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ABSTRACT: Cyclopropanated allylboration reagents participate in homo-
allylation reactions of aliphatic and aromatic aldehydes, generating allylic-
substituted alkenes that are difficult to produce via other methods. In studying
the effect of cyclopropane substituents, we discovered that an aryl substituent

completely changes the outcome to cyclopropylcarbinylation, as if the N
cyclopropylcarbinyl fragment were transferred intact. However, density
functional theory computation suggested a novel mechanism involving ring opening and reclosure, which is supported by

experimental evidence.

llylboration and crotylboration of aldehydes are well-

studied reactions, and a variety of asymmetric variants
have been developed, taking advantage of well-organized
closed transition states that result in predictable stereochemical
outcomes (Scheme 1).! However, homoallylation and
homocrotylation reactions are less developed.” Our group
has prepared cyclopropanated allylboration reagents (cyclo-
propylcarbinylboronates), which homoallylate aldehydes
through Zimmerman—Traxler transition states’ that are
apparently analogous to allylboronates (TS-I, TS-II).* During
the course of a substituent scope investigation (see the
preceding manuscript), we observed an anomalous result that
has led us to a revised mechanistic hypothesis.” While
substitution of an alkyl group at the y-position of the boronate
has led to alkyl-containing “homocrotylation” products with
high stereospecificity (Scheme 1), we were surprised to

Scheme 1. Allylboration Versus Homoallylation with
Cyclopropanated Allylboron Reagents
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Scheme 3. Cyclopropylcarbinylation Versus Homoallylation with cis-Phenyl Reagent 13
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Scheme 4. Homoallylation with trans-Methyl Reagent 3
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observe that substitution of a phenyl group at this position led
to cyclopropylcarbinylation (6 — 7). Herein, we present
mechanistic evidence that this transformation occurs through
cyclopropane ring opening and reclosure.

To explore potential mechanisms for this anomalous result,
we undertook density functional theory (DFT) calculations
(@B97X-D/6-311++G(d,p)/SMD (CH,CL,))° (see Scheme
2). Interestingly, the dichloroborane intermediate 6’ derived
from PhBCI, activation of 6 was predicted to react through
modified Zimmerman—Traxler transition state TS-V, in which
the cyclopropane breaks and reforms in a concerted
asynchronous fashion. To test this prediction experimentally,
we prepared the deuterium-labeled reagent 6-d,. Consistent
with the DFT-predicted mechanism, the deuterated methylene
in the cyclopropane of boronate 6-d, was replaced by a
nondeuterated methylene in the cyclopropane of product 7-d,.
To assign the relative stereochemistry of 7, a crystalline
analogue was prepared; p-nitrobenzaldehyde (11) reacted in
good yield and was further derivatized as nitrophenylcarbamate
12. The X-ray crystal structure of 12 (Figure Sl in the
Supporting Information (SI)) showed that the relative
stereochemistry of the cyclopropylcarbinylation product was
consistent with the DFT-predicted mechanism, in which the
aldehyde substituent is oriented equatorially in the chair
transition state TS-V.

To further study the effect of the aromatic substituent, we
prepared a cis analogue of 6-d, (13, Scheme 3a). This reagent
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Scheme §. Reversal of the Cyclopropylcarbmylatlon/ Homoallylation Selectivity by Electronic Tuning
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afforded the analogous cyclopropylcarbinylation product 14,
but, in this case, as a 2.3:1 cis/trans cyclopropane mixture.
Interestingly, some homoallylation product 15 was also
obtained, as well as a small amount of 1,1-disubstituted alkene
16. The position of the deuterium labels was again consistent
with a cyclopropane opening/closing mechanism, but, in this
case, the presence of hydride shift product 16 and some cis —
trans isomerization of the cyclopropane suggested a
carbocationic intermediate. In fact, DFT calculations
(wB97X-D/6-311++G(d,p)/SMD (CH,CL)) (Scheme 3b)
also predicted the cationic intermediate. According to the
calculations, cis reagent 13 reacts through a slightly higher
initial activation barrier than trans reagent 6 (AG = 18.9 kcal/
mol, vs 18.0 kcal/mol); however, instead of a barrierless
reclosure of the cyclopropane, the cis reagent recloses the ring
through a second energy maximum TS-VIII (AG = 6.4 kcal/
mol) to afford 14cis. The benzylic carbocation intermediate 20
(AG 4.2 kcal/mol) between these two maxima can
alternatively reclose cyclopropane with concomitant rotation
of the phenyl ring (TS-IX, AG = 6.0 kcal/mol) to afford
14trans. To form the observed minor homoallylation product
15, cation 20 is predicted to undergo a concerted carbon
migration/B—C bond cleavage step (TS-VII, AG = 13.9 kcal/
mol).
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To probe the mechanistic factors that could favor
homoallylation versus cyclopropylcarbinylation pathways, we
used analogous DFT calculations (wB97X-D/6-311++G(d,p)/
SMD (CH,Cl,)) to evaluate the reaction pathway of known
methyl-substituted reagent (3; see Scheme 4a). Although
previous DFT calculations in the gas phase had suggested a
concerted transition state (TS II, Scheme 1),*" the current
computational method, including a solvation model, suggested
a two-step pathway. After a ring opening transition state TS X
(AG = 16.0 kcal/mol; see Scheme 4b) that is slightly lower in
energy than TS V, a carbocation intermediate 22 is formed at
7.7 kcal/mol, but, in this case, the alkyl shift/B—C cleavage
step (TS-XI) has a lower barrier than that in the cis-phenyl
analogue (AAG = 1.9 kcal/mol, versus 9.7 kcal/mol; see
Schemes 3b and 4b). In 22, the secondary carbocation center
is only 2.0 A from the methylene to which it was previously
bonded (as opposed to 2.4 A for benzylic carbocation 20) and
the adjacent methine carbon is distorted from a tetrahedral
geometry. Together, these measurements suggest some
nonclassical character in this carbocation; i.e., 22 leans toward
an alkyl shift along the trajectory leading to the observed
homoallylation product S’ (Scheme Sa). Therefore, the
homoallylation preference observed with alkyl-substituted
reagents may reflect the tendency of the initially formed
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carbocation to undergo alkyl shift (2° — 2°), whereas benzylic
cation 20 is more stable than secondary alkyl cation 24 and
lacks this tendency, favoring attack by the B—C electron pair
directly at the benzylic carbocation. Note that the DFT
calculations overestimate the energy of a homoallylation
pathway, compared with cyclopropylcarbinylation (Figures
S2 and S3 in the SI) both for phenyl and methyl substituents;
the observed homoallylation/cyclopropylcarbinylation ratios
(1:2.8 for 15/14 and only homoallylation for 5) are higher
than those expected from the calculated energies. However, the
calculations are qualitatively consistent with the observation
that homoallylation is more favored with the alkyl substituent
versus aryl.

Based on the calculated geometry for cis-phenyl-derived
intermediate 20, we noted that some destabilization may result
from steric interactions between the phenyl ring and the
methylene attached to boron (Scheme Sa, red hydrogens). We
hypothesized that this destabilization may contribute to
disfavoring cyclopropylcarbinylation with 13, but not trans
reagent 6. To test whether further destabilization of the
benzylic cation could shift the balance in favor of
homoallylation, we prepared the boronate analogue 36
containing electron-poor arene (Scheme Sb). Although heating
was required for any reaction to occur with nitrobenzaldehyde
(11), homoallylation product 37 was isolated exclusively with
64% vyield, with no cyclopropylcarbinylation product 39 or
hydride-shift-derived 38. By comparison, 13 afforded 62%
cyclopropylcarbinylation product 42 with the same aldehyde.
Control experiments with 13 showed that temperature was not
responsible for the change in selectivity.

In summary, we have discovered and mechanistically
characterized a selectivity switch that occurs in alkyl- versus
aryl-substituted cyclopropylcarbinylboron reagents. Whereas
alkyl substituents are compatible with homoallylation, aromatic
substituents alter the course of the reaction, promoting
cyclopropylcarbinylation through a ring-opening/ring-closing
mechanism, and this effect can be reversed with electron-
withdrawing arene substituents. Together with computational
studies, these data suggest that the balance between these two
pathways is dependent on the stabilization of cationic character
on the cyclopropane carbon y to boron.
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