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STRATIFIED SURGERY
AND K-THEORY INVARIANTS
OF THE SIGNATURE OPERATOR

BY PIERRE ALBIN AND PaoLo PIAZZA

ABSTRACT. — Inthe works of Higson-Roe the fundamental role of the signature as a homotopy and
bordism invariant for oriented manifolds is the starting point for an investigation of the relationships
between analytic and topological invariants of smooth orientable manifolds. The signature and related
K-theory invariants, primary and secondary, are used to define a natural transformation between the
(Browder-Novikov-Sullivan-Wall) surgery exact sequence and a long exact sequence of C*-algebra
K-theory groups.

In recent years the primary signature invariants have been extended from closed oriented manifolds
to a class of stratified spaces known as L-spaces or Cheeger spaces. In this paper we show that secondary
invariants, such as the p-class, also extend from closed manifolds to Cheeger spaces. We give a rigorous
account of a surgery exact sequence for stratified spaces originally introduced by Browder-Quinn
and obtain a natural transformation analogous to that of Higson-Roe. We also discuss geometric
applications.

RESUME. — Dans les travaux de Higson-Roe le role fondamental de la signature comme invariant
par homotopie et par bordisme de variétés orientées est le point de départ des recherches sur les liens
entre les invariants analytiques et topologiques des variétés réguliéres orientées. La signature et certains
invariants de K-théorie associés, primaires et secondaires, définissent une transformation naturelle
entre la suite exacte de chirurgie de Browder-Novikov-Sullivan-Wall et une suite exacte longue des
groupes de K-théorie pour des algébres C*.

Dans les derniéres années I’étude des invariants de signature primaires des variétés orientées a été
étendue a une classe d’espaces stratifiés connue sous le nom de L-espaces ou espaces de Cheeger. Dans
ce papier, nous démontrons que les invariants secondaires, tels que la classe p, peuvent étre étendus aux
espaces de Cheeger. Nous traitons rigoureusement une suite exacte de chirurgie pour espaces stratifiés
introduite originalement par Browder-Quinn et nous obtenons une transformation naturelle analogue
a celle de Higson-Roe. Nous discutons aussi des applications géométriques.
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44 P. ALBIN AND P. PIAZZA

1. Introduction

The discovery by Milnor of smooth manifolds that are homemorphic to S” but not diffeo-
morphic to it, a milestone of modern mathematics, gave rise to the development of methods
for classifying smooth manifolds within a given homotopy class. (The undecidability of the
word problem makes an unrestricted classification impossible.) The fundamental object to be
studied in this context is the structure set S(X') associated to a smooth compact manifold X .

. . . h .
The set S(X) is defined as the quotient of the set of triples (M — X), with M a smooth
. . . h .
compact manifold and # an homotopy equivalence, modulo A-cobordism: (M = X ) is

h
h-cobordant to (M, MAN X) if there exists a bordism F : W — X x[0, 1] with oW = MyUM;,
F restricting to f; on M; and F a homotopy equivalence. Notice that S(X) is a pointed set,

with [X - X] as a distinguished point. It is in general very difficult to compute explicitly
the structure set associated to X, a notable exception being the structure set of the spheres,
S(S™). In this particular case, S(S") can be identified with ®,,, the Kervaire-Milnor group of
h-cobordism classes of oriented homotopy n-spheres [33, 51]. ®, is a finite Abelian group,
of cardinality 1 for n < 6, and, for example, cardinality 28 for n = 7. (The structure set of
other simple spaces such as complex projective spaces, tori, and lens spaces are also known
[57, Part 3].) In general there is no group structure on S(X) (.

Even if an explicit computation is often out of reach, one would like to determine, for
example, the cardinality of S(X), in particular whether it is greater than one, finite or infinite.
A smooth manifold with | S(X)| = 1 is said to be rigid and so S(X) is a measure of the non-
rigidity of X.

A powerful method to get information about the structure set is provided by the surgery
exact sequence of Browder, Novikov, Sullivan, and Wall which, roughly speaking, relates
the structure set S(X) with the set N(X) of degree one maps preserving normal bundle
information, known as ‘normal invariants’, (also with a bordism equivalence relation) and
an algebraically defined L-group depending only on I' = 71 X, the fundamental group of X,

(1.1) o Lot (ZT) o » S(X) N(X) L (ZT) .

with m = dim M. (See below and, e.g., [57, 51, 36, 19] for more on the surgery exact
sequence.)

In a series of papers Higson and Roe [27, 28, 29] established the remarkable result that
there are natural maps out of the surgery sequence (1.1), into a long exact sequence of
K-theory groups of certain C*-algebras and that these maps make the resulting diagram
commute. The C *-algebras in question are C*(Xt)' and D*(Xr)T, obtained as the closures
of the I"'-equivariant operators on the universal cover Xt of X that satisfy a finite propagation
property and, in addition, are respectively ‘locally compact’ or ‘pseudolocal’. The former
C*-algebra is an ideal in the latter so we have a short exact sequence

0— C*(Xr)" - D*(Xxp)' - D*(Xr)'/C*(Xr)" — 0,

M The analogous set in the topological category, S*P(X), X a topological manifold, can be given a group structure
through the Siebenmann periodicity theorem, see for example [15].
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STRATIFIED SURGERY AND K-THEORY INVARIANTS 45

which gives rise to a long exact sequence in K-theory known as the analytic surgery sequence
of Higson and Roe. Making use of the canonical isomorphisms

Kt 1(D*(Xr)'/C*(Xr)") = Ku(X) and  K.(C*(X1)") = Ko (CT),

with the K-homology of X and the K-theory of the reduced C *-algebra of T', the long exact
sequence reads

(12) = Kn41(C)T) = Kt (D*(XT)T) = Ki(X) = K (C/T) = -+

The result of Higson and Roe is thus a commutative diagram of long exact sequences

(1.3) Liyt1(ZT) iy §(X) N(X) L., (ZT)
| | | |

Kn+1(CFD) 3] —— Km+1(D*(Xr)D)[5] —— Km(X)[3] —— Km(CD)[3],

where we use the short-hand A[%] to indicate A ®z Z[%] whenever A is an Abelian group.
These maps were recast by the second author and Schick [46] in a more index-theoretic
light, using in a crucial way properties of the signature operator on Galois I"-coverings. In
particular, the homomorphism y is shown to be realized by an Atiyah-Patodi-Singer index
map. The approach by Piazza and Schick also allowed for a treatment of the Stolz surgery
sequence for positive scalar curvature metrics and its mapping to the Higson-Roe surgery
sequence using the spin-Dirac operator:

(1.4)

RP® (BT) s Pos$P™ (BT) ————— Q3P (BT) ——— RP" (BT)

| | | &
Km1(CYD)[3] —— K1 (D*(ET)D)[3] —— Km(BD)[3] —— Kn(CFT)[3].

see [45]. For alternative treatments see also [63, 66, 67, 68, 65]. While the vertical maps
in these diagrams are in general not known to be injective or surjective (though see [64,
Corollary 1.3] where this is related to the Baum-Connes conjecture), it is still possible to
get interesting geometric applications from the interplay between the geometric sequence
upstairs and the analytic sequence downstairs. This is true both for (1.3) and (1.4). See for
example, [29, 17, 56, 66, 61, 60, 65, 10].

In this paper we generalize (1.3) to the setting of stratified spaces.

~

THEOREM 1.1. — Every m-dimensional, oriented, smoothly stratified Cheeger space, X,
with fundamental group T, gives rise to a commutative diagram

(1.5) Lpqug,, (X x ) s Spo(X) —————— Npg(X) —— Lag.a. (X)

l[ndAps J/p lﬂ JIHdAPS

Knt1(CFD)[5] —— K1 (D* (X)) 3] —— Km(X)[3] —— K (CFT)[3]
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between the Browder-Quinn surgery exact sequence and the Higson-Roe analytic surgery
sequence. Here I := [0,1] and d g, d4  , are dimension functions associated to the stratifica-
tions of Xand X x 1 respectively. Our result holds, in particular, if X isa Witt space.

The group Lpq,a (X) is the analogue of Ly (Z; (X)) in the Browder-Novikov-Sullivan-
Wall surgery sequence (1.1). The subscript d; refers to the dimension function of X, the
function on the poset of strata that assigns to each stratum its dimension. If X is smooth
of dimension d, X = X, then Lpq,a(X) = Ly (Zm1(X)), where on the left we now have the
dimension function that assigns to the unique (smooth) stratum X the value d = dim X. In
the general stratified case LBQ,d;; ()’(\ ) depends in principle on all of X and not only on its
fundamental group.

We prove a better version of this diagram in §6.6 involving the signature operator on all
of the strata of X and their fundamental groups, but refer the reader to the text so as not to
introduce more notation.

As a geometric application of our techniques we prove:

COROLLARY 1.2. — Let X be a Cheeger space of dimension 40 — 1, £ > 1, with smooth

stratum equal to X, X < X. Assume that 1(X) has an element of finite order and that i, :
w1(X) — w1 (X) is injective. Then

| Spo(X)| = .

The top row of (1.5) is the surgery sequence for stratified spaces of Browder-Quinn [13].
One of our contributions in this paper is a detailed treatment in §2 of the Browder-Quinn
surgery exact sequence in the setting of smoothly stratified spaces (a.k.a. Thom-Mather
stratified spaces). The original treatment in [13] is quite sparse and its generalization in
[59] uses algebraic tools applicable in its setting of homotopically stratified spaces. For our
purposes it is necessary to have geometric proofs that stay within the category of smooth
stratifications. Our treatment naturally draws heavily from these two sources.

A feature of the Browder-Quinn surgery sequence is that if X is a Witt space [53] or a
Cheeger space [9, 2, 5] then all of the spaces that arise in the surgery sequence are also Witt
spaces, respectively Cheeger spaces. This allows us to bring to bear the analysis that we have
developed in joint work with Eric Leichtnam and Rafe Mazzeo [3, 5, 4] to define the vertical
maps in (1.5) and to show that the diagram commutes. Notice that while the vertical maps
are defined in analogy with [46], there are substantial technical differences, especially in the
Cheeger case, where ideal boundary conditions must be chosen.

In detail, the vertical maps out of the Browder-Quinn L-groups are Atiyah-Patodi-Singer
index classes; the map out of the normal invariants Ngg ()/(\ ) is given in terms of the funda-
mental class, in K-homology, associated to the signature operator on a Cheeger space;
finally the rho-map is a true secondary invariant associated to a suitable perturbation of the
signature operator. In the smooth case this rho-map is directly connected with well-known
numeric rho invariants; we comment on the validity of this principle in the singular case at
the end of the paper. As already remarked, all of these constructions depend upon the defini-
tion of ideal boundary conditions; these depend, in turn, on the choice of a mezzoperversity
and a major theme in this article is the detailed analysis of the dependence of these classes
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on the choice of a mezzoperversity and the proof of the remarkable fact that our maps are
in fact all independent of the choice of a mezzoperversity.

The paper is organized as follows. In Section 2 we give a rigorous and detailed treatment
of the relevant results stated in the paper by Browder and Quinn. In Section 3 we specialize
to Cheeger spaces and give a coarse theoretic treatment of some of the results in [3, 5, 4];
in particular we define the fundamental K-homology class of a Cheeger space without
boundary and the associated index class. Finally, in the invertible case, we introduce the rho
class of an invertible perturbation of the signature operator. In Section 4 we pass to manifolds
with boundary, with a particular emphasis on the notion of Cheeger space bordism. It
is in this section that we explain the statement of the delocalized Atiyah-Patodi-Singer
index theorem on Cheeger spaces, a key tool in our analysis, and we illustrate its proof,
building on [45, 46]. In Section 5 we recall and expand results around the Hilsum-Skandalis
perturbation for the signature operator on the disjoint union of two Cheeger spaces that are
stratified homotopy equivalent. In Section 6 we finally define the vertical maps in the diagram
that maps the Browder-Quinn surgery sequence to the Higson-Roe surgery sequence; we
prove the well-definedness of these maps and that they are independent of the choice of a
mezzoperversity. We then prove the commutativity of the squares of the diagram. We end
this section by observing that it is in fact possible to consider different diagrams, each one
associated to an individual closed stratum. Section 7, the last section of the paper, presents
some geometric applications of our main result, in the spirit of [17].
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Notation
Below we will occasionally use diagrams such as
(ﬁ;alﬁ, 32M\) L) (?§31?, 32?)-

This should be understood to imply that IM = 811/1/[\ U 821/\/1\, Y = 81? U 8217, also
that 9 M N d,M = 9(9; M) (and similarly for Y'), and that f restricts to maps

fl:oM — 0,Y, f|:0,M — 9,Y,
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which we sometimes denote 9, f, 2 f, respectively. Occasionally it will be useful to decom-
pose the boundary of a space into more than two pieces, in which case similar conventions
are in effect.

Our main object of study will be smoothly stratified spaces. As reviewed below, this will
mean Thom-Mather stratified pseudomanifolds. A bordism between two stratified spaces
will be a stratified space with boundary and a bordism between two stratified spaces with
boundary will be a stratified space with corners (as is well known, e.g., [58, §8.3], this is only
useful if restrictions are placed on part of the boundary). For a careful discussion of these
concepts we refer the reader to [55] (see also [1, §6]). While we do not use the language of
‘n-ads’ as in [57], it is clear that the constructions below extend to ‘n-ads of stratifed spaces’.

Note that the boundary of a manifold with corners is not itself a manifold with corners,
but rather a union of manifolds with corners with various identifications of boundary faces.
Following Melrose (see, e.g., [40]), an ‘articulated manifold (without boundary)’ is a finite
union of connected components of the boundary of a compact manifold with corners (thus
guaranteeing that the identifications of boundary faces are consistent). More generally,
an ‘articulated manifold with corners’ is a finite union of boundary hypersurfaces of the
boundary of a compact manifold with corners (not necessarily making up full connected
components of the boundary).

Similarly an ‘articulated stratified space (without boundary)’ refers to a finite union of
connected components of the boundary of a compact stratified space with corners, and an
‘articulated stratified space with corners’ is a finite union of boundary hypersurfaces of a
stratified space with corners.

Working with ‘articulated stratified spaces’ is analogous to working with n-ads in the
category of stratified spaces; for instance, if (]T/I\ ;01 M , 02 M ) is as above and M is a stratified
space with corners then 3; M are articulated stratified spaces with corners. An alternate
approach, see, e.g., [58, §2.6], is to ‘round the corners’ and work with spaces with boundary.

2. Browder-Quinn Surgery

We will make use of the surgery theory for stratified spaces of Browder and Quinn [13].
Some of the results we need for the purpose of defining maps into K-theory are only implicit
in their exposition so we have decided to include a more explicit description of this surgery
theory. In carrying this out we have benefitted from Weinberger’s exposition [59, §7.1] where
some of the proofs below are sketched (e.g., the TI-IT theorem, Theorem 2.1), as well as
from [57, 51, 20, 19, 6, 49] and [21] (from which we adapted the proof of the Wall realization
theorem, Theorem 2.5). We are also happy to acknowledge useful conversations and email
exchanges with Markus Banagl, Jim Davis, Wolfgang Liick, Tibor Macko and Shmuel
Weinberger.

2.1. Browder-Quinn stratified spaces and transverse maps

Although there are many notions of stratified spaces, perhaps the most common is that
of a Whitney stratified space. If L is a smooth manifold then a Whitney stratification of
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asubset X € Lisa locally finite collection of pairwise disjoint smooth submanifolds
covering X, known as strata, satisfying the ‘frontier condition’

YNY #0 = Y CY/

and ‘Whitney’s condition (B)’ concerning the relations of the tangent spaces of the strata.
For example, Whitney showed [62] that algebraic varieties admit Whitney stratifications.
It was subsequently shown by Thom and Mather [39] that in a Whitney stratified space
neighborhoods of the strata have geometric structure and this was abstracted in the notion
of Thom-Mather stratified space.

A further abstraction was given by Browder and Quinn [13] (cf. [32, 22, 59]). They fix
a category % of ‘manifolds with fibrations’ such as smooth manifolds and locally trivial
smooth fiber bundles, PL. manifolds and block bundles with manifold fibers, topological
manifolds and locally trivial topological fiber bundles, or Poincaré spaces and maps whose
homotopy fiber satisfies Poincaré duality. Although Browder-Quinn do not specify what
properties are necessary in the category .%, an important property is that there be a notion
of pull-back in the category .%#.

An % -stratified space is a topological space X filtered by subsets X, indexed by a partially
ordered set A satisfying the following. If for each a € A we let

Xoa = U{Xbib € ADb <a},

then each X, is equipped with a closed neighborhood N, = N(X,) of Xy, in X, and a
projection v, : IN, —> X3, such that

(1) Xz \ Xy, and 0N, are manifolds in .%,

(i1) N, is the mapping cylinder of v, (with dN, and X3, corresponding to the top and
bottom of the cylinder),

(iii) Ifa,b € A, b < a, W, = Xj \ int(Np), then
Va| v, (W) — W
is a fibration in .%.

If X and M are two .% -stratified spaces whose filtrations are indexed by the same partially
ordered set A, then a filtration-preserving map f : X —> M of % -stratified sets is said to
be transverse if each fibration in X is the pull-back along f of the corresponding fibration
in M.

REMARK 1. — When F is equal to the category of smooth manifolds and locally trivial
smooth fiber bundles, Browder-Quinn F-stratified spaces are the same as Thom-Mather
stratified spaces. One could show this by, for example, proceeding as in [3] and proving that
any Browder-Quinn % -stratified space can be ‘resolved’ to an F-space ‘with corners’ and
iterated fibration structures, and any such can be collapsed to a Browder-Quinn . -stratified
space. Instead of developing this, we will work directly with Thom-Mather stratified spaces in
establishing the Browder-Quinn surgery sequence below.
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2.2. Smoothly stratified spaces and transverse maps

From now on we will only work with .# equal to smooth manifolds and locally trivial
smooth fiber bundles, i.e., the setting of Thom-Mather stratified spaces. For this class of
spaces there is a construction going back to Thom [54] and carried out in [3] that replaces a
stratified space, X, with its ‘resolution’, X, a manifold with corners and an iterated fibration
structure. We now recall this construction.

Let X be a stratified space with singular strata

S(X) ={Y1,Ya,.... Yy

Each Y; is subset of X that inherits the structure of an open manifold (indeed, of the interior
of a manifold with corners). We write ¥; < Y; if the closure of ¥; in X contains Y;. The
closure of ¥; in X is given by
v=J v <y

and is itself a stratified space. Every point in Y; has a neighborhood in X homeomorphic to
a ball in R4™Yi times the cone over a stratified space Z;, known as the link of ¥; in X.

The resolution of X , denoted X ,1s a smooth manifold with corners. Each stratum Y; of X
corresponds to a collective boundary hypersurface By, of X, by which we mean a collection
of boundary hypersurfaces no two of which intersect. Each collective boundary hypersurface

participates in a fiber bundle,

~ by, ~
Zl _%Yl E— }]i5

where the base is the resolution of ¥; and the typical fiber is the resolution of Z;. If Y; and
Y; are strata of X with ¥; < Y; then By, N By, # 0 and we have a commutative diagram of
fiber bundle maps

where By, y; is a collective boundary hypersurface of By;. We refer to a manifold with
corners together with these collective boundary hypersurface fiber bundle maps as a manifold
with an iterated fibration structure.

There is a canonical ‘blow-down map’ between a manifold with corners and an iterated
fibration structure X and a stratified space X,

B X—X ,
which collapses the fibers of the boundary fiber bundles to their base. Note that 8 is a
diffeomorphism between the interior of X and the regular part of X.

A continuous map between stratified spaces is stratum preserving if the inverse image of
. . . — F . o s
a stratum is a union of strata. A stratum preserving map M —— X is smooth if it lifts to a
~ F  ~
smooth map M —— X. We denote the space of such maps by

CP(M.X) S C®(M, X)
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and the corresponding maps between M and X by C*° (]T/I\ X ). Directly from the definition
we have a natural identification

Bs:CX(M,X) — C®°(M. X).
The smooth map F necessarily induces a fiber bundle map between the collective boundary
hypersurfaces of M and those of X,

@2.1) M 2 ®By-—Ss8y c X

¢NJ{ ltlby
Flg

~ ~

N——Y.

) — F = ~ F = . o
We will say that M —— X and M —— X are transverse if the commutative diagram of
fiber bundles (2.1) is a pull-back diagram, that is,

22 By = (F|5) By

We denote the class of such maps by C& (ﬁ X ) and C¥ (1/\4\ X ); the identification B, restricts
to an identification

Bx:CE(M,X) — CX (M, X).
Note that C¥° (]Tl\ X ) are the transverse maps of Browder-Quinn. (Indeed, the fibrations v,
of a Browder-Quinn stratified space correspond in the smooth category to the fiber bundle
maps ¢y .)

2.3. Examples of transverse maps
Here is a list of examples of transverse maps.

— Transverse maps are used in [23, Part I, §4] and [24, §5.4] where they are called ‘normal
non-singular’. A weaker notion called ‘homotopy transverse’ was used by Weinberger
[59, §5.2].

— An example from [24] is the inclusion H N X < X where X is a stratified subset of a
smooth manifold and H is a smooth submanifold transverse to the strata of X .

— Another example from the same source is the fiber bundle projection map for a fiber
bundle over a stratified space with fiber a smooth manifold.

— Browder-Quinn considered these maps first in an equivariant situation. If G is a
compact Lie group and L, L’ are spaces with G-actions thenamap f : L —> L’ is
isovariant if, forany x € L, g € G,

f(gx) =gf(x), and gf(x) = f(x) < gx =x.
An isovariant map is transverse linear if whenever H C G is a subgroup, and L}

denotes the subset of L consisting of points whose isotropy group is conjugate to H,
there are G-vector bundle tubular neighborhoods

L cy, @Hcu

such that f restricts to a G-linear vector bundle map U — U’. Transverse linear
isovariant maps are examples of transverse maps for the stratification of a space into
the orbit types of a group action.
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2.4. Properties preserved by transverse maps.

There are some propertles of a stratified space X such that the existence of a transverse
map f M— X 1mphes that M also has this property. For example, if the dimensions
of all of the links of X are odd, then the dimensions of all of the links of M must be
odd as well. A class of stratified spaces determined by such a property will be said to
be preserved by transverse maps. As examples of such classes let us mention, in order of
increasing generality: IP spaces, Witt spaces, and Cheeger spaces or L-spaces. Recall that
a stratified space is a Witt space if, whenever the link of a stratum is even dimensional, its
middle degree middle perversity intersection homology vanishes. A Witt space is an IP space
(intersection Poincaré space) if, whenever the link Z of a stratum is odd dimensional, its
middle perversity homology in degree %(dim Z — 1) is torsion-free. A stratified space is an
L-space if there is a self-dual sheaf compatible with the intersection homology sheaves of
upper and lower middle perversity [9]. Smoothly stratified L-spaces are known as Cheeger
spaces [3].

A property of transverse maps that we will use repeatedly below is that the restriction of
a transverse map to the closure of a stratum is again a transverse map.

2.5. Surgery definitions

When carrying out surgery constructions we will need to use stratified spaces with corners.
By a stratified space with corners we mean a stratified space with collared corners [1, Defini-
tion 2] or an ‘abstract stratification with faces’ in the sense of Verona [55, §5]. An ‘articulated
stratified space with corners’ is a union of boundary hypersurfaces of a stratified space with
corners; thus it is a union of stratified spaces with corners together with identifications of
certain of their boundary hypersurfaces. Smoothness of maps to and from articulated spaces
is defined in the natural way, i.e., continuity on the whole and smoothness on each stratified
space with corners.

DEFINITION 1. — Let M and X be oriented stratified spaces.

(1) A BQ-transverse map f : M —> X is a transverse map that is orientation preserving
and restricts to a diffeomorphism between strata of dimension less than five.

(i) A BQ-normalmap f : M —> X is a BO-transverse map such that, in the notation of
$2.1, for each a € A, f restricts to a degree one normal map

Ja : Mg \int(N(Mg)) — X4 \ int(N(X,)),

meaning that there is a smooth vector bundle t — X, \ int(N(X,)) and a stable bundle
isomorphism of the stable normal bundle Nora\int(N(M,))» b : NOTM\int(N (M) — fa T
covering fo. (We will not explicitly keep track of the bundle data as it will not affect our
analytic maps. )

(iii)) 4 BQ-equivalence f : M — Xisa BQ-transverse map whose restriction to each
stratum is a homotopy equivalence. ( By Miller’s criterion [41] (see [4, Corollary 1.11]),
f is a BQ-equivalence if and only if there is a BO-transverse map g X — M and
homotopies of f o g and g o f to the respective identities through BQ-transverse maps. )
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One could also work with simple homotopy equivalences and there is an s-cobordism
theorem in this context [13, pg. 34].

Given a stratified space, its dimension function will refer to the function on the poset of
strata that assigns to each stratum its dimension.

DEFINITION 2. — Let X be a smooth oriented stratified space, possibly with boundary. ( Our
convention is that the spaces below are allowed to be empty and a map between empty sets counts
as an equivalence. )

(a) Let Lpq,q ()/(\) denote the set of diagrams

2.3) (MM 2 (7:07) > X
where M and Y are oriented stratified spaces with corners, d is the dimension function of M,

¢ is BO-normal, ¢ is a BQ-equivalence (between articulated stratified spaces with corners),
and w is BQ-transverse.

The set EBQ,d)?()? ), where d g denotes the dimension function of X, will sometimes be
abbreviated as Lyq(X), with the dimension function omitted.

We refer to these diagrams as ( Browder-Quinn) L-cycles over X.

A null bordism of an L-cycle over X as above will mean a diagram

(N0, N, 0.N) =2 (Z:0,2.,027) —— T x I

between stratified spaces with corners, with the same dimension function as M x I, where ® is
BQ-normal, ®| : 82N —> 027 is a BQ-equivalence, Q2 is BQ-transverse, and

((a N, 00N = 0,2, 01,2) =21, X) ((ﬁ; oM -2 (7:07) -2 )?)

(with 7 - X x 1 — X the projection). In this case we say that the L-cycle is null bordant.

The L-cycles over X naturally form an Abelian monoid with addition induced by dm]oml
union and zero given by the diagram with M=Y =0 We say that two L-cycles over X, a,
B are equivalent if a + B°P is null bordant, where B°P denotes B with orientations reversed.
This is an equivalence relation, known as L-bordism, and the set of equivalence classes, denoted
Lpg,q (),(\ ), is known as the Browder-Quinn L-group of X. ( The equivalence classes form a
group with the inverse of [a] being [a°P].)

(b) The ( Browder-Quinn) normal invariants, denoted Npq (),(\ ) are the subset of Lpq (),(\ ) in
which, with notation as above, Y = X and w = id . A normal bordism is an L-bordism between
normal invariants which, in the notation above, has 7Z =X xIandQ =id. The set of normal
invariants modulo normal bordisms is denoted Npq ()? ).

If X has boundary we denote by Npqg ()? L0X ) the subset of Nq ()? ) in which, with notation
as above, | aif 5 a (stratum preserving ) diffeomorphism. A normal bordism, relative to X,

will be a normal bordism as above in which 9N = K x I and <I>|82N Plogz < id. The
corresponding set of normal invariants is denoted NBQ()/(\ L0X ).
(c) The (Browder-Quinn) Thom-Mather structures, denoted Spq ()/(\ ) are the subset

of NBQ()? ) in which, with notation as above, ¢ is a BQ-equivalence. Two such objects are
equivalent if there is a normal bordism between them which, in the notation above, has ©
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a BQ-equivalence. The set of equivalence classes is denoted SBQ()/(\ ) and is known as the
( Browder-Quinn) structure set.

Similarly, zf)? has boundary then SBQ(f, 3)?) is the subset of./\/()?, 8)?) in which ¢ is a
BQ-equivalence. Equivalence classes modulo normal bordism relative to X in which ® is a
BQ-equivalence form the set Spq ()/(\, 8)/(\).

REMARK 2. — A BQ-transverse map f : X — W induces a homomorphism
fi: Lro.a(X) — Lrg.a(W).

(Recall that d is the dimension function of M in (2.3).) It is easy to see that if f is a
BQ-equivalence then it induces an isomorphism Lyq g ()? ) = Lpga (W). Browder and Quinn
point out [13, Proposition 4.7] that this is true for any BQ-transverse f that satisfies the T1-I1
condition below. For example, Lyq 4 ()? ) = Lpq.a ()? x I).

REMARK 3. — The Pontrjagin-Thom constructions on the various strata can be fit together
using transversality to identify Nyq ()? ) with homotopy classes of maps from X into G/ O that
are constant on strata of dimension less than five. Since we do not use this we do not elaborate,
see [59, pg. 140].

REMARK 4. — If X = X is a smooth manifold of dimension d, then Lyq,q(X), with
d the dimension function that assigns to the unique stratum X its dimension, is precisely
equal to Ly (Zm1(X)). Indeed, our definition of Lpg q4(X) coincides with Wall's Ltli(X) from
[57, Chapter 9] save that we required Y in Definition 2 to be smooth (by the transversality
requirement on w). However X smooth and Wall’s realization theorem ([57, Theorem 10.4]
and Theorem 2.5 below) shows that this does not change the group we obtain.

The inclusion maps between the sets above descend to maps between the equivalence
classes

~ n ~ 0 ~
Spo(X) —> Npo(X) —> Lp,a,(X),

where d ¢ is the dimension function of X. We will show that this sequence is exact in an
appropriate sense and extends to the left

L.y, , (X x I) - Spo(X) |

in that there is an action of the L-group of X x I on the structure set of X. Moreover the
extended sequence is exact in that two elements of Spq (X) have the same image under 7 if
and only if they are in the same orbit of the L-group. For stratified spaces with boundary
there are analogous sequences relative to the boundary. In fact the extension to the left of
the sequence above, for a stratified space without boundary, is
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2.6. The II-IT condition
DEFINITION 3. — We say that amap h : M —> N between stratified spaces with corners
satisfies the T1-T1 condition if:

For every connected component of a stratum of N, Sn. there is exactly one connected
component of a stratum of M, Sy, such that h(Sy) N Sy # @. Moreover, h(Spr) € Sy
and hy : w1(Sy) — 71 (Sy) is an isomorphism.

The 7-7 theorem (or surgery lemma) in our context is implicit in [13] and presented by
Weinberger in [59, pg. 140], where a proof is also sketched. We formulate it as in Quinn’s
thesis [50, Theorem 2.4.4] and prove it following [59].

THEOREM 2.1 (BQ II-IT theorem). — Let M,Y, X be stratified spaces with boundary,
with the same dimension function, together with decompositions of their boundaries, e.g.,
0X = 0o X U 01X, into two codimension zero stratified spaces with common boundary.
Consider a diagram
2.4) (M 80M. 0, M) —L> (713,70, 7) - X,

in which f is BQ-normal, f| : JoM —> Y isa BQ-equivalence, w is BQ-transverse and
orientation preserving.

If the inclusion of 0, Y intoY satisfies the T1-I1 condition then there is a bordism between
(2.4) and

2.5) (M: 900, 1 M) — (729,70, 7) - X,

where f' satisfies the same properties as | but is moreover a BQ-equivalence. Explicitly this
bordism is a diagram of oriented stratified spaces with corners

~ F  ~ id  ~

NV xI2Z5,XxI,
in which 9N = M UM’ UdoM x I U P, with F a BQ-normal map satisfying
(F3 fof fIxid,F1)

(2.6) (N:M,M',0oM x1, P) (Y x1:Y x{0}, Y x{1},80Y x1,0,Y xI).

Proof. — We proceed by induction on the depth of the stratified space. Our base case is
when Y , M , and X are smooth manifolds with boundary and this is Theorem 3.3 in Wall’s
book [57], since in dimension less than five our maps are diffeomorphisms by definition.

Suppose the theorem is established for all stratified spaces with boundary whose stratifi-
cation has depth less than k and consider (2.4) where Y (and hence M, X ) has a stratification
of depth k. Denote the subsets of depth k by a T decoration and note that these are smooth
manifolds and that transversality of the maps in (2.4) implies that these subsets are preserved
by these maps. Thus we obtain

T ot
2.7) Mt ooMT, 0, M)~ (v 0¥ T 0, v —2s xT

satisfying the same conditions as the diagram (2.4). Since the I1-I1 condition holds, there is
a bordism satisfying the same conditions as (2.6),

.
(2.8) Nyt

o' xid

> xtxI
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between (2.7) and

+/ ¥
VoM™ 0 MYy Lo (YooY 2 (xtidoxT 9, x),
with f ta homotopy equivalence.

Transversality of f and w guarantees that we can find neighborhoods 7,+ < M , Ty+ C
Y, and Ty+ C X that fiber over M f. YT and XT respectively, such that each square in

Sl

o|

2.9 Ty Ty+ Tyt
L»L M P’T(
T T
M ! 4l 2 X+,

where f| and w| denote the restrictions of f and w respectively, is a pull-back square. Note
that fori = 0, 1 we have

M N Ty = (p1) (@ M)

and similarly for Y and X, so the top row of (2.9) is a diagram satisfying conditions analogous
to (2.4).

We have an extension of this diagram to a similar diagram over the bordism (2.8)

—t

* F w|xid
(2.10) FU Tyt x ) ———— Tyt x [ ————— Tyt x |
NT l Yixr — 2 Ly
with F T*(’TY-;-)| yt = Ty+ and FT the induced map on the pull-back. Restricting this

diagram to the ‘fixed’ dg part of the boundary we get

w|xid

@M N Typr) x T —2P (307 N Tyr) x T 30X N Tyr) x 1

l | |

TIxid TIxid
doMT x I s do¥ T x I o I doXT x 1

and so the top row of (2.10) is a bordism, satisfying conditions analogous to (2.6), from the
top row of (2.9) to

71/
@.11) PV T L Ty 2 T,

Y
in which f f is a BQ-equivalence.
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Now, asin [12, Theorem 2.14][59, §4.3], we multiply each space in (2.4) by the unit interval
and attach the top row of (2.10) to get a bordism

o
— * id)UF o>
Mx1 U FP (T L9 5y U Bext
Tyt XAU~F T (Ty0)| s Ty X813~ Ty x40}
dUolxid =~
_@xidUolid X xI U Tyt x 1
TXTX{1}~TXTX{0}

from (2.4) to a similar diagram over X which we denote
(2.12) (P;30P, 01 P) — (YV:907,017) — (X:90X,0:X)
and which restricts to (2.11) in a neighborhood of the subsets of depth k.
Now we remove these neighborhoods of the subsets of depth £ to form
Pt =P\ Ty, Yt=V\Tyr, Xt =X\Tyr.
These are stratified spaces with corners (see, e.g., [1, §6], [55]) and we define
YT =@Y NYHUITyr, YT =0,YnY+

and similarly for P* and X*+. Note that the restrictions of g and w to dg P+ and 9oY * are
BQ-equivalences so we have a diagram

(P+100P+. 0, PH) —5Ls (749,70, 7) —2Ls (£+:0,8+.8,8%)
satisfying conditions analogous to (2.4). (Note that though the stratified space now has
corners of codimension two, one can ‘smooth out the corners’ as in [58, §2.6], [25, §3].)

Moreover, the compatibility between the stratifications and the boundary faces implies
that each stratum of ¥+ is homotopy equivalent to the corresponding stratum of Y, and
the same is true for the strata of ;Y T. (Indeed iterating this process of removing tubular
neighborhoods of deepest strata produces the resolution of Y which does not change the
homotopy type of the strata.) Significantly, the inclusion of d; Y into Y satisfies the I1-T1

condition and since Y+ has depth less than k we can apply our inductive hypothesis to find
a bordism, satisfying conditions analogous to (2.6),

]/\7\+i>?+xli>5(\+x1
between
(PF:00PF,0,PT) <Ly (TF:00Y 7, 0,7 F) s (XF100X T, 9, X F)
and (P1/:00P+ 0, PH) 5 (TF: 007 7.0, 7 F) =2 (XF: 0X . 0, X 1),

with g’ a BQ-equivalence. Since the bordism does not change the spaces d(( f T/)*T yi), 0Ty+,
07+ or the maps between them, we can glue in the bordism (2.11) to finally obtain a bordism
between (2.4) and (2.5) with

M =P U Ty

Y
and f/'=g'U f " a BQ-equivalence as required. O
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The key to applying the T1-TI theorem is a result of Wall that allows us to represent every
class in Lpq(X) by a ‘restricted’ representative. This is sometimes referred to as “L! = L2"
evoking the notation of [57, Chapter 9].

DEFINITION 4. — Let X bea stratified space ( possibly with boundary). An L-cycle over X,
(M0 2 (7:07) > X
is a restricted L-cycle if w : Y — X satisfies the T1-T1 condition.
A null bordism of a restricted L-cycle over X,

—~ ~ ~ ® ~ ~ ~ Q A~
(N;01N,0,N) —> (Z;01Z,0,Z) —> X x I
is a restricted null bordism if Q : Z—XxI satisfies the T1-11 condition.

REMARK 5. — If X has depth zero then these are the restricted cycles of [57, Chapter 9], see
Remark 4.

THEOREM 2.2. — Let X be a stratified space (possibly with boundary). Every element
of Lq(X) is L-bordant, relative to the boundary, to a restricted L-cycle over X . If a restricted
L-cycle over X is null bordant, then it participates in a restricted null bordism.

Proof. — Our proof is parallel to that of the IT-IT theorem. When possible we will simply
refer back to the latter proof.

We will prove by induction on the depth of the stratifications that, whenever we have
(2.13) A Ny
with ¢ BQ-normal, v BQ-transverse, and M , 17, X stratified spaces with corners with the
same dimension functions, there is a bordism relative to the boundary to a similar diagram

M ——¢——> v 2. X,

in which o’ satisfies the TTI-IT condition. Specifically, there is a diagram

(2;0,9".0|xid)
_—>

Q0,0 ,w|xid) ~

(N: M, M ,0M x I) (Z:Y,YV,0Y x ) ——=272, X x I,

in which @ is BQ-normal and €2 is BQ-transverse and moreover
MOM =0, MN@OMxI)=0M, M N@OMxI)=M
and similarly for Z.

We proceed by induction on the depth of the stratified space. Our base case is for smooth
manifolds with corners. If dim Y < 5 then the theorem is automatic since f and w are then
both diffeomorphisms. Assuming dimY > 5, this case is handled by Wall in [57, Theo-
rems 9.4, 9.5], where he shows that this can be arranged by carrying out surgery on Y along
1-handles and 2-handles and then modifying M along the preimages of the corresponding
embeddings. As pointed out in [42, Proof of Lemma 3], a theorem of Whitney implies that
for dimY > 4 any homotopy class of maps from S! or S? into Y contains an embedding

with image contained in the interior of Y. Thus all of the modifications in M and Y can be
carried out in their interiors.
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Suppose the theorem is established for all stratified spaces with boundary whose strati-
fication has depth less than k and consider (2.13) where Y (and hence M, as they have the
same dimension function) has a stratification of depth k. Denote the subsets of depth k by
a T decoration and note that these are smooth manifolds and that transversality of the maps
in (2.13) implies that these subsets are preserved by these maps. Thus we obtain

—_— — fT o~ o~ ot ~
(Mt aMT) —— (Y1,9YT) — XT,

an element of Lpq ()/(\T ). Applying the base case to this situation we obtain an £-bordism,
relative to the boundary, to an element satisfying the desired IT-IT condition. Proceeding as
in the proof of Theorem 2.1 we can lift this £-bordism to neighborhoods of these subsets and
then graft it onto the product of (2.13) with the unit interval to obtain an £-bordism, relative
to the boundary, between (2.13) and an element of Lpq ()? ) analogous to (2.12),

(P,oP) 25 (V,07) 25 X,
where o : V —> X satisfies the IT1-IT condition for strata of depth k.

Now we remove consistent tubular neighborhoods of the subsets of depth k to form P+,
VT, and X as in the proof of Theorem 2.1. This gives a diagram

(PF:00P+, 9, PF) =5 (VF: 00V %, 0,77) = (£:00%. 0, 0)*

in which the stratification on V* has depth less than k. By our inductive hypothesis there is
a bordism, relative to the boundary, between this and another diagram

(P90 P+ 0 P+) S (V5 00V+ 8,V ) 2 (X100, 0, X)
for which o’ : V*' — X satisfies the TI-TI condition. Since the bordism is relative to

the boundary we may glue in the previous bordism between neighborhoods of the strata of
depth k to obtain a bordism, relative to the boundary, between our original diagram and

dU)) ~

/U —_
AL UNANE SR S

P+/UTPT

Finally, because of the compatibility between the stratifications and the boundary faces, the
fact that « satisfies the IT-IT condition between the strata of depth k and ' satisfies the TT-TT
condition between strata of depth less than k means that o’ U («]) satisfies the TT-TT condition
on all strata. O

Our final preliminary result is to point out that the sum in LB(X x I) which is induced
by disjoint union can, when appropriate, be carried out by identifying boundary faces.

LEMMA 2.3. — Let
a:(ﬁ;aﬁ)L(?;a?)fol
~ o~ ~ o~ 9 ~
B:(L:00) - (W: W) = X x 1

be two L-cycles over X x I. Suppose that the pre-images in « lying above X x {0} coincide with
the pre-images in B lying above X x {1}, both equal to

Y (1’5;31’5)#(17;817);)?.
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The class of o+ B in Lpg ()/(\ x 1) is represented by the union of the diagrams along their common
boundary, o U, B.

Proof. — Let N = (]T/I\ Up Z) x1,7Z = (17 Up W) x I, and consider a diagram
(2.14) N 22 % 9«1,
where ® has the form ®(x, ) = (®;(x), ¢) and similarly Q(x, ) = (2,(x), t). By definition,
P has a collar neighborhood in each of M and L and gluing these together we have a
neighborhood of the form (—¢,¢) x P in M Up L and of the form (—¢,&) x P x I in N.
Similarly, we have a neighborhood of the form (—¢, g) x Vin ?Uﬁ W and of the form (—e&,e)x
V x I in Z. Note that

MU L\ ((~e,e)x P)=MUL, YUpW\((~e,e)xV)=YUW.

We choose @ so that @9 = ¢ U ¢ and for ¢t > 0, d>,|(_t€ ()P = id xp, while off of this
neighborhood @ is essentially ¢ L . We similarly choose €2,. With these choices, since ¢| adF

and V| 57 are BQ-equivalences, we recognize (2.14) as an L-bordism between the disjoint
union of & and B and their union along y. O

2.7. Surgery theorem

With the preliminary results out of the way, we can establish the fundamental result
of surgery: a normal map is normal bordant to an equivalence precisely when its surgery
obstruction vanishes.

THEOREM 2.4 (Exactness part 1). — Let X be an oriented stratified space with boundary
(possibly empty) and let
h:K— 93X
be a (stratum preserving ) diffeomorphism.
Given a stratified space M with boundary IM =K, and a BQ-normal map
¢ : M—X
extending h, there is a normal bordism relative to h between ¢ and a BQ-equivalence if and only
if ¢ is L-null-bordant.
We briefly encode this property by saying that the sequence of pointed sets (not groups)
~ -~ ~ o~ 8 —~
(2.15) Spo(X.9X) —> Npo(X,9X) —> Lpo(X)

is exact.

Proof. — 1If there is a normal bordism, relative to %, between ¢ and a BQ-equivalence,
¢ M — X, say
~ o~~~ ® ~ ~ ~ ~ i ~
(N; M M K xT)— (X xI; X x{0}, X x{1},0X x 1) M, X x 1,
then this bordism witnesses the triviality of ¢ in Lpq ()/(\ ).

On the other hand, if

—_— A~ sh ~ ~ i ~
M R) -, (%.0%) 24 %
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is a null bordant £-cycle over X then, since it is a restricted cycle, there is by Theorem 2.2 a
restricted null bordism. That is to say, there are maps of stratified spaces with corners
~ ~ ~  ® ~ ~ ~ Q ~
(N;81N, 82N) I (Z;81Z,822) — X x 1

with ® BQ-normal, 9P| : 821/\/\ — 822 a BQ-equivalence, 2 BQ-transverse,

~ ~ [} -~ ~ oQ2 ~ —_— o~ -~ -~ 1 ~

((81N, 08) 2L (0,2, 01,2) 2, X) - ((M; M) -2 (£:0%) -4 X) ,
and Q satisfies the IT-IT condition. Now 812 = X and §2|a 5 = id, so the inclusion of 812
1

into Z satisfies the TT-TT condition. Since CD|32 7 is a BQ-equivalence we can apply the I1-IT

. . . ~ @ = Q =
theorem and find a bordism (not necessarily an £-bordism) between N — Z —— X x [
and

—~ —~ —~ Y ~ ~ ~ Q -~
(N0, N, 0:N') =25 (Z:0,2,0,7) —> X x I

with ® a BQ-equivalence, and
~ (ol ~ ~ P ~
(BZN’ BN azz) - (82N LR azz) .

The bordism itself has the form
~ U A I &= 5
L—Z7Zx] — X x1I
or, more explicitly,

(V;9,9",®|x1, W)
[N

(L:N,N",3,N x I, P) (ZxI;fx{O},Zx{l},az/Z\xl,al/Z\xl)&fxlz,

where this diagram serves to define P. Note that
3ﬁ=ﬁﬂ(ﬁUﬁ/UazN\X])=31]’V\U811’V\/U812]’V\X1 =1\7U81]V’UI?><I
and recall that 9; Z=X , so if we restrict this diagram to the boundary face P , we find

(¥];¢,2'|,hxid)

(P;M, 3N, K xI) ()/(\xI;)/(\X{O},)/(\X{l},a)/(\xl)i—d>)/(\x1.

We recognize this as a normal bordism, relative to 4 : K — 93X, (i.e., without changing h)

between

@;h) (@'[h)
—_—

M- R) =", (%.0%) - K and (0, N": B) (X:9%) - ¥

which, since ®’| is a BQ-equivalence, proves the theorem. O

2.8. Wall realization

In this section we follow Dovermann-Rothenberg [21, §8].

THEOREM 2.5 (Wall realization). — Let X bea stratified space (without boundary) and

L L> X a BQ-equivalence. Every element o € Lgq ()’(\ x 1) has a representative of the
form
A~ A~ A~ F ~ ~ ~ id ~
W:0_W, 0. W) — (X xI; X x {08, X x{1}) —— X x I
with

-~

[B_WL)/(\X{O}} = [ZLX}
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Note that this representative is an element of Mg ()/(\ x I') and that the restriction
~ F| -~
0+ W —— X x {1}
gives another Thom-Mather structure on X.

Proof. — Choose an L-cycle representing o,
(M 0M) 2 (7:07) -2 X x 1
and consider the null bordant £-cycle obtained from f,
~ —~ ind e -~ id o
(LxI;Lxdl)—— (X xI;Xx0]l) —> X x1I.
Adding these L-cycles together produces another representative of «,

o~ ~ o~ o~ id ~ ~ —~ —~ i —~
(MULx oMUl xol) 22 G U x 107 uX o) -9, T 1.

We can improve this representative using Theorem 2.2 to obtain
(ﬁ/;aﬁuZxal)L (Y'Y UX xol) = X x 1,

with ¢’ and w’ equal to ¢ and w when restricted to the boundary, and with o’ satisfying the
I1-I1 condition. Let us write

WM =M UL x{1}, M =Lx{0}=L
1Y =Y uX x{1}, 8,Y =X x{0} =X.
By commutativity of
X x {0)—— Y’
oL
X x{0)C—— X x1
we see that the inclusion 9,Y’ < Y satisfies the IT-TT condition. Since moreover the map
¢l M — 9,7

is a BQ-equivalence, we can apply Theorem 2.1, the IT-IT theorem, relative to this part of the
boundary to find a BQ-equivalence

17
M'— Y,

where IM" = 311\//1\” L 82]\7”, with 81]\7” = 81]\7’ and ¢” is equal to ¢’ on 811/1.4\/, and
¢" 1 0, M" — 9,Y"” a BQ-equivalence. The BQ-equivalence ¢” is related to ¢’ by a bordism

N AN Y/ %1,
where N = M UM"” U (0; M’ x I)U P,
MM =0, MN@OM xI)=0M =M"n M xI), 9P =0d,M UdM".
The restriction of ® to P yields an element y of Lgq ()? x 1)

~ ~ — [6)] ~ ~ ~ ~ i ~
(P;L,BZM”)—|>(82Y’XI =XxI;Xx{O},Xx{1})L>XxI
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of the kind required in the statement of the theorem. (Incidentally, note that the fact
that @ 5 is BQ-normal and not a BQ-equivalence is why the bordism N is not a null
bordism for «.)
The BQ-normal map @ : N —> Y’ x I is a null bordism of the L-cycle
M\/Uzﬁ—>?’U§X\xI—>fx1,
which shows, by Lemma 2.3, that o and y represent the same class in Lgq ()? x I). O

COROLLARY 2.6. — Given [a] € LBQ()’(\ x 1) and|[B] € SBQ()/(\) we can use the theorem to
choose representatives of the form

g%
PO :id, — — — id o~
o (W 6, 00y =292 T < [0,1]: BT x {0}, BT x {1}) —s M x 1,

and then the class of f o ¢ : M — X in SBQ ()? ) is well-defined and denoted o(a)(B). The
map

LBQ()/(\ X I) X SBQ()/(\) — SBQ()/(\)
(], [B) ——=3()(B)

defines a group action of the Browder-Quinn L-group of)/(\ x I on the structure set of X.

Proof. — Since f : M— Xisa BQ-equivalence, LBQ()? x 1) = LBQ(A7 x I) and we
can use the Wall representation theorem starting with the BQ-equivalence M M, M to
represent « as above.

If we fix the representative 8 then any two representatives «, &’ of [«] as above can be glued
together along their common boundary and the result y € Lpq(M x I') represents the zero
element of Lpg(M x [I). It follows, from Theorem 2.4 applied to M x I, that y is normal
bordant relative to the boundary to a BQ-equivalence. Thus f o ¢, and f o ¢ represent the
same element of Spq(M).

If the BQ-equivalence B’ : L L X represents the same class as 8, then there is a
bordism between them

(Fif.f")
s

(ZV;]T/I\,Z) ()?x[;)?x{O},)?x{l}).

Using the theorem we can find a representative of [«] of the form

(yr:id,yr2)
—_—

o (V;L, L") (L x[0,1]: L x {0}, L x {1}).

Now let us glue these, and «, together in the following order by matching the ‘lower
boundary’ of one row with the ‘upper boundary’ of the following row,

VL, 1) — )P0, 1T x(on Tx 1) 2 Bt

~ o~ o~ : ~ o~ o~ Ff.f' —~

(N:M.T) id N D) — T g
(p;02,id)

~ o~ — — — id ~
(WP M’, M) (M x [0, 1]; M x {0, M x {11 24 £ 1
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We end up with a cycle in Lpq (X x I') with d(e’)(8’) along the upper boundary and 9(«)(B)
along the lower boundary. Moreover, this cycle is null bordant since by Lemma 2.3, it
represents the class [o] + 0 — [¢] = 0. It follows as in the previous case that d(«’)(B’) and
d()(B) represent the same element in Sgq ()’(\ ).

Compeatibility with the group operation on Lpq ()? x I) is easy as the operation is given
by stacking normal bordisms together as in Lemma 2.3. O

COROLLARY 2.7 (Exactness part 2). — Let X bea stratified space (without boundary).
The sequence

Npo(X x 1. X x 81) —— Lpq(X x 1) "+ Sp(X) —— Npq(X)

is exact in that two elements of the L-group have the same action on the class of the identity
map precisely when their difference is in the image of 0, and two elements in the structure set
are in the same orbit precisely when they have the same image under 1.

Proof. — Given x1,x, € Lpqg ()? x I') such that d(x1)(id) = d(x,)(id) we can use the Wall
representation theorem to find

~ o~ ~ F; ~ N . . .
(Wi X0, W) —— (X x ;X x {0}, X x {1}) —— £ x 1

-~ F = ~ F -
representing x;. Without loss of generality .4 W —1> X and a4+ W; —2 X can be taken
to be the same representative of d(x1)(id), so that we may form

FiUF,

(Wlua+w—v/l72;)/(\,)?) ()?x[;)?x{o},)/(\x{l})—id—>)/(\xl

and recognize this as a representative of a class in Npqg ()/(\ x 1, X x 91 ) representing x; — X5.
The converse follows by similar reasoning.

If [B].[B] € SBQ()’(\ ) have the same image under 5 then there is a normal bordism «
between B and 8’. This normal bordism defines an element of LBQ()’(\ x ') whose action
on Spg (),(\ ) sends [B] to [B’]. For the same reason elements in the structure set that are in an
orbit of the action of an element of the L-group have the same image under 7. O

3. K-theory classes associated to the signature operator on Witt and Cheeger spaces

3.1. Metric structures

In order to do analysis we endow a stratified space with a Riemannian metric. Let X be
a smoothly stratified space and X its resolution to a manifold with corners and an iterated
fibration structure.

Recall from, e.g., [3, 5, 4], that an iterated incomplete edge metric (briefly, an iie-metric) is a
Riemannian metric on the interior of X (or, better, a bundle metric on the iterated incomplete
edge tangent bundle over all of X ) that in a collar neighborhood of each collective boundary
hypersurface By takes the form

dx* + x%gz + by gy

Here x is a boundary defining function for By, i.e., a smooth non-negative function on X
that is positive except at By = {x = 0} where it vanishes to exactly first order, and gz
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and gy are metrics with the same structure on the spaces Z and Y. (Thus this is really an
inductive definition over the depth of a stratified space, with spaces of depth zero being
assigned smooth Riemannian metrics, see loc. cit..)

In particular we point out that an iie-metric on X includes a Riemannian metric on
each stratum of X and that these metrics fit together contmuously (even smoothly in that
they lift to a smooth section over X ). Thus endowing X with an iie-metric in particular
gives X the structure of a ‘Riemannian Whitney (A) space’ in the sense of Pflaum [43, §2.4].
(Note that the latter concept is more general, e.g., if we were working with metrics that
were asymptotically of the form dx? + x2¢g; + ¢y gy for any £ > 0 we would still get
a ‘Riemannian Whitney (A) space’.) In particular, by Theorem 2.4.7 in [43], the topology
on X is that of the metric space with distance between two points given by taking the infimum
over rectificable curves joining them. As a metric space, X is complete and locally compact
[43, Theorem 2.4.17] and hence a ‘length space’.

3.2. Galois coverings

Let X be a smoothly stratified pseudomanifold of arbitrary depth. Consider a Galois
covering 7 : Xr — X with Galois group I" and fundamental domain Zr. There is a natural
way to define a topological stratification on Xr. Decompose Xr into the preimages under 7
of the strata in X. Surjectivity of 7 ensures that each stratum in the covering is mapped
surjectively onto the corresponding stratum in X. Since 7 is a local homeomorphism, it is
straightforward to check that Xr and its fundamental domain are again topological stratified
spaces.

In fact, more is true: by using these local homeomorphisms we can induce a smooth
stratification on X by simply pulling it up from the base, in either the Whitney as well
as the Thom-Mather cases. It is important to point out that, by definition, the link of a
point p" € Xr is equal to the link of its image, p, in the base. This construction exhibits
the covering map 7 as a transverse map and thus if’ X belongs to a class € as above, then so
does X, r-

Needless to say, if Xr is the universal covering space of X, the individual strata in X
need not be the universal covering of the corresponding strata in the base. We denote by Xt
the regular stratum of X1 and observe that it is a Galois covering of the regular stratum X
of X with fundamental domain .Z- equal to the regular part of Fr. Let g be an admissible
incomplete edge metric on X. We can lift g to the Galois covering Xt where it becomes a
I'-invariant admissible incomplete edge metric g. Moreover, there is an isometric embedding
of Zr into X with complement of measure zero. We denote by Dr the signature operator
on X associated to such a metric.

3.3. C* and D* algebras

First of all, we need to fix an Hilbert space H with a unitary action of I" and a C *-repre-
sentation from Cy ()? r) to B(H) intertwining the two actions of I". Notice that the represen-
tation is associated to the stratified Galois covering Xr (and not to its regular part Xr). We
take H = L?(Xr, A*XT); the representation is given by the multiplication operator associ-
ated to the restriction of a function to the regular part Xr. To these data we can associate
two C *-algebras: the Roe algebra C* ()? r, H)T, obtained as the closure of the I'-equivariant
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finite propagation locally compact bounded operators on H, and the Higson-Roe algebra
D*()? r, H)T, obtained as the closure of the I'-equivariant finite propagation pseudolocal
bounded operators on H. Since we shall be eventually interested in the K-theory groups
of these C *-algebras and since the K-theory groups are independent of the choice of the
(adequate) I" equivariant C, ()/(\p)-module H, we shall adopt the notation C *()/(\r)F and
D*(Xr)T for these two C*-algebras. @

We shall also use the universal versions of these algebras, defined as
(3.1) Cct:=Cc*ED', Dy :=D*EDT.
See for example [45, Definition 2.19].

We have the following fundamental

ProrosSITION 3.1. — Let ()?, g) and ()?r,@ as above. Assume that X is a Cheeger-space
and let W be a self-dual mezzoperversity for D. Then:

(1) there exists a closed T-equivariant self adjoint extension of Dr associated to W,
denoted D}/V ;

(2) if ¢ € Co(R), then p(DYY) € C*(Xr)'.

(3) if x is a chopping function (i.e., x : R — [—1,1] is odd and limy 1 x(x) = £1), then
x(DYY) € D*(Xr)".

Proof. — (1) The pull-back of the mezzoperversity W along the covering map 7 is a
mezzoperversity on X, which we briefly denote Wr. The definition of the domain associated
to a mezzoperversity in [5] applies in the setting of X, as the asymptotic expansions on which
it relies are carried out in distinguished neighborhoods of points on the singular strata and
these are the same on X or Xr. Similarly we can define Dyy.(d) and Dy () as in [5] and
see that they are mutually adjoint and that

DWI‘ (Dl'y‘v) = DWF (d) N DWI‘ (8)

so that D}/V with this domain is self-adjoint.
The analysis of [5] that establishes that D,y (D) includes compactly into L2(X;A*X)
implies that, for any compact subset K C X,

{u € Dy (DY) : supp(u) < K}

includes compactly into H. See [5, Section 5.1].

(2) As far as the second item is concerned we initially tackle the local compactness
of ¢(D}Y). We have to prove that if g € C.(Xr) then g¢(DX) and ¢(D}¥)g are compact
operators. By taking adjoints it suffices to see that g¢(D}Y) is compact. Using the Stone-
Weierstrass theorem it suffices to establish this property for the function ¢(x) = (i + x)~!.
As this maps H into Dyy. (DY), the local compactness of the inclusion of the latter into H
implies that 0f¢(D}/V).

Next we consider the finite propagation property: by a density argument it suffices to see
such a property for smooth functions ¢ that are of rapid decay and have compactly supported
Fourier transform. Thus, let $ be the Fourier transform of a smooth rapidly decaying ¢ and

@ For technical reasons having to do with functoriality one actually takes H = L2(XT, A*XT) ® £2(N).
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let us assume that the support of (75 is contained in [—R/2, R/2]. We must show that there
exists § € RT such that f¢ (D}’V )¢ = 0 whenever the distance between the support of f and
g is greater than S. Proceeding precisely as in [4, Theorem 5.3] we know that there exists a §
such that exp(ile’fV) has propagation |s| if |s| < §; thus f exp(isD}’v)g = 0 if the distance
of the supports of f and g is greater than |s|, with s in the range (—§, §). Recall now that, by
functional calculus, we can write

1 ~
$(0Y) = o [ explisDP)F(5)ds

where the integral converges weakly:

GOP) = 5 [lexplisDV . 0)(5)ds

for each pair of compactly supported sections on Xr. Assume initially that R < §. Then,
from the above integral representation, we see that <;5(D}iv ) has finite propagation (in fact,
propagation R) which is what we wanted to prove. For the general case we use a trick from
[52]. Write ¢ =}, f; where the sum is finite and where f; has Fourier transform supported
in (T; —8/2,T; +6/2). Consider g;(x) = exp(—iT;x) f;(x). Then g; (D}’V) has propagation
4 by what we have just seen. Write now

k

exp(iTjx) = H exp(itgx) with |7g] <.
(=1
We have then f;(x) = ]_[]g=l exp(i tyx)g;(x) and thus
fi(DY) = exp(iti DY) o --- 0 exp(ie DY) 0 g; (DY),

All the operators appearing on the right hand side have finite propagations and we know that
the composition of two operators of finite propagation is again of finite propagation. Thus
/; (DY) has finite propagation. The proof of item 2 is complete.

(3) Let y be a chopping function. Recall from [26, Section 10.6] that for every ¢ > 0 there
exists a chopping function y with (distributional) Fourier transform supported in (—z,¢).
Moreover, if yo and y are two arbitrary chopping functions, then yo — ¥y = ¢, with
¢ € Co(R). This implies immediately that if )(O(Dll/v ) is of finite propagation then y; (D}/V ) is
a limit of finite propagation operators; moreover XO(D}’V )g — X(DIW )g is a compact oper-
ator for any g € Cc()?p). We choose a chopping function yo with Fourier transform
supported in (—8/2,8/2). Then we know, from the previous arguments, that yo(D)) is of
propagation §. Hence )((DI’fv ) is a limit of finite propagation operators for each chopping
function y. It remains to see that y(D)) is pseudolocal, i.e., [f, y(DY)] is compact for
any f € Co(Xr). By Kasparov’s Lemma, see [26, Lemma 5.4.7] and [26, Lemma 10.6.4],
we know that X(D}/V ) is pseudolocal if and only if f )((Dll/v )g is compact for any choice
of feC ()/(\ r) bounded and g € C, ()/(\ r) with disjoint supports. Now, if n > 0 is the distance
between the support of f and the support of g and if we choose a chopping function y
with Fourier transform supported in (—7/2,7/2) then we know that fyo(D})g = 0. But
then for an arbitrary chopping function y we have

Fr(DM)g = fro(DW)g + fF(X(DX) — xo(DX)g = 0+ f(x(DF) — xo(DW))g
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and since f is bounded and (y(D)Y) — xo(D}Y))g is compact we see that on the right hand
side we do have a compact operator as required. The proof of item 3 is now complete. [

3.4. K-homology classes

Proposition 3.1 allows us to recover, in the bounded picture, the fundamental classes that
were defined in [3, Theorem 6.2] for Witt spaces and in [4, Theorem 5.3] for Cheeger spaces.
More precisely:

ProposITION 3.2. — If X is an n-dimensional Cheeger space endowed with a rigid iterated
conic metric g and if W is a self-dual mezzoperversity adapted to g then there is a well defined
K-homology signature class [D"V] € K,(X).

Proof. — Let y be a chopping function; then y?—1is an element in Cy(R) and thus )((DIL/V )
is an involution in the quotient D*()? rt/cC *()/(\ r)''. Thus, using also the grading in even
dimension, one defines an element in K,4;(D*(Xr)T/C*(Xr)T) which is precisely K, (X)
by Paschke duality. O

REMARK 6. — The class we have just defined does coincide with the one defined in
Theorem 5.3 in [4]: this follows from the proof of [26, Theorem 10.6.5] and the correspondence
between the unbounded and bounded picture for K-homology.

REMARK 7. — The class [DV]g € K, (5(\) ® Q is independent of the choice of self-dual
mezzoperversity W, indeed the homological Chern character of [D]q, in Hx (),(\ , Q) is equal
to the homology L-class of the Cheeger space, see [4, Thorem 5.6], and we know that the L-class
is independent of the choice of W, see [4, Section 5.1]. We shall come back to this point later
on.

3.5. Higson-Roe sequences associated to a Thom-Mather space

If X is a Thom-Mather stratified space and Xrisa Galois covering with structure group I",
then there is a short exact sequence of C *-algebras

0— C*(Xr)' - D*(Xr)F - D*(Xp)F/Cc*(Xr)F — 0

and thus a 6-term long exact sequence in K-theory:
(3.2)
== K1 (C*(X1)") = K1 (D*(X1)7) = K1 (D*(X1)T/C*(X1)T) = K (C*(XT)T) = -+

This is the analytic surgery sequence of Higson and Roe associated to the I'-compact
I'-space Xr. Since we have the canonical isomorphism K.y (D*(Xp)'/C*(X1)T) =
K.« (X) we can also rewrite (3.2) as

(33) -+ = Knt1(C* (X)) = K1 (D* (X)) = Kin(X) > K (C*(XD)") — -+
Moreover, since X is compact, we recall that there exists a canonical isomorphism

K. (C*(Xp)D) = K.(C/T).
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Now, in particular, all of the above is true with Xr equal to the universal covering of X and
I' = m1(X). Recall from §2.2 that the closure of a stratum Y in X is itself a stratified space,
equal to

Y= Jivi: v < v}

These are often referred to as the ‘closed strata’. Consider I‘(f’\) = nl(?); then we
have a 6-term exact sequence similar to (3.3) but associated to the universal covering,
F(Y)=Ypg) = YofY.

3.6. Index classes

Let now X be an n-dimensional Cheeger space and let us choose a self-dual mezzop-
erversity W. Then, by Proposition (3.2), we have a K-homology class [D"V] € K,(X) =
Kni1(D*(XT)T/C*(XT)T) and thus an index class

(3.4) Ind(DY) := 3[DW] € K,(C*(Xr)").

with 0 the connecting homomorphism in the Higson-Roe surgery sequence. Following the
proof given in [45, Proposition 2.1] this class corresponds to the one considered in [4] through
the canonical isomorphism K, (C*()?r‘)r) = K.(CT); notice that the class defined in
[4] is a Mishchenko class, obtained by twisting the signature operator by the Mishchenko
bundle Xr xr C;T.

Both in the Higson-Roe formalism, see [30], and in the Mishchenko formalism, we can
also consider the index class with values in the maximal version of our C*-algebras. We
denote the maximal group C*-algebra associated to I as C*T".

Finally, if Y is a closed m-dimensional stratum with fundamental group I‘(f’\ ) then
W induces a self-dual mezzoperversity W(Y) for ¥ and we obtain a K-homology class

[DWM)] € K,,(Y) and thus an Index class Ind(Dp(;g)) € Kn(CHT(Y)).

3.7. Rho classes associated to trivializing perturbations

Let X bea Cheeger space endowed with an iie metric g. We initially assume that X isodd
dimensional. Let W be a self-dual mezzoperversity for X and let DY be the corresponding
signature operator, an unbounded self-adjoint operator on L2(X, A*X). (Recall that DY is
a short notation for the pair (D, Dy (D)), the (extension of the) signature operator on (X, g),
the regular part of X endowed with the Riemannian metric g, with domain defined by the
self-dual mezzoperversity W.) Given a Galois I'-covering Xr of X, we also have the I'-equiv-
ariant signature operator DY, a self-adjoint unbounded operator on L?(Xt, A*Xr). Let
now A be a bounded I'-equivariant self-adjoint operator on L?(Xt, A*Xrt). Then D‘F/V + A,
with domain equal to the domain of DY, is also self-adjoint. Following [46, Section 2B] we
make the assumption that DX + A is L?-invertible and that A € 9(C*(Xr)"), the multiplier
algebra of C* ()? r)'. We refer to A as a trivializing perturbation. Then, using Proposition 3.1
and [46, Proposition 2.8], we see that

DY + 4

m is an elementin D* (X)L,
r

3.5)
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Moreover, DY + A/|D}Y + A is clearly an involution and thus
1 (DY +4
(=L -~ 4
2\ |DYY + 4]
is a projection in D*()/(\ r)''. We define the rho class associated to D}’V + A as

1{ DWW+ 4
3.6 DWW A)=|-|L——
(3.6) p(Dr ) { QDP+M

5 +0}n1maﬁ@ﬂﬂ

In the even dimensional case we consider the grading associated to the Hodge » operator
and we demand that the trivializing perturbation 4 € 9M(C*(X1)') be odd with respect to
this grading; thus DYY + A can be written as

0 DY 4+ AT
DY 4 At 0 '

We now fix a chopping function y equal to the sign function on the spectrum of the invertible
operator DY + A; we also fix a ['-equivariant isometry u : A_(T*Xr) — A4 (i°T*Xr)
and consider the induced bounded I'-equivariant operator on the space of L? sections of
these bundles, call it U. Observing that y(D)Y + A) is also odd (see [26, Lemma 10.6.2]) we
consider Uy (DY + A) which is a unitary in D*(Xr)T. We then define the rho class in the
even dimensional case as

(3.7) p(DYY + A) := [Ug(DY + A)4] in Ki(D*(Xp)").

As explained in [46, page 118] this is well defined, independent of the choice of u.

4. Bordisms and associated K-theory classes

4.1. Bordisms of Cheeger spaces

We recall here some fundamental facts established in [4]. Assume that M is a topological
space and denote by Sig, (M) the bordism group of four-tuples ()/(\ L& W,r X —>M )
where X is an oriented Cheeger space of dimension 7, g is an adapted iterated incomplete
conic metric (briefly an iie metric), W is a self-dual Hodge mezzoperversity adapted to g and
r: X — M is a continuous map. An admissible bordism between ()?, gW,r: X — M)
and ()?’, gW.,r: X — M) is a four-tuple (3/5'\, G, W,R: 2 —> M) consisting of:

(1) a smoothly stratified, oriented, compact pseudomanifold with boundary 2, whose
boundary is X U (—X'), and whose strata near the boundary are collars of the strata
of X or X',

(i1) aniie metric G on Z thatnear the boundary is of the collared form dx?+g or dx?>+g’,

(iii) an adapted self-dual mezzoperversity #  that extends, in a collared way, that of X
and X’ ,

(iv) amap R : 2~ —> M that extends r and r’.
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We shall briefly say that (X, g W.r ¢ X — M)and (X', g.W.r : X' — M)
are Cheeger-bordant through (3&” GW,R:%Z — M ). We are mainly interested in the
case M = BT, so thatamap r : X — BT defines a Galois I'-covering Xr. We have the
following important results, see [4, Sections 5.3 and 5.4] for proofs:

THEOREM 4.1. — If (X, gW.r) and (X'.¢' ' W'.r') are n-dimensional and Cheeger-
bordant through (3&” G.W.,R: % — M) then:

1] the numeric Fredholm indices associated to DYV and (D’ W are equal;
2] there exists a well defined relative K-homology class [D”] € Kp+1 (ﬁ”\ 85&/”\);

3] ifo: K,,+1(,%/”\, 85?) — K, (8%/”\) =K, ()/(\ u (—)/(\/)) is the connecting homomorphism
associated to the long exact sequence of the pair (Z°,0Z") then

a[D” ] =[DY]— (D] in K.(3Z) ®ZZ[%]§

4] the signature index classes associated to ()/(\ g W,r: X — BT) and ()/(\’, gw,r:
X' — BT) are equal in K(C}T) ®z Z[1].

51 If W and W' are adapted to g and g' on the same Cheeger space X andr : X — M
is a continuous map then ()/(\, gW,r: X > M) is Cheeger-bordant to ()’(\, gWr
X > M ). In particular, the numeric Fredholm index, in Z, and the signature index class,
in K«(C}T') ®z Z[%], are independent of the choice of self-dual mezzoperversity.

REMARK 8. — The statements in [4] are given with values in Ko(CT') ®z Q but it is easy
to see that the arguments given there establish the same results in Ko(C}T') ®z Z[%].

The main idea behind the formulation and the proof of item 5] is due to Markus Banagl,
see [9].

Notation. — Since the signature index class Ind(D}/V ) € Ki«(C)T) ®z Z[%] associated to a
Galois covering r : X — BT isin fact independent of the choice of W, we shall often denote
it simply by Ind(Dr) or even Ind(XT).

4.2. The signature operator on Cheeger spaces with cylindrical ends

LetI' — E/KF — 2 be a Galois I'-covering of an even dimensional Cheeger space with
boundary. We consider a rigid iie metric g on the regular part .2~ which is collared near 0.2"
and we lift it to a I'-equivariant rigid iie metric on £1. We also consider the Cheeger spaces
with cylindrical ends, é”:o, ﬁ,m, obtained by attaching (—oco, 0] x 9.2 and (—00, 0] x 83@”}
to 2, 21 respectively. We endow (—oo, 0]xd.Z" and (—oo, 0] xd 2T with product metrics and
we obtain in this way global metrics on Z, and Zoor. If # is a self-dual mezzoperversity
on 2 then we obtain in a natural way a self-dual mezzoperversity #4, on X, and thus, by
lifting, a I"-equivariant self-dual mezzoperversity #1 0. on Xoo,r. We denote by 9% the self-
dual mezzoperversity induced on the boundary, see Theorem 4.1. Finally, we denote by Py
the multiplication operator by the characteristic function of the attached semi-cylinder.

PROPOSITION 4.2. — Let Do, and Do 1 be the the signature operators on Xoo and Xoor
respectively. By employing We, and W1, we can define self-adjoint extensions DZ and DZ’F.
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Proof. — Extend the iterated fibration structure from X to X by including the cylin-
drical direction in the base of each fiber bundle. Define

DOWo = (Do, Dy, (Do), Where Dy oo (D) = {u € Zmax(Doo) : at each singular

stratum, u satisfies the ideal boundary condition corresponding to #o}.

It is easy to see that this is a self-adjoint domain. Indeed, this domain is localizable (an
element is in the domain if and only if it is in the domain after multiplying by any function
in CF(X), see [5, §2] and, e.g., the discussion after assumption 3.8 in [5]) and so it suffices
to show that the corresponding domain on the full cylinder dX x R is self-adjoint; here we
could either use Fourier transform in the R-factor to reduce to the self-adjointness of D",
or alternately recognize X x R as a cover of X x S!, consider the pull-back of 3% to this
product, and then appeal to Proposition 3.1 above. O

4.3. Perturbations and coarse APS-index classes

In this subsection we shall define APS-index classes associated to the self-adjoint oper-
ator DZ,F. First we recall, for example from [45, Definition 1.7], the definition of relative
C*-algebra .

DEFINITION 5. — The subalgebra
CHIT C Zro0)" C C2(T00)

is defined by imposing on an operator T in C} (3@”} oo)¥ the additional property that 3 R > 0
such that ¢T = 0 = T¢ whenever ¢ € Cc(%p 0o) and d(supp(¢) %p) > R. The C*-algebra
c* (3&”1“ C 2y o) is obtained by closing the subalgebra C} (EKF C 2r o)L in the operator
norm.

A similar definition can be given for D*(ﬁ/&.ﬂ: C ﬁ“,oo)r. One can prove, see [45,
Lemma 1.8], that the inclusion ¢ : 2T < 2T, induces K-theory isomorphisms:
4.1
K (C*(2T)Y) = Ku(CH( 2T C 21.00)") ;.  Ku(D*(27)") = Ki(D*(27 C 2T.00)").

Notice that C*(fi}; C fﬁm)r) and D*(ﬁ”; - ﬁ,w)r are ideals in D*(fi.”;,oo)r.

We assume the existence of a trivializing perturbation Cy for the signature operator DIQW
on 0.27: this means, as before, that Cy is bounded, that DIQW + Cy (with domain equal to
the domain of DIQW) is L2-invertible and that C; € 9M(C *(Bﬁ)r). Cy ® Idg then defines
a bounded operator on LZ(ME”; x R). We can then graft this perturbation on 2T, and
obtain a bounded perturbation Cy, for DZ,P In the case of interest to us it will be the case
that C is a limit in the norm topology of finite propagation operators and so we assume
this property in what follows. In fact, we might more generally consider a perturbation By,
which is a limit of finite propagation operators and such that

(4.2) PoBoo Py — PoCoo Po € C* (27 C Z1.00),
with Py the operator defined by multiplication by the characteristic function of the cylin-

drical end (—o0, 0] x 85?”} C 32”},00.
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PRrOPOSITION 4.3. — Let Cy, Coo and Boo be as above. If ¢ € Co(R) and if y is a chopping
function equal to the sign function on the spectrum ofDIQW + Cy, then:

11 ¢(DY, + Boo) € C*(Z100)T s
2] 1(D¥ + Boo) € D*(I100)"
3] )((DIV{/Oo + Boo) is an involution modulo C*( 2t C éﬂ;,oo)n

Proof. — For 1] and 2] we use Proposition 3.1 and the purely functional analytic argu-
ments given in [46, Lemma 2.25]. For the third item we use the proof of Proposition 2.26 in
[46], which is once again purely functional analytic. O

Given Cj as above, choosing B, = Co and using Proposition 4.3 we can define a coarse
relative index class

Ind™ (DY, + Coo) 1= A (DL + Coo)] € Ki(C*(ZT C Z1.00)")
and thus, using (4.1), a coarse APS-index class
Ind(DY,C) i= ¢; 1 (Ind™ (DY, + Cx)) € Kul(C*(27)F) =~ K4(CT).
Noti/c\e that the left hand side is just notation; we have not really defined a perturbation C
on ZT.

One can prove, following the arguments in the proof of [46, Proposition 2.33], that for Cj,
Cso and B, as above:

Ind™ (DY, + Coo) = Ind™ (DY, + Boo) € Ki(C*(2r C Z1.00)"),

where the right hand side is well defined because of item 3] of Proposition 4.3.

4.4. The delocalized APS index theorem
Let 27, 21, Zoos 21,00, D', DY, DX, DY, D, D¥ and Cj be as in the previous

T00°

subsections. We assume 2 to be even dimensional. By assumption Cj is a trivializing pertur-
bation for D{f’”; assume that C; € C*(d#)V), so that Cj is a norm limit of finite prop-
agation operators. Consequently Co is also a norm limit of finite propagation operators.
We can consider the rho class p(DIQW + Cy) € Ko(D*(327)F) and the coarse-APS index
class Ind(D?',C) € Ko(C*(21)F). Lett : C*(21)F — D*(Z7)T be the natural inclu-
sion and consider j, : Ko(D*(027)F)) — Ko(D*(271)") induced by the inclusion of 9.2t
into Z1. Our main tool in the next section will be the delocalized APS index theorem for
perturbed signature operators on Cheeger spaces:

THEOREM 4.4 (Delocalized APS index theorem). — If'the trivializing perturbation Cy is a
norm limit of finite propagation operators, then the following equality holds
4.3) t(Ind(DY, €) = julp(DY +Cp)) in Ko(D*(21)").

Proof. — All the arguments given in [45, Theorem 1.14] and then [46, Theorem 3.1] are
functional analytic with the exception of the proof of Proposition 5.33 in [46]. However, the

alternative proof of this particular proposition given by Zenobi in the context of Lipschitz
manifolds, see Proposition 3.20 in [66], applies verbatim to the present context. O
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Let now 2" be odd dimensional. After inverting 2 we can reduce the delocalized APS
index theorem on 2" to the one on 2" x S' by a suspension argument. This is discussed
carefully in [66, §5] where a different description of the group K. (D*()/(\F)F) is given for
metric spaces with I'-actions. These arguments apply in our situation largely unchanged.

In summary, the delocalized APS index theorem holds in every dimension.

5. Stratified homotopy equivalences and associated perturbations

5.1. The Hilsum-Skandalis replacement

Let X bea Cheeger space, r : X —> BT the classifying map for the universal cover of X,
¢ (r) the Mishchenko bundle associated to r, and Wy a self-dual mezzoperversity on X.If
M is another Cheeger space and f : M —> X a stratified homotopy equivalence then (see
[4, Theorem 4.6]), there is a ‘Hilsum-Skandalis replacement’ for the pull-back of differential
forms by f,

HS(f): LA(X; A*°T*X @ 9(r)) — L*(M; A*°T*M Q 9(r o f)).

that we can use to define a self-dual mezzoperversity Wy = f#(Wy) on M. These data
satisfy

— HS(f)d?® = d?"°DHS(f) and HS(f)(Dyy (d¥))) € Dy, (d?V°0).
— There is an L2-bounded operator Y acting on Dy, (d 9, such that
Id—HS(f)HS(f) = dy() T + Ydyr).

where HS(f) denotes the adjoint with respect to the quadratic form defined by the
Hodge operator.

We point out that the boundedness of HS(f) on L2(X; A**T*X ® ¥4(r)), together with
the first of these properties, implies that HS( /) is bounded as a map

HS(f) : Dyy (A7) — Dyy,, (d7°0),

when these spaces are endowed with the respective d-graph norm. Similarly T is bounded
as an operator on the Hilbert space Dyy,, (d 9()). Note however that HS( f) does not map
L2 differential forms into the maximal domain of d; indeed, if a differential form extends to
be smooth on the closure of X and its exterior derivative fails to be in L2, then the same will
be true of its image under HS(f).

5.2. The compressed Hilsum-Skandalis replacement

Following [44], we will also make use of a compressed version of the Hilsum-Skandalis
replacement. In this case the replacement will make use of a fixed mezzoperversity and will

have the property that it maps all of the L2 differential forms into the domain of d. Recall that

w

#
() and Dg(:/:f) are C,'I'-compacts.

one of the main results in [4] is that the resolvents of D
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DEFINITION 6. — Let X bea Cheeger space, Wy a self-dual mezzoperversity, r X — BT
the classifying map for the universal cover of X and f: M —> X be a smooth stratified map.
For each p : R — R an even, rapidly decreasing function, we define the compressed Hilsum-
Skandalis replacement of f to be the operator

HS,(f): L2(X; A*T*X @ 9(r)) — L2(M; A*T*M @ 4(f or)),
#
HSu(f) = w(DIY¥) 0 HS(f) o u(DMX).
As elements of the functional calculus we know that, e.g.,
w(DWX) L2(X; A*°T*X @ 9(r)) — L2(X: A*°T*X @ 9(r))

commutes with DX and is a bounded operator with range contained in the domain
of D"x _In fact the range is contained in the domain

Dy, (D) = [ J{® € Dwy (D) : Do..... D'w € Dy, (D)}
LeN
as xuu(x) is a rapidly decreasing function for any £ € N. Since this domain is compactly
included in L2(X; A*ieT*X ® 4(r)), it follows that (DX ) is a compact operator. More-
over since j is even and d commutes with (d + §)2, d commutes with (D). Thus,
HS,,(f)is a compact operator and HSM(f)dWX = g/ HS,(f).

The compressed Hilsum-Skandalis replacement satisfies properties similar to those of HS( f),
see Lemma 9.7 in [44].

5.3. The Hilsum-Skandalis perturbation

On X U —M consider the operators

dX 0 X 0
dX|_|_M = s TXu-M =
0 dy 0 —tm

and, for ¢t € [0, 1], the operator
L : Dyyy s riwy (dxu—m) —> Dyt rovyy (dxu—m)
(5.1 ro_ Id—HS(fYHS(f) (1 —ityY)o HS(f)
"TA\HS(f) o +ityT) Id '
We point out that £, is bounded as an operator on the space Dy, |, r#yy,, (dxu—m) endowed
with its dx—pr-graph norm, and let | £;| = /L] L, denote the operator defined by the func-
tional calculus on this Hilbert space (or equivalently as a bounded operator on L2-differen-
tial forms).
As in [31], the Hilsum-Skandalis replacement can be used to construct a perturbation of
the signature operator
DWx 0

Wxuffwy _
b ( 0 —DWm

) onj(\l_l(—l/\/l\)

that results in an invertible operator. Indeed, for sufficiently small ¢, the operator

DWXUIIWN g ¢(f) = 20 D, o U
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is invertible, where D, is the operator obtained from DX ufEwx by making two replace-
ments:

dx tHS(f)

dxu—m —
Xu-M (0 das

) . Txu—m > sign(txu—pm o Ly) = txu—m o sign(Ly)

and

U = |TX|_|—M °£t|1/2~

LEMMA 5.1. — The operator C;(f) is a bounded operator relative to DWX'-'quX; that is,
C:(f) is bounded as a map

Ci(f) i Dypyii iy (D) — L2(X U—=M; Au(X U—M)).

The operator DYWWXUI™Wx 4 C,(f) is invertible for small enought > 0.

Proof. — The boundedness of C;(f) relative to DYWxU/"Wx follows from the fact
that £; is a bounded operator on Dy, (d). With notation similar to [66, Proof of Proposi-
tion 3.4], we can write

b (o tHS(f)

=y o ) sign(£;) =1d+G,, U, =1d+H,, U ' =1d+F]

with E;, G;, H/, F] bounded operators on DWfo”Wx (d), with its d -graph norm as well as
on L2(X U—M:;A«(X U—M)). Then, e.g., in the even dimensional case we can write
Di=;(1+F)o((d+Ep)+txu-mo(l+G)o(d+E)orxu-mo(l+Gp))o(l+H) =D +Ci(f)
and it follows that C;(f) is bounded as a map from Dy, |, r#y, (D) to

L*(X U—M; A (X U—M)).

Note that £ satisfies

) ( Id o)
Lo=RR, R=
HS(f) 1d

and, since R is invertible, this shows that Lo is invertible and hence L, is invertible for
small enough 7. The invertibility of DYXU/*Wx 1 ¢,(f) as an unbounded operator with
domain Dy |, sy, (Dxu—m) now follows as in [31, Lemme 2.1], [56, §3]. O

A similar result holds for the signature operator on X U (—M), with mezzoperversity
given by Wy and f#Wy and twisted by the Mishchenko bundle 4 (r) on X and 4(f o r)
on M. In this case we use the Hilsum-Skandalis replacement HS(f) : Dy, (d 90y
Dyy,, (d?fon).
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5.4. The compressed Hilsum-Skandalis perturbation

We can repeat the argument from the previous subsection replacing HS(f) by HS,(f).
The resulting perturbation, which we denote C; ,, (/) and refer to as the compressed Hilsum-
Skandalis perturbation, satisfies an improved version of Lemma 5.1.

LEMMA 5.2. — The operator Cy,,(f) extends from Dy, sy, (Dxu-m) to a compact
operator

Copu(f): L*(X U—M;Au(X U—M)) — L*(X U—M; As(X U—M)).

The operator DWVXU/™Wx 4 ¢, w(f) is invertible.

Proof. — If L;,, is the operator obtained as in (5.1) but using HS,(f), then it is an
invertible operator of the form Id + H;,;, with H, , a compact operator such that both H;
and its adjoint map send L*(X U—M: A«(X U—M)) into Dy, |, ey, (DF,_pp)- It follows
from, e.g., the argument used in Lemma A.12 of [44], see also [66, Proposition 3.4], that each

of the operators Eyy,, G, Hy ,, F{, defined as in the proof of Lemma 5.1 will also have

this property. Hence C; () will be a compact operator.

The invertibility of the perturbed signature operator follows from [31, Lemme 2.1]. O

Also in this case we can extend the whole analysis to the signature operators twisted by
the appropriate Mishchenko bundles; we state and use this result in Proposition 5.3 below.

5.5. Passing to the Roe algebra

Let B(€) denote the operators acting on the Hilbert CI"-module

£:=L*X. A" X ®G(r) ® L* (M. A"M ® G(r o f)).
Recall that there is a C*-homomorphism
Ly :B(E) — B(L*(Xr, AxXT) ® L2(Mr, A MT))

and that L, induces an isomorphism between K(&) arld the Rgg algebra C* ()/(\ ru (_M\F))F
and between B(€) and the multiplier algebra 9 (C* (Xt U (—Mr))T) of the Roe algebra.

PROPOSITION 5.3. — The compressed Hilsum-Skandalis perturbation C, .(f) is an
element in K(E). Consequently, if Cp:(f) := L (C,:(f)), then

(5.2) Cus(f) € C*(Xr U (—Mp))T.
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5.6. APS-index classes associated to Lpq-cycles

Let
o (MM~ V) L X

be an Lpq-cycle with .#, %, and 2~ Cheeger spaces with boundary. We denote M=o
and Y := 0% . Welet Z := & U (—#). Recall that F : .# — % is a smooth transverse
stratified map that restricts to a BQ-equvalence between M and Y. The map o and the
classifying map for the universal cover of 2™ induce a classifying map % — BT, where
I' = m Z . Together with F this defines a I'-covering I' — 2T — 2. We fix a self-
dual mezzoperversity # on 2" and consider the induced mezzo-perversities w## on % and
(wo F)*# on . . This gives %, and thus 27, a self-dual mezzo-perversity w## Li(wo F)*# .
We consider now Z := 92 = Y U (—M) and Zr := 3 Z¢; this gives a Galois I'-covering of
Cheeger-spaces without boundary

Fr—Zr—>7 = I'-0% — 0%.

By our discussion above there is a well defined (compressed) Hilsum-Skandalis perturbation
C(Fy) € C *(21~)F (for simplicity, we will no longer include the ¢, u sub-indices in the
notation for the perturbation); this is a trivializing perturbation for the signature operator
on 32t with domain fixed by dw#*# U d(w o F)*# . By grafting this perturbation on 2t
and extending it in the obvious way on the associated pseudomanifold with cylindrical
ends, 27,0, we thus obtain a well defined APS coarse index class that we shall denote
as IndAps(Dl’i)nWU(wOF)ﬁW,C(Fa)) in K.(C*(Z7)'). This class can be further pushed
forward to K, (C*(27)F) using the maps F and .

Summarizing: to an Lpq-cycle « : (A, 0.#) SN (% ,0%) —2 5 2 and the choice of a
mezzoperversity # on 2, we can associate an APS-index class in K4 (C*(21)"), with 2t
equal to the universal cover of 2.

Notation: we denote this index class by Indaps (e, #) € K«(C*(21)D).

PROPOSITION 5.4. — If F is a global stratified transverse homotopy equivalence, then
# oF)H
(5.3) Indaps(D /@ C(Fp)) = 0.
Consequently, if F is a global stratified transverse homotopy equivalence then

(5.4) Indaps(c, #) =0 in K(C*(27)Y).

Proof. — We can and we shall assume that F' is of product type near the boundary; thus
in a collar neighborhood of the boundary, U = d.# x [0, 1], we have F v = Fy ® 1djo,1.
The Hilsum-Skandalis method [31] can be extended to manifolds with cylindrical ends as
in [56, Proposition 8.1]; combining these arguments with the ones given above and in [4,
Theorem 4.6], we can thus prove that associated to F there is a well-defined equivariant
Hilsum-Skandalis perturbation C, (F) on the pseudomanifold with cylindrical ends 27 .
It is important to notice that this is an “‘un-compressed’ perturbation, hence the subscript,
and that it is defined on the whole 2T . Notice for later use that because of the structure
of F near the boundary, C, (F) is equal to C,,(F3) ® Id on the cylindrical end, with C,, (Fj)
the un-compressed Hilsum-Skandalis perturbation associated to the homotopy equivalence
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Fy : 0.4 — 0% . It follows, as in [56, Proposition 8.1], that the associated perturbed

. # oF)# . .
signature operator Dy W@ EY W | €, (F) is invertible and hence

Indaps(D P 1 ¢, (F)) = 0.
In order to prove the proposition it therefore suffices to show that
(55)  Indaps(DR Y@ C(Fy)) = Indaps(DR P 4 Cu(F)).
Recall that on the left hand side the have the APS-index class associated to
D;)ﬁWu(woF)ﬁW + Coo(Fy)

with C(F3) the perturbation obtained by grafting to 2T, the compressed Hilsum-
Skandalis perturbation C(Fj) on the boundary d.27; this index class is well defined, given
that the associated boundary operator,

5:6) By Dggﬁwua(woF)ﬁW + C(Fy).
is invertible. Notice that the boundary operator of D?uwu(woF)uW + Cy,(F) is instead equal
to
# oF)?
(5.7) By i= DY@ ¢ (Fy).

In order to establish (5.5) we now follow closely the proof given in [56, Theorem 8.4],
where the same property is proved in the smooth context. Thus we first consider the
cylinder 021 x [0, 1]. There is a natural and explicit 1-parameter family of perturbed oper-
ators {By}xe[o,1] interpolating between By and B;. Consider d, — B, on 0Zt x [0, 1],
where the minus sign comes from the sign-conventions in [56]. There is a well-defined APS
index class associated to this operator on 02T x [0, 1]; indeed, the boundary operator is
invertible. Moreover, we know that this APS-index class is equal to the higher spectral flow
of {Byx}xefo,1]- see [35, Theorem 10]. Wahl proves that this higher spectral flow, and thus this
APS-index class, is equal to 0 and exactly the same argument applies here. We now attach
this cylinder to 2T and obtain a pseudomanifold which is clearly stratified diffeomorphic
to Zt; we shall not distinguish between these two pseudomanifolds and work exclusively
with the one with longer collar neighborhood. There is a natural perturbed Dirac operator
on this pseudomanifold, call it D} PHU@E L R defined by

# NS
DLW R ¢ (F)

and by 0, — By. By the gluing formula proved in Proposition 6.4 below, we know that the
index class associated to this operator is equal to

Lo F )
Indaps(Dy VRN 4 Cu(F)) + Indaps (9x — Bx),

which is again IndApS(DI(i’nWU(wOF)nW + Cy(F)) given that Indaps(dx — Bx) = 0. Now,

following again Wahl, we can construct an homotopy between the operator on 2T, associ-
oW U(woF) W . o W U(woF)rw

ated to D, + R and the operator on 2T, associated to Dy, + Coo(Fy).

The associated boundary operator is invertible along the whole homotopy and so, conse-

. . £ oF)t . . .
quently, the index class associated to D12 U@ | Rig equal to the index class associated

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



80 P. ALBIN AND P. PIAZZA

ot W U(woF)fw

to D[S 4 Coo(Fy). Summarizing:

0 = Indaps(DZ 7 @D L ¢, (F))
because of the extension of Hilsum-Skandalis to pseudomanifolds with cylindrical ends;
Indaps(DE V@ L €, (F)) = Indaps(DE 7 W@ P | R)
because of the gluing and the spectral flow argument, and
Indaps (DR + R) = Indaps (DR 4+ Coo(Fy)

because of the homotopy constructed in Wahl. Since the right hand side of the last equation

is precisely Indaps (D KGR, (F3)) we conclude that (5.3) is now established. [

6. Mapping the Browder-Quinn surgery sequence to analysis

6.1. The rho class of a stratified homotopy equivalence

Let f : M — X be a transverse stratified homotopy equivalence. Let I be m; (X ).
Let Z := (M ) U X. The Cheeger space Z comes equipped with two maps induced
respectively by f and the identity and by f and the classifying map for X:

¢:2\—>)’(\, u:Z — BT.

In paEticular, there is a well defined I' covering I' — Zr — Z induced by u. We let
ur : Zr — ET be the I'-equivariant lift of u. We also let ¢r be the I'-equivariant lift of ¢,
or : 2p — )/(\1".

We fix a self-dual mezzoperversity W on X and consider the associated self-dual mezzoper-

versity f#W on —M . WecallWu £#W the resulting self-dual mezzoperversity on Z. We then
have self-adjoint extensions DWUSEW on Z, D}/V"'fﬁw on Zr and, by Proposition 5.3, a well
defined (compressed) Hilsum-Skandalis perturbation Cy € C* ()/(\ ru (—JT/I\F))F =C* (2 rl.

Summarizing, we have a well-defined class
n o~
p(DYHT™W 4 Cp)) € Kaimx11(D*(Zr)D).

Recall, see for example [45, Subsection 1.2], that ¢r induces a well-defined K-theory
morphism

(6.1) (¢r)s : Ku(D*(ZP)F) — K (D*(XP)D).

We recall briefly the definition and refer for example to [45, Definition 1.6] for more details. It
is implicit in the definition of D*(Zr)T and D*(Xr)T that thereisa Co(Zr)L -module H and
a Cy ()/(\ r)' module L on which the group I acts by isometries; these are the Hilbert spaces
on which the finite-propagation operators belonging to D* (2 r)f and D* ()? )T respectively
act upon. One proves the existence of an operator W : H — L, commuting with the action
of " and covering ¢r in a suitable sense. This operator W defines an adjoint morphism

p*Zr)" 2% (R0, AAW)(T) := W o T o W*

and one sets
(¢r)« == Ad(W).
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This algebra homomorphism induces the K-theory morphism in (6.1).

DEFINITION 7. — The rho-class p(]T/I\ i) X, W) associated to f : M — X and the self-
dual mezzoperversity W is given by

62 p(T L W) = @0)e(p(DX™ 1 Cp)) € Kaimx+1(D*(Xr)D).

The universal rho class is, by definition,
—~f ~ # *
(6.3) pr(M = X W) := ur)«(p(DF™Y + Cr)) € Kgimx +1(DF).

We shall see in the next subsection that the rho class of a stratified homotopy equivalence
is independent of W and descends to Spq(X).

6.2. The rho map from Spo(X) to Kdim)?H(D*()?r)r)
PROPO/S_I\TIONA6. 1. — The rho class associated to a transverse stratified homotopy equiva-
lence f : M — X and a self-dual mezzoperversity W on X satisfies the following properties:
1] it is independent of the choice of W,
2] it gives a well-defined map
(6.4) p:Spo(X) — Ky 5 (D*(Xp)D).

We denote by p[]T/[\ i) )?] the image of []/VI\ i) )?] through the rho map.

Proof. — Let g and g’ be two iie-metrics on X and let W and W’ be two self-dual mezzop-
erversities adapted respectively to g and g’. Let r : X > BT bea classifying map. Recall,
following Banagl, how it is proved that ()? , &, W, r) is Cheeger-bordant to ()/(\ g W, r);
we refer the reader to [4, Section 4.4] for the details. We consider the pseudomanifold with
boundary

X =X x[0,1],.
Instead of the product stratification, we stratify 2" using the strata of X as follows:

i) The regular stratum X of X contributes X x [0, 1].

i) Every singular stratum of X, Y*, contributes three strata to 2,

Yk x[0,1/2), YFx@/2.1, Y*x{1/2}.

The link of 2" at Y* x [0,1/2) and Y* x (1/2,1] is equal to Z*, while the link of 2
at Y* x {1/2} is seen to be the (unreduced) suspension of Z*, SZ*. Since the lower middle
perversity intersection homology of SZ*, when dim Z* = 2 — 1, is given by

I™H; _(ZF) i>j,
I"H;(szF) = {0 i=J.
I™H;(Z¥) i<k,
we see that .2 satisfies the Witt condition at the strata Y* x {1/2}. Put it differently, we do

not need to fix a self-dual mezzoperversity at this stratum.
Let us endow 2" with any iie metric G such that, for some 7y > 0,

_ 2 7 2
Glyxtony =& T4 Oly gy =& +HdI°.
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Next we endow 2~ with a self-dual mezzoperversity # as follows: let Y L., YT be an
ordering of the strata of X with non-decreasing depth. Denote

w=w!' —vy' .. wl -y}, W={wly —-v',...wly —-1T)
and denote the fiber of, e.g., W/ —> Y/ at the point ¢ € Y/, by W,/. Let us define
Wl —y!'x]0,1/2)

by requiring that the Hodge-de Rham isomorphism identifies all of the fibers. Once this
is done, we can define W2 — Y2 x [0,1/2) in the same way, and inductively define
W3 —¥Y3x[0,1/2),.... Wl — YT x[0,1/2).
We define WJ{ —> Y/ x (1/2 x 1] in the same way to obtain
=W —v'x[0,1/2), W] —Y'x1/2,1],...,
wT —vT x[0,1/2), W — ¥T x (1/2,1]},

a self-dual mezzoperversity over 2. So, in words, we extend the metrics g and g’ arbitrarily
to an iie metric G without changing them in collar neighborhoods of the boundary, and then
we choose a Hodge mezzoperversity by extending the de Rham mezzoperversities trivially
from Y to Y x [0, 1/2) on the left and from Y/ to Y? x (1/2, 1] on the right. Since the strata
induced by Y* x [0, 1/2) are disjoint from the strata induced by Y* x (1/2, 1], there is no
compatibility required between the corresponding mezzoperversities.

Finally, define R : 2" —> BT by R({,t) = r(¢). The result is a Cheeger-bordism

(2.G.W.R: 2 —> B

between (X, g W.r: X — BT')and (X', g, W'.r : X — BT).

Let us go back to the proof of our proposition. Let f : M — X be a transverse stratified
homotopy equivalence. We want to show that the rho class is independent of the choice of the
self-dual mezzoperversity ¥V on X. Let g, Wand g/, W' as above and consider f*g, f#W
and f*(g’), f*W' on M. We can consider # := M x [0, 1], stratified as above. Remark
now that, by definition, the map F : .# — 2, F(¢,t) = f(¢) is such that F*#, adapted
to F*G, is precisely equal to the self-dual mezzoperversity producing the Cheeger bordism
between (M, f*g, fAW.,(ro f): M — BT) and (M, f*(g), f¥W',(ro f): M — BT).
Moreover, F is a (transverse) stratified homotopy equivalence between .# and 2 .

We thus have a stratified Cheeger-space with boundary,

& =)L Z,

which is the disjoint union of two stratified Cheeger spaces with boundary, endowed with a
stratified homotopy equivalence F : .# — 2, with self-dual mezzoperversities F## on .#
and # on 2" and with a classifying map into BT, the latter producing a Galois I'-covering
I'—= 2t — Z; moreover, by construction, the self-dual mezzoperversity on the manifold with
boundary (—.#) U 2 restricts to give £#WV L W on one boundary, the one corresponding
tor = 0,and f¥W LW’ on the other boundary, the one corresponding to r = 1. For later
use we denote by jo and j; the obvious inclusions of (—JT/I\F) U Xr into 2 as thet = 0 and
t = 1 boundary respectively. We now apply Proposition 5.4 and obtain that

Ind(D”UF* C(Fy)) =0 in K« (C*(Zr)D).
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By applying the delocalized APS-index theorem we then obtain that
(65) 0= (jo)u(p(DW™ 4+ Cp)) = (j)e(p(DV ™V +.€})) in Ku(C*(20)D).

Observe now that there is an obvious ['-equivariant map 2r — 2t = Xr x [0, 1],
induced by F and the identity, and thus, by projecting onto the first factor, a I'-equiv-
ariant map 2t — Xr. We can push-forward the equality (6.5) through this map and use
functoriality in order to obtain
0= oML ZW) = p(M L T W) € Kyt (D*(X)T) with # = dim X :
this shows indeed that the rho class is independent of the choice of self-dual mezzoperversity.
The proof of item 2] is very similar. O

6.3. The map from Npo(X) to K. o(X)

We have defined NBQ()? ) as equivalence classes of transverse degree one normal maps
into X which are diffeomorphisms when restricted to strata of dimension less than five.
Our task is to map an element []/VI\ i> X ] € NBQ()/(\ ) to Ky, }?()’(\ ), or, more precisely,

to Ky f()/(\ ) ® Z[1/2]. Following the original treatment of Higson and Roe in the smooth
setting, we shall in fact forget about the normal data encoded in [ZTl\ 1> X | € Ngo ()/(\ ).

—~ f = # ~
(6.6) BIM = X]:= DT [D"] € Ky z(X) @ Z[1/2].
We then have the following

ProPOSITION 6.2. — 1] The right hand side of (6.6) is independent of the choice of self-
dual mezzoperversity W.

2] The map B is well defined: z'f[]/\.fo ﬁ) )’(\] = [A//fl ﬁ> )’(\] in NBQ()/(\), then
(6.7) (f)«[DFW] = [DV] = (f) DTV = [DV] e K, o(X)®Z[1/2].

Proof. — We establish both statements by adapting an argument due to Higson and Roe
and by making use of Theorem 4.1 above, item 3.

Thus let W and W’ be two self-dual mezzoperversities, adapted to iie metrics g and g’
respectively. We must show that

Sl DTV = [IDY] = (LD V=DV =0 € K, 5(X) ®Z[1/2].

We initially follow the construction exploited in the previous subsection. Thus we consider
X =X x [0,1] and A = M x [0, 1], both stratified a la Banagl. We consider the transverse
map F : M4 — X, F(¢,t) = f(¢) and consider G, F*G, # and F*# as in the previous
subsection. We thus have a stratified Cheeger-space with boundary,

Z = (—M)U 2 = (=(M x[0.1]) U (X x [0, 1]).
which is the disjoint union of two stratified Cheeger spaces with boundary, endowed with
a stratified transverse map F : .# — 2, with self-dual mezzoperversities F## on .#

and # on 2°; moreover, by construction, the self-dual mezzoperversity F## LU # on the
manifold with boundary (—.#) U 2 restricts to give f#)¥ L W on one boundary, the one
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corresponding to ¢ = 0, and ¥V LU W’ on the other boundary, the one corresponding
tor = 1.

Remark first of all that the K-homology group of a disjoint union of two spaces A LI B is
equal to the direct sum of the individual K-homology groups. We define two group homo-
morphisms

O K(Z,0%) > Ku(Z,02) = Ku(X x[0,1], X x{0,1}),
¢ Ke(02) > Ko(02) = Ku(X x {0,1})
as follows:

oy, Ba) = Fea .y —Ba, ¢(ag, a1, Po, f1) = (froo — Po, fuc1 — B1).

It is easy to check, using the functoriality properties of the connecting homomorphism in the
long exact sequence of a pair, that the following diagram is commutative:

Kesi(Z,02) — 0 K. (02)

I l
K1 (2,09 ——— K.(02).
The bottom horizontal homomorphism is part of the long exact sequence
Ker1(2,027) 5> Ko@) S Ku(2),
which can be rewritten as
(6.8) Kap1 (X % [0,1], X x {0, 1)) > Ko(X x {0, 1}) > Ko (X x [0, 1]).
Notice that there is a natural group homomorphism

¥ KX x{0,1) = Ko(X), ¥ (o, 71) = v0— 11
and that i factors as follows:
Ko(X x{0,1})
' \ e
) l /n> K.« (X)
K.(X x [0,1]),

with 7 induced by the projection onto the first factor. Using these remarks and Theorem 4.1,
which in the present context states that

LADF uw) = (DL IV DY DY),
we then have
SIDTV) = [DW] = (£l DTV = [DV]) = Y (/DT W] = [DV]. [ DTV - D)
= o t(f[DT W] = D], £[DTV] - [D™)
— wo10¢((DTWL DV D] D))
—wotogod (DT V)

= yrotoao@[DFﬁW"'W] =0,
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where in the last step we have used the exactness of (6.8).
This establishes item 1]. Item 2] is similar, but easier. O

6.4. The index map from Lpq (X) to K.(C*(Xr)T)
We finally consider the (APS) index homomorphisms

Indaps

Kdim)?-i—l(c*()?r)r)’ LBQ()?) > Kdim)?(C*()?F)F)'
We shall treat in detail the first homomorphism, the second one is similar (in fact easier).
Recall from §5.6 that to each Lpq-cycle a,

Indaps

Lpo(X x [0, 1]) —=>

@i (M AM) s @ 0wy s 7= K x [0, 1],
and each choice of mezzoperversity W on X x [0,1] we have defined an APS-index
class Indaps(e. #) € K (C*(21)') = K (C*(Xr)'), with Xr the universal cover
of X, see §5.6 for the details. In what follows we shall use the canonical isomorphism
K (C*()? r)F) ~ K.(C*T). We will show that this class is independent of the choice of
mezzoperversity and well-defined on Lgq ()/(\ x [0, 1]). First we establish the independence
with respect to the choice of the mezzoperversity.

LEMMA 6.3. — Let W and W’ be two mezzoperversities on X x [0, 1]. Then
IndAps(Ol,W) = IndAps(Ol, W’) in K*(Cr*l“)

Proof. — Leta : (M, 0.4) —— (W, 0%) - 2 = X x [0, 1] be a Lpo-cycle as above.
Consider the stratified manifolds with corners

M X [0, l]t and % x [0, l]t

We stratify # x [0, 1]; as we did in the proof of Proposition 6.1; the mezzoperversity W on
X x [0, 1] induces through w a mezzoperversity w*W on # x {0}; similarly, the mezzoper-
versity W’ on X x [0, 1] induces through @ a mezzoperversity * on % x {1}. We know
that there is a mezzoperversity #a x[o,1] on % x[0, 1], interpolating between o*Wand w?W'.
Similarly, we stratify —(.# %[0, 1];) asin Proposition 6.1. Let ® : .#Z %[0, 1], — # x[0, 1], the
map O(m,t) = (F(m),t); the mezzoperversity q)ﬁ%yx[o,l] interpolates between F#(w*W)
and F¥(w*W’). Consider now 2 := —# U 2 and

Z x[0,1]; := —(A x[0,1];) L (Z x [0, 1];).
This is a Cheeger space with corners, with boundary hypersurfaces:
F=FA#x{=0u@ x{t=0))U(—A x{t =1} (¥ x{t =1}))
and
G = —0.4 x[0,1];) U (0% x [0, 1];).

Consider the signature operator on % x [0, 1];, together with the mezzoperversity that
has been fixed above; using appropriate Hilsum-Skandalis perturbations as in §5.6 we can
perturb this operator and make it invertible at G. To fix notation, let us assume that X is odd
dimensional, so that X x [0, 1], .# and % are even dimensional. We can define a bivariant
class B € KK (Cr (2 %[0,1]), CT), with Cr (2 x[0, 1]) denoting the continuous functions
on Z x [0, 1] which vanish on F. Notice, crucially, that without further hypothesis we could
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only define a bivariant class in KK (Cy(arx[o,1]) (2 %[0, 1]), CT') with Cy(arx[0,17)(Z %[0, 1])
denoting the continuous function on % x [0, 1] vanishing on the whole boundary. Consider
xf : F — point and #Z*[%1 . % x [0,1] — point. Denote by ¢ the natural inclusion
F— Zx[0,1]and by g : & x [0,1] — F the restriction map to F. Obviously #¥ =

aZ*[011 6 | From the semi-split short exact sequence

0— Cr(Z x[0,1]) &> C(Z x [0,1]) % C(F) - 0

we obtain the following portion of the associated long exact sequence in KK-theory

KKi(CF(2),CIT) 5 KKo(C(F),CIT) 25 KKo(C(Z), CAT).

In particular, by exactness, tx 08 = 0. Then, on the one hand a classic argument based on the
principle that boundary of Dirac is Dirac®, see for example [3, Section 7.1] [4, Theorem 5.8],
shows that

7F(8B) = Indaps(a, W) — Indaps(a, W) in KKo(C,C'T) = Ko(CT)

and, on the other hand, =f (6B) = 771" o1, (8B) = 71" o1, 06(B) = 0 by exactness.
Thus
Indaps (o, W) — Indaps(a, W) = 0,

as required. O

We now describe a gluing theorem following Bunke [14].
Let Z be a stratified space with boundary and Ha compact hypersurface transverse to the
stratification that does not meet the boundary of Z. We can view Z as two stratified spaces
with boundary glued along H,
-7z
H

We decompose a I'-cover of Z accordingly:
Zr =212
Hr

We assume that Z is Cheeger, we fix an iterated incomplete edge metric g which is of product
type near H; finally, we fix a selfdual mezzoperversity W adapted to g. This restricts to a
selfdual mezzoperversity on the hypersurface H which we denote WH . Similarly, we obtain
selfdual mezzoperversities #1 on Z! and #2 on Z2. We lift all these structures to the
I'-covers with minimal change of notation.

Let Dr be the signature operator on Zr, the regular part of Zr. We assume that a
trivializing perturbation Qy of the boundary operator has been fixed; the latter gives a
grafted perturbation Q. on the associated manifold with cylindrical ends and thus an index
class Indaps (D), Q) € Ku(C;T), where the canonical isomorphism K«(C*(Zr)F) ~
K. (C}T) has been used. We can assume, without loss of generality, that the perturbation
0 1s localized away from ﬁr.

® Here boundary of Dirac refers to the image of the Dirac class in K-homology under the boundary homomor-
phism §.
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The signature operator near Hr, the regular part of Hr, will decompose in the usual way,
given that the metric is of product type near Hr. Let Cy be a perturbation of DY " such
that DY " 4 Cy is invertible @ and let

! 1 w2 2
DF,oo + CH,oo’ Dl",oo + CH,oo

be perturbed differential operators on the spaces obtained from ZL Z% by attaching an
infinite half-cylinder along Hr. We obtain in this way well defined index classes

1 2 .
Indaps(DY, Q3 UCh), Indaps(DE ™, 03 UCy) in Ki(C)T)

where Q'g is Oy restricted to Zr N ’Z\lﬂ

PROPOSITION 6.4 (Gluing). — With notation as above, the index classes satisfy
1 2 .
Indaps(DYY, Q5) = Indaps(DY ", Q) U Cx) + Indaps(DE ", Q} UCx) in Ki(C}T).
If Z is without boundary, then

Ind(DY) = Indaps(D? ", Cr) + Indaps(DZ . C) in  Ku(CFT).

Proof. — A happy byproduct of the functional analytic nature of Bunke’s proof is that it
applies almost unchanged to our setting. Let D denote either of D{ff O’o +C IQ oo J € 11,2},
with D(D) its self-adjoint domain. Replace the definition of the spaces H¢, £ > 0, in [14, (2)]
by

V4
H'=D(DY). |[¢]7 =D D*¢]2..
k=0

where the norm on the right hand side is the pointwise norm coming from the Hilbert
C*-module structure.

Note that since D? + 1d is invertible we can take a compact exhaustion of the regular part
of our space, approximate the constant function one, and find a non-negative f € C°(Z 1{ 0o)
such that D? + f is invertible, thereby satisfying Bunke’s assumption 1.

With these conventions, the analytical results in §1.2 of Bunke now hold verbatim save
that the expressions R(A)grad( f)R(A) should be replaced by

R(M)(grad(f) +[C. fDR(A)

where C is the perturbation at H. This replacement is still a compact operator and hence
the argument in Proposition 1.13 of Bunke yields well-defined index classes. The argument
in Theorem 1.15 of Bunke then yields the equality of the index classes we seek, once we
take into account that the index of a translation invariant operator on the infinite cylinder
vanishes. O

® A simple argument using the cobordism invariance of the signature index class with Cheeger boundary conditions
shows that such a perturbation always exists.
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Recall that an articulated stratified space without boundary L is the (entirety of the)
boundary of a stratified space with corners. Thus L is a finite union of stratified spaces with
corners together with identifications of their boundary faces and the absence of boundary
says that there are no unmatched faces. If L is the boundary of a Cheeger space, L =0X,s0
in particular each of its constituent stratified spaces with corners is a Cheeger space, then a
choice of mezzoperversity on X induces compatible mezzoperversities on the constituents
of L, and the boundary identifications (which are stratified diffeomorphisms) give rise to
Hilsum-Skandalis perturbations, and so we have an index class,

Indaps((9X)r) € Ku(C/T).

where I is the fundamental group of X.

LEmMaA 6.5. — If Xisa Cheeger space with corners then

Indaps((0X)r) = 0 in K.(CFT)[3].

Proof. — Our convention is that every boundary hypersurface M of X is collared, i.e.,
has a neighborhood of the form [0, 1) o X M in X, consistent with the stratification of X.

We refer to p;; as a boundary defining function for M. By a ‘total boundary defining func-
tion’ for X, we mean a function Py Obtained by taking the product of boundary defining

functions, one per boundary hypersurface of X. Since the boundary hypersurfaces are
collared, for all ¢ > 0 sufficiently small the set {p, > ¢} is a stratified space with boundary

and 3X can be obtained from pyg = &} by ‘introducing corners’ (i.e., partitioning it and

considering as an articulated manifold). Cobordism invariance of the signature on Cheeger
spaces [4, Theorem 4.8] implies that the signature of d{p,¢ > &} vanishes in K (C,*F)[%]
(see Remark 8) and then Proposition 6.4 implies that the signature of 3X vanishes. O

The following proposition is the main result of this Subsection:
PROPOSITION 6.6. — The APS-index map defined on EBQ()/(\ % [0, 1]) descends to a map

Lpo(X x [0,1]) 3 ¢ —> Indaps({) € Ky, g4 (CXT)

by setting Indaps(¢) := Indaps(a, W) for any representative o of ¢, [a] = £, and any choice
of mezzoperversity W. This map is a homomorphism of abelian groups.

Proof. — 1t suffices to show that if « is null bordant then Indaps(e, W) = 0.
Let
(N0, N, 0.N) =25 (Z:0,2.,0.7) > (X x ) x I
be a null bordism of . Thus, ® is BQ-normal, ®| : Bzﬁ — 822 is a BQ-equivalence, Q2 is
BQ-transverse, and

~ ~ 0] ~ ~ o2 ~
((BIN, 0128) —Ls (8,2, 91,2) 2L, X) =a.
By Lemma 6.5, we know that

Ind(( N 22 8, 2)008 22 0,2), (9; 0 W1 Z) U Z) L, oF W22 U2y = o
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for any mezzoperversity WZ on Z. By Proposition 6.4, we can write this as the sum of two
APS indices,

~ 0 ~ =1 % ~ 0 ~ > >
Indaps (N 22 8,2, 0,08V Z) UWIZ) 4 Indps (02N 2 8,7, 9, DHWPZ) LW 7Z),

However, the second summand is equal to zero since | : N — 9,Zisa BQ-equiva-
lence, and hence so is the first summand. The fact that Indaps is a homomorphism of Abelian
groups follows from the fact that addition in Lgq is induced by disjoint union. The proposi-
tion is proved. O

We have defined the APS-index homomorphism for general cycles, because this is useful,
for example, in studying its behavior under the homomorphism induced on the BQ-L groups
by a transverse map. However, for certain purposes, it is more convenient to be able to handle
this homomorphism exclusively on special cycles. This is the case, for example, when we need
to check the compatibility of the APS-index homomorphism with the rho homomorphism
and with the action of the BQ-L group on the BQ-structure set, given that this action is
defined in terms of special cycles. Another example where this is useful is given in Proposi-
tion 6.9 below. The next lemma and the following proposition clarify that it is indeed possible
to work exclusively with special cycles.

LEMMA 6.7. — Every [a] € LBQ()/(\ x [0, 1]) can be represented by a diagram of the form
e~ A~ ;id, ~ ~ —~ i ~
w: (X, 8“2 (R % [0,1]: X x {0}, X x {1}) — T x I.
Let oy and oy be two such diagrams representing the same class and B the diagram obtained by
gluing oy and —a,,

~ N, A~ D, s —~ —~ —~ i ~
B (W Xy, X)) 20 (25101 X x {0}, X x {1}) —4s £ x 1,

then there are stratified spaces with corners P, Q together with a BQ-normal map ©,

~ o~ A (800,0) A oA~ oA
(P;30P, 3, P) — =" (0:300,,0)

such that
~ 6 ~ -~ D A~
(aOP = 80Q) = (W — X x 1)
and 01 is a BQ-equivalence.

Proof. — We can represent [«] in this way directly from the Wall representation theorem

(as in Corollary 2.6). Taking
W = i || -7,
b'e

and gluing «@; and —oa, along their common boundary yields B, an element of
Nso ()?x [0, 1]). Since Lemma 2.3 implies that B represents [o;] —[o2] = 0in Lpg ()?x [0,1]),
Theorem 2.4, implies that the class of B in Npg ()/(\ x [0, 1], 8()/(\ x [0, 1])) is in the image
of Spo ()? x [0, 1], 8()? x [0, 1])). It follows that there is a normal bordism between 8 and an
element in SBQ()/(\ x [0, 1], 8()? x [0, 1])), which yields © : P— Q as above. O

Proceeding exactly as in the proof of Proposition 6.6 and using crucially the above lemma
we thus have the following;
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PROPOSITION 6.8. — Let W be a mezzoperversity for X x [0, 1], for example the product
mezzoperversity associated to a mezzoperversity on X. Let

e~ oA~ ;id, —~ ~ —~ i —~
o = ((MI;X,X{) LIELSVNGS SN} 1];Xx{0},Xx{1})LXx1)

e~ oA~ ;id, —~ —~ —~ i —~
azz((Mz;X,X;) (#21id.y2) (Xx[O,l];Xx{O},Xx{l})—ld——>XxI)

be two elements in Lpg ()/(\ x [0, 1]). Assume that [a;] = [a2] in Lo ()/(\ x [0, 1]). Then
Indaps(a1, W) = Indaps (a2, W)

and this common value is independent of the choice of the mezzoperversity W. Moreover, the
APS-index of the sum of two such elements is the APS-index of the element obtained by stacking
the two cycles as in Lemma 2.3.

Proof. — Only the last sentence needs to be justified and this follows immediately from
the gluing theorem. ]

We can use the gluing result in Proposition 6.4 to simplify the APS index map from an
L-cycle @ € Lpg(X x I) if it restricts to be a diffeomorphism on the boundary.

PROPOSITION 6.9. — Let o € EBQ(}? x 1) be given by

o= ((ﬁ;)?,)?’) GV R X [0,1]: X x {0}, X x {1}) —s )?xz),

where  is a diffeomorphism X' — X. Let G(a) € EBQ()/(\ x S1) be the Lpq-cycle given by
— o~ ~ G ~ ~ ~ ; ~

G(a) = (G(M) — M/(R ~y X) 29 %[0, 1)/(X x {0} ~ X x {1}) - X x Sl) .

Given a mezzoperversity VW on X we have
Indaps (e, W) = Ind(G (), W) in K«(C;T),

where on the left W is lifted to X x [0, 1] and pulled-back to M, while on the right W is lifted
to X x S! and pulled-back to G(ZT/I\ ). Note that the index map on the right does not require
boundary conditions, put differently, this is the index class of a cycle involving Cheeger spaces
without boundary.

REMARK 9. — The index of (G(a), W) is, by definition, the index of the signature operator

on
G(M)U (X xS
(twisted using a reference map to BT, with T = my X ). Another application of Proposition 6.4
shows that this index coincides with that of the signature operator on
M |_| X x1I ,
)’(\~)?><{0}
X'~y X x{1}

as in the original definition of Higson-Roe [29].
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Proof. — Let N C G(]T/I\) and Y C X x S! be the images of the boundary of ZT/I\
respectively of X x [0, 1], under the identification maps M — G(]T/i), X x [0,1] — X xSt
Without loss of generality we assume that G(¢) is collared near these subsets, i.e., that there
are neighborhoods on which

G(@)|: N x(-1,1) — ¥ x (—1,1)
is the identity on the second factor. We assume that the stratifications respect the product
structure of these neighborhoods.

We will apply our gluing result to this situation. Let Z= G(]T/I\ yu ()/(\ x S1) endowed with
the natural map to BI', ' = 7; X, and let

H=©Nx{=53)u x{=5.5}.
Given a mezzoperversity # on X adapted to a wedge metric on Z that respects the product
decomposition of the neighborhood (ﬁ u f/\) x (=1, 1), we can apply Proposition 6.4 to see
that
Ind(DY; Z) = Indaps(DY" . Ciy: M U (X x [0, 1)) + Indaps(DY', Cr: (N UY) x -1 ).

where Cg is the Hilsum-Skandalis perturbation and we have used more explicit notation
than is our wont. Finally note that the first summand on the right hand side is Ind(«, W), and
the second term vanishes, as it is the index of an invertible translation-invariant operator on
an infinite cylinder (indeed, as we have already remarked, even though we denote our classes
as APS classes, they are really classes on manifolds with cylindrical ends). O

6.5. Mapping stratified surgery to analysis

At this point we have shown that all of the maps in the following diagram are well defined
and independent of the choice of mezzoperversity:
(6.9)

~ A~ A~ 0 A~
LBQ(XXI) >SBQ(X)%NBQ(X)—>LBQ(X)

J{IndAPS J/P J/B JlndAPS

Kdim}?+l(cr*r)[%] 7 Kdim)?-l—l(D*(j(\F)r)[%] ; Kdim)?()?)[%] 7 Kdimf(cr*r)[%]'
We now establish the commutativity of this diagram.

The key fact for establishing commutativity of the first square is the behavior of the rho
class under composition ([56, Theorem 9.1], [46, (4.14)]):

ProrosITION 6.10. — Let Z ZT/I\ I//\ be Cheeger spaces and
[y A L 7}
transverse stratified homotopy equivalences. We ﬁx a self-dual mezzoperversity Won V and we
consider the induced mezzoperversities f¥W on M and g (W) on L. If VrisaT- coverlng
of V then we lift these mezzoperversities to the induced coverings f* Vr on M and gr(f* (Vr))
on L. The following identity holds in K«(D* (Vr) ):

oL ~L5 VW) + Falp(FT = B, £1W)) = Fa(p(L —5 M. W) + p(F 2 7. ),
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where in the first summand on the right-hand side it is the rho class of the perturbed signature
operator on the covering g*(f*(Vr)) U f*(Vr) that appears.

Consequently, with a small abuse of notation, we have
~ fog & x> dd = =~ o~ g = f &
6.10)  plL L2 V) + Fu(olM —— M) = Fu(plL —= M) + p[M — 7],

REMARK 10. — It can be shown that the p-invariant of the identity map vanishes, but we will
not need this here.

Proof. — The proof given in [46], based in turn on the proof of [56, Proposition 7.1] and
on the delocalized APS index theorem, applies to the present situation. O

Recall now how LBQ()/(\X I) acts on SBQ()?). If[e] € LBQ()/(\ x I)and [B] € SBQ()/(\) then
we can choose representatives of the form

(¢3id,¢2)
—

a:(W:M, M) (]T/I\X[O,l];ﬁx{O},M\x{l})Lﬁxl,

and then the class of f o, : M — X in Sgo ()’(\ ) is well-defined and denoted d(«)(B). The
map

Lpo(X x I) x Sp(X) — Spo(X)

(la]. [BD) F——— () (B)

defines the group action of the Browder-Quinn L-group of X x I on the structure set of X.
In order to show that the first diagram in (6.9) commutes we need to show that
(6.11) p(@(@)(B)) — p(B) = t+(Indaps(c))
with Indaps(@) € Ky, g, (C*XDDIE] = Ky g4, (G D3] and ¢ © C*(Xp)F —
D*(Xr)' the natural inclusion. The left hand side of (6.11) is, by definition,

o L2 %) o -1 X1,

We now apply Proposition 6.10 and obtain that this difference equals:

~ o~ ¢y — ~ o~ id —~
feplM' = M] = feplM = M]

and a direct application of the delocalized APS index theorem shows that this difference is

precisely equal to t«(Indr,aps(a)). This establishes the commutativity of the first square in

the diagram.

The second square in the diagram is proved to commute exactly as in [46].

Finally, for the third square, we observe that the image of a class in Npqg ()? ) is a union
of two closed Cheeger spaces and that for such an element in Lpq ()? ) the APS-index class is
just the index class of Subsection 3.6; the commutativity of the third square then follows by
the functoriality of the boundary map in the Higson-Roe surgery sequence.
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6.6. Mapping stratified surgery to analysis on all strata

The use of transverse maps in the definition of the Browder-Quinn surgery sequence
implies that there are well-defined restriction maps from the long exact sequence of a
stratified space to the corresponding sequence of a singular stratum.

Recall from §2.2 thatif ¥ € S(X) then the closure of Y in X is a stratified space denoted Y .
An L-cycle over X restricts to an L-cycle over Y, and a null bordism over X restricts to a null
bordism over Y. The restriction of a normal invariant or a Thom-Mather structure from X
to Y is an L-cycle of the same type, as the normal conditions or homotopy equivalence
conditions are imposed on each stratum. Thus we have commutative diagrams

Lg(X x I) - Spo(X) —— Npo(X) —— Lgo(X)
Lg(Y x I) - Spo(¥) —— Npo(¥) —— Lyo(¥Y),

which we can extend arbitrarily to the left. Note that the vertical arrows are generally neither
injective nor surjective.

Let us introduce the abbreviations,

K (C*S(N3] = Ky g, (G D Ky, (GTEN],

YeS(X)
Ki(D*: SN =Ky g4, (P X010 B Kymps; (P V) )13
YeS(X)
* *, v 17 STav B! 1l
Kp(D*/C ’S(X))[E]—Kdim)?+j—1(X)[§]@ @ Kdim?+j—1(Y)[§]'
YeS(X)

By restricting to each singular stratum and making use of their respective commutative
diagram (6.9) we end up with a combined diagram
(6.12)

0

Lo(X x I) + Spo(X) —————— Npo(X) —————— Lpo(X)

J/GB Ind J/EB,D J/@ﬁ J{@ Ind

Ky (C* S(X)[A] —— Ky (D S(X) (] —— Kpy(D*/C*; S(X))[] —— Ko (C*; S(X))[L].

REMARK 11. — In[59, §12.4], for Witt spaces with simply connected links (also known as
‘supernormal spaces’, see [16]) we find that

Leo(X)[3] =LzZm(X)3e P LEm@)3l.
YeS(X)

(where Y, the ‘closed stratum’, is the closure of Y in X with the induced stratification) so that
in this case the vertical arrows in (6.12) map from the algebraic L-groups.
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7. Further considerations

In [17], Chang and Weinberger use the surgery exact sequence of a manifold to show
that torsion in its fundamental group implies the existence of infinitely many homotopy
equivalent manifolds that are homeomorphically distinct.

In this section we use the argument in /oc. cit. as a launching pad to discuss related topics.
First, as an answer to ‘how to map in to/out of a BQ L-group?’ we establish a couple of long
exact sequences. Secondly we establish Atiyah’s L2-signature theorem for Cheeger spaces.
Finally we combine these to discuss a version of the result of [17] for Cheeger spaces.

7.1. A long exact sequence for the Browder-Quinn L-groups

It is interesting to connect the Browder-Quinn L-groups with the usual (Wall) L-groups
of a smooth manifold. If X is a smoothly stratified space then, on the one hand, recall that
we can identify the regular part of X with the interior of the resolution X of X,

X=X =%
and so the inclusion, i, of the regular part induces
s ~
Ly (X) —> LBQ,dY(k) (X),

where d X (k) is the dimension function that is equal to k on the inverse image of the regular
part of X. (Note that this determines all of the dimension function since, in the notation of
(2.3), by transversality of ¢ and w the codimension of a stratum in M orY is equal to the
codimension of the stratum it maps into in X .) On the other hand, if X T is a minimal stratum
(a stratum of greatest depth), and hence a closed manifold, then the fact that the Browder-
Quinn L-groups are defined using transverse maps means that we have a natural restriction
map
Laga(X) — Ly, (X7).

where dy+ is the restriction of the dimension function to X T,

Both of these maps fit into a long exact sequence of Browder-Quinn L-groups. An example
of the former is found in [13] and of the latter in [59, §6]. We treat these as special cases of
long exact sequences in L-groups associated with inclusions.

We recall from, e.g., [58, Lemma 8.3.1], a standard construction of long exact sequences
in cobordism. Suppose that « and 8 denote two possible types of structure a manifold can
have, and that a f structure implies an « structure (for example, if ¥ € X and « structure
could be ‘is endowed with a map to X’ and an 8 structure ‘is endowed with a map to Y).
Denote by Q%, Qg the cobordism groups of n-dimensional manifolds with the corresponding
structure, and denote by Qf,”ﬂ the cobordism group of manifolds with boundary with an «
structure and a compatible 8 structure on the boundary then, with the obvious maps, there
is a long exact sequence

3
PPN 1 N o L Y o LG UL o LN
The proof of exactness in loc. cit. does not depend on the specific structures « and f and

adapts easily to the situations we consider below.
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One type of relative L-group. In [57], Wall explains how to associate toamap h : V — W
between two manifolds an L-group that moreover fits into a long exact sequence with the L-
groups of V' and W. We now observe that the same is true if V and W are smoothly stratified
spaces and 4 : V —> W is a transverse map between them.

~ ko~ .
Let us denote by Lpg,s (V' —— W) the set of commutative diagrams of the form

(1.1) (§5:9,5,9.8) —2— (T: 0.7, 0,T) —— W
J I
8,5 d 0T — 1 .7,

where S isa smoothly stratified space with dimension function d, and boundary 9, SU,S,
and similarly T, ¢ is a BQ-normal map and restricts to a BQ-equivalence between 9, S and

= . = h .
01T and n is BQ-transverse. As usual Lgg 4 (V' —— W) then denotes cobordism classes of
such cycles. As above, these groups fit into a long exact sequence

3 ~ ha ~ ~ h o~ 0 ~ hx
«o+—> Lpa(V) — Lp.a(W) —> Lpqa(V —> W) — Lpga—1(V) —> -,
where the maps are given by
~ e / ~ —~ ’ A' B e ~ ’ e ~ hon’ —~
N |:(S’; 3S”") AN (T',9T") NG 7 (S’;98") 2, (T',0T") T W:| ,

4

| @8y L ot 0 W
e a]-| ST
v

(5:9,8.0,8) —2— F. 0,7, 9,T) ——

| J

3,8 9, T

#l nl

0
J - (32§;3(32§))L|>(32?§3(32f))l>‘7]
I//\ -

If we apply this to the inclusion of the regular part,i : X —> X, we obtain
(7.2)

a i o0 J i 0 i
o= Li(X) — Lyg 434y (X) = Lgg g7y (X — X) —> L1 (X) — -+
(cf. [13, Proposition 4.8]).

Another type of relative L-group. — (For this sequence cf. [22, Theorem 5.4].) Let X be astrat-
ified space, 5 C X aclosed subset of X made up of a union of strata. Let Lpq 4 ()/(\ ; /2\3) denote
the L-cycles over X with dimension function d whose restriction to Tisa BQ-equivalence,
and Lpq,4 ()/(\ ; /2\]) the corresponding bordism classes. We allow $ = ¢ for which

Lpq,a (X:0) = Lpq,q (X).
Analogously to the above, if S/ C X is another closed subset of X made up of a union of

strata, with & € & then there is a relative group Lpq,q ()? S c f’) with classes represented
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by diagrams of the form
(13) (M: M, 91 M) —2> (N; 90N, 9, N) —> X,
such that ¢ is BQ-normal, @ is BQ-transverse, do¢ is a BQ-equivalence, d,¢ restricted
to the preimage of X’ is a BQ-equivalence, and ¢ restricted to the preimage of X is a
BQ-equivalence.
There are natural inclusion maps
Lpo.d(X:E) — Lpqa(X: %), Lpga(X:T) — Lpgu(X:E <L),

which fit into a long exact sequence

~ ~ o~ PO ~
+++—> Lpga(X;T) — Lpgu(X:T) — Lpqu(X:E € &) — Lpgu—1(X: ) — -+
Exactness of this sequence follows from the usual construction of relative sequences in
bordism, see [58].

Let us consider the case where & = ¢ and ¥’ = X, a minimal stratum of X. We point
out that there are compatible restriction maps

Lpoa(X:0) — Laxny(X),  Lea(X;0 € XT) — Lyyn (X7,

both of which are onto, since any £-cycle over X has a lift to an £-cycle over X,

((M; oM) 2 (N, oN) -2 XT) > (@0 ) Tt — 0 Tyt — (Tyr =) X)

(where Ty+ is a tubular neighborhood of X¥ in X ).
The restriction map Lpg 4 ()/(\ wcxh — Laoxny(X T is also injective Indeed, assume
that (7.3) is such that ¢ restricts to X T to be a BQ-equivalence and consider

(7.4) M x [0, 1] =20 N < [0, 1] =2 x % [0, 1].

Since ¢ x id restricted to M x [0, 1] U M x {1} is a BQ-equivalence over X T, we recognize
(7.4) as a null bordism for (7.3). Thus we have established the long exact sequence

(7.5) «+-— LBQ,d(5(\§ X" — LBQ,d()/(\) — Ld(xf)(XT) — LBQ,d—l()/(\; XT)y— oo

7.2. Atiyah’s L? signature theorem

If M is a closed even-dimensional manifold and Mr — M is a regular cover with
transformation group I' then given any elliptic differential operator on M, Atiyah’s L2-index
theorem asserts the equality of its index with the I'-equivariant L2-von Neumann index of
its lift to M. When applied to the signature operator, Atiyah’s theorem gives us the equality
of the L?-von Neumann signature of Mr and the signature of M:

0@)(Mr) = o(M).

There are many equivalent definitions of the two members of this fundamental equality
(see [38] for a thorough discussion); in this article we see the above equality as an equality
between the index and the L2-von Neumann index of the signature operator, as in the original
treatment of Atiyah.

In [5, Theorem 6.5], it is shown that the signature operator admits a parametrix which
is e-local; once we have this key information, Atiyah’s original proof (for the signature
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operator) carries over to the setting of Cheeger spaces with minor modifications. However,
as some of the arguments will be useful below, we present instead a proof that follows [17,
Appendix].

Recall that whenever X is an even-dimensional Cheeger space and 7 : X — Bl is the
classifying map of a regular I'-cover Xr we have numeric signatures o()’(\ ) and o) (X, r)
These are defined, respectively, as the index of the signature operator on X and the von
Neumann I'-index of the I'-equivariant signature operator on Xt with respect to a choice of
mezzoperversity (but independent of which one). There are (classic) K-theoretic descriptions
of these two fundamental numbers that we now proceed to describe. To this end, we first recall
some classic material for which we refer, for example, to [38, 44].

Let C*TI" denote the maximal group C *-algebra associated to a discrete finitely generated
group I'. Recall that we have two trace-homomorphisms on Ko (C *TI"), induced respectively
from two traces on C*T'. The first one is the canonical trace tr : C*I" — C, obtained by
extending the trace tr : CT' — C given by

rp(Zay Y) = .
Y

7r induces a well-defined trace-homomorphism, still denoted tr, from Ko(C*T') to C,
assigning to an idempotent matrix (a;;) the complex number ), tr(a;;). Notice that this
trace-homomorphism factors through the K-theory of the group von Neumann algebra N T':

(7.6) Ko(C*T) i /«:
Ko(NT).

The second trace, t : C*I' — C, is obtained by extending the trace 7 : CI" — C,
T(Z ayy) = Zay
% y

(it is for this second trace that we need the maximal completion; the first trace is in fact
already well-defined on C;*I".) The trace-homomorphism 7 : Ko(C*I") — C is obtained
as before, but using t instead of r.

For any group I' we can define homomorphisms

(1.7) zZ

e

QChe(BF)

R

by assigning to a representative Y —2, BT ofaclassin QChe(BT) either the signature of ¥
or the L2-signature of the pull-back of ET to Y along w, to obtain the homomorphism o,
0(2) respectively.
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The homomorphism Q¢P¢(BT) 7?, R has a K-theoretic description that we now

describe.
Recall that whenever X is an even-dimensional Cheeger space and r : X —> BT is the
classifying map of a regular I"-cover we have a signature class

Ind(Xr) := Ind(DY®) € Ko(C*T) ®z Z[1] = Ko(C*T)[1],

where ¢(r) denotes the flat bundle of C*T'-modules corresponding to r, and D% is the
twisted signature operator.

Notation. — As already remarked around Theorem 4.1, the index class in Ko(C *TI") is defined
using a choice of a mezzoperversity but it is in fact independent of this choice in Ko(C*T") [%];
this is why here and in what follows we omit the mezzoperversity from the notation.

The signature class Ind(D“") only depends on the bordism class
[(X.r: X — BI)] € QM S (BT)
modulo 2-torsion, and defines a group homomorphism [4, Corollary 5.11]
1
. Che *
or: Qdim)?(BF) — Ko(C F)[E]'

Now we can repeat this construction but instead twist the signature operator D by the von
Neumann Mishchenko bundle
r*ET Xr N T.

We obtain in this way onT : Qdcil:j}?(BF) —> Ko(NT)[3] and 0(2)(X, r) is obtained by
applying tr to the von Neumann signature class o ()/(\ , 1) € Kog(NT )[%]:

(7.8) o) (X.r) = wr(onr(X,r) = w(nd(D?0)),

where, with a small abuse of notation, we still denote by 4 (r) the von Neumann Mishchenko

bundle associated to a continuous map r : X — BT.

THEOREM 7.1 (Atiyah’s L2-signature theorem for Cheeger spaces).
If)’(\ is an even-dimensional Cheeger space and r X —> BG is the classifying space of a
regular cover X, T, then
o(X) = 0@)(Xr).

Proof. — (We follow [17, Appendix].) Recall the two homomorphisms (7.7). Given a
group homomorphism, f : 'y —> T, there is an induced map
QChe Ty L%, QChe(By)

. . Bfo .
that sends a representative Y SN BT to a representative Y & BT;,. This map

trivially commutes with o. Assume now that f is injective. We are interested in showing
that Bf, commutes with o,y. This is equivalent to showing that

(7.9) wr, (Ind(D?B/°®))) = p (Ind(D¥)).
We thus want to relate 4 (w) — X and G(Bf ow) — X. Let
NT; —Ur, — BT;
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be the two universal Mishchenko bundles and note that
(Bf)*urz = Z/{I‘I ®NF1 NFZ’

where the tensor product makes use of the map induced by f on the group von Neumann
algebra (cf. [34, Appendix B, pg. 378]). Correspondingly

(7.10) G(Bf ow) =9 (0) ®x1, NTs.

This means that Ind(D¥(B/°®)) a formal difference of two finitely generated projective
NT,-modules, is obtained by applying the induction homomorphism associated to f.
Consequently, by [18, (2.3)], [37, Lemma 1.24]), we have that tr,(Ind(D¥(B/°®))) =
T, (Ind(D¥(@))) as required.

Summarizing, if f is injective then we have a commutative diagram

(7.11) QChe(BT))
PR
Z Bfs R
QChe(BT,).
Now let

j h
{e} G654
be the inclusion of the identity into G and an injection of G into an acyclic group A. (Recall

that a group A4 is called acyclic if BA is an acyclic space and that any group has an injective
homomorphism into an acyclic group, discrete if G is discrete.)

As BA is acyclic its suspension is contractible and since, by the Eilenberg-Steenrod
axioms, generalized homology theories are stably invariant, they must vanish on BA. From
[4] we know that QEP is a generalized homology theory and so

(B(hi))x : QL™ (pt) — QC"(BA)

is an isomorphism.
Thus from the commutative diagram

Qe (pt)
o Biy '@
79 QCheggy 2 IR
o Bhy 02
QChe(BA),
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the equality o = 0(2) on Q"¢(BG) reduces to the equality on Q€1(pt) where it is immediate.
O

7.3. Torsion elements and the cardinality of the BQ-structure set.

In this subsection we adapt an argument of [17] to the setting of Cheeger spaces. For any
Cheeger space X of odd dimension with 71 X = T" we can use these traces and the APS-index
homomorphism in order to define a group homomorphism «:

(7.12) Lpo(X x 1) * C
Ko(C*T).

Notice that « is actually valued in R, because the index class is “self-adjoint". We write
a=f§r—§

with £r := tr oIndaps and £ := 7 o Indaps. The homomorphisms ér and £ can be explicitly
described as follows. Recall that if y € Lgg(X x I) is represented by

—_— A ;id, ~ ~ -~ i -~
(M %, %) L9 R %01 X x {04, X x {1}) —s X x 1,
then Indaps(y) is obtained from Indaps(D9) + C) where D is the signature operator on
Z =(—M)U (X x1I),and, if R : X — BT is the classifying map of the universal cover
of X then
r:Z —> BT is given by (Ro¢) U R,

where we do not distinguish between R and R x id[g ;). Using r we have a well-defined
I'-covering Zr and a Mishchenko bundle gr) — Z; C denotes the Hilsum-Skandalis
perturbation associated to the stratified homotopy equivalence from M to 8()/(\ x [0,1])
induced by ¥ and id ¢. By functoriality

(7.13) £r(y) = tr(Indaps(D9M) 4 C)),

where the index class on the right hand side can be taken to be a von Neumann class and
r : Ko(NT) — C is the canonical von Neumann trace. The right hand side of (7.13)
is nothing but the I'-von Neumann index of the perturbed operator on the covering Zr,
with the perturbation on the covering induced by C through the regular representation as in
[46, Section 1.2B]. Notice once again that it is implicit here the choice of a mezzoperversity
and the statement that this number, in either of the two equivalent descriptions, is in fact
independent of this choice.

Similarly, see again [44], £(y) is equal to the index of the perturbed operator on Z, with
the perturbation induced once again by C but through the trivial representation instead
of the regular representation; this perturbation is in fact equal to the Hilsum-Skandalis
perturbation built with ordinary differential forms (i.e., without taking the differential forms
with values in the Mishchenko bundle). A similar description can be given if y is represented
by a general cycle, as in Subsection 5.6.
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With these preliminaries out of the way, we now finally tackle the geometric applica-
tions we want to give. First, combining Proposition 6.9 with Atiyah’s L2-signature theorem
(Theorem 7.1) we have the following result:

PROPOSITION 7.2. — The homomorphism a vanishes on the image of the map
0 : Npo(X x I, X x dI) —> Lpo(X x 1)

from the surgery exact sequence of X.

By exactness of the surgery sequence this proposition says that « vanishes on those
elements of Lpg (X x I) that act trivially on Sgq(X). Conversely, if x € Lpg(X x I) is such
that a(x) # 0, then we can show that x acts non-trivially on SBQ(}/(\ ).

Indeed, let p : SBQ()’(\) — Kim 241 (D*()/(\r)r) be the p-map from §6.2 and let pr be the
composition with the natural map induced by the classifying map

pr : Spo(X) — Ko(DY).

In [48] it is shown that pr(:) = 0, where ¢ denotes the class in SBQ()/(\ ) represented by the
identity map (the context in [48] is that of differentiable or topological manifold, but it is
easy to see that the same arguments establish the more general statement given here). On the
other hand, Benameur-Roy in [11], have defined a homomorphism

(7.14) Bce : Ko(Df) — R,

for which our main result, together with Corollary 3.20 in [11], implies the following.

PROPOSITION 7.3. — The map pcg = Bca © pr : SQ ()/(\) — R satisfies
pcc() =0 and pcg(3(x)(V) = a(x),
where 9(x)(1) denotes the action of Lyq ()? x 1) on Sgq ()? ) defined in Corollary 2.6.

In particular, if a(x) # 0, then x acts non-trivially on t.

Itis pointed out in [17] that, since « is a homomorphism into R, the existence of a non-zero
element in its range implies that its range has infinite cardinality. They also point out that, if
Cy, is the cyclic group of order k then, for any £ € N, the homomorphism ay : L4¢(ZC;) — R
defined as in (7.12) has range of infinite cardinality. Thus the idea is to use these elements to
find elements in the range of .

Assume that the dimension of X is4¢—1, forsome £ > 1. Leti : X — X be the inclusion
of the regular part, which we recall is a BQ-transverse map, and let ¢ X (4£) be the dimension
function for X that is equal to 4£ on the inverse image of the regular part of X, so that as in
§7.1 we have a homomorphism

ix t Lag(X) = Lag(Zm1(X)) — LBQ,dY(M)()?) = LBQ,dY(M)()? x I).

(Note that we could equally well use X instead of X as they are homotopy equivalent
and so have the same fundamental group.) Note that we also have a homomorphism
@ : Ly¢(Zm (X)) — R defined as above.
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ProrosITION 7.4, — If the map i, : m(X) — m ()/(\) is injective and there is a
monomorphism p : C, —> 1w1(X) then the following diagram commutes

Dx I ~
Lyg(ZCy) —— Lay(Zm1(X)) — Lpg,ax @ae(X x 1)

Proof. — The commutativity of the left triangle is a classical result, already used by
Chang-Weinberger. The commutativity of the second triangle, i.e., that @ = « o i, follows
from the more general result proved in the next proposition. O

ProrosITION 7.5. — If F : X1 —> X, is a BQ-transverse map between Cheeger spaces
inducing an injection on wy then we have a commutative diagram

(7.15) Lpo,4 (X1 x 1) ar,

o T=r

~ o
Leqa(X2x D), "7
with T; := (X))
Proof. — With a small abuse of notation we do not distinguish between F : X1 — X

and F x1d: X1 xI — X, x I. Lety € LBQ()?l x 1) be represented by

— o o ($idY) o = - id =
O X0, K0 9D (R (0,17 By x 0}, Ky x {11 — £, x 1.
Then, by definition, Fyxy € Lo ()/(\ » x I) is represented by

(¢:id,¥)
—_—

(M: %1, X)) (X1 x [0, 1]: X1 x {0}, Xy x {1}) —— Ko x I.

Our goal is to show that

ér, (Indaps(F«(y)) = ér, (Indaps(y))

the equality involving £ being trivial, as we shall explain.
Call R; : X, 1—~> BI'iand R, : X » — BT, the classifying maps for the respective universal
coverings and let f : 'y — T’ be the homomorphism induced by F,

f=Fo:mX) =T - n(X) =

We are assuming that f is injective. Notice that the diagram
(7.16) X —F— X,
RIJ( le
Bf
BI'y —— BI,

commutes up to homotopy. As for F and F x Id, we will not distinguish between R; and
R; x1d on X; x [0, 1]. Consider now

Z = (-M)u(X; x[0,1])
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and the classifying map

ry = (R10¢)|_|R1:Z—>BF1.
Recall our explicit description of &r, (y), given in (7.13):
(7.17) éry (y) = tr, (Indaps (D9 + C(r1))

with G(r;) the von Neumann Mishchenko bundle associated to ri and C; the Hilsum-
Skandalis perturbation associated to
Y : X! —> X, and id: X; —> X,
and with values in the flat bundle ¢(r;).® Consider now ér, (Fyy). By definition Fyy is
defined in terms of a I';-covering of Z. We pause a moment and describe this I';-covering:
it is obtained by pulling-back ET', through the map
((Ryo F)od)U (Ryo F): Z — BT,.

By (7.16) above, this is the same as the I';-covering on Z obtained by pulling-back ET,
through
ry:=((Bf oR)) o) U(Bf oRy): Z — BT,.

Put it differently:

(7.18) rp=Bfor:Z — BI;.

Thus, by definition,

(7.19) £r, (Fiy) = tr, (Indaps (DB 4 C(Bf o ry).

The Hilsum-Skandalis perturbation is associated once again to (v, 1d) but with values now
in the Mishchenko bundle ¢ (Bf o r;). We want to argue that these two I';-von Neumann
indices (two real numbers) are equal, viz.

tr, (Indaps (D9 + C(r1)) = 11, (Indpps (DIBES™) L C(Bf o ry)).

We remark, crucially, that thanks to (7.18) we are in exactly the same situation as in the
proof of Atiyah’s theorem, see (7.9), but for the presence of the two perturbations C(r;) and
C(Bf ory). However the two perturbations are associated to the same homotopy equivalence
on the boundary, i.e.,

Y :X] > X; and id: X; - X,
and so the difference is all in the Mishchenko bundles 4(r;) — Z and 4 (Bf or;) — Z. We
have already remarked, see (7.10), that

G(Bf or)) =9(r1) ®nr, NT2.

Thus, as for the proof of Atiyah’s theorem, Indaps(D9B/ ") + C(Bf o ry)) is obtained
from Indaps(D9"") + C(r;) by applying the induction homomorphism associated to
f : T1 — I',. Thus, applying once again [18, (2.3)], [37, Lemma 1.24]), we get finally

tr, (Indaps (D9 + C(r1))) = tr, (Indaps(DIB/°) 1 C(Bf o ry)),

() As already remarked around (7.13), this is the I'; -von Neumann index of a perturbed signature operator on the
I'1-covering of Z obtained by pulling back ET'; through r1. The perturbation, call it C, is induced through the
regular representation by C(r) as in [46, Section 2B1].
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that is,
&y () = §ry (Fuy).
The commutativity involving £ is clear: indeed, by definition, £(y) is the Fredholm index of
the signature operator on Z perturbed by the Hilsum-Skandalis perturbation C associated
to
1//:?{—))?1 and id:)?l—>i1,
but with values in the trivial bundle C x Z — Z. However, this is also & (Fyxy). Thus

§r (v) = &r,(Fuy) and §(y) = §(Fxy),

so that
ar, (y) = ar, (Fxy),
as required. O

An immediate consequence of the discussion above is the infinite cardinality of the struc-
ture set.

COROLLARY 7.6. — Let X be a Cheeger space of dimension 40 — 1, £ > 1, such
that w1(X) has an element of finite order and ix : m(X) — m (),(\) is injective. There
exist elements x; € Lpg,q ()? x 1), j € Z, such that a(x;) # a(x;) fori # j. Consequently,
the elements 0(x;)(1) are all distinct in Sgq ()/(\). In particular

| Sea(X)] = oo.
If X is Witt and has depth one we can prove a sharper result:

REMARK 12. — Write 9(x;)(t) = []\//Tj i) )/(\] € SBQ()’(\) with f; a transverse stratified
homotopy equivalence. If X is a Witt space of depth one, then we claim that M; is not
stratified diffeomorphic to My for i # k. Indeed, let

(#sid, f;
—_—

xi = (W X. 3 L (X x[0.1: £ x {03, K x {1}) > £ x [0.1]

and consider «(x;). This is the difference of two numbers: one is the Von Neumann-index
on the total space of a Galois I'-covering with boundary and the other is the usual index
on the base of such Galois covering. We point out that the operators we are considering
are invertible on the boundary because they have been perturbed by the Hilsum-Skandalis
perturbation. We now write the APS-index formula, upstairs and downstairs, following [47],
and take the difference; we find ourselves with the Cheeger-Gromov rho invariant of the
signature operator of M; U (—)/(\ ) pertubed by the Hilsum-Skandalis perturbation associated
to f;. Now we proceed as in [44, Section 10], taking an e-concentrated Hilsum-Skandalis
perturbation and letting ¢ | 0. We then obtain, finally, that «(x;) is equal to the difference
of the Cheeger-Gromov rho-invariants of M; and X. Since a(x;) # a(xg) fori # k we
can conclude that the Cheeger-Gromov rho-invariants of JTJ\, and JT/I\k are indeed different,
and the statement follows from the stratified diffeomorphism invariance of the Cheeger-
Gromov rho invariant on Witt spaces of depth 1, established in [47]. For more on numeric
rho invariants we refer the reader to [7, §].
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REMARK 13. — If X has depth one we can use van Kampen’s theorem to see that the
map 7, (X ) — m (X ) induced by inclusion is an isomorphism if and only if the link of the
singular stratum of Xis simply connected (i.e., Xis supernormal). For X of arbitrary depth,
using Remark 11 in the setting of simply connected links lets us argue as above to see that
torsion in the fundamental group of any ‘closed stratum’ Y forces | Seo ()/(\ )| = oo. Indeed
note that the condition on fundamental groups is superseded by the injective map

L(Zm1(Y))[3] — Leo(XN)[L].
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