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Ring systems are key pharmacophores in drugs and bioactive 
natural products and have found high prevalence among more 
than 95% of marketed drugs1,2. Two-dimensional (2D) aro-

matic rings such as benzene and pyridine rank among the most com-
monly occurring scaffolds3,4. The three-dimensional (3D) aliphatic 
3-, 4-, 5- and 6-membered rings follow behind but have recently 
attracted increasing attention in drug discovery (Fig. 1a) due to their 
modest molecular weight, improved solubility and physicochemi-
cal profile5,6. Furthermore, this poorly populated chemical space 
offers unmatched opportunities in skeletal diversification at the core 
of diversity-oriented synthesis7. In this context, fused ring systems 
with hybrid 2D and 3D fragments, possessing unique structural and 
physicochemical properties, have emerged as important scaffolds in 
medicinal chemistry (Fig. 1b). For example, varenicline, based on a 
hybrid 2D/3D fused 6−6−5−6 ring, has been marketed to treat smok-
ing addiction and MK-8886, based on a hybrid 2D/3D fused 6−5−3 
ring, has been invented by Merck for the treatment of type 2 diabetes 
mellitus and has recently entered clinical trials8. Additionally, many 
other compounds containing fused 2D/3D rings are currently under 
pre-clinical validation or clinical trials9–14. However, the preparation 
of such polycyclic molecules—especially those featuring high ring 
strain—often exhibits low efficiency and often requires elaborate 
synthetic efforts, which is a rate-limiting factor in drug discovery 
and development15,16. To this end, the advancement of general and 
straightforward synthetic methods towards fused 2D/3D rings fea-
turing readily available feedstock resources, good generality and high 
reaction efficiency/selectivity is of great interest.

The de novo synthesis of ring systems is often based on cyclo-
addition reactions. The exergonic cycloadditions of 1,3-dienes with 
alkenes, capable of generating various ring systems, are amongst 

the most fundamental transformations in synthetic chemis-
try17,18. Recently, this classical realm has witnessed rapid advance-
ments owing to the introduction of aromatics as reactants by the 
visible-light energy-transfer process19–33. Stemming from our 
reported [4 + 2]-dearomative cycloaddition between aza-arenes 
and alkenes29, we questioned whether the established reactiv-
ity could be diverted towards a cascade dearomative cycloaddi-
tion/rearrangement reaction forming unusual fused 2D/3D rings  
(Fig. 1c). In this context, quinolines are recognized as suitable reac-
tants due to the potentially divergent ortho/para/meta cycloaddi-
tion reactivity and the innate presence of pharmaceutically relevant 
N-heterocycles. More specifically, the carbocyclic ring of quino-
lines is initially proposed to couple with alkenes in a [2 + 2] fashion 
under energy-transfer conditions. This endergonic process will lead 
to an enthalpy increased and more reactive vinylpyridine interme-
diate, which could easily undergo further cycloadditions or rear-
rangements by a consecutive energy transfer, thus leading to diverse 
sp3-carbon-rich ring systems34. This proposed cascade dearomative 
cycloaddition/rearrangement (CDACR) reaction offers an ideal 
approach towards pyridine-fused 2D/3D rings. It is worth noting 
that, despite the fact that the intramolecular photochemical [2 + 2] 
cycloaddition of a benzenoid ring has been disclosed35–37 and its 
great potential was demonstrated in natural product synthesis38–41, 
the intermolecular variants—that are obviously more challenging—
are rarely investigated in modern synthetic chemistry. In addition, 
provided that the transformation could proceed, this reaction will 
further encounter major regio- and diastereo-selectivity issues, as 
inferior diastereocontrol is a general problem in the intermolecular 
[2 + 2] cycloaddition of various aromatics, such as benzothiophene22 
and indole42,43. Overall, from the perspective of both synthetic 
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method development and its potential contribution to drug discov-
ery, employing aromatics in cycloadditions and harnessing a consec-
utive transformation could lead to intriguing domains of chemical 
space, in compliance with the idea of diversity-oriented synthesis 
and skeletal diversity44–50. In this Article, we report the realization of 
this concept by two types of highly efficient and selective intermo-
lecular cascade dearomative cycloaddition/rearrangement reaction 
of quinoline derivatives with alkenes. These reactions commence 
with an energy transfer (EnT)-enabled [2 + 2] cycloaddition of 
quinolines, with chloro or ester substitutions at the benzenoid rings, 
and are followed by either a second EnT-enabled cyclopropanation 
or an EnT-enabled cyclobutane rearrangement. The two consecu-
tive EnT processes provide a straightforward approach for accessing 
synthetically challenging pyridine-fused polycyclic rings. The phar-
maceutically relevant 3D 6-, 5-, 4- or 3-membered rings could be 
directly elaborated through one-shot but cascade transformations.

Results
Reaction development. In line with the previous report on dearo-
mative [4 + 2] cycloaddition of quinolines with alkenes29, this work 
started with 6-chloroquinoline (1a) and 2-chloropropene (2a), in 
the presence of the photosensitizer [Ir(dF(CF3)ppy)2(dtbbpy)][PF6] 
(Ir-F, 2 mol%) (dF(CF3)ppy, 3,5-difluoro-2-[5-(trifluoromethyl)-
2-pyridinyl-N]phenyl-C; dtbby, 4,4′-di-tert-butyl-2,2′-bipyridyl) 
and HCl (2 equiv.), using 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) 
as solvent51, under the irradiation of blue light-emitting diodes 
(LEDs). As a result, a structurally unique pyridine-fused 6−5−4−3 
ring system (3a), which features five stereocentres—of which two 
are contiguous quaternary—was produced in good yield (78% 
yield) and with high diastereoselectivity (92:8 diastereomeric ratio 
(d.r.)), whereas the [4 + 2] cycloaddition product was not observed 
(Fig. 2a). Notably, the substrates 1a and 2a and the photosensitizer 
Ir-F are all commercially available; conversely, the produced highly 
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strained fused ring 3a is hardly accessible through conventional 
synthetic methods. To enhance the reproducibility of this reaction 
and improve the user-friendliness, key reaction parameters were 
examined to assess their influence on the yields52. Accordingly, the 
concentration of substrates, moisture and scale-up did not show 
any notable influence on the outcome. By contrast, the reaction was 
negatively affected with high oxygen levels, high temperature or 
low light intensity. Next, methyl quinoline-8-carboxylate (1b) and 
vinyl acetate (2b) were subjected to the same reaction conditions 
thus furnishing a new type of polycyclic product, a fused 6−4−6 
ring system (4) with excellent yield (97%) and as a single diastereo-
isomer (Fig. 2b). Two contiguous all-carbon quaternary centres as 

the bridgeheads of the 3D 4- and 6-membered rings are efficiently 
generated in this reaction. Control experiments revealed that both 
the visible light and the photosensitizer were mandatory for these 
two transformations.

Mechanistic investigation. With respect to the reaction in 
Fig. 2a, this transformation was likely to be initiated by an 
energy-transfer-mediated dearomative [2 + 2] cycloaddition 
between 1a and 2a (ref. 53). This gave the cinnamyl chloride ana-
logue intermediate I (Fig. 2a), which was also detected by NMR 
spectroscopy. A subsequent homolytic bond dissociation of C−Cl 
by a second energy-transfer event furnished a triplet radical pair 
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(from II to III). The following C−C and C−Cl bond formations 
furnished the terminal product 3a. Using 6-fluoroquinoline instead 
of the 6-chloro congener 1a, a double [2 + 2] cycloaddition prod-
uct 3b was isolated, which provided strong evidence for the cascade 
energy-transfer process (Fig. 2a). Notably, all the ring formation 
processes proceeded in a highly diastereoselective fashion.

We investigated the mechanism of the [2 + 2] cycloaddition/
cyclopropanation sequence by performing density functional 
theory calculations on the reaction between 6-chloroquinoline 
(1a) and 2-chloropropene (2a) (Fig. 3). Energy transfer from the 
excited photosensitizer to protonated quinoline 1A yields the triplet 
3A, which readily reacts with 2-chloropropene (2a, labelled as B in 
Fig. 3 for clarity) via 3TS-1 on the triplet surface to form the first 
C–C bond with an activation free energy of 12.0 kcal mol−1. As the 
open-shell singlet (OSS) surface lies slightly (1–2 kcal mol−1) below 
the triplet (T) surface in energy in the vicinity of the resulting birad-
ical intermediate 3C, 3C is most likely to undergo intersystem cross-
ing (ISC) to the OSS biradical 1C. The OSS surface crosses with the 
closed-shell singlet (CSS) surface at two minimum-energy crossing 
points (MECPs): MECP-1, which leads back to separated reactants 
and MECP-2, which furnishes the formal [2 + 2] cycloadduct. The 
chemo- and diastereo-selectivity of the reaction are therefore con-
trolled by the rate of ISC and the OSS→CSS MECPs.

The second C–C bond formation through MECP-2 yields [2 + 2] 
cycloadduct 1D, which is 1.4 kcal mol−1 more stable than its diaste-
reomer 1D-alt. Energy transfer to adduct 1D under the reaction 
conditions gives rise to the triplet 3D, which can either fragment 
via 3TS-2 to revert back to 3C or undergo homolytic C–Cl cleavage 
via 3TS-3 (ref. 54). The latter process is favoured with a low activa-
tion free energy of 5.4 kcal mol−1, compared to 12.4 kcal mol−1 for 
the C–C fragmentation. The resulting triplet radical pair 3E is more 
stable than its diastereomer 3E-alt as the chlorine atom prefers to 

stay at the less sterically congested convex face of the fused 6-4 ring 
system (Supplementary Fig. 13 and Supplementary Table 5). Finally, 
3E collapses to the CSS product 1F through MECP-3, forming both 
the cyclopropane ring and the C–Cl bond. Due to the loss of aroma-
ticity and the strained cyclopropane structure, 1F is 29.8 kcal mol−1 
higher in free energy than the starting materials 1A and B. Despite 
this, the formation of 1F is irreversible as the triplet state from 1F is 
too high in energy to be formed with the triplet sensitizer used for 
these reactions.

The reaction in Fig. 2b of methyl quinoline-8-carboxylate (1b) 
with vinyl acetate (2b) was proposed to proceed through a concep-
tually similar energy-transfer-mediated dearomative [2 + 2] path-
way, leading to a vinylcyclobutane (IV). A cascade energy-transfer 
process triggers the ring rearrangement to produce a kinetically 
stable fused ring 4.

Scope and limitation. Next, we evaluated the generality of these 
two cascade dearomative [2 + 2] cycloaddition/rearrangement 
reactions. With respect to the [2 + 2] cycloaddition/cyclopropa-
nation, commercially available 2-chloropropene derivatives were 
first examined and provided the corresponding fused 6−5−4−3 
rings (3, 5 and 6) in good yields and diastereoselectivities (Fig. 4). 
An array of single-step prepared 2-chloroalkenes are compatible, 
demonstrating an excellent functionality tolerance, such as esters 
(7–11), an ether (12), fluorinated alkyl and aryl moieties (11–13), a 
sulfonamide derivative of the drug probenecid (14), a biphenyl (15), 
a benzenesulfonyl compound (16), a malonate (17), a pyridine (18) 
and an amide (19). 1,1-Dichloroethylene and trichloroethylene also 
worked smoothly thus providing polychlorinated products 20 and 
21 with good results, whereas no conversion was observed using 
tetrachloroethylene (Supplementary Fig. 14). Comparable reac-
tion outcomes were observed by using bromo-substituted alkenes 
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(22–25). As shown in Fig. 5, the quinoline scope of this [2 + 2] 
cycloaddition/cyclopropanation reaction was further evaluated. As 
a result, 6-chloroquinolines with additional substituents at any of 
the 2-, 3- or 4-positions exhibited excellent compatibility (26–36). 
The topology of the fused ring products was expanded by using tri-
cyclic quinoline-derivative substrates (37–39). Notably, introducing 
one more substituent at the 5-, 7- or 8-position of 6-chloroquinoline 
did not hamper the reaction efficiency, thus furnishing the fused 
2D/3D rings with three (40 and 41) or four (42) quaternary cen-
tres. For instance, 42 with one all-carbon quaternary centre and 
three fluorinated/chlorinated ones was obtained in good yield and 
high diastereoselectivity. 7-Chloroquinoline proved amenable to 
this [2 + 2] cycloaddition/cyclopropanation reaction (product 43) 
while 5- or 8-chloroquinoline did not lead to detectable amounts 
of products (Supplementary Fig. 14). Pleasingly, compounds 6 and 
41 afforded suitable crystalline specimens and the correspond-
ing X-ray structures are displayed to illustrate the configuration 
of the fused rings. The scope of the cascade dearomative [2 + 2] 
cycloaddition/rearrangement is presented in Fig. 6. The two adja-
cent quaternary centres (44 and 45) were formed in a highly effi-
cient and syn-diastereoselective fashion, even in the presence of  

trifluoromethyl (44) or chloro (45) groups. Substitution at the pyri-
dyl fragment was also compatible (46–50), targeting the desired 
product in moderate to good yields (58–82%). Good functional 
group tolerance was also observed in this transformation (51–59): 
alkenes (52, 57 and 59), an alkyne (53), a chlorinated arene (54) and 
a polyfluorinated alkyl (55) proved compatible with the protocol.

Synthetic application. Gram-scale reactions and derivatization 
of the obtained fused 6−5−4−3 and 6−4−6 rings were conducted 
(Fig. 7). Starting from the commercial feedstock 6-chloroquinoline 
and 2-bromopropene, 1.23 g of 22 was produced in 72% yield, which 
was comparable with the outcome of the corresponding small-scale 
reaction. In the presence of Pd(PPh3)4, under the irradiation of 
blue LEDs, 22 was converted to a rearomatization product (60). A 
nucleophile, lithium morpholin-4-ide could also trigger a rearoma-
tization process by providing 61. These two-step sequences from a 
halogenated quinoline and an alkene to 60 and 61 can be recognized 
as formal cross-electrophilic couplings. The strategy was applied 
towards the synthesis of an advanced intermediate (62) of CXCR7 
receptor chemokine antagonists, offering a straightforward route 
towards highly decorated quinolines55,56. Compound 24 can also 
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be synthesized in gram scale and, after treatment with tBuOK, was 
converted into 63 featuring a spirocyclic epoxypropane moiety. The 
meta-chloroperbenzoic acid-mediated chemoselective oxidation of 
44 gave the pyridine N-oxide 64 without competitive epoxidation 
of the cyclohexene moiety. A cyano moiety was introduced (65) by 
a subsequent Reissert–Henze reaction. Hydrolysis of 51 provided 

solid 66 whose structure was resolved by X-ray analysis, thus con-
firming the 6-4–6 tricyclic structure.

Conclusions
We herein introduced two types of energy-transfer-mediated cas-
cade dearomative [2 + 2] cycloaddition/rearrangement (CDACR) 
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reaction which could provide facile access to pyridine-fused 
2D/3D ring systems. Tailor-made substitution at the quinoline 
framework could divert the second energy-transfer event towards 
either cyclopropanation or cyclobutane rearrangement, delivering 
5–4–3-membered fused or 4–6-membered fused rings, respectively. 
Extremely high structural complexity was directly elaborated from 
readily available quinolines and alkenes by means of two consecutive 
energy-transfer events, mediated by an iridium-based photosen-
sitizer. High reaction efficiency and excellent diastereoselectivity, 
which are challenging within the intermolecular dearomative [2 + 2] 
cycloaddition arsenal, have been observed. Furthermore, compared 
to the conventional cycloaddition reactions, this method using aro-
matics as reactants and harnessing a consecutive transformation 
leads to an intriguing chemical space. Given the high prevalence 
of pyridine-fused 2D/3D rings in drug discovery, we anticipate this 
method will facilitate the efficient synthesis of such scaffolds.

Methods
Representative procedure for the [2 + 2] cycloaddition/cyclopropanation 
cascade. An oven-dried 5 ml Schlenk tube was charged with the appropriate 
6-chloroquinoline (1.0 equiv.), the appropriate haloalkene (2.0 or 5.0 equiv.), HCl 
(2.0 equiv., 4 M in 1,4-dioxane) and [Ir(dF(CF3)ppy)2(dtbbpy)][PF6] (2 mol%) 
and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 0.2 M). The reaction mixture was 
degassed using two freeze–pump–thaw cycles. After the mixture was thoroughly 
degassed and filled with argon, the Schlenk tube was tightly sealed and stirred 
while under irradiation with 30 W blue LEDs (λmax = 450 nm) for 14–24 h 
(monitored by thin-layer chromatography). The reaction was quenched with 
saturated aqueous NaHCO3 and extracted with CH2Cl2 (3 times, 10 ml each time). 
The organic phases were combined and concentrated under reduced pressure. 1H 
NMR analysis of the crude reaction mixture gave the d.r. values. The analytically 
pure product was obtained by flash chromatography on silica gel (n-pentane/
EtOAc, n-pentane/Et2O or CH2Cl2/MeOH as eluent).

Representative procedure for the [2 + 2] cycloaddition/rearrangement 
cascade. An oven-dried 5 ml Schlenk tube was charged with the appropriate 
8-quinoline ester (1.0 equiv.), the appropriate vinyl ester (5.0 equiv.), HCl (2.0 
equiv., 4 M in 1,4-dioxane) and [Ir(dF(CF3)ppy)2(dtbbpy)][PF6] (2 mol%) and 
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 0.2 M). The reaction mixture was 
degassed using two freeze–pump–thaw cycles. After the mixture was thoroughly 
degassed and filled with argon, the Schlenk tube was tightly sealed and stirred 
while under irradiation with 30 W blue LEDs (λmax = 450 nm) for 48 h. The reaction 
was quenched with saturated aqueous NaHCO3 and extracted with CH2Cl2 (3 
times, 10 ml each time). The organic phases were combined and concentrated 
under reduced pressure. 1H NMR analysis of the crude reaction mixture gave the 
d.r. values. The analytically pure product was obtained by flash chromatography on 
silica gel (n-pentane/EtOAc or n-pentane/acetone as eluent).

Data availability
Materials and methods, experimental procedures, mechanistic studies, 
computational studies, sensitivity assessment and NMR spectra are available in the 
Supplementary Information or from the corresponding authors upon reasonable 
request. CIF crystallographic data files and xyz coordinates of the optimized 
structures are available as Supplementary Information and Supplementary Data 
1–7. Crystallographic data for the structures reported in this Article have been 
deposited at the Cambridge Crystallographic Data Centre, under deposition 
numbers CCDC 2088365 (6), 2088367 (26), 2088368 (29), 2088369 (30), 2088370 
(41) and 2088371 (66). Copies of the data can be obtained free of charge via https://
www.ccdc.cam. ac.uk/structures/.
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