance between the support of f and

g is greater than S . Proceeding precisely as in [4, Theorem 5.3] we know that there exists a ı
such that exp.isDW

Ä
/ has propagation jsj if jsj < ı; thus f exp.isDW

Ä
/g D 0 if the distance

of the supports of f and g is greater than jsj, with s in the range .�ı; ı/. Recall now that, by
functional calculus, we can write

�.DW
Ä
/ D

1

2⇡

Z
exp.isDW

Ä
/b�.s/ds

where the integral converges weakly:

h�.DW
Ä
/u; vi D

1

2⇡

Z
hexp.isDW

Ä
/u; vi

b�.s/ds
for each pair of compactly supported sections on XÄ . Assume initially that R < ı. Then,
from the above integral representation, we see that �.DW

Ä
/ has finite propagation (in fact,

propagation R) which is what we wanted to prove. For the general case we use a trick from
[52]. Write � D

P
j
fj where the sum is finite and where fj has Fourier transform supported

in .Tj � ı=2; Tj C ı=2/. Consider gj .x/ D exp.�iTjx/fj .x/. Then gj .DWÄ / has propagation
ı by what we have just seen. Write now

exp.iTjx/ D

kY
`D1

exp.i⌧`x/ with j⌧`j < ı:

We have then fj .x/ D

Q
k

`D1 exp.i⌧`x/gj .x/ and thus

fj .D
W
Ä
/ D exp.i⌧1DWÄ / ı � � � ı exp.i⌧kDWÄ / ı gj .D

W
Ä
/:

All the operators appearing on the right hand side have finite propagations and we know that
the composition of two operators of finite propagation is again of finite propagation. Thus
fj .D

W
Ä
/ has finite propagation. The proof of item 2 is complete.

(3) Let � be a chopping function. Recall from [26, Section 10.6] that for every t > 0 there
exists a chopping function � with (distributional) Fourier transform supported in .�t; t /.
Moreover, if �0 and � are two arbitrary chopping functions, then �0 � � D �, with
� 2 C0.R/. This implies immediately that if �0.DWÄ / is of finite propagation then �1.DWÄ / is
a limit of finite propagation operators; moreover �0.DWÄ /g � �.DW

Ä
/g is a compact oper-

ator for any g 2 Cc.bXÄ/. We choose a chopping function �0 with Fourier transform
supported in .�ı=2; ı=2/. Then we know, from the previous arguments, that �0.DWÄ / is of
propagation ı. Hence �.DW

Ä
/ is a limit of finite propagation operators for each chopping

function �. It remains to see that �.DW
Ä
/ is pseudolocal, i.e., Œf;�.DW

Ä
/ç is compact for

any f 2 C0.bXÄ/. By Kasparov’s Lemma, see [26, Lemma 5.4.7] and [26, Lemma 10.6.4],
we know that �.DW

Ä
/ is pseudolocal if and only if f�.DW

Ä
/g is compact for any choice

of f 2 C.bXÄ/ bounded and g 2 Cc.bXÄ/with disjoint supports. Now, if ⌘ > 0 is the distance
between the support of f and the support of g and if we choose a chopping function �0
with Fourier transform supported in .�⌘=2; ⌘=2/ then we know that f�0.DWÄ /g D 0. But
then for an arbitrary chopping function � we have

f�.DW
Ä
/g D f�0.D

W
Ä
/g C f .�.DW

Ä
/ � �0.D

W
Ä
//g D 0C f .�.DW

Ä
/ � �0.D

W
Ä
//g
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and since f is bounded and .�.DW
Ä
/� �0.D

W
Ä
//g is compact we see that on the right hand

side we do have a compact operator as required. The proof of item 3 is now complete.

3.4. K-homology classes

Proposition 3.1 allows us to recover, in the bounded picture, the fundamental classes that
were defined in [3, Theorem 6.2] for Witt spaces and in [4, Theorem 5.3] for Cheeger spaces.
More precisely:

Proposition 3.2. – If bX is an n-dimensional Cheeger space endowed with a rigid iterated
conic metric g and if W is a self-dual mezzoperversity adapted to g then there is a well defined
K-homology signature class ŒDW ç 2 Kn.bX/.

Proof. – Let� be a chopping function; then�2�1 is an element inC0.R/ and thus�.DW
Ä
/

is an involution in the quotient D⇤.bXÄ/Ä=C ⇤.bXÄ/Ä . Thus, using also the grading in even
dimension, one defines an element in KnC1.D⇤.bXÄ/Ä=C ⇤.bXÄ/Ä/ which is precisely Kn.bX/
by Paschke duality.

Remark 6. – The class we have just defined does coincide with the one defined in
Theorem 5.3 in [4]: this follows from the proof of [26, Theorem 10.6.5] and the correspondence
between the unbounded and bounded picture for K-homology.

Remark 7. – The class ŒDW çQ 2 Kn.bX/ ˝ Q is independent of the choice of self-dual
mezzoperversity W; indeed the homological Chern character of ŒDW çQ, in H⇤.bX;Q/ is equal
to the homologyL-class of the Cheeger space, see [4, Thorem 5.6], and we know that theL-class
is independent of the choice of W , see [4, Section 5.1]. We shall come back to this point later
on.

3.5. Higson-Roe sequences associated to a Thom-Mather space

If bX is a Thom-Mather stratified space and bXÄ is a Galois covering with structure groupÄ,
then there is a short exact sequence of C ⇤-algebras

0 ! C ⇤.bXÄ/Ä ! D⇤.bXÄ/Ä ! D⇤.bXÄ/Ä=C ⇤.bXÄ/Ä ! 0

and thus a 6-term long exact sequence in K-theory:
(3.2)
� � � ! KmC1.C ⇤.bXÄ/Ä/ ! KmC1.D⇤.bXÄ/Ä/ ! KmC1.D⇤.bXÄ/Ä=C ⇤.bXÄ/Ä/ ! Km.C

⇤.bXÄ/Ä/ ! � � � :

This is the analytic surgery sequence of Higson and Roe associated to the Ä-compact
Ä-space bXÄ . Since we have the canonical isomorphism K⇤C1.D⇤.bXÄ/Ä=C ⇤.bXÄ/Ä/ D

K⇤.bX/ we can also rewrite (3.2) as

(3.3) � � � ! KmC1.C ⇤.bXÄ/Ä/ ! KmC1.D⇤.bXÄ/Ä/ ! Km.bX/ ! Km.C
⇤.bXÄ/Ä/ ! � � � :

Moreover, since bX is compact, we recall that there exists a canonical isomorphism

K⇤.C ⇤.bXÄ/Ä/ D K⇤.C ⇤
r
Ä/:
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Now, in particular, all of the above is true with bXÄ equal to the universal covering of bX and
Ä D ⇡1.bX/. Recall from §2.2 that the closure of a stratum Y in bX is itself a stratified space,
equal to

bY D

[
fYi W Yi  Y g:

These are often referred to as the ‘closed strata’. Consider Ä.bY / WD ⇡1.bY /; then we
have a 6-term exact sequence similar to (3.3) but associated to the universal covering,
Ä.bY / �

bY
Ä.bY / !

bY of bY .

3.6. Index classes

Let now bX be an n-dimensional Cheeger space and let us choose a self-dual mezzop-
erversity W . Then, by Proposition (3.2), we have a K-homology class ŒDW ç 2 Kn.bX/ D

KnC1.D⇤.bXÄ/Ä=C ⇤.bXÄ/Ä/ and thus an index class

(3.4) Ind.DW
Ä
/ WD @ŒDW ç 2 Kn.C

⇤.bXÄ/Ä/;
with @ the connecting homomorphism in the Higson-Roe surgery sequence. Following the
proof given in [45, Proposition 2.1] this class corresponds to the one considered in [4] through
the canonical isomorphism K⇤.C ⇤.bXÄ/Ä/ D K⇤.C ⇤

r
Ä/; notice that the class defined in

[4] is a Mishchenko class, obtained by twisting the signature operator by the Mishchenko
bundle bXÄ ⇥Ä C

⇤
r
Ä.

Both in the Higson-Roe formalism, see [30], and in the Mishchenko formalism, we can
also consider the index class with values in the maximal version of our C ⇤-algebras. We
denote the maximal group C ⇤-algebra associated to Ä as C ⇤Ä.

Finally, if bY is a closed m-dimensional stratum with fundamental group Ä.bY / then
W induces a self-dual mezzoperversity W.bY / for bY and we obtain a K-homology class

ŒDW.bY /ç 2 Km.bY / and thus an Index class Ind.DW.bY /
Ä.bY / / 2 Km.C

⇤
r
.Ä.bY //.

3.7. Rho classes associated to trivializing perturbations

Let bX be a Cheeger space endowed with an iie metric g. We initially assume that bX is odd
dimensional. Let W be a self-dual mezzoperversity for bX and let DW be the corresponding
signature operator, an unbounded self-adjoint operator on L2.X;ƒ⇤X/. (Recall thatDW is
a short notation for the pair .D;DW.D//, the (extension of the) signature operator on .X; g/,
the regular part of bX endowed with the Riemannian metric g, with domain defined by the
self-dual mezzoperversityW .) Given a Galois Ä-covering bXÄ of bX , we also have the Ä-equiv-
ariant signature operator DW

Ä
, a self-adjoint unbounded operator on L2.XÄ ; ƒ⇤XÄ/. Let

now A be a bounded Ä-equivariant self-adjoint operator on L2.XÄ ; ƒ⇤XÄ/. ThenDW
Ä

CA,
with domain equal to the domain of DW

Ä
, is also self-adjoint. Following [46, Section 2B] we

make the assumption thatDW
Ä

CA isL2-invertible and thatA 2M.C ⇤.bXÄ/Ä/, the multiplier
algebra of C ⇤.bXÄ/Ä . We refer toA as a trivializing perturbation. Then, using Proposition 3.1
and [46, Proposition 2.8], we see that

(3.5)
DW
Ä

C A

jDW
Ä

C Aj

is an element in D⇤.bXÄ/Ä :
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Moreover, DW
Ä

C A=jDW
Ä

C Aj is clearly an involution and thus

1

2

 
DW
Ä

C A

jDW
Ä

C Aj

C 1

!

is a projection in D⇤.bXÄ/Ä . We define the rho class associated to DW
Ä

C A as

(3.6) ⇢.DW
Ä

C A/ WD

"
1

2

 
DW
Ä

C A

jDW
Ä

C Aj

C 1

!#
in K0.D

⇤.bXÄ/Ä/:

In the even dimensional case we consider the grading associated to the Hodge ? operator
and we demand that the trivializing perturbation A 2 M.C ⇤.bXÄ/Ä/ be odd with respect to
this grading; thus DW

Ä
C A can be written as

 
0 DW;�

Ä
C A�

DW;C
Ä

C AC 0

!
:

We now fix a chopping function � equal to the sign function on the spectrum of the invertible
operator DW

Ä
C A; we also fix a Ä-equivariant isometry u W ƒ�.iieT ⇤XÄ/ ! ƒC.iieT ⇤XÄ/

and consider the induced bounded Ä-equivariant operator on the space of L2 sections of
these bundles, call it U . Observing that �.DW

Ä
CA/ is also odd (see [26, Lemma 10.6.2]) we

consider U�.DW
Ä

CA/C which is a unitary in D⇤.bXÄ/Ä . We then define the rho class in the
even dimensional case as

(3.7) ⇢.DW
Ä

C A/ WD ŒU�.DW
Ä

C A/Cç in K1.D
⇤.bXÄ/Ä/:

As explained in [46, page 118] this is well defined, independent of the choice of u.

4. Bordisms and associated K-theory classes

4.1. Bordisms of Cheeger spaces

We recall here some fundamental facts established in [4]. Assume that M is a topological
space and denote by Sign.M/ the bordism group of four-tuples .bX; g;W; r W

bX �! M/

where bX is an oriented Cheeger space of dimension n; g is an adapted iterated incomplete
conic metric (briefly an iie metric),W is a self-dual Hodge mezzoperversity adapted to g and
r W

bX �! M is a continuous map. An admissible bordism between .bX; g;W; r W
bX �! M/

and .bX 0; g0;W 0; r 0
W
bX 0

�! M/ is a four-tuple . cX ; G;W ; R W
cX �! M/ consisting of:

(i) a smoothly stratified, oriented, compact pseudomanifold with boundary cX , whose
boundary is bX t .�bX 0/; and whose strata near the boundary are collars of the strata
of bX or bX 0;

(ii) an iie metricG on cX that near the boundary is of the collared form dx2Cg or dx2Cg0;

(iii) an adapted self-dual mezzoperversity W that extends, in a collared way, that of bX
and bX 0;

(iv) a map R W
cX �! M that extends r and r 0:
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We shall briefly say that .bX; g;W; r W
bX �! M/ and .bX 0; g0;W 0; r 0

W
bX 0

�! M/

are Cheeger-bordant through . cX ; G;W ; R W
cX �! M/. We are mainly interested in the

case M D BÄ, so that a map r W
bX ! BÄ defines a Galois Ä-covering bXÄ . We have the

following important results, see [4, Sections 5.3 and 5.4] for proofs:

Theorem 4.1. – If .bX; g;W; r/ and .bX 0; g0;W 0; r 0/ are n-dimensional and Cheeger-
bordant through . cX ; G;W ; R W

cX �! M/ then:

1] the numeric Fredholm indices associated to DW and .D0/W
0 are equal;

2] there exists a well defined relative K-homology class ŒDW ç 2 KnC1. cX ; @ cX /;

3] if @ W KnC1. cX ; @ cX / ! Kn.@ cX / ⌘ Kn.bX [ .�bX 0// is the connecting homomorphism
associated to the long exact sequence of the pair . cX ; @ cX / then

@ŒDW ç D ŒDW ç � Œ.D0/W
0
ç in Kn.@ cX /˝Z ZŒ

1

2
çI

4] the signature index classes associated to .bX; g;W; r W
bX �! BÄ/ and .bX 0; g0;W 0; r 0

W

bX 0
�! BÄ/ are equal in K⇤.C ⇤

r
Ä/˝Z ZŒ1

2
ç.

5] If W and W 0 are adapted to g and g0 on the same Cheeger space bX and r W X ! M

is a continuous map then .bX; g;W; r W
bX ! M/ is Cheeger-bordant to .bX; g0;W 0; r W

bX ! M/. In particular, the numeric Fredholm index, in Z, and the signature index class,
in K⇤.C ⇤

r
Ä/˝Z ZŒ1

2
ç, are independent of the choice of self-dual mezzoperversity.

Remark 8. – The statements in [4] are given with values in K0.C ⇤
r
Ä/˝Z Q but it is easy

to see that the arguments given there establish the same results in K0.C ⇤
r
Ä/˝Z ZŒ1

2
ç.

The main idea behind the formulation and the proof of item 5] is due to Markus Banagl,
see [9].

Notation. – Since the signature index class Ind.DW
Ä
/ 2 K⇤.C ⇤

r
Ä/ ˝Z ZŒ1

2
ç associated to a

Galois covering r W
bX ! BÄ is in fact independent of the choice ofW , we shall often denote

it simply by Ind.DÄ/ or even Ind.bXÄ/.
4.2. The signature operator on Cheeger spaces with cylindrical ends

Let Ä �
cXÄ !

cX be a Galois Ä-covering of an even dimensional Cheeger space with
boundary. We consider a rigid iie metric g on the regular part X which is collared near @X
and we lift it to a Ä-equivariant rigid iie metric on XÄ . We also consider the Cheeger spaces
with cylindrical ends, cX1, cXÄ;1, obtained by attaching .�1; 0ç⇥ @ cX and .�1; 0ç⇥ @ cXÄ

to cX , cXÄ respectively. We endow .�1; 0ç⇥@X and .�1; 0ç⇥@XÄ with product metrics and
we obtain in this way global metrics on X1 and X1;Ä . If W is a self-dual mezzoperversity
on X then we obtain in a natural way a self-dual mezzoperversity W1 on X1 and thus, by
lifting, a Ä-equivariant self-dual mezzoperversity WÄ;1 onX1;Ä . We denote by @W the self-
dual mezzoperversity induced on the boundary, see Theorem 4.1. Finally, we denote by P0
the multiplication operator by the characteristic function of the attached semi-cylinder.

Proposition 4.2. – Let D1 and D1;Ä be the the signature operators on X1 and X1;Ä

respectively. By employing W1 and WÄ;1 we can define self-adjoint extensionsDW
1 andDW

1;Ä
.
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Proof. – Extend the iterated fibration structure from X to X1 by including the cylin-
drical direction in the base of each fiber bundle. Define

DW
1 D .D1;DW1.D1//; where DW ;1.D/ D fu 2 Dmax.D1/ W at each singular

stratum, u satisfies the ideal boundary condition corresponding to W1g:

It is easy to see that this is a self-adjoint domain. Indeed, this domain is localizable (an
element is in the domain if and only if it is in the domain after multiplying by any function
in C1

ˆ
.X/; see [5, §2] and, e.g., the discussion after assumption 3.8 in [5]) and so it suYces

to show that the corresponding domain on the full cylinder @X ⇥ R is self-adjoint; here we
could either use Fourier transform in the R-factor to reduce to the self-adjointness of D@W ;

or alternately recognize @X ⇥ R as a cover of @X ⇥ S1; consider the pull-back of @W to this
product, and then appeal to Proposition 3.1 above.

4.3. Perturbations and coarse APS-index classes

In this subsection we shall define APS-index classes associated to the self-adjoint oper-
ator DW

1;Ä
. First we recall, for example from [45, Definition 1.7], the definition of relative

C ⇤-algebra .

Definition 5. – The subalgebra

C ⇤
c
. cXÄ ⇢

cXÄ;1/Ä ⇢ C ⇤
c
. cXÄ;1/Ä

is defined by imposing on an operator T in C ⇤
c
. cXÄ;1/Ä the additional property that 9 R > 0

such that �T D 0 D T� whenever � 2 Cc. cXÄ;1/ and d.supp.�/; cXÄ/ > R. The C ⇤-algebra
C ⇤. cXÄ ⇢

cXÄ;1/Ä is obtained by closing the subalgebra C ⇤
c
. cXÄ ⇢

cXÄ;1/Ä in the operator
norm.

A similar definition can be given for D⇤. cXÄ ⇢
cXÄ;1/Ä . One can prove, see [45,

Lemma 1.8], that the inclusion c W
cXÄ ,! cXÄ;1 induces K-theory isomorphisms:

(4.1)
K⇤.C ⇤. cXÄ/

Ä/ ' K⇤.C ⇤. cXÄ ⇢
cXÄ;1/Ä/ I K⇤.D⇤. cXÄ/

Ä/ ' K⇤.D⇤. cXÄ ⇢
cXÄ;1/Ä/:

Notice that C ⇤. cXÄ ⇢
cXÄ;1/Ä/ and D⇤. cXÄ ⇢

cXÄ;1/Ä are ideals in D⇤. cXÄ;1/Ä .
We assume the existence of a trivializing perturbation C@ for the signature operatorD@W

Ä

on @XÄ : this means, as before, that C@ is bounded, that D@W
Ä

C C@ (with domain equal to
the domain of D@W

Ä
) is L2-invertible and that C@ 2 M.C ⇤.@ cXÄ/

Ä/. C@ ˝ IdR then defines
a bounded operator on L2.@ cXÄ ⇥ R/. We can then graft this perturbation on XÄ;1 and
obtain a bounded perturbation C1 for DW

1;Ä
. In the case of interest to us it will be the case

that C1 is a limit in the norm topology of finite propagation operators and so we assume
this property in what follows. In fact, we might more generally consider a perturbation B1
which is a limit of finite propagation operators and such that

(4.2) P0B1P0 � P0C1P0 2 C ⇤. cXÄ ⇢
cXÄ;1/Ä ;

with P0 the operator defined by multiplication by the characteristic function of the cylin-
drical end .�1; 0ç ⇥ @ cXÄ ⇢

cXÄ;1.
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Proposition 4.3. – Let C@, C1 and B1 be as above. If � 2 C0.R/ and if � is a chopping
function equal to the sign function on the spectrum of D@W

Ä
C C@, then:

1] �.DW
Ä;1 C B1/ 2 C ⇤. cXÄ;1/Ä ;

2] �.DW
Ä;1 C B1/ 2 D⇤. cXÄ;1/Ä ;

3] �.DW
Ä;1 C B1/ is an involution modulo C ⇤. cXÄ ⇢

cXÄ;1/Ä .

Proof. – For 1] and 2] we use Proposition 3.1 and the purely functional analytic argu-
ments given in [46, Lemma 2.25]. For the third item we use the proof of Proposition 2.26 in
[46], which is once again purely functional analytic.

Given C@ as above, choosing B1 D C1 and using Proposition 4.3 we can define a coarse
relative index class

Indrel.DW
Ä;1 C C1/ WD @Œ�.DW

Ä;1 C C1/ç 2 K⇤.C ⇤. cXÄ ⇢
cXÄ;1/Ä/

and thus, using (4.1), a coarse APS-index class

Ind.DW
Ä
; C / WD c�1

⇤ .Indrel.DW
Ä;1 C C1// 2 K⇤.C ⇤. cXÄ/

Ä/ ' K⇤.C ⇤
r
Ä/:

Notice that the left hand side is just notation; we have not really defined a perturbation C
on cXÄ .

One can prove, following the arguments in the proof of [46, Proposition 2.33], that for C@,
C1 and B1 as above:

Indrel.DW
Ä;1 C C1/ D Indrel.DW

Ä;1 C B1/ 2 K⇤.C ⇤. cXÄ ⇢
cXÄ;1/Ä/;

where the right hand side is well defined because of item 3] of Proposition 4.3.

4.4. The delocalized APS index theorem

Let X , XÄ , X1, XÄ;1,DW ,DW
Ä

,DW
1 ,DW

Ä;1,D@W ,D@W
Ä

and C@ be as in the previous
subsections. We assume X to be even dimensional. By assumptionC@ is a trivializing pertur-
bation for D@W

Ä
; assume that C@ 2 C ⇤.@W /Ä/, so that C@ is a norm limit of finite prop-

agation operators. Consequently C1 is also a norm limit of finite propagation operators.
We can consider the rho class ⇢.D@W

Ä
C C@/ 2 K0.D

⇤.@XÄ/
Ä/ and the coarse-APS index

class Ind.DW
Ä
; C / 2 K0.C

⇤.XÄ/
Ä/. Let ◆ W C ⇤.XÄ/

Ä ,! D⇤.XÄ/
Ä be the natural inclu-

sion and consider j⇤ W K0.D
⇤.@XÄ/

Ä// ! K0.D
⇤.XÄ/

Ä/ induced by the inclusion of @XÄ

into XÄ . Our main tool in the next section will be the delocalized APS index theorem for
perturbed signature operators on Cheeger spaces:

Theorem 4.4 (Delocalized APS index theorem). – If the trivializing perturbation C@ is a
norm limit of finite propagation operators, then the following equality holds

(4.3) ◆⇤.Ind.DW
Ä
; C // D j⇤.⇢.D@W

Ä
C C@// in K0.D

⇤.XÄ/
Ä/:

Proof. – All the arguments given in [45, Theorem 1.14] and then [46, Theorem 3.1] are
functional analytic with the exception of the proof of Proposition 5.33 in [46]. However, the
alternative proof of this particular proposition given by Zenobi in the context of Lipschitz
manifolds, see Proposition 3.20 in [66], applies verbatim to the present context.
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Let now X be odd dimensional. After inverting 2 we can reduce the delocalized APS
index theorem on X to the one on X ⇥ S1 by a suspension argument. This is discussed
carefully in [66, §5] where a diVerent description of the group K⇤.D⇤.bXÄ/Ä/ is given for
metric spaces with Ä-actions. These arguments apply in our situation largely unchanged.

In summary, the delocalized APS index theorem holds in every dimension.

5. Stratified homotopy equivalences and associated perturbations

5.1. The Hilsum-Skandalis replacement

Let bX be a Cheeger space, r W
bX �! BÄ the classifying map for the universal cover of bX;

G .r/ the Mishchenko bundle associated to r; and WX a self-dual mezzoperversity on bX: If
cM is another Cheeger space and f W

cM �!
bX a stratified homotopy equivalence then (see

[4, Theorem 4.6]), there is a ‘Hilsum-Skandalis replacement’ for the pull-back of diVerential
forms by f;

HS.f / W L2.X Iƒ⇤iieT ⇤X ˝ G .r// �! L2.M Iƒ⇤iieT ⇤M ˝ G .r ı f //;

that we can use to define a self-dual mezzoperversity WM D f ].WX / on cM: These data
satisfy

— HS.f /dG .r/
D dG .rıf /HS.f / and HS.f /.DWX .dG .r/// ✓ DWM .dG .f ır//:

— There is an L2-bounded operator ‡ acting on DWX .dG .r//; such that

Id �HS.f /0HS.f / D dG .r/‡ C ‡dG .r/;

where HS.f /0 denotes the adjoint with respect to the quadratic form defined by the
Hodge operator.

We point out that the boundedness of HS.f / on L2.X Iƒ⇤iieT ⇤X ˝ G .r//; together with
the first of these properties, implies that HS.f / is bounded as a map

HS.f / W DWX .d
G .r// �! DWM .d

G .f ır//;

when these spaces are endowed with the respective d -graph norm. Similarly ‡ is bounded
as an operator on the Hilbert space DWX .dG .r//: Note however that HS.f / does not map
L2 diVerential forms into the maximal domain of d I indeed, if a diVerential form extends to
be smooth on the closure of eX and its exterior derivative fails to be in L2; then the same will
be true of its image under HS.f /:

5.2. The compressed Hilsum-Skandalis replacement

Following [44], we will also make use of a compressed version of the Hilsum-Skandalis
replacement. In this case the replacement will make use of a fixed mezzoperversity and will
have the property that it maps all of theL2 diVerential forms into the domain of d:Recall that
one of the main results in [4] is that the resolvents ofDWG.r/ andDf

]W
G.rıf / are C ⇤

r
Ä-compacts.
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Definition 6. – Let bX be a Cheeger space,WX a self-dual mezzoperversity, r W
bX �! BÄ

the classifying map for the universal cover of bX and f W
cM �!

bX be a smooth stratified map.
For each � W R �! R an even, rapidly decreasing function, we define the compressed Hilsum-
Skandalis replacement of f to be the operator

HS�.f / W L2.X Iƒ⇤iieT ⇤X ˝ G .r// �! L2.M Iƒ⇤iieT ⇤M ˝ G .f ı r//;

HS�.f / D �.Df
]WX / ıHS.f / ı �.DWX /:

As elements of the functional calculus we know that, e.g.,

�.DWX / W L2.X Iƒ⇤iieT ⇤X ˝ G .r// �! L2.X Iƒ⇤iieT ⇤X ˝ G .r//

commutes with DWX and is a bounded operator with range contained in the domain
of DWX : In fact the range is contained in the domain

D1
WX .D/ D

\
`2N

f! 2 DWX .D/ W D!; : : : ;D`! 2 DWX .D/g

as x`�.x/ is a rapidly decreasing function for any ` 2 N: Since this domain is compactly
included in L2.X Iƒ⇤iieT ⇤X ˝ G .r//; it follows that �.DWX / is a compact operator. More-
over since � is even and d commutes with .d C ı/2; d commutes with �.D/: Thus,

HS�.f / is a compact operator and HS�.f /dWX D df
]WXHS�.f /:

The compressed Hilsum-Skandalis replacement satisfies properties similar to those ofHS.f /;
see Lemma 9.7 in [44].

5.3. The Hilsum-Skandalis perturbation

On X t �M consider the operators

dXt�M D

 
dX 0

0 dM

!
; ⌧Xt�M D

 
⌧X 0

0 �⌧M

!

and, for t 2 Œ0; 1ç; the operator

(5.1)

Lt W DWXtf ]WX .dXt�M / �! DWXtf ]WX .dXt�M /

Lt D

 
Id �HS.f /0HS.f / .1 � i t�‡/ ıHS.f /0

HS.f / ı .1C i t�‡/ Id

!
:

We point out that Lt is bounded as an operator on the spaceDWXtf ]WX .dXt�M / endowed
with its dXt�M -graph norm, and let jLt j D

p
L⇤
t Lt denote the operator defined by the func-

tional calculus on this Hilbert space (or equivalently as a bounded operator on L2-diVeren-
tial forms).

As in [31], the Hilsum-Skandalis replacement can be used to construct a perturbation of
the signature operator

DWXtf ]WX
D

 
DWX 0

0 �DWM

!
on bX t .�cM/

that results in an invertible operator. Indeed, for suYciently small t; the operator

DWXtf ]WX
C Ct .f / D

1

i
Ut ıD

t
ı U�1

t
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is invertible, where D
t

is the operator obtained from DWXtf ]WX by making two replace-
ments:

dXt�M 7!

 
dX tHS.f /

0

0 dM

!
; ⌧Xt�M 7! sign .⌧Xt�M ı Lt / D ⌧Xt�M ı sign.Lt /

and

Ut D j⌧Xt�M ı Lt j1=2 :

Lemma 5.1. – The operator Ct .f / is a bounded operator relative to DWXtf ]WX
I that is,

Ct .f / is bounded as a map

Ct .f / W DWXtf ]WX .D/ �! L2.X t �M Iƒ⇤.X t �M//:

The operator DWXtf ]WX
C Ct .f / is invertible for small enough t > 0:

Proof. – The boundedness of Ct .f / relative to DWXtf ]WX follows from the fact
that Lt is a bounded operator on DWX .d/: With notation similar to [66, Proof of Proposi-
tion 3.4], we can write

Et D

 
0 tHS.f /0

0 0

!
; sign.Lt / D Id CGt ; Ut D Id CH 0

t
; U�1

t
D Id CF 0

t

withEt ; Gt ; H 0
t
; F 0

t
bounded operators onDWXtf ]WX .d/; with its d -graph norm as well as

on L2.X t �M Iƒ⇤.X t �M//: Then, e.g., in the even dimensional case we can write

Dt D
1

i
.1C F 0

t
/ ı ..d CEt /C ⌧Xt�M ı .1CGt / ı .d CEt / ı ⌧Xt�M ı .1CGt // ı .1CH 0

t
/ D D C Ct .f /

and it follows that Ct .f / is bounded as a map from DWXtf ]WX .D/ to

L2.X t �M Iƒ⇤.X t �M//:

Note that L0 satisfies

L0 D R0R; R D

 
Id 0

HS.f / Id

!

and, since R is invertible, this shows that L0 is invertible and hence Lt is invertible for
small enough t: The invertibility of DWXtf ]WX

C Ct .f / as an unbounded operator with
domain DWXtf ]WX .DXt�M / now follows as in [31, Lemme 2.1], [56, §3].

A similar result holds for the signature operator on X t .�M/, with mezzoperversity
given by WX and f ]WX and twisted by the Mishchenko bundle G .r/ on X and G .f ı r/

on M . In this case we use the Hilsum-Skandalis replacement HS.f / W DWX .dG .r// �!

DWM .dG .f ır//.
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5.4. The compressed Hilsum-Skandalis perturbation

We can repeat the argument from the previous subsection replacing HS.f / by HS�.f /:
The resulting perturbation, which we denote Ct;�.f / and refer to as the compressed Hilsum-
Skandalis perturbation, satisfies an improved version of Lemma 5.1.

Lemma 5.2. – The operator Ct;�.f / extends from DWXtf ]WX .DXt�M / to a compact
operator

Ct;�.f / W L2.X t �M Iƒ⇤.X t �M// �! L2.X t �M Iƒ⇤.X t �M//:

The operator DWXtf ]WX
C Ct;�.f / is invertible.

Proof. – If Lt;� is the operator obtained as in (5.1) but using HS�.f /; then it is an
invertible operator of the form Id CHt;� with Ht;� a compact operator such that both Ht;�

and its adjoint map send L2.X t �M Iƒ⇤.X t �M// into DWXtf ]WX .D
1
Xt�M /: It follows

from, e.g., the argument used in Lemma A.12 of [44], see also [66, Proposition 3.4], that each
of the operators Et;�; Gt;�; H 0

t;�
; F 0

t;�
defined as in the proof of Lemma 5.1 will also have

this property. Hence Ct;�.f / will be a compact operator.

The invertibility of the perturbed signature operator follows from [31, Lemme 2.1].

Also in this case we can extend the whole analysis to the signature operators twisted by
the appropriate Mishchenko bundles; we state and use this result in Proposition 5.3 below.

5.5. Passing to the Roe algebra

Let B.E/ denote the operators acting on the Hilbert C ⇤
r
Ä-module

E WD L2.X;ƒ⇤X ˝ G.r//˚ L2.M;ƒ⇤M ˝G.r ı f //:

Recall that there is a C ⇤-homomorphism

L⇡ W B.E/ ! B.L2.XÄ ; ƒ⇤XÄ/˚ L2.MÄ ; ƒ⇤MÄ//

and that L⇡ induces an isomorphism between K.E/ and the Roe algebra C ⇤.bXÄ t .�cMÄ//
Ä

and between B.E/ and the multiplier algebraM.C ⇤.bXÄ t .�cMÄ//
Ä/ of the Roe algebra.

Proposition 5.3. – The compressed Hilsum-Skandalis perturbation C�;t .f / is an
element in K.E/. Consequently, if C�;t .f / WD L⇡.C�;t .f //, then

(5.2) C�;t .f / 2 C ⇤.bXÄ t .�cMÄ//
Ä :
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5.6. APS-index classes associated to LBQ-cycles

Let
˛ W .M ; @M /

F

���! .Y ; @Y /
!

���! X

be an LBQ-cycle with M ; Y ; and X Cheeger spaces with boundary. We denote cM WD @M

and bY WD @Y . We let Z WD Y t .�M /. Recall that F W M ! Y is a smooth transverse
stratified map that restricts to a BQ-equvalence between cM and bY : The map ! and the
classifying map for the universal cover of X induce a classifying map Y �! BÄ; where
Ä D ⇡1X : Together with F this defines a Ä-covering Ä ! ZÄ ! Z . We fix a self-
dual mezzoperversity W on X and consider the induced mezzo-perversities !]W on Y and
.!ıF /]W on M . This gives Z , and thus ZÄ , a self-dual mezzo-perversity!]W t.!ıF /]W .
We consider now bZ WD @Z ⌘

bY t .�cM/ and bZÄ WD @ZÄ ; this gives a Galois Ä-covering of
Cheeger-spaces without boundary

Ä �
bZÄ !

bZ ⌘ Ä � @ZÄ ! @Z :

By our discussion above there is a well defined (compressed) Hilsum-Skandalis perturbation
C.F@/ 2 C ⇤.bZÄ/Ä (for simplicity, we will no longer include the t;� sub-indices in the
notation for the perturbation); this is a trivializing perturbation for the signature operator
on @ZÄ with domain fixed by @!]W t @.! ı F /]W . By grafting this perturbation on ZÄ

and extending it in the obvious way on the associated pseudomanifold with cylindrical
ends, ZÄ;1, we thus obtain a well defined APS coarse index class that we shall denote

as IndAPS.D
!
]W t.!ıF /]W

Ä
; C.F@// in K⇤.C ⇤.ZÄ/

Ä/: This class can be further pushed
forward to K⇤.C ⇤.XÄ/

Ä/ using the maps F and !.

Summarizing: to an LBQ-cycle ˛ W .M ; @M /
F

���! .Y ; @Y /
!

���! X and the choice of a
mezzoperversity W on X , we can associate an APS-index class in K⇤.C ⇤.XÄ/

Ä/, with XÄ

equal to the universal cover of X .

Notation: we denote this index class by IndAPS.˛;W / 2 K⇤.C ⇤.XÄ/
Ä/.

Proposition 5.4. – If F is a global stratified transverse homotopy equivalence, then

(5.3) IndAPS.D
!
]W t.!ıF /]W

Ä
; C.F@// D 0:

Consequently, if F is a global stratified transverse homotopy equivalence then

(5.4) IndAPS.˛;W / D 0 in K⇤.C ⇤.XÄ/
Ä/:

Proof. – We can and we shall assume that F is of product type near the boundary; thus
in a collar neighborhood of the boundary, U ⌘ @M ⇥ Œ0; 1ç, we have F

jU
D F@ ˝ IdŒ0;1ç.

The Hilsum-Skandalis method [31] can be extended to manifolds with cylindrical ends as
in [56, Proposition 8.1]; combining these arguments with the ones given above and in [4,
Theorem 4.6], we can thus prove that associated to F there is a well-defined equivariant
Hilsum-Skandalis perturbation Cu.F / on the pseudomanifold with cylindrical ends ZÄ;1:
It is important to notice that this is an ‘un-compressed’ perturbation, hence the subscript,
and that it is defined on the whole ZÄ;1. Notice for later use that because of the structure
of F near the boundary, Cu.F / is equal to Cu.F@/˝ Id on the cylindrical end, with Cu.F@/
the un-compressed Hilsum-Skandalis perturbation associated to the homotopy equivalence
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F@ W @M ! @Y . It follows, as in [56, Proposition 8.1], that the associated perturbed
signature operator D!

]W t.!ıF /]W
Ä

C Cu.F / is invertible and hence

IndAPS.D
!
]W t.!ıF /]W

Ä
C Cu.F // D 0:

In order to prove the proposition it therefore suYces to show that

(5.5) IndAPS.D
!
]W t.!ıF /]W

Ä
; C.F@// D IndAPS.D

!
]W t.!ıF /]W

Ä
C Cu.F //:

Recall that on the left hand side the have the APS-index class associated to

D
!
]W t.!ıF /]W

Ä
C C1.F@/

with C1.F@/ the perturbation obtained by grafting to ZÄ;1 the compressed Hilsum-
Skandalis perturbation C.F@/ on the boundary @ZÄ ; this index class is well defined, given
that the associated boundary operator,

(5.6) B0 WD D
@!
]W t@.!ıF /]W

Ä;@
C C.F@/;

is invertible. Notice that the boundary operator ofD!
]W t.!ıF /]W

Ä
CCu.F / is instead equal

to

(5.7) B1 WD D
@!
]W t@.!ıF /]W

Ä;@
C Cu.F@/:

In order to establish (5.5) we now follow closely the proof given in [56, Theorem 8.4],
where the same property is proved in the smooth context. Thus we first consider the
cylinder @ZÄ ⇥ Œ0; 1ç. There is a natural and explicit 1-parameter family of perturbed oper-
ators fBxgx2Œ0;1ç interpolating between B0 and B1. Consider @x � Bx on @ZÄ ⇥ Œ0; 1ç,
where the minus sign comes from the sign-conventions in [56]. There is a well-defined APS
index class associated to this operator on @ZÄ ⇥ Œ0; 1ç; indeed, the boundary operator is
invertible. Moreover, we know that this APS-index class is equal to the higher spectral flow
of fBxgx2Œ0;1ç, see [35, Theorem 10]. Wahl proves that this higher spectral flow, and thus this
APS-index class, is equal to 0 and exactly the same argument applies here. We now attach
this cylinder to ZÄ and obtain a pseudomanifold which is clearly stratified diVeomorphic
to ZÄ ; we shall not distinguish between these two pseudomanifolds and work exclusively
with the one with longer collar neighborhood. There is a natural perturbed Dirac operator
on this pseudomanifold, call it D!

]W t.!ıF /]W
Ä

CR, defined by

D
!
]W t.!ıF /]W

Ä
C Cu.F /

and by @x � Bx . By the gluing formula proved in Proposition 6.4 below, we know that the
index class associated to this operator is equal to

IndAPS.D
!
]W t.!ıF /]W

Ä
C Cu.F //C IndAPS.@x � Bx/;

which is again IndAPS.D
!
]W t.!ıF /]W

Ä
C Cu.F // given that IndAPS.@x � Bx/ D 0. Now,

following again Wahl, we can construct an homotopy between the operator on ZÄ;1 associ-

ated to D!
]W t.!ıF /]W

Ä
CR and the operator on ZÄ;1 associated to D!

]W t.!ıF /]W
Ä

C C1.F@/.
The associated boundary operator is invertible along the whole homotopy and so, conse-
quently, the index class associated toD!

]W t.!ıF /]W
Ä

CR is equal to the index class associated
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to D!
]W t.!ıF /]W

Ä
C C1.F@/. Summarizing:

0 D IndAPS.D
!
]W t.!ıF /]W

Ä
C Cu.F //

because of the extension of Hilsum-Skandalis to pseudomanifolds with cylindrical ends;

IndAPS.D
!
]W t.!ıF /]W

Ä
C Cu.F // D IndAPS.D

!
]W t.!ıF /]W

Ä
CR/

because of the gluing and the spectral flow argument, and

IndAPS.D
!
]W t.!ıF /]W

Ä
CR/ D IndAPS.D

!
]W t.!ıF /]W

Ä
C C1.F@//

because of the homotopy constructed in Wahl. Since the right hand side of the last equation
is precisely IndAPS.D

!
]W t.!ıF /]W

Ä
; C.F@// we conclude that (5.3) is now established.

6. Mapping the Browder-Quinn surgery sequence to analysis

6.1. The rho class of a stratified homotopy equivalence

Let f W
cM !

bX be a transverse stratified homotopy equivalence. Let Ä be ⇡1.bX/.
Let bZ WD .�cM/ t

bX . The Cheeger space bZ comes equipped with two maps induced
respectively by f and the identity and by f and the classifying map for bX :

� W
bZ !

bX; u W
bZ ! BÄ:

In particular, there is a well defined Ä covering Ä �
bZÄ !

bZ induced by u. We let
uÄ W

bZÄ ! EÄ be the Ä-equivariant lift of u. We also let �Ä be the Ä-equivariant lift of �,

�Ä W
bZÄ !

bXÄ :
We fix a self-dual mezzoperversity W on bX and consider the associated self-dual mezzoper-
versity f ]W on �

cM . We callWtf ]W the resulting self-dual mezzoperversity on bZ. We then
have self-adjoint extensionsDWtf ]W onZ,DWtf ]W

Ä
onZÄ and, by Proposition 5.3, a well

defined (compressed) Hilsum-Skandalis perturbationCf 2 C ⇤.bXÄt.�cMÄ//
Ä

⌘ C ⇤.bZÄ/Ä .
Summarizing, we have a well-defined class

⇢.D
Wtf ]W
Ä

C Cf // 2 KdimXC1.D⇤.bZÄ/Ä/:
Recall, see for example [45, Subsection 1.2], that �Ä induces a well-defined K-theory
morphism

(6.1) .�Ä/⇤ W K⇤.D⇤.bZÄ/Ä/ ! K⇤.D⇤.bXÄ/Ä/:
We recall briefly the definition and refer for example to [45, Definition 1.6] for more details. It
is implicit in the definition ofD⇤.bZÄ/Ä andD⇤.bXÄ/Ä that there is aC0.bZÄ/Ä -moduleH and
a C0.bXÄ/Ä module L on which the group Ä acts by isometries; these are the Hilbert spaces
on which the finite-propagation operators belonging toD⇤.bZÄ/Ä andD⇤.bXÄ/Ä respectively
act upon. One proves the existence of an operator W W H ! L, commuting with the action
of Ä and covering �Ä in a suitable sense. This operator W defines an adjoint morphism

D⇤.bZÄ/Ä Ad.W /
����! D⇤.bXÄ/Ä ; Ad.W /.T / WD W ı T ıW ⇤

and one sets
.�Ä/⇤ WD Ad.W /:
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This algebra homomorphism induces the K-theory morphism in (6.1).

Definition 7. – The rho-class ⇢.cM f

�!
bX;W/ associated to f W

cM !
bX and the self-

dual mezzoperversity W is given by

(6.2) ⇢.cM f

�!
bX;W/ WD .�Ä/⇤.⇢.D

Wtf ]W
Ä

C Cf // 2 KdimXC1.D⇤.bXÄ/Ä/:
The universal rho class is, by definition,

(6.3) ⇢Ä.cM f

�!
bX;W/ WD .uÄ/⇤.⇢.D

Wtf ]W
Ä

C Cf // 2 KdimXC1.D⇤
Ä
/:

We shall see in the next subsection that the rho class of a stratified homotopy equivalence
is independent of W and descends to SBQ.bX/.
6.2. The rho map from SBQ.bX/ to Kdim bXC1.D

⇤.bXÄ/Ä/
Proposition 6.1. – The rho class associated to a transverse stratified homotopy equiva-

lence f W
cM !

bX and a self-dual mezzoperversity W on bX satisfies the following properties:

1] it is independent of the choice of W;

2] it gives a well-defined map

(6.4) ⇢ W SBQ.bX/ �! Kdim bXC1.D
⇤.bXÄ/Ä/:

We denote by ⇢ŒcM f

�!
bX ç the image of ŒcM f

�!
bX ç through the rho map.

Proof. – Let g and g0 be two iie-metrics on bX and letW andW 0 be two self-dual mezzop-
erversities adapted respectively to g and g0. Let r W

bX ! BÄ be a classifying map. Recall,
following Banagl, how it is proved that .bX; g;W; r/ is Cheeger-bordant to .bX; g0;W 0; r/;
we refer the reader to [4, Section 4.4] for the details. We consider the pseudomanifold with
boundary

X D
bX ⇥ Œ0; 1çt :

Instead of the product stratification, we stratify X using the strata of bX as follows:
i) The regular stratum X of bX contributes X ⇥ Œ0; 1ç.
ii) Every singular stratum of bX; Y k ; contributes three strata to X ;

Y k ⇥ Œ0; 1=2/; Y k ⇥ .1=2; 1ç; Y k ⇥ f1=2g:

The link of X at Y k ⇥ Œ0; 1=2/ and Y k ⇥ .1=2; 1ç is equal to Zk ; while the link of X
at Y k ⇥ f1=2g is seen to be the (unreduced) suspension of Zk ; SZk : Since the lower middle
perversity intersection homology of SZk ; when dimZk D 2j � 1; is given by

ImHi .SZ
k/ D

8̂
<̂
ˆ̂:

ImHi�1.Zk/ i > j;

0 i D j;

ImHi .Z
k/ i < k;

we see that X satisfies the Witt condition at the strata Y k ⇥ f1=2g: Put it diVerently, we do
not need to fix a self-dual mezzoperversity at this stratum.

Let us endow X with any iie metric G such that, for some t0 > 0;

G
jX⇥Œ0;t0/

D g C dt2; G
jX⇥.1�t0;1ç

D g0
C dt2:
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Next we endow X with a self-dual mezzoperversity W as follows: let Y 1; : : : ; Y T be an
ordering of the strata of bX with non-decreasing depth. Denote

W D fW 1
�! Y 1; : : : ; W T

�! Y T g; W 0
D f.W 1/0 �! Y 1; : : : ; .W T /0 �! Y T g

and denote the fiber of, e.g., W j
�! Y j at the point q 2 Y j ; by W j

q : Let us define

W 1

� �! Y 1 ⇥ Œ0; 1=2/

by requiring that the Hodge-de Rham isomorphism identifies all of the fibers. Once this
is done, we can define W 2

� �! Y 2 ⇥ Œ0; 1=2/ in the same way, and inductively define
W 3

� �! Y 3 ⇥ Œ0; 1=2/; : : : ; W T

� �! Y T ⇥ Œ0; 1=2/.
We define W j

C �! Y j ⇥ .1=2 ⇥ 1ç in the same way to obtain

W D fW 1

� �! Y 1 ⇥ Œ0; 1=2/;W 1

C �! Y 1 ⇥ .1=2; 1ç; : : : ;

W T

� �! Y T ⇥ Œ0; 1=2/;W T

C �! Y T ⇥ .1=2; 1çg;

a self-dual mezzoperversity over X : So, in words, we extend the metrics g and g0 arbitrarily
to an iie metricG without changing them in collar neighborhoods of the boundary, and then
we choose a Hodge mezzoperversity by extending the de Rham mezzoperversities trivially
from Y i to Y i ⇥ Œ0; 1=2/ on the left and from Y i to Y i ⇥ .1=2; 1ç on the right. Since the strata
induced by Y k ⇥ Œ0; 1=2/ are disjoint from the strata induced by Y k ⇥ .1=2; 1ç; there is no
compatibility required between the corresponding mezzoperversities.

Finally, define R W X �! BÄ by R.⇣; t / D r.⇣/: The result is a Cheeger-bordism

.X ; G;W ; R W X �! BÄ/

between .bX; g;W; r W
bX �! BÄ/ and .bX 0; g0;W 0; r W

bX �! BÄ/:

Let us go back to the proof of our proposition. Let f W
cM !

bX be a transverse stratified
homotopy equivalence. We want to show that the rho class is independent of the choice of the
self-dual mezzoperversity W on bX . Let g, W and g0, W 0 as above and consider f ⇤g, f ]W
and f ⇤.g0/, f ]W 0 on cM . We can consider M WD

cM ⇥ Œ0; 1ç, stratified as above. Remark
now that, by definition, the map F W M ! X , F.⇣; t / D f .⇣/ is such that F ]W , adapted
to F ⇤G, is precisely equal to the self-dual mezzoperversity producing the Cheeger bordism
between .cM;f ⇤g; f ]W; .r ı f / W

cM ! BÄ/ and .cM;f ⇤.g0/; f ]W 0; .r ı f / W
cM ! BÄ/.

Moreover, F is a (transverse) stratified homotopy equivalence between M and X .
We thus have a stratified Cheeger-space with boundary,

Z WD .�M / t X ;

which is the disjoint union of two stratified Cheeger spaces with boundary, endowed with a
stratified homotopy equivalence F W M ! X , with self-dual mezzoperversities F ]W on M
and W on X and with a classifying map into BÄ, the latter producing a Galois Ä-covering
Ä�ZÄ ! Z ; moreover, by construction, the self-dual mezzoperversity on the manifold with
boundary .�M / t X restricts to give f ]W tW on one boundary, the one corresponding
to t D 0, and f ]W 0

tW 0 on the other boundary, the one corresponding to t D 1. For later
use we denote by j0 and j1 the obvious inclusions of .�cMÄ/t

bXÄ into ZÄ as the t D 0 and
t D 1 boundary respectively. We now apply Proposition 5.4 and obtain that

Ind.DW tF ]W ; C.F@// D 0 in K⇤.C ⇤.ZÄ/
Ä/:
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By applying the delocalized APS-index theorem we then obtain that

(6.5) 0 D .j0/⇤.⇢.DWtf ]W
C Cf // � .j1/⇤.⇢.DW

0tf ]W 0
C C 0

f
// in K⇤.C ⇤.ZÄ/

Ä/:

Observe now that there is an obvious Ä-equivariant map ZÄ ! XÄ D
bXÄ ⇥ Œ0; 1ç,

induced by F and the identity, and thus, by projecting onto the first factor, a Ä-equiv-
ariant map ZÄ !

bXÄ . We can push-forward the equality (6.5) through this map and use
functoriality in order to obtain

0 D ⇢.cM f

�!
bX;W/ � ⇢.cM f

�!
bX;W 0/ 2 K⇤C1.D⇤.bXÄ/Ä/ with ⇤ D dim bX I

this shows indeed that the rho class is independent of the choice of self-dual mezzoperversity.
The proof of item 2] is very similar.

6.3. The map from NBQ.bX/ to Kdim bX .bX/
We have defined NBQ.bX/ as equivalence classes of transverse degree one normal maps

into bX which are diVeomorphisms when restricted to strata of dimension less than five.

Our task is to map an element ŒcM f

�!
bX ç 2 NBQ.bX/ to Kdim bX .bX/, or, more precisely,

to Kdim bX .bX/˝ ZŒ1=2ç. Following the original treatment of Higson and Roe in the smooth

setting, we shall in fact forget about the normal data encoded in ŒcM f

�!
bX ç 2 NBQ.bX/.

(6.6) ˇŒcM f

�!
bX ç WD f⇤ŒDf

]W ç � ŒDW ç 2 Kdim bX .bX/˝ ZŒ1=2ç:

We then have the following

Proposition 6.2. – 1] The right hand side of (6.6) is independent of the choice of self-
dual mezzoperversity W .

2] The map ˇ is well defined: if ŒcM0

f0
�!

bX ç D ŒcM1

f1
�!

bX ç in NBQ.bX/, then

(6.7) .f0/⇤ŒDf
]

0
W ç � ŒDW ç D .f1/⇤ŒDf

]

1
W ç � ŒDW ç 2 Kdim bX .bX/˝ ZŒ1=2ç:

Proof. – We establish both statements by adapting an argument due to Higson and Roe
and by making use of Theorem 4.1 above, item 3.

Thus let W and W 0 be two self-dual mezzoperversities, adapted to iie metrics g and g0

respectively. We must show that

f⇤ŒDf
]W ç � ŒDW ç � .f⇤ŒDf

]W 0
ç � ŒDW

0
ç/ D 0 2 Kdim bX .bX/˝ ZŒ1=2ç:

We initially follow the construction exploited in the previous subsection. Thus we consider
X WD

bX⇥ Œ0; 1ç and M WD
cM ⇥ Œ0; 1ç, both stratified à la Banagl. We consider the transverse

map F W M ! X , F.⇣; t / D f .⇣/ and consider G, F ⇤G, W and F ]W as in the previous
subsection. We thus have a stratified Cheeger-space with boundary,

Z WD .�M / t X ⌘ .�.cM ⇥ Œ0; 1ç// t .bX ⇥ Œ0; 1ç/;

which is the disjoint union of two stratified Cheeger spaces with boundary, endowed with
a stratified transverse map F W M ! X , with self-dual mezzoperversities F ]W on M
and W on X ; moreover, by construction, the self-dual mezzoperversity F ]W t W on the
manifold with boundary .�M / t X restricts to give f ]W t W on one boundary, the one
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corresponding to t D 0, and f ]W 0
t W 0 on the other boundary, the one corresponding

to t D 1.
Remark first of all that the K-homology group of a disjoint union of two spaces A t B is

equal to the direct sum of the individual K-homology groups. We define two group homo-
morphisms

ˆ W K⇤.Z ; @Z / ! K⇤.X ; @X / D K⇤.bX ⇥ Œ0; 1ç; bX ⇥ f0; 1g/;

� W K⇤.@Z / ! K⇤.@X / D K⇤.bX ⇥ f0; 1g/

as follows:

ˆ.˛M ; ˇX / D F⇤˛M � ˇX ; �.˛0; ˛1; ˇ0; ˇ1/ D .f⇤˛0 � ˇ0; f⇤˛1 � ˇ1/:

It is easy to check, using the functoriality properties of the connecting homomorphism in the
long exact sequence of a pair, that the following diagram is commutative:

K⇤C1.Z ; @Z /
@t

//

ˆ

✏✏

K⇤.@Z /

�

✏✏

K⇤C1.X ; @X /
@

// K⇤.@X /:

The bottom horizontal homomorphism is part of the long exact sequence

K⇤C1.X ; @X /
@

�! K⇤.@X /
◆

�! K⇤.X /;

which can be rewritten as

(6.8) K⇤C1.bX ⇥ Œ0; 1ç; bX ⇥ f0; 1g/
@

�! K⇤.bX ⇥ f0; 1g/
◆

�! K⇤.bX ⇥ Œ0; 1ç/:

Notice that there is a natural group homomorphism

 W K⇤.bX ⇥ f0; 1g/ ! K⇤.bX/;  .�0; �1/ D �0 � �1

and that  factors as follows:

K⇤.bX ⇥ f0; 1g/
 

,,

◆

✏✏

K⇤.bX/
K⇤.bX ⇥ Œ0; 1ç/;

⇡

22

with ⇡ induced by the projection onto the first factor. Using these remarks and Theorem 4.1,
which in the present context states that

@t.ŒDF
]W

t W ç/ D .ŒDf
]W ç; ŒDf

]W 0
ç; ŒDW ç; ŒDW

0
ç/;

we then have

f⇤ŒDf
]W ç � ŒDW ç � .f⇤ŒDf

]W 0
ç � ŒDW

0
ç/ D  .f⇤ŒDf

]W ç � ŒDW ç; f⇤ŒDf
]W 0

ç � ŒDW
0
ç/

D ⇡ ı ◆.f⇤ŒDf
]W ç � ŒDW ç; f⇤ŒDf

]W 0
ç � ŒDW

0
ç/

D ⇡ ı ◆ ı �.ŒDf
]W ç; ŒDf

]W 0
ç; ŒDW ç; ŒDW

0
ç/

D ⇡ ı ◆ ı � ı @t.ŒDF
]W tW ç/

D ⇡ ı ◆ ı @ ıˆŒDF
]W tW ç D 0;
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where in the last step we have used the exactness of (6.8).
This establishes item 1]. Item 2] is similar, but easier.

6.4. The index map from LBQ.bX/ to K⇤.C ⇤.bXÄ/Ä/
We finally consider the (APS) index homomorphisms

LBQ.bX ⇥ Œ0; 1ç/
IndAPS
����! Kdim bXC1.C

⇤.bXÄ/Ä/; LBQ.bX/ IndAPS
����! Kdim bX .C

⇤.bXÄ/Ä/:
We shall treat in detail the first homomorphism, the second one is similar (in fact easier).

Recall from §5.6 that to each LBQ-cycle ˛,

˛ W .M ; @M /
F

���! .Y ; @Y /
!

���! X ⌘
bX ⇥ Œ0; 1ç;

and each choice of mezzoperversity W on bX ⇥ Œ0; 1ç we have defined an APS-index
class IndAPS.˛;W / 2 K⇤.C ⇤.XÄ/

Ä/ ⌘ K⇤.C ⇤.bXÄ/Ä/, with bXÄ the universal cover
of bX , see §5.6 for the details. In what follows we shall use the canonical isomorphism
K⇤.C ⇤.bXÄ/Ä/ ' K⇤.C ⇤

r
Ä/. We will show that this class is independent of the choice of

mezzoperversity and well-defined on LBQ.bX ⇥ Œ0; 1ç/: First we establish the independence
with respect to the choice of the mezzoperversity.

Lemma 6.3. – Let W and W 0 be two mezzoperversities on bX ⇥ Œ0; 1ç. Then

IndAPS.˛;W/ D IndAPS.˛;W 0/ in K⇤.C ⇤
r
Ä/:

Proof. – Let ˛ W .M ; @M /
F

���! .Y ; @Y /
!

���! X ⌘
bX ⇥ Œ0; 1ç be a LBQ-cycle as above.

Consider the stratified manifolds with corners

M ⇥ Œ0; 1çt and Y ⇥ Œ0; 1çt :

We stratify Y ⇥ Œ0; 1çt as we did in the proof of Proposition 6.1; the mezzoperversity W on
bX ⇥ Œ0; 1ç induces through ! a mezzoperversity !]W on Y ⇥ f0g; similarly, the mezzoper-
versity W 0 on bX ⇥ Œ0; 1ç induces through ! a mezzoperversity !]W 0 on Y ⇥ f1g. We know
that there is a mezzoperversity WY ⇥Œ0;1ç on Y ⇥Œ0; 1çt interpolating between!]W and!]W 0.
Similarly, we stratify �.M ⇥Œ0; 1çt / as in Proposition 6.1. Letˆ W M ⇥Œ0; 1çt ! Y ⇥Œ0; 1çt the
map ˆ.m; t/ D .F.m/; t/; the mezzoperversity ˆ]WY ⇥Œ0;1ç interpolates between F ].!]W/

and F ].!]W 0/. Consider now Z WD �M t X and

Z ⇥ Œ0; 1çt WD �.M ⇥ Œ0; 1çt / t .Y ⇥ Œ0; 1çt /:

This is a Cheeger space with corners, with boundary hypersurfaces:

F D .�M ⇥ ft D 0g t .Y ⇥ ft D 0g// t .�M ⇥ ft D 1g t .Y ⇥ ft D 1g//

and
G D �.@M ⇥ Œ0; 1çt / t .@Y ⇥ Œ0; 1çt /:

Consider the signature operator on Z ⇥ Œ0; 1çt , together with the mezzoperversity that
has been fixed above; using appropriate Hilsum-Skandalis perturbations as in §5.6 we can
perturb this operator and make it invertible atG. To fix notation, let us assume that bX is odd
dimensional, so that bX ⇥ Œ0; 1ç, M and Y are even dimensional. We can define a bivariant
classB 2 KK1.CF .Z ⇥Œ0; 1ç/; C ⇤

r
Ä/, withCF .Z ⇥Œ0; 1ç/ denoting the continuous functions

on Z ⇥ Œ0; 1ç which vanish on F . Notice, crucially, that without further hypothesis we could
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only define a bivariant class inKK1.C@.Z ⇥Œ0;1ç/.Z ⇥Œ0; 1ç/; C ⇤
r
Ä/withC@.Z ⇥Œ0;1ç/.Z ⇥Œ0; 1ç/

denoting the continuous function on Z ⇥ Œ0; 1ç vanishing on the whole boundary. Consider
⇡F W F ! point and ⇡Z ⇥Œ0;1ç

W Z ⇥ Œ0; 1ç ! point. Denote by ◆ the natural inclusion
F ,! Z ⇥ Œ0; 1ç and by q W Z ⇥ Œ0; 1ç ! F the restriction map to F . Obviously ⇡F D

⇡Z ⇥Œ0;1ç
ı ◆: From the semi-split short exact sequence

0 ! CF .Z ⇥ Œ0; 1ç/
j

�! C.Z ⇥ Œ0; 1ç/
q

�! C.F / ! 0

we obtain the following portion of the associated long exact sequence in KK-theory

KK1.CF .Z /; C ⇤
r
Ä/

ı

�! KK0.C.F /; C
⇤
r
Ä/

◆⇤
�! KK0.C.Z /; C ⇤

r
Ä/:

In particular, by exactness, ◆⇤ ıı D 0. Then, on the one hand a classic argument based on the
principle that boundary of Dirac is Dirac (3), see for example [3, Section 7.1] [4, Theorem 5.8],
shows that

⇡F⇤ .ıB/ D IndAPS.˛;W/ � IndAPS.˛;W 0/ in KK0.C; C ⇤
r
Ä/ D K0.C

⇤
r
Ä/

and, on the other hand, ⇡F⇤ .ıB/ D ⇡
Z ⇥Œ0;1ç
⇤ ı ◆⇤.ıB/ D ⇡

Z ⇥Œ0;1ç
⇤ ı ◆⇤ ıı.B/ D 0 by exactness.

Thus
IndAPS.˛;W/ � IndAPS.˛;W 0/ D 0;

as required.

We now describe a gluing theorem following Bunke [14].
Let bZ be a stratified space with boundary and bH a compact hypersurface transverse to the

stratification that does not meet the boundary of bZ: We can view bZ as two stratified spaces
with boundary glued along bH;

bZ D
bZ1[

cH
bZ2:

We decompose a Ä-cover of bZ accordingly:

bZÄ D
bZ1
Ä

[
cHÄ

bZ2
Ä
:

We assume that bZ is Cheeger, we fix an iterated incomplete edge metric g which is of product
type near bH ; finally, we fix a selfdual mezzoperversity W adapted to g. This restricts to a
selfdual mezzoperversity on the hypersurface bH which we denote WH . Similarly, we obtain
selfdual mezzoperversities W 1 on bZ1 and W 2 on bZ2. We lift all these structures to the
Ä-covers with minimal change of notation.

Let DÄ be the signature operator on ZÄ , the regular part of bZÄ . We assume that a
trivializing perturbation Q@ of the boundary operator has been fixed; the latter gives a
grafted perturbationQ1 on the associated manifold with cylindrical ends and thus an index
class IndAPS.D

W
Ä
;Q@/ 2 K⇤.C ⇤

r
Ä/, where the canonical isomorphism K⇤.C ⇤.bZÄ/Ä/ '

K⇤.C ⇤
r
Ä/ has been used. We can assume, without loss of generality, that the perturbation

Q1 is localized away from bHÄ .

(3) Here boundary of Dirac refers to the image of the Dirac class in K-homology under the boundary homomor-
phism ı:
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The signature operator nearHÄ , the regular part of bHÄ , will decompose in the usual way,
given that the metric is of product type near HÄ . Let CH be a perturbation of DW

H

Ä
such

that DW
H

Ä
C CH is invertible (4) and let

DW 1

Ä;1 C C 1
H;1; DW 2

Ä;1 C C 2
H;1

be perturbed diVerential operators on the spaces obtained from bZ1
Ä
; bZ2

Ä
by attaching an

infinite half-cylinder along bHÄ : We obtain in this way well defined index classes

IndAPS.D
W 1

Ä
;Q1

@
t CH /; IndAPS.D

W 2

Ä
;Q2

@
t CH / in K⇤.C ⇤

r
Ä/

where Qj

@
is Q@ restricted to @bZÄ \

bZj
Ä

.

Proposition 6.4 (Gluing). – With notation as above, the index classes satisfy

IndAPS.D
W
Ä
;Q@/ D IndAPS.D

W 1

Ä
;Q1

@
t CH /C IndAPS.D

W 2

Ä
;Q2

@
t CH / in K⇤.C ⇤

r
Ä/:

If bZ is without boundary, then

Ind.DW
Ä
/ D IndAPS.D

W 1

Ä
; CH /C IndAPS.D

W 2

Ä
; CH / in K⇤.C ⇤

r
Ä/:

Proof. – A happy byproduct of the functional analytic nature of Bunke’s proof is that it
applies almost unchanged to our setting. Let D denote either of DW j

Ä;1 C C
j

H;1; j 2 f1; 2g;

withD.D/ its self-adjoint domain. Replace the definition of the spacesH `; ` � 0; in [14, (2)]
by

H `
D D.D`/; k�k

2

`
D

`X
kD0

kDk�k
2

L2
;

where the norm on the right hand side is the pointwise norm coming from the Hilbert
C ⇤-module structure.

Note that sinceD2
C Id is invertible we can take a compact exhaustion of the regular part

of our space, approximate the constant function one, and find a non-negative f 2 C1
c
.Z

j

Ä;1/
such that D2

C f is invertible, thereby satisfying Bunke’s assumption 1.

With these conventions, the analytical results in §1.2 of Bunke now hold verbatim save
that the expressions R.�/grad.f /R.�/ should be replaced by

R.�/.grad.f /C ŒC; f ç/R.�/

where C is the perturbation at H: This replacement is still a compact operator and hence
the argument in Proposition 1.13 of Bunke yields well-defined index classes. The argument
in Theorem 1.15 of Bunke then yields the equality of the index classes we seek, once we
take into account that the index of a translation invariant operator on the infinite cylinder
vanishes.

(4) A simple argument using the cobordism invariance of the signature index class with Cheeger boundary conditions
shows that such a perturbation always exists.
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Recall that an articulated stratified space without boundary bL is the (entirety of the)
boundary of a stratified space with corners. Thus bL is a finite union of stratified spaces with
corners together with identifications of their boundary faces and the absence of boundary
says that there are no unmatched faces. If bL is the boundary of a Cheeger space, bL D @bX; so
in particular each of its constituent stratified spaces with corners is a Cheeger space, then a
choice of mezzoperversity on bX induces compatible mezzoperversities on the constituents
of bL; and the boundary identifications (which are stratified diVeomorphisms) give rise to
Hilsum-Skandalis perturbations, and so we have an index class,

IndAPS..@bX/Ä/ 2 K⇤.C ⇤
r
Ä/;

where Ä is the fundamental group of bX:
Lemma 6.5. – If bX is a Cheeger space with corners then

IndAPS..@bX/Ä/ D 0 in K⇤.C ⇤
r
Ä/Œ1

2
ç:

Proof. – Our convention is that every boundary hypersurface cM of bX is collared, i.e.,
has a neighborhood of the form Œ0; 1/⇢dM ⇥

cM in bX; consistent with the stratification of bX:
We refer to ⇢cM as a boundary defining function for cM: By a ‘total boundary defining func-
tion’ for bX; we mean a function ⇢

@ bX obtained by taking the product of boundary defining
functions, one per boundary hypersurface of bX: Since the boundary hypersurfaces are
collared, for all " > 0 suYciently small the set f⇢

@ bX � "g is a stratified space with boundary
and @bX can be obtained from @f⇢

@ bX � "g by ‘introducing corners’ (i.e., partitioning it and
considering as an articulated manifold). Cobordism invariance of the signature on Cheeger
spaces [4, Theorem 4.8] implies that the signature of @f⇢

@ bX � "g vanishes in K⇤.C ⇤
r
Ä/Œ1

2
ç

(see Remark 8) and then Proposition 6.4 implies that the signature of @bX vanishes.

The following proposition is the main result of this Subsection:

Proposition 6.6. – The APS-index map defined on LBQ.bX ⇥ Œ0; 1ç/ descends to a map

LBQ.bX ⇥ Œ0; 1ç/ 3 ⇣ �! IndAPS.⇣/ 2 Kdim bXC1.C
⇤
r
Ä/

by setting IndAPS.⇣/ WD IndAPS.˛;W/ for any representative ˛ of ⇣, Œ˛ç D ⇣, and any choice
of mezzoperversity W . This map is a homomorphism of abelian groups.

Proof. – It suYces to show that if ˛ is null bordant then IndAPS.˛;W/ D 0:

Let

.bN I @1bN; @2bN/ ˆ

���! .bZI @1bZ; @2bZ/ �

���! .bX ⇥ I / ⇥ I

be a null bordism of ˛: Thus, ˆ is BQ-normal, ˆj W @2bN �! @2bZ is a BQ-equivalence, � is
BQ-transverse, and ✓

.@1bN; @12bN/ ˆj
���! .@1bZ; @12bZ/ ⇡ı�j

�����!
bX
◆

D ˛:

By Lemma 6.5, we know that

Ind..@1bN @1ˆ

��! @1bZ/[.@2bN @2ˆ

��! @2bZ/; .@1ˆ].W@1
bZ/tW@1

bZ/t.@2ˆ].W@2
bZ/tW@2

bZ// D 0

4 e SÉRIE – TOME 55 – 2022 – No 1



STRATIFIED SURGERY AND K-THEORY INVARIANTS 89

for any mezzoperversity W bZ on bZ: By Proposition 6.4, we can write this as the sum of two
APS indices,

IndAPS .@1bN @1ˆ

��! @1bZ; @1ˆ].W@1
bZ/ tW@1

bZ/C IndAPS .@2bN @2ˆ

��! @2bZ; @2ˆ].W@2
bZ/ tW@2

bZ/:

However, the second summand is equal to zero since ˆj W @2bN �! @2bZ is a BQ-equiva-
lence, and hence so is the first summand. The fact that IndAPS is a homomorphism of Abelian
groups follows from the fact that addition in LBQ is induced by disjoint union. The proposi-
tion is proved.

We have defined the APS-index homomorphism for general cycles, because this is useful,
for example, in studying its behavior under the homomorphism induced on the BQ-L groups
by a transverse map. However, for certain purposes, it is more convenient to be able to handle
this homomorphism exclusively on special cycles. This is the case, for example, when we need
to check the compatibility of the APS-index homomorphism with the rho homomorphism
and with the action of the BQ-L group on the BQ-structure set, given that this action is
defined in terms of special cycles. Another example where this is useful is given in Proposi-
tion 6.9 below. The next lemma and the following proposition clarify that it is indeed possible
to work exclusively with special cycles.

Lemma 6.7. – Every Œ˛ç 2 LBQ.bX ⇥ Œ0; 1ç/ can be represented by a diagram of the form

˛ W .cM I
bX; bX 0/

.�Iid; /
�������! .bX ⇥ Œ0; 1çI bX ⇥ f0g; bX ⇥ f1g/

id
���!

bX ⇥ I:

Let ˛1 and ˛2 be two such diagrams representing the same class and ˇ the diagram obtained by
gluing ˛1 and �˛2;

ˇ W .bW I
bX 0
2
; bX 0

1
/

.ˆI 2; 1/
���������! .bX ⇥ Œ0; 1çI bX ⇥ f0g; bX ⇥ f1g/

id
���!

bX ⇥ I;

then there are stratified spaces with corners bP ; bQ together with a BQ-normal map ‚;

.bP I @0bP ; @1bP / .‚I✓0;✓1/
��������! .bQI @0 bQ; @1 bQ/

such that ✓
@0bP ✓0

���! @0 bQ
◆

D

✓
bW ˆ

���!
bX ⇥ I

◆

and ✓1 is a BQ-equivalence.

Proof. – We can represent Œ˛ç in this way directly from the Wall representation theorem
(as in Corollary 2.6). Taking

bW D
cM1

G
bX

�
cM2

and gluing ˛1 and �˛2 along their common boundary yields ˇ; an element of
NBQ.bX⇥Œ0; 1ç/: Since Lemma 2.3 implies that ˇ represents Œ˛1ç�Œ˛2ç D 0 in LBQ.bX⇥Œ0; 1ç/;

Theorem 2.4, implies that the class of ˇ in NBQ.bX ⇥ Œ0; 1ç; @.bX ⇥ Œ0; 1ç// is in the image
of SBQ.bX ⇥ Œ0; 1ç; @.bX ⇥ Œ0; 1ç//. It follows that there is a normal bordism between ˇ and an
element in SBQ.bX ⇥ Œ0; 1ç; @.bX ⇥ Œ0; 1ç//; which yields ‚ W

bP �!
bQ as above.

Proceeding exactly as in the proof of Proposition 6.6 and using crucially the above lemma
we thus have the following;
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Proposition 6.8. – Let W be a mezzoperversity for bX ⇥ Œ0; 1ç, for example the product
mezzoperversity associated to a mezzoperversity on bX . Let

˛1 D

✓
.cM1I

bX; bX 0
1
/

.�1Iid; 1/
��������! .bX ⇥ Œ0; 1çI bX ⇥ f0g; bX ⇥ f1g/

id
���!

bX ⇥ I

◆

˛2 D

✓
.cM2I

bX; bX 0
2
/

.�2Iid; 2/
��������! .bX ⇥ Œ0; 1çI bX ⇥ f0g; bX ⇥ f1g/

id
���!

bX ⇥ I

◆

be two elements in LBQ.bX ⇥ Œ0; 1ç/. Assume that Œ˛1ç D Œ˛2ç in LBQ.bX ⇥ Œ0; 1ç/. Then

IndAPS.˛1;W/ D IndAPS.˛2;W/

and this common value is independent of the choice of the mezzoperversity W . Moreover, the
APS-index of the sum of two such elements is the APS-index of the element obtained by stacking
the two cycles as in Lemma 2.3.

Proof. – Only the last sentence needs to be justified and this follows immediately from
the gluing theorem.

We can use the gluing result in Proposition 6.4 to simplify the APS index map from an
L-cycle ˛ 2 LBQ.bX ⇥ I / if it restricts to be a diVeomorphism on the boundary.

Proposition 6.9. – Let ˛ 2 LBQ.bX ⇥ I / be given by

˛ D

✓
.cM I

bX; bX 0/
.�Iid; /

�������! .bX ⇥ Œ0; 1çI bX ⇥ f0g; bX ⇥ f1g/
id

���!
bX ⇥ I

◆
;

where  is a diffeomorphism bX 0
�!

bX: Let G.˛/ 2 LBQ.bX ⇥ S1/ be the LBQ-cycle given by

G.˛/ D

✓
G.cM/ D

cM=.bX ⇠ 
bX 0/

G.�/

�����!
bX ⇥ Œ0; 1ç=.bX ⇥ f0g ⇠

bX ⇥ f1g/
id

���!
bX ⇥ S1

◆
:

Given a mezzoperversity W on bX we have

IndAPS.˛;W/ D Ind.G.˛/;W/ in K⇤.C ⇤
r
Ä/;

where on the left W is lifted to bX ⇥ Œ0; 1ç and pulled-back to cM; while on the right W is lifted
to bX ⇥ S1 and pulled-back to G.cM/: Note that the index map on the right does not require
boundary conditions; put differently, this is the index class of a cycle involving Cheeger spaces
without boundary.

Remark 9. – The index of .G.˛/;W/ is, by definition, the index of the signature operator
on

G.cM/ [ .bX ⇥ S1/
(twisted using a reference map to BÄ; with Ä D ⇡1 bX). Another application of Proposition 6.4
shows that this index coincides with that of the signature operator on

cM G
bX⇠ bX⇥f0g
bX 0⇠ bX⇥f1g

bX ⇥ I;

as in the original definition of Higson-Roe [29].

4 e SÉRIE – TOME 55 – 2022 – No 1



STRATIFIED SURGERY AND K-THEORY INVARIANTS 91

Proof. – Let bN ✓ G.cM/ and bY ✓
bX ⇥ S1 be the images of the boundary of cM;

respectively of bX ⇥ Œ0; 1ç; under the identification maps cM �! G.cM/; bX ⇥ Œ0; 1ç �!
bX ⇥S1:

Without loss of generality we assume that G.�/ is collared near these subsets, i.e., that there
are neighborhoods on which

G.�/j W
bN ⇥ .�1; 1/ �!

bY ⇥ .�1; 1/

is the identity on the second factor. We assume that the stratifications respect the product
structure of these neighborhoods.

We will apply our gluing result to this situation. Let bZ D G.cM/t .bX ⇥S1/ endowed with
the natural map to BÄ; Ä D ⇡1 bX; and let

bH D .bN ⇥ f�
1

2
; 1
2
g/ t .bY ⇥ f�

1

2
; 1
2
g/:

Given a mezzoperversity W on bX adapted to a wedge metric on bZ that respects the product
decomposition of the neighborhood .bN t

bY / ⇥ .�1; 1/; we can apply Proposition 6.4 to see
that

Ind.DW
Ä

I
bZ/ D IndAPS.D

W1

Ä
; CH I

cM t .bX ⇥ Œ0; 1ç//C IndAPS.D
W1

Ä
; CH I .bN t

bY / ⇥ .�1

2
; 1
2
//;

where CH is the Hilsum-Skandalis perturbation and we have used more explicit notation
than is our wont. Finally note that the first summand on the right hand side is Ind.˛;W/; and
the second term vanishes, as it is the index of an invertible translation-invariant operator on
an infinite cylinder (indeed, as we have already remarked, even though we denote our classes
as APS classes, they are really classes on manifolds with cylindrical ends).

6.5. Mapping stratified surgery to analysis

At this point we have shown that all of the maps in the following diagram are well defined
and independent of the choice of mezzoperversity:
(6.9)

LBQ.bX ⇥ I / //

IndAPS

✏✏

SBQ.bX/ ⌘
//

⇢

✏✏

NBQ.bX/ ✓
//

ˇ

✏✏

LBQ.bX/
IndAPS

✏✏

Kdim bXC1.C
⇤
r
Ä/Œ1

2
ç // Kdim bXC1.D

⇤.bXÄ/Ä/Œ12 ç // Kdim bX .bX/Œ12 ç // Kdim bX .C
⇤
r
Ä/Œ1

2
ç:

We now establish the commutativity of this diagram.

The key fact for establishing commutativity of the first square is the behavior of the rho
class under composition ([56, Theorem 9.1], [46, (4.14)]):

Proposition 6.10. – Let bL; cM; bV ; be Cheeger spaces and

cM f

���!
bV ; bL g

��!
cM

transverse stratified homotopy equivalences. We fix a self-dual mezzoperversityW on bV and we
consider the induced mezzoperversities f ]W on cM and g].f ]W/ on bL. If bVÄ is a Ä-covering
of bV then we lift these mezzoperversities to the induced coverings f ⇤bVÄ onM and g⇤.f ⇤.bVÄ//
on L. The following identity holds in K⇤.D⇤.bVÄ/Ä/:
⇢.bL f ıg

����!
bV ;W/çC ef⇤.⇢.cM id

���!
cM;f ]W// D

ef⇤.⇢.bL g

��!
cM;f ]W//C ⇢.cM f

���!
bV ;Wç;
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where in the first summand on the right-hand side it is the rho class of the perturbed signature
operator on the covering g⇤.f ⇤.bVÄ// t f ⇤.bVÄ/ that appears.

Consequently, with a small abuse of notation, we have

(6.10) ⇢ŒbL f ıg
����!

bV çC ef⇤.⇢ŒcM id
���!

cM ç/ D
ef⇤.⇢ŒbL g

��!
cM ç/C ⇢ŒcM f

���!
bV ç:

Remark 10. – It can be shown that the ⇢-invariant of the identity map vanishes, but we will
not need this here.

Proof. – The proof given in [46], based in turn on the proof of [56, Proposition 7.1] and
on the delocalized APS index theorem, applies to the present situation.

Recall now how LBQ.bX ⇥ I / acts on SBQ.bX/. If Œ˛ç 2 LBQ.bX ⇥ I / and Œˇç 2 SBQ.bX/ then
we can choose representatives of the form

ˇ W
cM f

���!
bX

˛ W .bW I
cM;cM 0/

.�Iid;�2/
�������! .cM ⇥ Œ0; 1çI cM ⇥ f0g;cM ⇥ f1g/

id
���!

cM ⇥ I;

and then the class of f ı�2 W
cM 0

�!
bX in SBQ.bX/ is well-defined and denoted @.˛/.ˇ/: The

map

LBQ.bX ⇥ I / ⇥ SBQ.bX/ // SBQ.bX/
.Œ˛ç; Œˇç/

�
// @.˛/.ˇ/

defines the group action of the Browder-Quinn L-group of bX ⇥ I on the structure set of bX:
In order to show that the first diagram in (6.9) commutes we need to show that

(6.11) ⇢.@.˛/.ˇ// � ⇢.ˇ/ D ◆⇤.IndAPS.˛//

with IndAPS.˛/ 2 Kdim bXC1.C
⇤.bXÄ/Ä/Œ12 ç D Kdim bXC1.C

⇤
r
Ä/Œ1

2
ç and ◆ W C ⇤.bXÄ/Ä !

D⇤.bXÄ/Ä the natural inclusion. The left hand side of (6.11) is, by definition,

⇢ŒcM 0 f ı�2
���!

bX ç � ⇢ŒcM f

���!
bX ç:

We now apply Proposition 6.10 and obtain that this diVerence equals:

ef⇤⇢ŒcM 0 �2
�!

cM ç � ef⇤⇢ŒcM id
�!

cM ç

and a direct application of the delocalized APS index theorem shows that this diVerence is
precisely equal to ◆⇤.IndÄ;APS.˛//. This establishes the commutativity of the first square in
the diagram.

The second square in the diagram is proved to commute exactly as in [46].

Finally, for the third square, we observe that the image of a class in NBQ.bX/ is a union
of two closed Cheeger spaces and that for such an element in LBQ.bX/ the APS-index class is
just the index class of Subsection 3.6; the commutativity of the third square then follows by
the functoriality of the boundary map in the Higson-Roe surgery sequence.
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6.6. Mapping stratified surgery to analysis on all strata

The use of transverse maps in the definition of the Browder-Quinn surgery sequence
implies that there are well-defined restriction maps from the long exact sequence of a
stratified space to the corresponding sequence of a singular stratum.

Recall from §2.2 that if Y 2 S.bX/ then the closure of Y in bX is a stratified space denoted bY :
AnL-cycle over bX restricts to anL-cycle over bY ; and a null bordism over bX restricts to a null
bordism over bY : The restriction of a normal invariant or a Thom-Mather structure from bX
to bY is an L-cycle of the same type, as the normal conditions or homotopy equivalence
conditions are imposed on each stratum. Thus we have commutative diagrams

LBQ.bX ⇥ I / //

✏✏

SBQ.bX/ ⌘
//

✏✏

NBQ.bX/ ✓
//

✏✏

LBQ.bX/

✏✏

LBQ.bY ⇥ I / // SBQ.bY / ⌘
// NBQ.bY / ✓

// LBQ.bY /;
which we can extend arbitrarily to the left. Note that the vertical arrows are generally neither
injective nor surjective.

Let us introduce the abbreviations,

KŒj ç.C
⇤
IS.bX//Œ1

2
ç D Kdim bXCj .C

⇤
r
Ä/Œ1

2
ç˚

M
Y2S.X/

Kdim bYCj .C
⇤
r
Ä.bY //Œ1

2
ç;

KŒj ç.D
⇤
IS.bX//Œ1

2
ç D Kdim bXCj .D

⇤.bXÄ/Ä/Œ12 ç˚
M

Y2S.X/
Kdim bYCj .D

⇤.bY
Ä.bY //

Ä.bY //Œ1
2
ç

KŒj ç.D
⇤=C ⇤

IS.bX//Œ1
2
ç D Kdim bXCj�1.bX/Œ12 ç˚

M
Y2S.X/

Kdim bYCj�1.bY /Œ12 ç:

By restricting to each singular stratum and making use of their respective commutative
diagram (6.9) we end up with a combined diagram
(6.12)

LBQ.bX ⇥ I / //

˚ Ind
✏✏

SBQ.bX/ ⌘
//

˚⇢
✏✏

NBQ.bX/ ✓
//

˚ˇ
✏✏

LBQ.bX/
˚ Ind
✏✏

KŒ1ç.C
⇤
IS.bX//Œ1

2
ç // KŒ1ç.D

⇤
IS.bX//Œ1

2
ç // KŒ1ç.D

⇤=C ⇤
IS.bX//Œ1

2
ç // KŒ0ç.C

⇤
IS.bX//Œ1

2
ç:

Remark 11. – In [59, §12.4], for Witt spaces with simply connected links (also known as
‘supernormal spaces’, see [16]) we find that

LBQ.bX/Œ12 ç D L.Z⇡1.bX//Œ12 ç˚
M

Y2S.X/
L.Z⇡1.bY //Œ12 ç;

(where bY ; the ‘closed stratum’, is the closure of Y in bX with the induced stratification) so that
in this case the vertical arrows in (6.12) map from the algebraic L-groups.
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7. Further considerations

In [17], Chang and Weinberger use the surgery exact sequence of a manifold to show
that torsion in its fundamental group implies the existence of infinitely many homotopy
equivalent manifolds that are homeomorphically distinct.

In this section we use the argument in loc. cit. as a launching pad to discuss related topics.
First, as an answer to ‘how to map in to/out of a BQ L-group?’ we establish a couple of long
exact sequences. Secondly we establish Atiyah’s L2-signature theorem for Cheeger spaces.
Finally we combine these to discuss a version of the result of [17] for Cheeger spaces.

7.1. A long exact sequence for the Browder-Quinn L-groups

It is interesting to connect the Browder-Quinn L-groups with the usual (Wall) L-groups
of a smooth manifold. If bX is a smoothly stratified space then, on the one hand, recall that
we can identify the regular part of bX with the interior of the resolution eX of bX;

X D
eXı

D
bX reg;

and so the inclusion, i; of the regular part induces

Lk.X/
i⇤

���! LBQ;dfX .k/.
bX/;

where d eX .k/ is the dimension function that is equal to k on the inverse image of the regular
part of bX: (Note that this determines all of the dimension function since, in the notation of
(2.3), by transversality of � and ! the codimension of a stratum in cM or bY is equal to the
codimension of the stratum it maps into in bX:) On the other hand, ifXé is a minimal stratum
(a stratum of greatest depth), and hence a closed manifold, then the fact that the Browder-
Quinn L-groups are defined using transverse maps means that we have a natural restriction
map

LBQ;d .bX/ R

���! Ld
Xé
.Xé/;

where d
Xé

is the restriction of the dimension function to Xé:
Both of these maps fit into a long exact sequence of Browder-Quinn L-groups. An example

of the former is found in [13] and of the latter in [59, §6]. We treat these as special cases of
long exact sequences in L-groups associated with inclusions.

We recall from, e.g., [58, Lemma 8.3.1], a standard construction of long exact sequences
in cobordism. Suppose that ˛ and ˇ denote two possible types of structure a manifold can
have, and that a ˇ structure implies an ˛ structure (for example, if Y ✓ X and ˛ structure
could be ‘is endowed with a map to X ’ and an ˇ structure ‘is endowed with a map to Y ’).
Denote by�˛

n
;�

ˇ

n the cobordism groups of n-dimensional manifolds with the corresponding
structure, and denote by �˛;ˇn the cobordism group of manifolds with boundary with an ˛
structure and a compatible ˇ structure on the boundary then, with the obvious maps, there
is a long exact sequence

� � � �! �ˇ
n

�! �˛
n

�! �˛;ˇ
n

@

��! �
ˇ

n�1 �! � � � :

The proof of exactness in loc. cit. does not depend on the specific structures ˛ and ˇ and
adapts easily to the situations we consider below.
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One type of relative L-group. In [57], Wall explains how to associate to a map h W V �! W

between two manifolds an L-group that moreover fits into a long exact sequence with the L-
groups of V andW:We now observe that the same is true if bV and bW are smoothly stratified
spaces and h W

bV �!
bW is a transverse map between them.

Let us denote by LBQ;d .bV h

��!
bW / the set of commutative diagrams of the form

(7.1) .bS I @1bS; @2bS/ �
// .bT I @1bT ; @2bT / ⌘

// bW

@2bS
?�

OO

�j
// @2bT
?�

OO

⌘j
// bV ,

h

OO

where bS is a smoothly stratified space with dimension function d; and boundary @1bS [ @2bS;
and similarly bT ; � is a BQ-normal map and restricts to a BQ-equivalence between @1bS and

@1bT and ⌘ is BQ-transverse. As usual LBQ;d .bV h

��!
bW / then denotes cobordism classes of

such cycles. As above, these groups fit into a long exact sequence

� � �

@

��! LBQ;d .bV / h⇤
���! LBQ;d .bW / j

��! LBQ;d .bV h

��!
bW / @

��! LBQ;d�1.bV / h⇤
���! � � � ;

where the maps are given by

h⇤


.bS 0

I @bS 0/
�

0
���! .bT 0; @bT 0/

⌘
0

���!
bV
�

D


.bS 0

I @bS 0/
�

0
���! .bT 0; @bT 0/

hı⌘0
����!

bW
�
;

j


.bS 00

I @bS 00/
�

00
���! .bT 00; @bT 00/

⌘
00

���!
bW
�

D

2
66664

.bS 00
I @bS 00;;/

�
00
// .bT 00

I @bT 00;;/
⌘

00
// bW

;

?�

OO

//

;

?�

OO

// bV
h

OO

3
77775
;

@

2
66664

.bS I @1bS; @2bS/ �
// .bT I @1bT ; @2bT / ⌘

// bW

@2bS
?�

OO

�j
// @2bT
?�

OO

⌘j
// bV
h

OO

3
77775

D


.@2bS I @.@2bS// �j

���! .@2bT I @.@2bT // ⌘j
���!

bV
�
:

If we apply this to the inclusion of the regular part, i W X �!
bX; we obtain

(7.2)

� � �

@

��! Lk.X/
i⇤

���! LBQ;dfX .k/.
bX/ j

��! LBQ;dfX .k/.X
i

��!
bX/ @

��! Lk�1.X/
i⇤

���! � � �

(cf. [13, Proposition 4.8]).

Another type of relative L-group. – (For this sequence cf. [22, Theorem 5.4].) Let bX be a strat-
ified space,b† ✓

bX a closed subset of bX made up of a union of strata. LetLBQ;d .bX I
b†/ denote

the L-cycles over X with dimension function d whose restriction to b† is a BQ-equivalence,
and LBQ;d .bX I

b†/ the corresponding bordism classes. We allow b† D ; for which

LBQ;d .bX I ;/ D LBQ;d .bX/:
Analogously to the above, if b†0

✓
bX is another closed subset of bX made up of a union of

strata, with b† ✓
b†0 then there is a relative group LBQ;d .bX I

b† ✓
b†0/ with classes represented
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by diagrams of the form

(7.3) .cM I @0cM; @1cM/
�

��! .bN I @0bN; @1bN/ !

���!
bX;

such that � is BQ-normal, ! is BQ-transverse, @0� is a BQ-equivalence, @1� restricted
to the preimage of b†0 is a BQ-equivalence, and � restricted to the preimage of b† is a
BQ-equivalence.

There are natural inclusion maps

LBQ;d .bX I
b†0/ �! LBQ;d .bX I

b†/; LBQ;d .bX I
b†/ �! LBQ;d .bX I

b† ✓
b†0/;

which fit into a long exact sequence

� � � �! LBQ;d .bX I
b†0/ �! LBQ;d .bX I

b†/ �! LBQ;d .bX I
b† ✓

b†0/
@1

���! LBQ;d�1.bX I
b†0/ �! � � � :

Exactness of this sequence follows from the usual construction of relative sequences in
bordism, see [58].

Let us consider the case where b† D ; and b†0
D Xé; a minimal stratum of bX: We point

out that there are compatible restriction maps

LBQ;d .bX I ;/ �! L
d.Xé/

.Xé/; LBQ;d .bX I ; ✓ Xé/ �! L
d.Xé/

.Xé/;

both of which are onto, since any L-cycle over Xé has a lift to an L-cycle over bX;✓
.M I @M/

�

��! .N; @N /
!

���! Xé
◆

7!

⇣
.! ı �/⇤T

Xé
�! !⇤T

Xé
�! .T

Xé
,!/ bX

⌘

(where T
Xé

is a tubular neighborhood of Xé in bX ).
The restriction map LBQ;d .bX I ; ✓ Xé/ �! L

d.Xé/
.Xé/ is also injective Indeed, assume

that (7.3) is such that � restricts to Xé to be a BQ-equivalence and consider

(7.4) M ⇥ Œ0; 1ç
�⇥id

�����! N ⇥ Œ0; 1ç
!⇥id

�����! X ⇥ Œ0; 1ç:

Since � ⇥ id restricted to @M ⇥ Œ0; 1ç [M ⇥ f1g is a BQ-equivalence over Xé; we recognize
(7.4) as a null bordism for (7.3). Thus we have established the long exact sequence

(7.5) � � � �! LBQ;d .bX IXé/ �! LBQ;d .bX/ �! L
d.Xé/

.Xé/ �! LBQ;d�1.bX IXé/ �! � � � :

7.2. Atiyah’s L2 signature theorem

If M is a closed even-dimensional manifold and MÄ �! M is a regular cover with
transformation group Ä then given any elliptic diVerential operator onM;Atiyah’sL2-index
theorem asserts the equality of its index with the Ä-equivariant L2-von Neumann index of
its lift toMÄ . When applied to the signature operator, Atiyah’s theorem gives us the equality
of the L2-von Neumann signature of MÄ and the signature of M :

�.2/.MÄ/ D �.M/:

There are many equivalent definitions of the two members of this fundamental equality
(see [38] for a thorough discussion); in this article we see the above equality as an equality
between the index and theL2-von Neumann index of the signature operator, as in the original
treatment of Atiyah.

In [5, Theorem 6.5], it is shown that the signature operator admits a parametrix which
is "-local; once we have this key information, Atiyah’s original proof (for the signature
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operator) carries over to the setting of Cheeger spaces with minor modifications. However,
as some of the arguments will be useful below, we present instead a proof that follows [17,
Appendix].

Recall that whenever bX is an even-dimensional Cheeger space and r W
bX �! BÄ is the

classifying map of a regular Ä-cover bXÄ we have numeric signatures �.bX/ and �.2/.bXÄ/.
These are defined, respectively, as the index of the signature operator on X and the von
Neumann Ä-index of the Ä-equivariant signature operator onXÄ with respect to a choice of
mezzoperversity (but independent of which one). There are (classic)K-theoretic descriptions
of these two fundamental numbers that we now proceed to describe. To this end, we first recall
some classic material for which we refer, for example, to [38, 44].

Let C ⇤Ä denote the maximal group C ⇤-algebra associated to a discrete finitely generated
group Ä. Recall that we have two trace-homomorphisms on K0.C ⇤Ä/, induced respectively
from two traces on C ⇤Ä. The first one is the canonical trace ⌧Ä W C ⇤Ä ! C, obtained by
extending the trace ⌧Ä W CÄ ! C given by

⌧Ä.
X
�

˛� �/ WD ˛e:

⌧Ä induces a well-defined trace-homomorphism, still denoted ⌧Ä , from K0.C
⇤Ä/ to C,

assigning to an idempotent matrix .aij / the complex number
P
i
⌧Ä.ai i /. Notice that this

trace-homomorphism factors through the K-theory of the group von Neumann algebraNÄ:

(7.6) K0.C
⇤Ä/

◆⇤
&&

⌧Ä
// C

K0.NÄ/:
⌧Ä

;;

The second trace, ⌧ W C ⇤Ä ! C, is obtained by extending the trace ⌧ W CÄ ! C,

⌧.
X
�

˛� �/ WD

X
�

˛�

(it is for this second trace that we need the maximal completion; the first trace is in fact
already well-defined on C ⇤

r
Ä.) The trace-homomorphism ⌧ W K0.C

⇤Ä/ ! C is obtained
as before, but using ⌧ instead of ⌧Ä .

For any group Ä we can define homomorphisms

(7.7) Z

�Che.BÄ/

�

::

�.2/

$$

R

by assigning to a representative Y
!

���! BÄ of a class in�Che.BÄ/ either the signature of Y
or the L2-signature of the pull-back of EÄ to Y along !; to obtain the homomorphism �;

�.2/ respectively.
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The homomorphism �Che.BÄ/
�.2/

��! R has a K-theoretic description that we now
describe.

Recall that whenever bX is an even-dimensional Cheeger space and r W
bX �! BÄ is the

classifying map of a regular Ä-cover we have a signature class

Ind.bXÄ/ WD Ind.DG .r// 2 K0.C
⇤Ä/˝Z ZŒ1

2
ç ⌘ K0.C

⇤Ä/Œ1
2
ç;

where G .r/ denotes the flat bundle of C ⇤Ä-modules corresponding to r; and DG .r/ is the
twisted signature operator.

Notation. – As already remarked around Theorem 4.1, the index class inK0.C ⇤Ä/ is defined
using a choice of a mezzoperversity but it is in fact independent of this choice inK0.C ⇤Ä/Œ1

2
ç;

this is why here and in what follows we omit the mezzoperversity from the notation.

The signature class Ind.DG .r// only depends on the bordism class

Œ.bX; r W
bX �! BÄ/ç 2 �Che

dim bX .BÄ/

modulo 2-torsion, and defines a group homomorphism [4, Corollary 5.11]

�Ä W �Che
dim bX .BÄ/ �! K0.C

⇤Ä/Œ
1

2
ç:

Now we can repeat this construction but instead twist the signature operator D by the von
Neumann Mishchenko bundle

r⇤EÄ ⇥Ä NÄ:
We obtain in this way �NÄ W �Che

dim bX .BÄ/ �! K0.NÄ/Œ12 ç and �.2/.bX; r/ is obtained by

applying ⌧Ä to the von Neumann signature class �NÄ.bX; r/ 2 K0.NÄ/Œ12 ç:

(7.8) �.2/.bX; r/ D ⌧Ä.�NÄ.bX; r// ⌘ ⌧Ä.Ind.DG .r///;

where, with a small abuse of notation, we still denote by G .r/ the von Neumann Mishchenko
bundle associated to a continuous map r W

bX ! BÄ.

Theorem 7.1 (Atiyah’s L2-signature theorem for Cheeger spaces).
If bX is an even-dimensional Cheeger space and r W

bX �! BG is the classifying space of a
regular cover bXÄ , then

�.bX/ D �.2/.bXÄ/:
Proof. – (We follow [17, Appendix].) Recall the two homomorphisms (7.7). Given a

group homomorphism, f W Ä1 �! Ä2; there is an induced map

�Che.BÄ1/
Bf⇤

����! �Che.BÄ2/

that sends a representative Y
!

���! BÄ1 to a representative Y
Bf ı!

������! BÄ2: This map
trivially commutes with �: Assume now that f is injective. We are interested in showing
that Bf⇤ commutes with �.2/. This is equivalent to showing that

(7.9) ⌧Ä2.Ind.DG .Bf ı!/// D ⌧Ä1.Ind.DG .!///:

We thus want to relate G .!/ !
bX and G .Bf ı !/ !

bX . Let

NÄi � UÄi �! BÄi
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be the two universal Mishchenko bundles and note that

.Bf /⇤UÄ2 D UÄ1 ˝NÄ1 NÄ2;

where the tensor product makes use of the map induced by f on the group von Neumann
algebra (cf. [34, Appendix B, pg. 378]). Correspondingly

(7.10) G .Bf ı !/ D G .!/˝NÄ1 NÄ2:

This means that Ind.DG .Bf ı!//, a formal diVerence of two finitely generated projective
NÄ2-modules, is obtained by applying the induction homomorphism associated to f .
Consequently, by [18, (2.3)], [37, Lemma 1.24]), we have that ⌧Ä2.Ind.DG .Bf ı!/// D

⌧Ä1.Ind.DG .!/// as required.
Summarizing, if f is injective then we have a commutative diagram

(7.11) �Che.BÄ1/

Bf⇤

✏✏

�

zz

�.2/

$$

Z R

�Che.BÄ2/.

�

dd

�.2/

::

Now let

feg
i

��! G
h

��! A

be the inclusion of the identity into G and an injection of G into an acyclic group A: (Recall
that a group A is called acyclic if BA is an acyclic space and that any group has an injective
homomorphism into an acyclic group, discrete if G is discrete.)

As BA is acyclic its suspension is contractible and since, by the Eilenberg-Steenrod
axioms, generalized homology theories are stably invariant, they must vanish on BA: From
[4] we know that �Che

⇤ is a generalized homology theory and so

.B.hi//⇤ W �Che
⇤ .pt/ �! �Che

⇤ .BA/

is an isomorphism.
Thus from the commutative diagram

�Che.pt/

Bi⇤

✏✏

�

||

�.2/

""

Z �Che.BG/

Bh⇤

✏✏

�
oo

�.2/
// R

�Che.BA/,

�

bb

�.2/

<<
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the equality � D �.2/ on�Che.BG/ reduces to the equality on�Che.pt/where it is immediate.

7.3. Torsion elements and the cardinality of the BQ-structure set.

In this subsection we adapt an argument of [17] to the setting of Cheeger spaces. For any
Cheeger space bX of odd dimension with ⇡1 bX D Ä we can use these traces and the APS-index
homomorphism in order to define a group homomorphism ˛:

(7.12) LBQ.bX ⇥ I /

IndAPS
&&

˛
// C

K0.C
⇤Ä/:

⌧Ä�⌧

;;

Notice that ˛ is actually valued in R; because the index class is “self-adjoint". We write

˛ D ⇠Ä � ⇠

with ⇠Ä WD ⌧Ä ı IndAPS and ⇠ WD ⌧ ı IndAPS. The homomorphisms ⇠Ä and ⇠ can be explicitly
described as follows. Recall that if � 2 LBQ.bX ⇥ I / is represented by

.cM I
bX; bX 0/

.�Iid; /
�����! .bX ⇥ Œ0; 1çI bX ⇥ f0g; bX ⇥ f1g/

id
���!

bX ⇥ I;

then IndAPS.�/ is obtained from IndAPS.D
G.r/

C C/ where D is the signature operator on
bZ D .�cM/ t .bX ⇥ I /, and, if R W

bX �! BÄ is the classifying map of the universal cover
of bX then

r W
bZ �! BÄ is given by .R ı �/ tR;

where we do not distinguish between R and R ⇥ idŒ0;1ç. Using r we have a well-defined
Ä-covering bZÄ and a Mishchenko bundle G.r/ !

bZ; C denotes the Hilsum-Skandalis
perturbation associated to the stratified homotopy equivalence from @cM to @.bX ⇥ Œ0; 1ç/

induced by  and id bX . By functoriality

(7.13) ⇠Ä.�/ D ⌧Ä.IndAPS.D
G.r/

C C//;

where the index class on the right hand side can be taken to be a von Neumann class and
⌧Ä W K0.NÄ/ ! C is the canonical von Neumann trace. The right hand side of (7.13)
is nothing but the Ä-von Neumann index of the perturbed operator on the covering bZÄ ,
with the perturbation on the covering induced by C through the regular representation as in
[46, Section 1.2B]. Notice once again that it is implicit here the choice of a mezzoperversity
and the statement that this number, in either of the two equivalent descriptions, is in fact
independent of this choice.

Similarly, see again [44], ⇠.�/ is equal to the index of the perturbed operator on bZ, with
the perturbation induced once again by C but through the trivial representation instead
of the regular representation; this perturbation is in fact equal to the Hilsum-Skandalis
perturbation built with ordinary diVerential forms (i.e., without taking the diVerential forms
with values in the Mishchenko bundle). A similar description can be given if � is represented
by a general cycle, as in Subsection 5.6.
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With these preliminaries out of the way, we now finally tackle the geometric applica-
tions we want to give. First, combining Proposition 6.9 with Atiyah’s L2-signature theorem
(Theorem 7.1) we have the following result:

Proposition 7.2. – The homomorphism ˛ vanishes on the image of the map

✓ W NBQ.bX ⇥ I; bX ⇥ @I / �! LBQ.bX ⇥ I /

from the surgery exact sequence of bX:

By exactness of the surgery sequence this proposition says that ˛ vanishes on those
elements of LBQ.bX ⇥ I / that act trivially on SBQ.bX/: Conversely, if x 2 LBQ.bX ⇥ I / is such
that ˛.x/ ¤ 0; then we can show that x acts non-trivially on SBQ.bX/:

Indeed, let ⇢ W SBQ.bX/ �! Kdim bXC1.D
⇤.bXÄ/Ä/ be the ⇢-map from §6.2 and let ⇢Ä be the

composition with the natural map induced by the classifying map

⇢Ä W SBQ.bX/ �! K0.D
⇤
Ä
/:

In [48] it is shown that ⇢Ä.◆/ D 0; where ◆ denotes the class in SBQ.bX/ represented by the
identity map (the context in [48] is that of diVerentiable or topological manifold, but it is
easy to see that the same arguments establish the more general statement given here). On the
other hand, Benameur-Roy in [11], have defined a homomorphism

(7.14) ˇCG W K0.D
⇤
Ä
/ �! R;

for which our main result, together with Corollary 3.20 in [11], implies the following.

Proposition 7.3. – The map ⇢CG D ˇCG ı ⇢Ä W SBQ.bX/ ! R satisfies

⇢CG.◆/ D 0 and ⇢CG.@.x/.◆// D ˛.x/;

where @.x/.◆/ denotes the action of LBQ.bX ⇥ I / on SBQ.bX/ defined in Corollary 2.6.

In particular, if ˛.x/ ¤ 0; then x acts non-trivially on ◆:

It is pointed out in [17] that, since ˛ is a homomorphism intoR; the existence of a non-zero
element in its range implies that its range has infinite cardinality. They also point out that, if
Ck is the cyclic group of order k then, for any ` 2 N; the homomorphism ˛k W L4`.ZCk/ ! R
defined as in (7.12) has range of infinite cardinality. Thus the idea is to use these elements to
find elements in the range of ˛:

Assume that the dimension of bX is 4`�1; for some ` > 1:Let i W X �!
bX be the inclusion

of the regular part, which we recall is a BQ-transverse map, and let d eX .4`/ be the dimension
function for bX that is equal to 4` on the inverse image of the regular part of bX; so that as in
§7.1 we have a homomorphism

i⇤ W L4`.X/ D L4`.Z⇡1.X// �! LBQ;dfX .4`/.
bX/ D LBQ;dfX .4`/.

bX ⇥ I /:

(Note that we could equally well use eX instead of X as they are homotopy equivalent
and so have the same fundamental group.) Note that we also have a homomorphism
ę W L4`.Z⇡1.X// �! R defined as above.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



102 P. ALBIN AND P. PIAZZA

Proposition 7.4. – If the map i⇤ W ⇡1.X/ �! ⇡1.bX/ is injective and there is a
monomorphism p W Ck �! ⇡1.X/ then the following diagram commutes

L4`.ZCk/

˛k

''

p⇤
// L4`.Z⇡1.X//

i⇤
//

ę
✏✏

LBQ;dX .4`/.bX ⇥ I /

˛

vvR.

Proof. – The commutativity of the left triangle is a classical result, already used by
Chang-Weinberger. The commutativity of the second triangle, i.e., that ę D ˛ ı i⇤; follows
from the more general result proved in the next proposition.

Proposition 7.5. – If F W
bX1 �!

bX2 is a BQ-transverse map between Cheeger spaces
inducing an injection on ⇡1 then we have a commutative diagram

(7.15) LBQ;d .bX1 ⇥ I / ˛Ä1

,,F⇤
✏✏

R
LBQ;d .bX2 ⇥ I /,

˛Ä2

22

with Äj WD ⇡1.bXj /
Proof. – With a small abuse of notation we do not distinguish between F W

bX1 �!
bX2

and F ⇥ Id W
bX1 ⇥ I �!

bX2 ⇥ I . Let � 2 LBQ.bX1 ⇥ I / be represented by

.cM I
bX1; bX 0

1
/
.�Iid; /
�����! .bX1 ⇥ Œ0; 1çI bX1 ⇥ f0g; bX1 ⇥ f1g/

id
���!

bX1 ⇥ I:

Then, by definition, F⇤� 2 LBQ.bX2 ⇥ I / is represented by

.cM I
bX1; bX 0

1
/
.�Iid; /
�����! .bX1 ⇥ Œ0; 1çI bX1 ⇥ f0g; bX1 ⇥ f1g/

F

���!
bX2 ⇥ I:

Our goal is to show that

⇠Ä2.IndAPS.F⇤.�// D ⇠Ä1.IndAPS.�//

the equality involving ⇠ being trivial, as we shall explain.
CallR1 W

bX1 ! BÄ1 andR2 W
bX2 ! BÄ2 the classifying maps for the respective universal

coverings and let f W Ä1 ! Ä2 be the homomorphism induced by F ,

f D F⇤ W ⇡1.bX1/ ⌘ Ä1 ! ⇡1.bX2/ ⌘ Ä2:

We are assuming that f is injective. Notice that the diagram

(7.16) bX1 F
//

R1

✏✏

bX2
R2

✏✏

BÄ1
Bf
// BÄ2

commutes up to homotopy. As for F and F ⇥ Id; we will not distinguish between Rj and
Rj ⇥ Id on bXj ⇥ Œ0; 1ç. Consider now

bZ WD .�cM/ t .bX1 ⇥ Œ0; 1ç/
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and the classifying map
r1 WD .R1 ı �/ tR1 W Z ! BÄ1:

Recall our explicit description of ⇠Ä1.�/, given in (7.13):

(7.17) ⇠Ä1.�/ D ⌧Ä1.IndAPS.D
G.r1/

C C.r1//

with G.r1/ the von Neumann Mishchenko bundle associated to r1 and C1 the Hilsum-
Skandalis perturbation associated to

 W
bX 0
1

!
bX1 and id W

bX1 !
bX1

and with values in the flat bundle G .r1/. (5) Consider now ⇠Ä2.F⇤�/. By definition F⇤� is
defined in terms of a Ä2-covering of bZ. We pause a moment and describe this Ä2-covering:
it is obtained by pulling-back EÄ2 through the map

..R2 ı F / ı �/ t .R2 ı F / W
bZ ! BÄ2:

By (7.16) above, this is the same as the Ä2-covering on bZ obtained by pulling-back EÄ2
through

r2 WD ..Bf ıR1/ ı �/ t .Bf ıR1/ W
bZ ! BÄ2:

Put it diVerently:

(7.18) r2 D Bf ı r1 W Z ! BÄ2:

Thus, by definition,

(7.19) ⇠Ä2.F⇤�/ D ⌧Ä2.IndAPS.D
G.Bf ır1/

C C.Bf ı r1/:

The Hilsum-Skandalis perturbation is associated once again to . ; id/ but with values now
in the Mishchenko bundle G .Bf ı r1/. We want to argue that these two Äj -von Neumann
indices (two real numbers) are equal, viz.

⌧Ä1.IndAPS.D
G.r1/

C C.r1// D ⌧Ä2.IndAPS.D
G.Bf ır1/

C C.Bf ı r1//:

We remark, crucially, that thanks to (7.18) we are in exactly the same situation as in the
proof of Atiyah’s theorem, see (7.9), but for the presence of the two perturbations C.r1/ and
C.Bf ır1/. However the two perturbations are associated to the same homotopy equivalence
on the boundary, i.e.,

 W
bX 0
1

!
bX1 and id W

bX1 !
bX1;

and so the diVerence is all in the Mishchenko bundles G .r1/ ! Z and G .Bf ı r1/ ! Z. We
have already remarked, see (7.10), that

G .Bf ı r1/ D G .r1/˝NÄ1 NÄ2:

Thus, as for the proof of Atiyah’s theorem, IndAPS.D
G.Bf ır1/

C C.Bf ı r1// is obtained
from IndAPS.D

G.r1/
C C.r1/ by applying the induction homomorphism associated to

f W Ä1 ! Ä2. Thus, applying once again [18, (2.3)], [37, Lemma 1.24]), we get finally

⌧Ä1.IndAPS.D
G.r1/

C C.r1/// D ⌧Ä2.IndAPS.D
G.Bf ır1/

C C.Bf ı r1//;

(5) As already remarked around (7.13), this is the Ä1-von Neumann index of a perturbed signature operator on the
Ä1-covering of bZ obtained by pulling back EÄ1 through r1. The perturbation, call it C1, is induced through the
regular representation by C.r1/ as in [46, Section 2B1].
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that is,
⇠Ä1.�/ D ⇠Ä2.F⇤�/:

The commutativity involving ⇠ is clear: indeed, by definition, ⇠.�/ is the Fredholm index of
the signature operator on bZ perturbed by the Hilsum-Skandalis perturbation C associated
to

 W
bX 0
1

!
bX1 and id W

bX1 !
bX1;

but with values in the trivial bundle C ⇥
bZ !

bZ. However, this is also ⇠.F⇤�/. Thus

⇠Ä1.�/ D ⇠Ä2.F⇤�/ and ⇠.�/ D ⇠.F⇤�/;

so that
˛Ä1.�/ D ˛Ä2.F⇤�/;

as required.

An immediate consequence of the discussion above is the infinite cardinality of the struc-
ture set.

Corollary 7.6. – Let bX be a Cheeger space of dimension 4` � 1; ` > 1; such
that ⇡1.X/ has an element of finite order and i⇤ W ⇡1.X/ �! ⇡1.bX/ is injective. There
exist elements xj 2 LBQ;d .bX ⇥ I /, j 2 Z, such that ˛.xi / 6D ˛.xj / for i 6D j . Consequently,
the elements @.xj /.◆/ are all distinct in SBQ.bX/. In particular

j SBQ.bX/j D 1:

If bX is Witt and has depth one we can prove a sharper result:

Remark 12. – Write @.xi /.◆/ D ŒcMj fi
�!

bX ç 2 SBQ.bX/ with fi a transverse stratified
homotopy equivalence. If bX is a Witt space of depth one, then we claim that cMi is not
stratified diVeomorphic to cMk for i 6D k. Indeed, let

xi D Œ.bWi I bX;cMi /
.�Iid;fi /
�����! .bX ⇥ Œ0; 1çI bX ⇥ f0g; bX ⇥ f1g/

id
�!

bX ⇥ Œ0; 1çç

and consider ˛.xi /. This is the diVerence of two numbers: one is the Von Neumann-index
on the total space of a Galois Ä-covering with boundary and the other is the usual index
on the base of such Galois covering. We point out that the operators we are considering
are invertible on the boundary because they have been perturbed by the Hilsum-Skandalis
perturbation. We now write the APS-index formula, upstairs and downstairs, following [47],
and take the diVerence; we find ourselves with the Cheeger-Gromov rho invariant of the
signature operator of cMi t .�bX/ pertubed by the Hilsum-Skandalis perturbation associated
to fi . Now we proceed as in [44, Section 10], taking an "-concentrated Hilsum-Skandalis
perturbation and letting " # 0. We then obtain, finally, that ˛.xi / is equal to the diVerence
of the Cheeger-Gromov rho-invariants of cMi and bX . Since ˛.xi / 6D ˛.xk/ for i 6D k we
can conclude that the Cheeger-Gromov rho-invariants of cMi and cMk are indeed diVerent,
and the statement follows from the stratified diVeomorphism invariance of the Cheeger-
Gromov rho invariant on Witt spaces of depth 1, established in [47]. For more on numeric
rho invariants we refer the reader to [7, 8].
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Remark 13. – If bX has depth one we can use van Kampen’s theorem to see that the
map ⇡1.eX/ �! ⇡1.bX/ induced by inclusion is an isomorphism if and only if the link of the
singular stratum of bX is simply connected (i.e., bX is supernormal). For bX of arbitrary depth,
using Remark 11 in the setting of simply connected links lets us argue as above to see that
torsion in the fundamental group of any ‘closed stratum’ bY forces j SBQ.bX/j D 1: Indeed
note that the condition on fundamental groups is superseded by the injective map

L.Z⇡1.bY //Œ12 ç �! LBQ.bX/Œ12 ç:
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