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Abstract—The frontiers of Supercomputers are pushed by
novel discrete accelerators. Accelerators such as GPUs are em-
ployed to enable faster execution of Machine Learning, Scientific
and High-Performance Computing applications. However, it has
been harder to gain increased parallelism in traditional work-
loads. This is why more focus has been into Task Graphs. AMD’s
Directed Acyclic Graph Execution Engine (DAGEE) allows the
programmer to define a workload in fine-grained tasks, and the
system handles the dependencies at the lower-level. We evaluate
DAGEE with the Winograd-Strassen Matrix Multiplication algo-
rithm and show that DAGEE achieves on average 15.3% speed
up over the traditional matrix multiplication algorithm.

While using DAGEE this may increase the contention among
kernels due to the increased amount of parallelism. However,
AMD allows the programmer to set the number of active
Compute Unit (CU) by masking. This fine-grain scaling allows
the system software to enable only the required number of
Computation Units within a GPU. Using this mechanism we
develop a Runtime that masks CU’s for each task during a task
graph execution and partitions each task into their separate CU’s,
reducing overall contention and energy consumption. We show
that our CU Masking runtime on average reduces energy by
18%.

Index Terms—DAGEE, Windograd-Strassen, Task Graph Ex-
ecution, Compute Unit Masking, Resource Partitioning, Energy
Efficient

I. INTRODUCTION

The process of executing kernels on a GPU have largely
remained the same since the beginning of general purpose
execution. Device kernels are comprised of a grid of Thread
Blocks and each thread block is scheduled to a Compute Unit
(CU) on the GPU. The host produces and enqueues a kernel
in a stream, while the gpu consumes and dequeues from the
same stream, one after the other. Improvements have been
made, such as, concurrent execution of kernels from separate
streams and device side kernel launches, but the limitations in
host to device streams remain unaddressed. This means, if a
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programmer wants to increase parallelism across kernels, they
must ensure dependencies are met across streams, increasing
the complexity of their code and burdens the programmer to
know all the nitty-gritty details of architecture and system
stack.

AMD’s Direct Acyclic Graph Execution Engine (DAGEE)
[1] offers a novel programming paradigm, through tasked
based execution. Here the programmer only need to specify
the nodes and edges of a task graph, and the library enforces
dependencies in the driver level queues. However, with in-
creased kernel concurrency also affects hardware utilization.
This is due to Thread blocks of various kernels contending
for the same CU. This may potentially be alleviated through
Compute unit Masking thereby improving energy efficiency
of the system. CU Masking is a technique that allows a
programmer to mark off which CUs a kernel is able to execute
on.

This work aims to show DAGEE is a viable execution
paradigm and combined with CU Masking, can lead to in-
creased utilization and energy efficiency of the GPU. Our
paper makes the following contributions:

1) Implementation and performance analysis of Winograd-
Strassen Matrix Multiplication algorithm using DAGEE.

2) Power and Energy Characterization of Resource Parti-
tion through Compute Unit Masking Policies.

3) Implement Compute Unit Masking at Runtime for Task
Graph Executions

II. TASK GRAPHS

Works like [2] popularized data-flow programming models.
A workload is implemented as an acyclic graph as shown in
Figure 1. In this implementation, the nodes can be operations
such as CPU functions and GPU kernels. The edges represent
the dependencies among the tasks. The number of required
active thread blocks will depend on number of tasks that
are available to be scheduled after their dependencies are
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successfully met. More recent works like [1], [3] proposed
novel data-flow programming paradigms to exploit heteroge-
neous systems with CPUs and GPUs such as Nvidia DGX [4],
Summit [5], and Exascale Supercomputers such as Frontier [6]
and El Capitan [7].

Benefits of task graphs: By dividing the workload into
task graphs, we can effectively control the granularity of
necessary compute requirements. Thereby assist in making
attuned decisions on allocation to improve speedup and energy
efficiency of the system. In the next section, we shall discuss
how Compute Unit Masking could help in saving energy while
executing tasks of different compute intensities.

Top
CPU task

Bottom
CPU task
Fig. 1: Sample DAGEE Task Graph

III. DIRECTED ACYCLIC GRAPH EXECUTION ENGINE
(DAGEE)

DAGEE [1] is a C++ library that provides a simplified
interface to implement applications as task graphs as described
in Section section II. The nodes in the task graph can be a
computation or a memory operation, while the edges represent
dependencies between tasks.

DAGEE is high-level Programmer API that utilizes AMD’s
C-runtime library called Asynchronous Task and Memory
Interface (ATMI) runtime under the hood. ATMI internally
calls ROCm stack. Finally, ROCm has all the low-level device
drivers, queues, and Data Structures necessary to launch and
execute computation on AMD GPUs and CPUs.

Let us assume that we have an application which has two
CPU, two GPU and two memory copy tasks respectively. The
dependencies among all these tasks is as shown in Figure 1.
Figure 2 illustrates the implementation of Figure 1 in DAGEE.
We observe that the implementation involves four stages.

1) Initialize executors: In this step, we instantiate execu-
tors necessary to successfully schedule all the tasks in
the application.There are three types of Executors CPU,
GPU, and Memory Copy.

Register GPU Kernels and CPU functions: We regis-
ter the CPU function and GPU kernel pointers with the
respective CPU or GPU executors.

2)
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void dagee_example()
{

4 Initialize Executors
dagee::CpuExecutorAtmi cpuEx;
dagee: :GpuExecutorAtmi gpuEx;
dagee: :MemCopyExecutorAtmi memEx;
auto dagEx = dagee::makeMixedDagExecutor(cpuEx, gpuEx, memEx);
\auto xdag = dagEx.makeDAG();

Ve

auto
auto
auto

/

auto
auto
auto
auto
auto

Quto

4 Specify dependency

dag->addEdge (topCpuTask, )

dag->addFanOutEdges ( , {rightGpuTask, leftGpuTask});
dag—>addFanInEdges({rightGpuTask, leftGpuTask}, );
dag—>addEdge( , bottomCpuTask);

\9agEx.execute(dag);

}

VAN

Register CPU functions and GPU kernels
initCpu = cpuEx.registerKernel<...>(&initFuncCpu);
comptueGpu = gpuEx.registerKernel<...>(&computeKernelGpu);
finalCpu = cpuEx.registerKernel<...>(&finalFuncCpu);

Create Task Nodes
topCpuTask = dag->addNode(cpuEx.makeTask(initCpu,...));
= dag->addNode (memEx.makeTask(src, dest, size)
leftGpuTask = dag—>addNode(gpuEx.makeTask(comptueGpu,...))
rightGpuTask = dag->addNode(gpuEx.makeTask(comptueGpu,...));
)
)

~

= dag—>addNode (memEx.makeTask(src, dest, siz
bottomCpuTask = dag—->addNode(cpuEx.makeTask(finalCpu, ...

~

-

Fig. 2: Sample DAGEE program
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Fig. 3: Software stack for implementing DAGs in AMD GPUs.
The application defines the task graph using DAGEE’s API,
which then wraps the individual functions with their arguments
in a task. The tasks and their dependencies get passed to ATMI
which puts them into their respective queues,along with their
barrier packets to enforce dependencies, that the rocm stack
cam dispatch to the hardware.

3) Create Task Nodes: Each task will include information
regarding the registered kernel and necessary parameters
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to successfully execute the task including kernel launch
parameters and CPU threads.

4) Specify Task dependency: The dependency will stall
a task from execution until all the dependencies are
met. This dependency information is essential since it
provides an insight into the required parallelism and
memory to make informed decisions in order to alleviate
performance degradation of the system.

A. System Stack

The high-level overview of DAGEE Software Stack is
shown in Figure 3. The application implemented as a task
graph can have CPU, GPU or Memory copy tasks. We know
from Figure 2 that each node in the task graph is created with
an executor, and each task will consist of a registered Function
pointer along with the required function arguments and de-
pendency information. DAGEE internally uses Asynchronous
Task and Memory Interface (ATMI) to effectively manage task
queues and launch tasks. ATMI dispatches the ready tasks
on to the AMD hardware resources through ROCm [8] as
the dependencies are met. ATMI uses Barrier Packets (BP)
to effectively enforce dependencies that are set by DAGEE.
Once the kernel and barrier packets are enquired in their
respective queues, the ROCm runtime dispatches the packets
to the respective resource.

IV. CoMPUTE UNIT MASKING

A compute unit (CU) is the GPU’s core hardware
unit. AMD allows programmers to control which CU’s
are active for thread block scheduling for each specific
queue. This is done through the HSA runtime API
hsa_amd_queue_cu_set_mask(queue, size, mask) This
function call sets the active CU’s all kernels that are dispatch
to this queue. Each

Compute Units are then grouped together into a cluster
called a Shader Engine (SE). These clusters are hidden from
the programmer, they impact performance and power usage
depending on how they are activated as discussed in subsec-
tion IV-A. This leads to two masking policies; Distributed and
Packed

Distributed: This policy aims to balance active CU across
Shader Engines. This allows for minimal contention between
thread blocks within a single kernel.

Packed: Activates CUs within a single SE before activated
another SE. The goal of this packed is to keep as many
SE engines unoccupied as possible, leaving space reducing
contention between concurrent kernels.

A. Power and Energy Characterization

To characterize power and energy consumption of different
number of active CUs, we run a simple matrix multiplication
kernel that uses 128 thread blocks, to make sure that the full
GPU is occupied, while measuring the execution time and
average power consumption.

Figure 5a Shows the power consumption for distributed and
packed polices. For Distributed we see large dips at 31 and
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Fig. 4: AMD MI 50 Has 4 Shader Engines with 15 CUs
each, for a total of 60 CUs. Figure shows 18 active CUs for
Distributed and Packed Policies
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(a) Power Consumption. The difference between power curves in-
dicated that there is some form of power gating involved within
each Shader Engine. Packed policy, on average, used less power than
Distributed masking policy.
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(b) Normalized Energy to 60 active CUs. This shows that reducing
the number of CUs reduces the overall energy in both Distributed
and Packed Policies. Indicated by all points below the dotted line.

Fig. 5: CU Masking Power and Energy analysis

59 active CUs. At 31 CUs, each shader engine has half of
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its CUs active. We believe this dip in power is due to power
gating within the shader engine. Where the first and second
half’s are on a separate power gate. We see the same dips in
the packed policy at 7, 22, 37, and 52 active CUs. This shows
that it is possible to isolate concurrent kernels to individual
SEs and, as long as they each use half of the SE, will still
reduce total power consumption. However, for a single kernel
it is still more efficient to use packed policy. We also notice
that the larger power savings come from the higher number of
active CUs, at lower active CUs the power savings diminish.
Indicating that we should not have only a few CUs active for
the best efficiency.

Although CU Masking may reduce power consumption,
it also impacts the execution time due to limited compute
resources. Therefore, In Figure 5b, we show the normalized
energy of active CUs with respect to all 60 active CUs. We
highlight the normal energy usage by the dashed line. Here,
we see reducing the number of active CUs has the potential
to save energy overall, with energy savings up to 46%. Saving
diminish exponentially as the number of active CUs decreases,
due to the performance impact of reduced compute resources
being greater than the power savings. However, even at 15
active CUs, energy is reduced by 12% in packed policy. This
allows us to separate each SE into its own “logical” GPU, in
which we explore in the following section.

V. COMPUTE UNIT MASKING DURING TASK GRAPH
EXECUTION

The last section we described the mechanism that allows
us to Mask CUs for a single kernel. However, when using
DAGEE, multiple kernels are allowed to be queued up in
various queues as long as their dependencies are met and
dependencies are enforced using barrier packets. Therefore,
CU masking is unable to work at the application level because
the user has no control over when a kernel is dispatched.

A. Compute Unit Runtime

For our Compute Unit Masking runtime, we modified
ATMI so that when a kernel packet is dispatched to a
queue, we dispatch two extra barrier packets in front to
the kernel packet to enforce CU Masks. In the first barrier
packet, we assign a callback function that executes once
that packet is consumed by the runtime. The runtime then
allocates the mask for the upcoming kernel packet. We use
a round robin scheduling for both packed and distributed
and packed policies. The second barrier packet is assigned
a dependency that enforces the kernel to wait until the cu
mask callback function is finished executing, which it sig-
nals using hsa_signal_store_relazed(signal,0). Figure 6
describes our runtime and CU partitioning for four tasks.

For our Round Robin scheduler, we split the GPU into four
groups for both packed and distributed masking policy. We
decided to use four groups because the MI50 has four shader
engines which lowers the complexity. We leave evaluation of
more complex schedulers to future work.
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Fig. 6: (Below) Two barrier packets are required to set cu
masks per kernel packet. The first packet is assigned a call
back handler that sets the cu mask on its callback function.
The second is make sure the kernel packet is not dispatched
before the cu mask is set. (Above) We show how CUs are
partition among four separate tasks for packed and distributed
policies

VI. EVALUATION

For our evaluation methodology we use the compute unit
masking runtime described in Figure 6 on a system equipped
with AMD EPYC 7302 and MI50 GPUs, using ROCM v4.1.1.
We breakdown our evaluation into two parts, Performance and
Energy Efficiency.

A. Winograd Strassen Algorithm

Winograd-Strassen is an combinatorial matrix multiplication
algorithm that breaks down a matrix into a series of steps. Each
step computing on a portion of the final matrix. These steps re-
duce the overall complexity from O(n?) to O(n?8!). Not only
does it reduce the number of operations, there is an increase
of addition operations and a decrease in multiplication ones.
This means in practice, the algorithm is faster due to the short
latency of addition operations compared to multiplication.

We use 3 workloads to evaluate this work - standard Matrix
Multiply algorithm, Sequential Strassen, and DAG Strassen.
Sequential Strassen, performs the algorithm sequentially while
DAG Strassen exploits the parallelism in the dag in Fig-
ure 8. We run experiments for matrix sizes 4096x4096 to
32768x32768. We do not show the results for matrix sizes
smaller than 4096x4096 since there isn’t enough parallelism
that is necessary, the initialization overhauls the execution
time.

B. DAGEE Performance

On average we see a speed up of 5.8% for sequential
Strassen and 15.3% speed up for DAG Strassen as shown in
Figure 7, without our CU Masking Runtime. This shows the
benefit of implementing algorithms in DAGEE to exploit their
task level parallelism. However, for both Sequential and DAG
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Fig. 7: Speed Up observed with different sizes of Matrix
Multiplication operation. The results are normalized against
standard GPU Matrix Multiplication.

Fig. 8: Figure from [9]. This dependency graph is used as a
reference to implement Strassen Matrix Multiply in DAGEE.

Strassen, we do not see the performance benefits for smaller
sizes. This is due to the difference in initialization costs in
sequential and DAGEE implementations, therefore we do not
show those results. Sequential Strassen still sees a benefit due
to its lower complexity and use of more addition operations
than multiplication operations.

C. CU Masking Runtime Energy Analysis

Next, we evaluate our CU Masking runtime and Round
Robin Scheduling for power and energy savings in Figure 9.
On average the Baseline uses 67W while both packed and
distributed use only 50W of power. The power remains con-
stant for all sizes. This is due to the fact that we only show
sizes that fully utilize the GPU. CU Masking uses much less
energy because each kernel has its own set of CUs, reducing
the amount of contention across kernels. This reduction in
power is one of the main reasons for the energy savings seen in
Figure 9b. On average, Packed has a 18% reduction of energy
compared to 16% for distributed. Again, it is more efficient
to pack the same kernel within a single CU if possible. Also,
larger matrices benefit more from CU Masking,

49

80 \ : I
’ —e— Baseline —=— Packed —e— Distributed ‘

S of e
5 60 .
g
L 50 e s

40 | | | |

4096x4096 8192x8192  16384x16384 32768x32768

Matriz Size (N = N)

(a) Power consumed during Task-based Strassen Matrix Multiply.

Using CU Masking Policies greatly reduces the average power

consumption for larger matrices.

S ‘ ‘
R 1
N
R
~ 09| .
NS}
-3
S 08| -
g
35 ’ —e— Baseline —=— Packed —e— Distributed ‘
0.7 I I I |
= 4096x4096 8192x8192  16384x16384 32768x32768

Matrixz Size (N x N)

(b) Normalized Energy to 60 active CUs. Overall, Packed policy uses
less energy than Distributed, this is due to less contention within a
Shader Engine.

Fig. 9: CU Masking Power and Energy analysis.

VII. RELATED WORKS

There has been previous works exploring dependency graph
execution and resource partition on GPUs. An overview of
these works is presented here.

Execution Graphs on GPUs: Recent works [1], [3],
[10] have proposed programming models and runtimes to
implement GPU-based execution graphs. LC-MEMENTO [10]
proposed novel memory models to efficient synchronization
of data blocks and task placement on heterogeneous systems
with CPUs and GPUs. DAGEE [1] is newly released task-
based runtime, we have not been able to find work using
DAGEE as the programming model. However, Nvidia has
a graph execution library called Cuda Graphs[11], which is
only supported on Nvidia GPUs. We evaluate our work with
DAGEE on AMD GPUs.

Winograd-Strassen Algorithm: Previous work have imple-
mented parallel versions of winograd-strassen on Nvidia GPUs
using concurrent streams.[9][12] Our work implements the
algorithm using a DAG, showcasing the performance benefit
of tasked based execution on AMD GPUs.

GPU Resource Partitioning: Resource partitioning using
AMD’s CU Masking has been shown to increase performance
for multi-tenancy in GPUs [13], [14]. This work aims to
showcase that CU Masking can be a viable technique to save
energy when applications are implemented as task graphs.

Efficient GPU scheduling: Coarse-grain efficient schedul-
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ing across multiple GPUs was demonstrated to be beneficial
in [15], [16]. Similarly, there are works that improved
performance within a single GPU with effective scheduling
of kernels and thread blocks [17], [18], [19], [20], [21],
[22]. However, these works do not consider the need to
enforce effective implementation methodologies to enable ef-
fective execution of workloads in System stack. Although LC-
MEMENTO [10] does propose novel programming models
to support heterogeneous task-graph applications, they do
not consider the effects of effective fine-grain utilization of
Compute Units. Other recent works [23], [24] have attempted
to identify solutions to make ML inference energy efficient.

VIII. CONCLUSION & FUTURE WORKS

In this work, we demonstrated the benefit of using Task
Graphs to improve Performance while using CU Masking
for resource partitioning to improve energy efficiency using
the Winograd-Strassen Matrix Multiplication algorithm. We
showed that by allowing concurrent execution of tasks, we
could increase the speedup of Matrix multiply by 15.3%.
Additionally, we were able to save up to 18% energy by using
CU-masking techniques to activate only the Compute Units
required to fulfill the ‘ready’ tasks.

A. DAGGEE with Larger workloads

This paper uses Matrix Multiplication as the only workload.
However, it is necessary to identify adoption of DAGEE and
CU-masking techniques in other workloads such as Machine
Learning (ML). We plan on integrating DAGEE along with
DAG Matrix Multiplication, DAG Pooling, DAG Reduction,
DAG convolution, and other popular linear algebraic func-
tional layers into TensorFlow and PyTorch to evaluate per-
formance and energy efficiency of future ML systems.

B. Task speculation

Furthermore, The task graph-based DAGEE programming
model can also be used to speculate critical execution path
and memory footprint to improve caching, paging, and task
placement.

C. CU PFartitioning Policies

In this work, we only evaluate a naive round robin CU
Masking Partitioning scheme. This was to show that it is
possible to save energy during task graph execution. However,
it may be possible to increase energy efficiency through a more
complex approach. Our method equally partitioned the GPU
into four equal groups. However, it is possible to make each
group have a different number of active CUs. We can base the
number of CUs given to a task on number of thread blocks
launched, type of function being run, and number of available
CUs. These methods may improve the performance and energy
efficiency of task graph execution.
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