ScaleServe: A Scalable Multi-GPU Machine Learning Inference
System and Benchmarking Suite

Ali Jahanshahi Marcus Chow Daniel Wong
ajaha004@ucr.edu mchow009@ @ece.ucr.edu danwong@ucr.edu
University of California, Riverside University of California, Riverside University of California, Riverside
USA Riverside, California, USA
@ y 4 v 4 i i(c)
ABSTRACT Inference Statistics ||| Jdata copy Cicompute | sleep:
We present, SCALESERVE, a scalable multi-GPU machine learning Y front-end front-end || Agnotifier fnotification receiver '
inference system that (1) is built on an end-to-end open-sourced g — i el =t e
. . . i =2 o @ 1| Inference(__y~ - |!
software stack, (2) is hardware vendor-agnostic, and (3) is designed 2 g8 :[frontend = llme]: [T}
with modular components to provide users with ease to modify g g E[Queue __________________)] o
and extend various configuration knobs. SCALESERVE also provides & (Manager| | fimeJ;
detailed performance metrics from different layers of the inference E[Batcher 2 N] o
server which allow designers to pinpoint bottlenecks. " o,
We demonstrate SCALESERVE s serving scalability with several ‘ E[WOrker []E:}..n;]g
machine learning tasks including computer vision and natural lan- | ROCm & GPU ||
i : i(ROCm :
guage processing on an 8-GPU server. The performance results i[& il | --------------------- ;i;‘:e]f

for ResNet152 shows that SCALESERVE is able to scale well on a
multi-GPU platform.

ACM Reference Format:

Ali Jahanshahi, Marcus Chow, and Daniel Wong. 2022. ScaleServe: A Scalable
Multi-GPU Machine Learning Inference System and Benchmarking Suite.
In The 14th Workshop on General Purpose Processing Using GPU (GPGPU’22),
April 3, 2022, Seoul, Republic of Korea. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3530390.3532735

1 INTRODUCTION

As machine learning (ML) accuracy improves near human-level
performance, the demand for deploying trained models into pro-
duction pipelines has emerged. Inference systems as a cloud solu-
tion, a.k.a Inference-as-a-service, have been developed to provide
high-throughput inference service on multi-GPU systems. Such
commercial examples include Triton Inference Server, Tensorflow-
serving, TorchServe, and RayServe. Examples of academic solutions
include Clipper [1], and INFaaS [3].

To the best of our knowledge, no existing inference system solu-
tions are GPU vendor-agnostic nor provide open-source end-to-end
orchestration of the software and hardware components of the in-
ference system, both critical aspects which allows an open-platform
for accelerated inference server research. For example, Nvidia’s Tri-
ton Inference Server is a widely used inference system solution, but
is not hardware vendor-agnostic as it utilizes CUDA-specific func-
tionality and requires closed-source backends such as NVIDA’s deep
learning library (cuDNN) or NVIDIA driver. In fact, the majority
of existing inference servers mainly target Nvidia-based products
leading to the lack of end-to-end open-source inference serving

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GPGPU’22, April 3, 2022, Seoul, Republic of Korea

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9348-5/22/04.

https://doi.org/10.1145/3530390.3532735

Figure 1: a) SCALESERVE design and components (Sec.2.1). b) Re-
quest/response life-cycle in SCALESERVE (Sec.2.2). c¢) Real-time
statistics provided by each component (red circles correspond
to the latency shown by the red arrows) (Sec.2.3).

solutions. With diverse emerging multi-GPU products coming from
vendors, such as AMD and Intel, it is imperative that inference
servers are designed to be hardware vendor-agnostic and provide
end-to-end open-source software stacks.

While ML inference benchmarking exist, most notably with
MLPerf inference benchmarking suite [2], this benchmarking suite
provides very few system-level statistic and mainly focus on inference-
level performance. Thus, there is a need to expose the inference
system’s system-level statistic to the designers so that they are
able to fine-tune the server configurations and software runtime to
utilize the system’s resources efficiently. In this work, we aim to
solve the aforementioned limitations by introducing SCALESERVE,
a highly configurable multi-GPU inference system that is end-to-
end open-source, easily configurable and extendable, and provides
detailed component-level online performance statistics.

2 SCALESERVE MULTI-GPU INFERENCE
SERVER

2.1 Design and Components

Figure 1(a) shows the architecture of SCALESERVE . consisting of:

Inference Front-end (per model): a multi-threaded process
responsible for accepting the asynchronous gRPC requests from
clients and sending back the inference result (response) to them.

Request/Response Queues (per model): queues are shared
memory segments for storing request’s (response’s) data to be
served (sent to the client). The queue size (number of requests
accepted for serving) is a configurable knob as it contributes to the
performance of the server.

This work was supported in part by NSF Grant 2047521 and 1955650.

GPGPU’22, April 3, 2022, Seoul, Republic of Korea

Table 1: Statistics provided by SCALESERVE’s components. For
each statistics min, max, mean, and percentile (25th, 50th,
75th, 90th, 95th, and 99th) metrics are provided.

Symbol ~ Component Description
Q Inf. Front-end ~ Queue latency (request arrival to response reply)
T Inf. Front-end Thread pool utilization
M Que. Manager Request/response queue utilization
B Batcher Batch size
C(€Q) ‘Worker Pre-/post-processing + data copies (= CPU time)
G(€Q) ‘Worker Inference latency on GPU

Queue Manager (per model): responsible for managing re-
quest/response queues by providing a thread-safe interface for
tracking occupied and available queue slots.

Workers (scalable/configurable): gets a batch of requests from
Batcher and performs pre-processing, inference, and post-processing
on a batch of requests. The number of worker threads is another
configurable knob.

Batcher (per model): provides a thread-safe interface for worker
threads to request for a batch of requests. Batcher copies the re-
quests’ data from the request queue to make the batch and pass it
to the worker. After making the batch, Batcher notifies the queue
manager that the request data are being processed and the slot is
available again for accepting new requests.

Statistics Front-end (global): each component of SCALESERVE stores

its statistics in a shared memory at run-time (shown by Stats in Fig-
ure 1(a). If requested by a client, the front-end pulls the requested
statistics from components’ associated statistics shared memory.
Statistics Front-end provides a gRPC endpoint for requesting statis-
tics from the server.

2.2 Request/response life-cycle in SCALESERVE

Figure 1(b) illustrates the life-cycle of a request. When a request
arrives, a thread from thread pool of the Inference Front-end is
assigned to serve the request. The thread, acquires a free request
slot from the request queue through the Queue Manager. Then, the
request data is copied to the response queue slot to be served. The
thread sleeps until notified by a worker thread to collect the results,
releases the response queue slot through Queue Manager, and send
the inference result back to the client.

At the same time, waiting workers are notified by the Batcher
for a new batch. The worker performs pre-processing, inference,
post-processing, copies the results to their designated resp. queue
slots, and finally notify the Inference Front-end thread to collect the
inference results. Batcher gets notified on every request queue slot
allocation by Inference Front-end so that it keeps track of incoming
request to make a batch based on its batching policy, batch size,
and batch polling interval.

2.3 Real-time statistics provided by SCALESERVE

Each component in SCALESERVE, launches an independent, observer
thread to periodically collect and store stats at run-time. The statis-
tics front-end (upon user request), pulls the requested data from its
corresponding shared-memory region, calculates the requested met-
ric(s), and responds the result back to the user. Figure 1(c) shows the
statistics each component of SCALESERVE provides. Table 1 shows
more detailed description of statistics.

2.4 Configuration knobs in SCALESERVE

Table 2 lists the available knobs, their description, and the granu-
larity at which they can be configured. Global means the knob will

Ali Jahanshahi, Marcus Chow, and Daniel Wong

Table 2: Inference server configuration knobs exposed to
designers in SCALESERVE and their configuration granularity.

Component Knob Configuration gran.
Inf. Front-end Thread pool size Global
Que. Manager Request/response queues’ size Global
Batcher Batch polling policy Per model
Worker Number of worker threads Per model
Worker Batching policy Per model
Worker Batch size Per model

Resnet152: Requests Per Second
1 Workers 2 Workers

322 386 3 8 373 492

487 605 561 700

653 806 753 850

678 844 2 673 1930

764 856

batch size

819 798 9 620 655

481 480 3 403 369 339

2 268 217 2 201 189
4 Workers 8 Workers
399 480 566 356 485
540 572 82 6 389 420 544
695 814 |95 22 3! 516 726

750 854 (988 25 vi 631 720

batch size

709 694 453 443

6 334 518 3 3 211 282

229 202 2 5 8 117 129

129 123 23 112 2 101 110

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
num gpus num gpus

Figure 2: Server RPS for ResNet152 with respect to batch size,
number of gpus, and workers per gpu.

be set for all models being served in SCALESERVE. Per model means
it can be configured per model being served by SCALESERVE.

3 CASE STUDY: RESNET152

We deployed SCALESERVE on a server featuring 8 AMD MI50 GPUs,
AMD EPYC 7302 16-Core Processor, 512 GB RAM, Ubuntu 18.04
LTS with kernel 5.4.0, and Intel 10G X550T network card. To demon-
strate the performance and scalability of SCALESERVE, we performed
a design space exploration on the configuration knobs exposed by
ScALESERVE. Figure 2 shows the server performance with variety of
configurations; scaling resources such as GPU or worker threads, as
well as scaling batch size for ResNet152 which is being used widely
in variety of computer vision tasks including object classification
and detection. In this experiment, we fixed thread pool size to 50,
req./resp. queues’ size to 256 which means the inference front-end
no further accepts requests as long as there are 256 requests in the
server to be processed, for batch polling policy, we randomly pick
a number from an interval (example [1, 5] msec) and poll the req.
queue for a new batch, batching policy fixed to relaxed/dynamic to
simulate the real-world scenario.

REFERENCES

[1] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael] Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System.
In USENIX Symposium on Networked Systems Design and Implementation (NSDI).
Vijay Janapa Reddi and et al. 2020. Mlperf inference benchmark. In ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.
INFaa$S: Automated Model-less Inference Serving. In 2021 USENIX Annual Technical
Conference (USENIX ATC).

[2

[3

	Abstract
	1 Introduction
	2 ScaleServe Multi-GPU Inference Server
	2.1 Design and Components
	2.2 Request/response life-cycle in ScaleServe
	2.3 Real-time statistics provided by ScaleServe
	2.4 Configuration knobs in ScaleServe

	3 Case Study: Resnet152
	References

