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Facile access to fused 2D/3D rings via
intermolecular cascade dearomative [2 + 2]
cycloaddition/rearrangement reactions of
quinolines with alkenes
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Hybrid fused two-dimensional/three-dimensional (2D/3D) rings are important pharmacophores in drugs owing to their unique
structural and physicochemical properties. Preparation of these strained ring systems often requires elaborate synthetic effort and
exhibits low efficiency, thus representing a limiting factor in drug discovery. Here, we report two types of energy-transfer-mediated
cascade dearomative [2+2] cycloaddition/rearrangement reactions of quinoline derivatives with alkenes, which pro-
vide a straightforward avenue to 2D/3D pyridine-fused 6—5—4—3- and 6—4—6-membered ring systems. Notably, this
energy-transfer-mediated strategy features excellent diastereoselectivity that bypasses the general reactivity and selectivity
issues of photochemical [2 + 2] cycloaddition of various other aromatics. Tuning the aza-arene substitutions enabled selective
diversion of the iridium photocatalysed energy transfer manifold towards either cyclopropanation or cyclobutane-rearrangement

products. Density functional theory calculations revealed a cascade energy transfer scenario to be operative.

natural products and have found high prevalence among more
than 95% of marketed drugs'”. Two-dimensional (2D) aro-
matic rings such as benzene and pyridine rank among the most com-
monly occurring scaffolds**. The three-dimensional (3D) aliphatic
3-, 4-, 5- and 6-membered rings follow behind but have recently
attracted increasing attention in drug discovery (Fig. 1a) due to their
modest molecular weight, improved solubility and physicochemi-
cal profile*®. Furthermore, this poorly populated chemical space
offers unmatched opportunities in skeletal diversification at the core
of diversity-oriented synthesis’. In this context, fused ring systems
with hybrid 2D and 3D fragments, possessing unique structural and
physicochemical properties, have emerged as important scaffolds in
medicinal chemistry (Fig. 1b). For example, varenicline, based on a
hybrid 2D/3D fused 6—6—5—6 ring, has been marketed to treat smok-
ing addiction and MK-8886, based on a hybrid 2D/3D fused 6—5—-3
ring, has been invented by Merck for the treatment of type 2 diabetes
mellitus and has recently entered clinical trials®. Additionally, many
other compounds containing fused 2D/3D rings are currently under
pre-clinical validation or clinical trials’""*. However, the preparation
of such polycyclic molecules—especially those featuring high ring
strain—often exhibits low efficiency and often requires elaborate
synthetic efforts, which is a rate-limiting factor in drug discovery
and development'>'®. To this end, the advancement of general and
straightforward synthetic methods towards fused 2D/3D rings fea-
turing readily available feedstock resources, good generality and high
reaction efficiency/selectivity is of great interest.
The de novo synthesis of ring systems is often based on cyclo-
addition reactions. The exergonic cycloadditions of 1,3-dienes with
alkenes, capable of generating various ring systems, are amongst

Ring systems are key pharmacophores in drugs and bioactive

the most fundamental transformations in synthetic chemis-
try'”*%. Recently, this classical realm has witnessed rapid advance-
ments owing to the introduction of aromatics as reactants by the
visible-light energy-transfer process’”**. Stemming from our
reported [4+2]-dearomative cycloaddition between aza-arenes
and alkenes”, we questioned whether the established reactiv-
ity could be diverted towards a cascade dearomative cycloaddi-
tion/rearrangement reaction forming unusual fused 2D/3D rings
(Fig. 1¢). In this context, quinolines are recognized as suitable reac-
tants due to the potentially divergent ortho/para/meta cycloaddi-
tion reactivity and the innate presence of pharmaceutically relevant
N-heterocycles. More specifically, the carbocyclic ring of quino-
lines is initially proposed to couple with alkenes in a [2 + 2] fashion
under energy-transfer conditions. This endergonic process will lead
to an enthalpy increased and more reactive vinylpyridine interme-
diate, which could easily undergo further cycloadditions or rear-
rangements by a consecutive energy transfer, thus leading to diverse
sp3-carbon-rich ring systems®. This proposed cascade dearomative
cycloaddition/rearrangement (CDACR) reaction offers an ideal
approach towards pyridine-fused 2D/3D rings. It is worth noting
that, despite the fact that the intramolecular photochemical [2 +2]
cycloaddition of a benzenoid ring has been disclosed" and its
great potential was demonstrated in natural product synthesis*~"!,
the intermolecular variants—that are obviously more challenging—
are rarely investigated in modern synthetic chemistry. In addition,
provided that the transformation could proceed, this reaction will
further encounter major regio- and diastereo-selectivity issues, as
inferior diastereocontrol is a general problem in the intermolecular
[2 +2] cycloaddition of various aromatics, such as benzothiophene*
and indole***. Overall, from the perspective of both synthetic
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Fig. 1| Overview of 2D/3D scaffolds. a, Occurrence of selected rings in drugs. b, Examples of bioactive compounds and natural products with fused
2D/3D rings. ¢, Comparison between conventional cycloadditions and cascade dearomative cycloaddition/rearrangement (CDACR) reactions. Int.,
intermediate; Pro., product; Sub., substrate; FDA, US food and drug administration.

method development and its potential contribution to drug discov-
ery, employing aromatics in cycloadditions and harnessing a consec-
utive transformation could lead to intriguing domains of chemical
space, in compliance with the idea of diversity-oriented synthesis
and skeletal diversity*~". In this Article, we report the realization of
this concept by two types of highly efficient and selective intermo-
lecular cascade dearomative cycloaddition/rearrangement reaction
of quinoline derivatives with alkenes. These reactions commence
with an energy transfer (EnT)-enabled [2+2] cycloaddition of
quinolines, with chloro or ester substitutions at the benzenoid rings,
and are followed by either a second EnT-enabled cyclopropanation
or an EnT-enabled cyclobutane rearrangement. The two consecu-
tive EnT processes provide a straightforward approach for accessing
synthetically challenging pyridine-fused polycyclic rings. The phar-
maceutically relevant 3D 6-, 5-, 4- or 3-membered rings could be
directly elaborated through one-shot but cascade transformations.
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Results

Reaction development. In line with the previous report on dearo-
mative [4+ 2] cycloaddition of quinolines with alkenes”, this work
started with 6-chloroquinoline (1a) and 2-chloropropene (2a), in
the presence of the photosensitizer [Ir(dF(CF,)ppy),(dtbbpy)][PF]
(Ir-E 2mol%) (dF(CF,)ppy, 3,5-difluoro-2-[5-(trifluoromethyl)-
2-pyridinyl-N]phenyl-C; dtbby, 4,4'-di-tert-butyl-2,2’-bipyridyl)
and HCI (2 equiv.), using 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP)
as solvent”, under the irradiation of blue light-emitting diodes
(LEDs). As a result, a structurally unique pyridine-fused 6—5—4-3
ring system (3a), which features five stereocentres—of which two
are contiguous quaternary—was produced in good yield (78%
yield) and with high diastereoselectivity (92:8 diastereomeric ratio
(d.r.)), whereas the [4+ 2] cycloaddition product was not observed
(Fig. 2a). Notably, the substrates 1a and 2a and the photosensitizer
Ir-F are all commercially available; conversely, the produced highly
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Fig. 2 | Dearomative cycloadditions of quinoline derivatives with alkenes. a, Cascade dearomative [2 + 2] cycloaddition/cyclopropanation reaction

and the rapid assessment for its key reaction parameters. b, Cascade dearomative [2 + 2] cycloaddition/rearrangement reaction. [Ir-F]1=Ir[dF(CF;)
ppyl,Ldtbbpy](PF,) (CAS No. 870987-63-6). HFIP =1,1,1,3,3,3-hexafluoropropan-2-ol. One representative enantiomer of the racemic product is presented
for all throughout the text. Ac, acetyl; [A], acid additive; c, concentration; d.r., diastereomeric ratio; EnT, energy transfer; |, light intensity; T, temperature.

strained fused ring 3a is hardly accessible through conventional
synthetic methods. To enhance the reproducibility of this reaction
and improve the user-friendliness, key reaction parameters were
examined to assess their influence on the yields™. Accordingly, the
concentration of substrates, moisture and scale-up did not show
any notable influence on the outcome. By contrast, the reaction was
negatively affected with high oxygen levels, high temperature or
low light intensity. Next, methyl quinoline-8-carboxylate (1b) and
vinyl acetate (2b) were subjected to the same reaction conditions
thus furnishing a new type of polycyclic product, a fused 6—4—6
ring system (4) with excellent yield (97%) and as a single diastereo-
isomer (Fig. 2b). Two contiguous all-carbon quaternary centres as
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the bridgeheads of the 3D 4- and 6-membered rings are efficiently
generated in this reaction. Control experiments revealed that both
the visible light and the photosensitizer were mandatory for these
two transformations.

Mechanistic investigation. With respect to the reaction in
Fig. 2a, this transformation was likely to be initiated by an
energy-transfer-mediated ~ dearomative [2+2] cycloaddition
between 1a and 2a (ref. **). This gave the cinnamyl chloride ana-
logue intermediate I (Fig. 2a), which was also detected by NMR
spectroscopy. A subsequent homolytic bond dissociation of C—Cl
by a second energy-transfer event furnished a triplet radical pair

407


http://www.nature.com/natcatal

ARTICLES

NATURE CATALYSIS

TS/intermediate

MECP

A+B (D/
NS
-57.1 N

(-61.0) H

I Dearomative [2 + 2] cycloaddition

by 1st EnT

D D-alt F F-alt
Cyclopropanation |
by 2nd EnT

Fig. 3 | Calculated energy diagram. Values are in kcal mol™, obtained at the ®B97X-D/def2-TZVPP, SMD(HFIP)//wB97X-D/def2-SVP, SMD(HFIP) level
of theory for the [2 + 2] cycloaddition/cyclopropanation reaction sequence between 6-chloroquinoline and 2-chloropropene. T, triplet; CSS, closed-shell
singlet; OSS, open-shell singlet; MECP, minimum-energy crossing point; alt, alternative diastereomer.

(from II to III). The following C—C and C—Cl bond formations
furnished the terminal product 3a. Using 6-fluoroquinoline instead
of the 6-chloro congener 1a, a double [242] cycloaddition prod-
uct 3b was isolated, which provided strong evidence for the cascade
energy-transfer process (Fig. 2a). Notably, all the ring formation
processes proceeded in a highly diastereoselective fashion.

We investigated the mechanism of the [2+2] cycloaddition/
cyclopropanation sequence by performing density functional
theory calculations on the reaction between 6-chloroquinoline
(1a) and 2-chloropropene (2a) (Fig. 3). Energy transfer from the
excited photosensitizer to protonated quinoline *A yields the triplet
*A, which readily reacts with 2-chloropropene (2a, labelled as B in
Fig. 3 for clarity) via *TS-1 on the triplet surface to form the first
C-C bond with an activation free energy of 12.0kcalmol™. As the
open-shell singlet (OSS) surface lies slightly (1-2kcalmol™) below
the triplet (T) surface in energy in the vicinity of the resulting birad-
ical intermediate *C, *C is most likely to undergo intersystem cross-
ing (ISC) to the OSS biradical 'C. The OSS surface crosses with the
closed-shell singlet (CSS) surface at two minimum-energy crossing
points (MECPs): MECP-1, which leads back to separated reactants
and MECP-2, which furnishes the formal [2+ 2] cycloadduct. The
chemo- and diastereo-selectivity of the reaction are therefore con-
trolled by the rate of ISC and the OSS—CSS MECPs.

The second C-C bond formation through MECP-2 yields [2 4 2]
cycloadduct 'D, which is 1.4 kcalmol™' more stable than its diaste-
reomer 'D-alt. Energy transfer to adduct 'D under the reaction
conditions gives rise to the triplet *D, which can either fragment
via *TS-2 to revert back to *C or undergo homolytic C-Cl cleavage
via *TS-3 (ref. **). The latter process is favoured with a low activa-
tion free energy of 5.4kcalmol™, compared to 12.4kcalmol™! for
the C-C fragmentation. The resulting triplet radical pair *E is more
stable than its diastereomer *E-alt as the chlorine atom prefers to
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stay at the less sterically congested convex face of the fused 6-4 ring
system (Supplementary Fig. 13 and Supplementary Table 5). Finally,
*E collapses to the CSS product 'F through MECP-3, forming both
the cyclopropane ring and the C-Cl bond. Due to the loss of aroma-
ticity and the strained cyclopropane structure, 'F is 29.8 kcalmol™!
higher in free energy than the starting materials 'A and B. Despite
this, the formation of 'F is irreversible as the triplet state from 'F is
too high in energy to be formed with the triplet sensitizer used for
these reactions.

The reaction in Fig. 2b of methyl quinoline-8-carboxylate (1b)
with vinyl acetate (2b) was proposed to proceed through a concep-
tually similar energy-transfer-mediated dearomative [2+2] path-
way, leading to a vinylcyclobutane (IV). A cascade energy-transfer
process triggers the ring rearrangement to produce a kinetically
stable fused ring 4.

Scope and limitation. Next, we evaluated the generality of these
two cascade dearomative [242] cycloaddition/rearrangement
reactions. With respect to the [2+2] cycloaddition/cyclopropa-
nation, commercially available 2-chloropropene derivatives were
first examined and provided the corresponding fused 6—5—4-3
rings (3, 5 and 6) in good yields and diastereoselectivities (Fig. 4).
An array of single-step prepared 2-chloroalkenes are compatible,
demonstrating an excellent functionality tolerance, such as esters
(7-11), an ether (12), fluorinated alkyl and aryl moieties (11-13), a
sulfonamide derivative of the drug probenecid (14), a biphenyl (15),
a benzenesulfonyl compound (16), a malonate (17), a pyridine (18)
and an amide (19). 1,1-Dichloroethylene and trichloroethylene also
worked smoothly thus providing polychlorinated products 20 and
21 with good results, whereas no conversion was observed using
tetrachloroethylene (Supplementary Fig. 14). Comparable reac-
tion outcomes were observed by using bromo-substituted alkenes
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Fig. 4 | Substrate scope of [2 + 2] cycloaddition/cyclopropanation with respect to the halogenated alkenes. Reaction conditions: quinolines (0.2 mmol),
alkenes (0.4 mmol or 1.0 mmol), HCI (0.4 mmol, 4 M in 1,4-dioxane) and Ir-F (2mol%) in HFIP (1ml) were stirred for 16 h under argon and irradiated with

30 W blue LEDs (4

max

(22-25). As shown in Fig. 5, the quinoline scope of this [2+42]
cycloaddition/cyclopropanation reaction was further evaluated. As
a result, 6-chloroquinolines with additional substituents at any of
the 2-, 3- or 4-positions exhibited excellent compatibility (26-36).
The topology of the fused ring products was expanded by using tri-
cyclic quinoline-derivative substrates (37-39). Notably, introducing
one more substituent at the 5-, 7- or 8-position of 6-chloroquinoline
did not hamper the reaction efficiency, thus furnishing the fused
2D/3D rings with three (40 and 41) or four (42) quaternary cen-
tres. For instance, 42 with one all-carbon quaternary centre and
three fluorinated/chlorinated ones was obtained in good yield and
high diastereoselectivity. 7-Chloroquinoline proved amenable to
this [2+42] cycloaddition/cyclopropanation reaction (product 43)
while 5- or 8-chloroquinoline did not lead to detectable amounts
of products (Supplementary Fig. 14). Pleasingly, compounds 6 and
41 afforded suitable crystalline specimens and the correspond-
ing X-ray structures are displayed to illustrate the configuration
of the fused rings. The scope of the cascade dearomative [2+2]
cycloaddition/rearrangement is presented in Fig. 6. The two adja-
cent quaternary centres (44 and 45) were formed in a highly effi-
cient and syn-diastereoselective fashion, even in the presence of
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=450nm). For experimental details, see Supplementary Methods. d.r., diastereomeric ratio; pTol, para-tolyl.

trifluoromethyl (44) or chloro (45) groups. Substitution at the pyri-
dyl fragment was also compatible (46-50), targeting the desired
product in moderate to good yields (58-82%). Good functional
group tolerance was also observed in this transformation (51-59):
alkenes (52, 57 and 59), an alkyne (53), a chlorinated arene (54) and
a polyfluorinated alkyl (55) proved compatible with the protocol.

Synthetic application. Gram-scale reactions and derivatization
of the obtained fused 6—5—4—3 and 6—4—6 rings were conducted
(Fig. 7). Starting from the commercial feedstock 6-chloroquinoline
and 2-bromopropene, 1.23 g of 22 was produced in 72% yield, which
was comparable with the outcome of the corresponding small-scale
reaction. In the presence of Pd(PPh;),, under the irradiation of
blue LEDs, 22 was converted to a rearomatization product (60). A
nucleophile, lithium morpholin-4-ide could also trigger a rearoma-
tization process by providing 61. These two-step sequences from a
halogenated quinoline and an alkene to 60 and 61 can be recognized
as formal cross-electrophilic couplings. The strategy was applied
towards the synthesis of an advanced intermediate (62) of CXCR7
receptor chemokine antagonists, offering a straightforward route
towards highly decorated quinolines™*. Compound 24 can also
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Fig. 7 | Gram-scale reactions and synthetic transformations. a, Generation of highly decorated quinolines via rearomatization. b, Exploitation of the
rearomatization strategy forming a key intermediate towards a CXCR7 receptor antagonist. ¢, Gram-scale [2 + 2] cycloaddition/rearrangement reaction
followed by epoxidation. d, Synthetic elaboration of the pyridine core via oxidation and Reissert-Henze reaction. e, Ester group hydrolysis and X-ray
structural determination of 66.  Contains approximately 15% of an inseparable isomeric product. Reaction conditions: (1) Pd(PPh;), (5mol%), PPh,

(10 mol%), BuOK (2.0 equiv.), PrOH (0.1 M), 450 nm LEDs, room temperature; (2) morpholine (2.0 equiv.), "BuLi (2.0 equiv.), tetrahydrofuran (THF)

(0.4 M), 0°C then 22 (1.0 equiv.), THF (0.2 M), 0°C; (3) 1-benzyl-1,4-diazepane (2.0 equiv.), "BuLi (2.0 equiv.), THF (0.4 M), 0 °C then 22 (1.0 equiv.),
THF (0.2 M), 0°C; (4) 'BuOK (2.0 equiv.), THF (0.17 M), =40 °C; (5) mCPBA (3.0 equiv.), CH,Cl, (0.1 M), room temperature; (6) TMSCI (3.0 equiv.), BzCl
(2.0 equiv.), CH,Cl, (0.1M), 0°C to room temperature; (7) NaOH (5.0 equiv.), MeOH:H,O (4:1, 0.1M), 50 °C. For experimental details, see Supplementary
Methods. Bn, benzyl; Bz, benzoy!; d.r., diastereomeric ratio; mCPBA, meta-chloroperbenzoic acid; TMS, trimethylsilyl.

be synthesized in gram scale and, after treatment with ‘BuOK, was
converted into 63 featuring a spirocyclic epoxypropane moiety. The
meta-chloroperbenzoic acid-mediated chemoselective oxidation of
44 gave the pyridine N-oxide 64 without competitive epoxidation
of the cyclohexene moiety. A cyano moiety was introduced (65) by
a subsequent Reissert-Henze reaction. Hydrolysis of 51 provided
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solid 66 whose structure was resolved by X-ray analysis, thus con-
firming the 6-4-6 tricyclic structure.

Conclusions
We herein introduced two types of energy-transfer-mediated cas-

cade dearomative [242] cycloaddition/rearrangement (CDACR)

am
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reaction which could provide facile access to pyridine-fused
2D/3D ring systems. Tailor-made substitution at the quinoline
framework could divert the second energy-transfer event towards
either cyclopropanation or cyclobutane rearrangement, delivering
5-4-3-membered fused or 4-6-membered fused rings, respectively.
Extremely high structural complexity was directly elaborated from
readily available quinolines and alkenes by means of two consecutive
energy-transfer events, mediated by an iridium-based photosen-
sitizer. High reaction efficiency and excellent diastereoselectivity,
which are challenging within the intermolecular dearomative [2 4 2]
cycloaddition arsenal, have been observed. Furthermore, compared
to the conventional cycloaddition reactions, this method using aro-
matics as reactants and harnessing a consecutive transformation
leads to an intriguing chemical space. Given the high prevalence
of pyridine-fused 2D/3D rings in drug discovery, we anticipate this
method will facilitate the efficient synthesis of such scaffolds.

Methods

Representative procedure for the [2 + 2] cycloaddition/cyclopropanation
cascade. An oven-dried 5ml Schlenk tube was charged with the appropriate
6-chloroquinoline (1.0 equiv.), the appropriate haloalkene (2.0 or 5.0 equiv.), HCI
(2.0 equiv,, 4M in 1,4-dioxane) and [Ir(dF(CF,)ppy),(dtbbpy)][PF,] (2 mol%)
and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 0.2 M). The reaction mixture was
degassed using two freeze-pump-thaw cycles. After the mixture was thoroughly
degassed and filled with argon, the Schlenk tube was tightly sealed and stirred
while under irradiation with 30 W blue LEDs (4,,,, =450 nm) for 14-24h
(monitored by thin-layer chromatography). The reaction was quenched with
saturated aqueous NaHCO; and extracted with CH,CI, (3 times, 10 ml each time).
The organic phases were combined and concentrated under reduced pressure. '"H
NMR analysis of the crude reaction mixture gave the d.r. values. The analytically
pure product was obtained by flash chromatography on silica gel (n-pentane/
EtOAc, n-pentane/Et,0 or CH,Cl,/MeOH as eluent).

Representative procedure for the [2 + 2] cycloaddition/rearrangement

cascade. An oven-dried 5ml Schlenk tube was charged with the appropriate
8-quinoline ester (1.0 equiv.), the appropriate vinyl ester (5.0 equiv.), HCI (2.0
equiv., 4 M in 1,4-dioxane) and [Ir(dF(CF;)ppy),(dtbbpy)][PF] (2mol%) and
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 0.2 M). The reaction mixture was
degassed using two freeze-pump-thaw cycles. After the mixture was thoroughly
degassed and filled with argon, the Schlenk tube was tightly sealed and stirred
while under irradiation with 30 W blue LEDs (1,,,,=450nm) for 48 h. The reaction
was quenched with saturated aqueous NaHCO, and extracted with CH,Cl, (3
times, 10 ml each time). The organic phases were combined and concentrated
under reduced pressure. '"H NMR analysis of the crude reaction mixture gave the
d.r. values. The analytically pure product was obtained by flash chromatography on
silica gel (n-pentane/EtOAc or n-pentane/acetone as eluent).

Data availability

Materials and methods, experimental procedures, mechanistic studies,
computational studies, sensitivity assessment and NMR spectra are available in the
Supplementary Information or from the corresponding authors upon reasonable
request. CIF crystallographic data files and xyz coordinates of the optimized
structures are available as Supplementary Information and Supplementary Data
1-7. Crystallographic data for the structures reported in this Article have been
deposited at the Cambridge Crystallographic Data Centre, under deposition
numbers CCDC 2088365 (6), 2088367 (26), 2088368 (29), 2088369 (30), 2088370
(41) and 2088371 (66). Copies of the data can be obtained free of charge via https://
www.ccde.cam. ac.uk/structures/.
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