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Abstract—The frontiers of Supercomputers are pushed by
novel discrete accelerators. Accelerators such as GPUs are em-
ployed to enable faster execution of Machine Learning, Scientific
and High-Performance Computing applications. However, it has
been harder to gain increased parallelism in traditional work-
loads. This is why more focus has been into Task Graphs. AMD’s
Directed Acyclic Graph Execution Engine (DAGEE) allows the
programmer to define a workload in fine-grained tasks, and the
system handles the dependencies at the lower-level. We evaluate
DAGEE with the Winograd-Strassen Matrix Multiplication algo-
rithm and show that DAGEE achieves on average 15.3% speed
up over the traditional matrix multiplication algorithm.

While using DAGEE this may increase the contention among
kernels due to the increased amount of parallelism. However,
AMD allows the programmer to set the number of active
Compute Unit (CU) by masking. This fine-grain scaling allows
the system software to enable only the required number of
Computation Units within a GPU. Using this mechanism we
develop a Runtime that masks CU’s for each task during a task
graph execution and partitions each task into their separate CU’s,
reducing overall contention and energy consumption. We show
that our CU Masking runtime on average reduces energy by
18%.

Index Terms—DAGEE, Windograd-Strassen, Task Graph Ex-
ecution, Compute Unit Masking, Resource Partitioning, Energy
Efficient

I. INTRODUCTION

The process of executing kernels on a GPU have largely

remained the same since the beginning of general purpose

execution. Device kernels are comprised of a grid of Thread

Blocks and each thread block is scheduled to a Compute Unit

(CU) on the GPU. The host produces and enqueues a kernel

in a stream, while the gpu consumes and dequeues from the

same stream, one after the other. Improvements have been

made, such as, concurrent execution of kernels from separate

streams and device side kernel launches, but the limitations in

host to device streams remain unaddressed. This means, if a

* Joint First Authors

programmer wants to increase parallelism across kernels, they

must ensure dependencies are met across streams, increasing

the complexity of their code and burdens the programmer to

know all the nitty-gritty details of architecture and system

stack.

AMD’s Direct Acyclic Graph Execution Engine (DAGEE)

[1] offers a novel programming paradigm, through tasked

based execution. Here the programmer only need to specify

the nodes and edges of a task graph, and the library enforces

dependencies in the driver level queues. However, with in-

creased kernel concurrency also affects hardware utilization.

This is due to Thread blocks of various kernels contending

for the same CU. This may potentially be alleviated through

Compute unit Masking thereby improving energy efficiency

of the system. CU Masking is a technique that allows a

programmer to mark off which CUs a kernel is able to execute

on.

This work aims to show DAGEE is a viable execution

paradigm and combined with CU Masking, can lead to in-

creased utilization and energy efficiency of the GPU. Our

paper makes the following contributions:

1) Implementation and performance analysis of Winograd-

Strassen Matrix Multiplication algorithm using DAGEE.

2) Power and Energy Characterization of Resource Parti-

tion through Compute Unit Masking Policies.

3) Implement Compute Unit Masking at Runtime for Task

Graph Executions

II. TASK GRAPHS

Works like [2] popularized data-flow programming models.

A workload is implemented as an acyclic graph as shown in

Figure 1. In this implementation, the nodes can be operations

such as CPU functions and GPU kernels. The edges represent

the dependencies among the tasks. The number of required

active thread blocks will depend on number of tasks that

are available to be scheduled after their dependencies are
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successfully met. More recent works like [1], [3] proposed

novel data-flow programming paradigms to exploit heteroge-

neous systems with CPUs and GPUs such as Nvidia DGX [4],

Summit [5], and Exascale Supercomputers such as Frontier [6]

and El Capitan [7].

Benefits of task graphs: By dividing the workload into

task graphs, we can effectively control the granularity of

necessary compute requirements. Thereby assist in making

attuned decisions on allocation to improve speedup and energy

efficiency of the system. In the next section, we shall discuss

how Compute Unit Masking could help in saving energy while

executing tasks of different compute intensities.

Fig. 1: Sample DAGEE Task Graph

III. DIRECTED ACYCLIC GRAPH EXECUTION ENGINE

(DAGEE)

DAGEE [1] is a C++ library that provides a simplified

interface to implement applications as task graphs as described

in Section section II. The nodes in the task graph can be a

computation or a memory operation, while the edges represent

dependencies between tasks.

DAGEE is high-level Programmer API that utilizes AMD’s

C-runtime library called Asynchronous Task and Memory

Interface (ATMI) runtime under the hood. ATMI internally

calls ROCm stack. Finally, ROCm has all the low-level device

drivers, queues, and Data Structures necessary to launch and

execute computation on AMD GPUs and CPUs.

Let us assume that we have an application which has two

CPU, two GPU and two memory copy tasks respectively. The

dependencies among all these tasks is as shown in Figure 1.

Figure 2 illustrates the implementation of Figure 1 in DAGEE.

We observe that the implementation involves four stages.

1) Initialize executors: In this step, we instantiate execu-

tors necessary to successfully schedule all the tasks in

the application.There are three types of Executors CPU,

GPU, and Memory Copy.

2) Register GPU Kernels and CPU functions: We regis-

ter the CPU function and GPU kernel pointers with the

respective CPU or GPU executors.

void dagee_example()
{

dagee::CpuExecutorAtmi cpuEx;
dagee::GpuExecutorAtmi gpuEx;
dagee::MemCopyExecutorAtmi memEx;
auto dagEx = dagee::makeMixedDagExecutor(cpuEx, gpuEx, memEx);
auto *dag = dagEx.makeDAG();

auto initCpu = cpuEx.registerKernel<...>(&initFuncCpu);
auto comptueGpu = gpuEx.registerKernel<...>(&computeKernelGpu);
auto finalCpu = cpuEx.registerKernel<...>(&finalFuncCpu);

auto topCpuTask = dag->addNode(cpuEx.makeTask(initCpu,...));
auto h2dCopyTask = dag->addNode(memEx.makeTask(src, dest, size));
auto leftGpuTask = dag->addNode(gpuEx.makeTask(comptueGpu,...));
auto rightGpuTask = dag->addNode(gpuEx.makeTask(comptueGpu,...));
auto d2hCopyTask = dag->addNode(memEx.makeTask(src, dest, size));
auto bottomCpuTask = dag->addNode(cpuEx.makeTask(finalCpu,...));

dag->addEdge(topCpuTask, h2dCopyTask);
dag->addFanOutEdges(h2dCopyTask, {rightGpuTask, leftGpuTask});
dag->addFanInEdges({rightGpuTask, leftGpuTask}, d2hCopyTask);
dag->addEdge(d2hCopyTask, bottomCpuTask);
dagEx.execute(dag);

}

Fig. 2: Sample DAGEE program
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Fig. 3: Software stack for implementing DAGs in AMD GPUs.

The application defines the task graph using DAGEE’s API,

which then wraps the individual functions with their arguments

in a task. The tasks and their dependencies get passed to ATMI

which puts them into their respective queues,along with their

barrier packets to enforce dependencies, that the rocm stack

cam dispatch to the hardware.

3) Create Task Nodes: Each task will include information

regarding the registered kernel and necessary parameters
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to successfully execute the task including kernel launch

parameters and CPU threads.

4) Specify Task dependency: The dependency will stall

a task from execution until all the dependencies are

met. This dependency information is essential since it

provides an insight into the required parallelism and

memory to make informed decisions in order to alleviate

performance degradation of the system.

A. System Stack

The high-level overview of DAGEE Software Stack is

shown in Figure 3. The application implemented as a task

graph can have CPU, GPU or Memory copy tasks. We know

from Figure 2 that each node in the task graph is created with

an executor, and each task will consist of a registered Function

pointer along with the required function arguments and de-

pendency information. DAGEE internally uses Asynchronous

Task and Memory Interface (ATMI) to effectively manage task

queues and launch tasks. ATMI dispatches the ready tasks

on to the AMD hardware resources through ROCm [8] as

the dependencies are met. ATMI uses Barrier Packets (BP)

to effectively enforce dependencies that are set by DAGEE.

Once the kernel and barrier packets are enquired in their

respective queues, the ROCm runtime dispatches the packets

to the respective resource.

IV. COMPUTE UNIT MASKING

A compute unit (CU) is the GPU’s core hardware

unit. AMD allows programmers to control which CU’s

are active for thread block scheduling for each specific

queue. This is done through the HSA runtime API

hsa amd queue cu set mask(queue, size,mask) This

function call sets the active CU’s all kernels that are dispatch

to this queue. Each

Compute Units are then grouped together into a cluster

called a Shader Engine (SE). These clusters are hidden from

the programmer, they impact performance and power usage

depending on how they are activated as discussed in subsec-

tion IV-A. This leads to two masking policies; Distributed and

Packed

Distributed: This policy aims to balance active CU across

Shader Engines. This allows for minimal contention between

thread blocks within a single kernel.

Packed: Activates CUs within a single SE before activated

another SE. The goal of this packed is to keep as many

SE engines unoccupied as possible, leaving space reducing

contention between concurrent kernels.

A. Power and Energy Characterization

To characterize power and energy consumption of different

number of active CUs, we run a simple matrix multiplication

kernel that uses 128 thread blocks, to make sure that the full

GPU is occupied, while measuring the execution time and

average power consumption.

Figure 5a Shows the power consumption for distributed and

packed polices. For Distributed we see large dips at 31 and

(a) Distributed

(b) Packed

Fig. 4: AMD MI 50 Has 4 Shader Engines with 15 CUs

each, for a total of 60 CUs. Figure shows 18 active CUs for

Distributed and Packed Policies

0 5 10 15 20 25 30 35 40 45 50 55 60

40

60

80

100

120

140

160

180

200

Number of Active CUs

P
o
w

er
(W

)

Distributed Packed

(a) Power Consumption. The difference between power curves in-
dicated that there is some form of power gating involved within
each Shader Engine. Packed policy, on average, used less power than
Distributed masking policy.

0 5 10 15 20 25 30 35 40 45 50 55 60

10−0.2

100

100.2

100.4

100.6

Number of Active CUs

N
o

rm
al

iz
ed

E
n

er
g

y

Distributed Packed

(b) Normalized Energy to 60 active CUs. This shows that reducing
the number of CUs reduces the overall energy in both Distributed
and Packed Policies. Indicated by all points below the dotted line.

Fig. 5: CU Masking Power and Energy analysis

59 active CUs. At 31 CUs, each shader engine has half of
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its CUs active. We believe this dip in power is due to power

gating within the shader engine. Where the first and second

half’s are on a separate power gate. We see the same dips in

the packed policy at 7, 22, 37, and 52 active CUs. This shows

that it is possible to isolate concurrent kernels to individual

SEs and, as long as they each use half of the SE, will still

reduce total power consumption. However, for a single kernel

it is still more efficient to use packed policy. We also notice

that the larger power savings come from the higher number of

active CUs, at lower active CUs the power savings diminish.

Indicating that we should not have only a few CUs active for

the best efficiency.

Although CU Masking may reduce power consumption,

it also impacts the execution time due to limited compute

resources. Therefore, In Figure 5b, we show the normalized

energy of active CUs with respect to all 60 active CUs. We

highlight the normal energy usage by the dashed line. Here,

we see reducing the number of active CUs has the potential

to save energy overall, with energy savings up to 46%. Saving

diminish exponentially as the number of active CUs decreases,

due to the performance impact of reduced compute resources

being greater than the power savings. However, even at 15

active CUs, energy is reduced by 12% in packed policy. This

allows us to separate each SE into its own ”logical” GPU, in

which we explore in the following section.

V. COMPUTE UNIT MASKING DURING TASK GRAPH

EXECUTION

The last section we described the mechanism that allows

us to Mask CUs for a single kernel. However, when using

DAGEE, multiple kernels are allowed to be queued up in

various queues as long as their dependencies are met and

dependencies are enforced using barrier packets. Therefore,

CU masking is unable to work at the application level because

the user has no control over when a kernel is dispatched.

A. Compute Unit Runtime

For our Compute Unit Masking runtime, we modified

ATMI so that when a kernel packet is dispatched to a

queue, we dispatch two extra barrier packets in front to

the kernel packet to enforce CU Masks. In the first barrier

packet, we assign a callback function that executes once

that packet is consumed by the runtime. The runtime then

allocates the mask for the upcoming kernel packet. We use

a round robin scheduling for both packed and distributed

and packed policies. The second barrier packet is assigned

a dependency that enforces the kernel to wait until the cu

mask callback function is finished executing, which it sig-

nals using hsa signal store relaxed(signal, 0). Figure 6

describes our runtime and CU partitioning for four tasks.

For our Round Robin scheduler, we split the GPU into four

groups for both packed and distributed masking policy. We

decided to use four groups because the MI50 has four shader

engines which lowers the complexity. We leave evaluation of

more complex schedulers to future work.

Packed Distributed

T1 BP BPT2 BP BPT3 BP BPT4 BP BP

hsa_amd_cu_set_mask(queue,size,mask)
hsa_signal_store_relaxed(signal,0);CU

 M
as

k 
Ca

llb
ac

k Round Robin Scheduler

Mask = SE [ i++ % 4]
If Packed 

If Distributed
Mask = DE [ i++ % 4]

Fig. 6: (Below) Two barrier packets are required to set cu

masks per kernel packet. The first packet is assigned a call

back handler that sets the cu mask on its callback function.

The second is make sure the kernel packet is not dispatched

before the cu mask is set. (Above) We show how CUs are

partition among four separate tasks for packed and distributed

policies

VI. EVALUATION

For our evaluation methodology we use the compute unit

masking runtime described in Figure 6 on a system equipped

with AMD EPYC 7302 and MI50 GPUs, using ROCM v4.1.1.

We breakdown our evaluation into two parts, Performance and

Energy Efficiency.

A. Winograd Strassen Algorithm

Winograd-Strassen is an combinatorial matrix multiplication

algorithm that breaks down a matrix into a series of steps. Each

step computing on a portion of the final matrix. These steps re-

duce the overall complexity from O(n3) to O(n2.81). Not only

does it reduce the number of operations, there is an increase

of addition operations and a decrease in multiplication ones.

This means in practice, the algorithm is faster due to the short

latency of addition operations compared to multiplication.

We use 3 workloads to evaluate this work - standard Matrix

Multiply algorithm, Sequential Strassen, and DAG Strassen.

Sequential Strassen, performs the algorithm sequentially while

DAG Strassen exploits the parallelism in the dag in Fig-

ure 8. We run experiments for matrix sizes 4096x4096 to

32768x32768. We do not show the results for matrix sizes

smaller than 4096x4096 since there isn’t enough parallelism

that is necessary, the initialization overhauls the execution

time.

B. DAGEE Performance

On average we see a speed up of 5.8% for sequential

Strassen and 15.3% speed up for DAG Strassen as shown in

Figure 7, without our CU Masking Runtime. This shows the

benefit of implementing algorithms in DAGEE to exploit their

task level parallelism. However, for both Sequential and DAG
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Fig. 7: Speed Up observed with different sizes of Matrix

Multiplication operation. The results are normalized against

standard GPU Matrix Multiplication.

Fig. 8: Figure from [9]. This dependency graph is used as a

reference to implement Strassen Matrix Multiply in DAGEE.

Strassen, we do not see the performance benefits for smaller

sizes. This is due to the difference in initialization costs in

sequential and DAGEE implementations, therefore we do not

show those results. Sequential Strassen still sees a benefit due

to its lower complexity and use of more addition operations

than multiplication operations.

C. CU Masking Runtime Energy Analysis

Next, we evaluate our CU Masking runtime and Round

Robin Scheduling for power and energy savings in Figure 9.

On average the Baseline uses 67W while both packed and

distributed use only 50W of power. The power remains con-

stant for all sizes. This is due to the fact that we only show

sizes that fully utilize the GPU. CU Masking uses much less

energy because each kernel has its own set of CUs, reducing

the amount of contention across kernels. This reduction in

power is one of the main reasons for the energy savings seen in

Figure 9b. On average, Packed has a 18% reduction of energy

compared to 16% for distributed. Again, it is more efficient

to pack the same kernel within a single CU if possible. Also,

larger matrices benefit more from CU Masking,

4096x4096 8192x8192 16384x16384 32768x32768
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P
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(a) Power consumed during Task-based Strassen Matrix Multiply.
Using CU Masking Policies greatly reduces the average power
consumption for larger matrices.
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(b) Normalized Energy to 60 active CUs. Overall, Packed policy uses
less energy than Distributed, this is due to less contention within a
Shader Engine.

Fig. 9: CU Masking Power and Energy analysis.

VII. RELATED WORKS

There has been previous works exploring dependency graph

execution and resource partition on GPUs. An overview of

these works is presented here.

Execution Graphs on GPUs: Recent works [1], [3],

[10] have proposed programming models and runtimes to

implement GPU-based execution graphs. LC-MEMENTO [10]

proposed novel memory models to efficient synchronization

of data blocks and task placement on heterogeneous systems

with CPUs and GPUs. DAGEE [1] is newly released task-

based runtime, we have not been able to find work using

DAGEE as the programming model. However, Nvidia has

a graph execution library called Cuda Graphs[11], which is

only supported on Nvidia GPUs. We evaluate our work with

DAGEE on AMD GPUs.

Winograd-Strassen Algorithm: Previous work have imple-

mented parallel versions of winograd-strassen on Nvidia GPUs

using concurrent streams.[9][12] Our work implements the

algorithm using a DAG, showcasing the performance benefit

of tasked based execution on AMD GPUs.

GPU Resource Partitioning: Resource partitioning using

AMD’s CU Masking has been shown to increase performance

for multi-tenancy in GPUs [13], [14]. This work aims to

showcase that CU Masking can be a viable technique to save

energy when applications are implemented as task graphs.

Efficient GPU scheduling: Coarse-grain efficient schedul-
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ing across multiple GPUs was demonstrated to be beneficial

in [15], [16]. Similarly, there are works that improved

performance within a single GPU with effective scheduling

of kernels and thread blocks [17], [18], [19], [20], [21],

[22]. However, these works do not consider the need to

enforce effective implementation methodologies to enable ef-

fective execution of workloads in System stack. Although LC-

MEMENTO [10] does propose novel programming models

to support heterogeneous task-graph applications, they do

not consider the effects of effective fine-grain utilization of

Compute Units. Other recent works [23], [24] have attempted

to identify solutions to make ML inference energy efficient.

VIII. CONCLUSION & FUTURE WORKS

In this work, we demonstrated the benefit of using Task

Graphs to improve Performance while using CU Masking

for resource partitioning to improve energy efficiency using

the Winograd-Strassen Matrix Multiplication algorithm. We

showed that by allowing concurrent execution of tasks, we

could increase the speedup of Matrix multiply by 15.3%.

Additionally, we were able to save up to 18% energy by using

CU-masking techniques to activate only the Compute Units

required to fulfill the ‘ready’ tasks.

A. DAGGEE with Larger workloads

This paper uses Matrix Multiplication as the only workload.

However, it is necessary to identify adoption of DAGEE and

CU-masking techniques in other workloads such as Machine

Learning (ML). We plan on integrating DAGEE along with

DAG Matrix Multiplication, DAG Pooling, DAG Reduction,

DAG convolution, and other popular linear algebraic func-

tional layers into TensorFlow and PyTorch to evaluate per-

formance and energy efficiency of future ML systems.

B. Task speculation

Furthermore, The task graph-based DAGEE programming

model can also be used to speculate critical execution path

and memory footprint to improve caching, paging, and task

placement.

C. CU Partitioning Policies

In this work, we only evaluate a naive round robin CU

Masking Partitioning scheme. This was to show that it is

possible to save energy during task graph execution. However,

it may be possible to increase energy efficiency through a more

complex approach. Our method equally partitioned the GPU

into four equal groups. However, it is possible to make each

group have a different number of active CUs. We can base the

number of CUs given to a task on number of thread blocks

launched, type of function being run, and number of available

CUs. These methods may improve the performance and energy

efficiency of task graph execution.
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