


GPGPU’22, April 3, 2022, Seoul, Republic of Korea Ali Jahanshahi, Marcus Chow, and Daniel Wong

Table 1: Statistics provided by ScaleServe’s components. For

each statistics min, max, mean, and percentile (25𝑡ℎ, 50𝑡ℎ,

75𝑡ℎ, 90𝑡ℎ, 95𝑡ℎ, and 99𝑡ℎ) metrics are provided.

Symbol Component Description

Q Inf. Front-end Queue latency (request arrival to response reply)

T Inf. Front-end Thread pool utilization

M Que. Manager Request/response queue utilization

B Batcher Batch size

C (∈ Q) Worker Pre-/post-processing + data copies (= CPU time)

G (∈ Q) Worker Inference latency on GPU

Queue Manager (per model): responsible for managing re-

quest/response queues by providing a thread-safe interface for

tracking occupied and available queue slots.

Workers (scalable/configurable): gets a batch of requests from

Batcher and performs pre-processing, inference, and post-processing

on a batch of requests. The number of worker threads is another

configurable knob.

Batcher (per model): provides a thread-safe interface for worker

threads to request for a batch of requests. Batcher copies the re-

quests’ data from the request queue to make the batch and pass it

to the worker. After making the batch, Batcher notifies the queue

manager that the request data are being processed and the slot is

available again for accepting new requests.

Statistics Front-end (global): each component of ScaleServe stores

its statistics in a shared memory at run-time (shown by Stats in Fig-

ure 1(a). If requested by a client, the front-end pulls the requested

statistics from components’ associated statistics shared memory.

Statistics Front-end provides a gRPC endpoint for requesting statis-

tics from the server.

2.2 Request/response life-cycle in ScaleServe

Figure 1(b) illustrates the life-cycle of a request. When a request

arrives, a thread from thread pool of the Inference Front-end is

assigned to serve the request. The thread, acquires a free request

slot from the request queue through the Queue Manager. Then, the

request data is copied to the response queue slot to be served. The

thread sleeps until notified by a worker thread to collect the results,

releases the response queue slot through Queue Manager, and send

the inference result back to the client.

At the same time, waiting workers are notified by the Batcher

for a new batch. The worker performs pre-processing, inference,

post-processing, copies the results to their designated resp. queue

slots, and finally notify the Inference Front-end thread to collect the

inference results. Batcher gets notified on every request queue slot

allocation by Inference Front-end so that it keeps track of incoming

request to make a batch based on its batching policy, batch size,

and batch polling interval.

2.3 Real-time statistics provided by ScaleServe

Each component in ScaleServe, launches an independent, observer

thread to periodically collect and store stats at run-time. The statis-

tics front-end (upon user request), pulls the requested data from its

corresponding shared-memory region, calculates the requested met-

ric(s), and responds the result back to the user. Figure 1(c) shows the

statistics each component of ScaleServe provides. Table 1 shows

more detailed description of statistics.

2.4 Configuration knobs in ScaleServe

Table 2 lists the available knobs, their description, and the granu-

larity at which they can be configured. Global means the knob will

Table 2: Inference server configuration knobs exposed to

designers in ScaleServe and their configuration granularity.

Component Knob Configuration gran.

Inf. Front-end Thread pool size Global

Que. Manager Request/response queues’ size Global

Batcher Batch polling policy Per model

Worker Number of worker threads Per model

Worker Batching policy Per model

Worker Batch size Per model

Figure 2: Server RPS for ResNet152 with respect to batch size,

number of gpus, and workers per gpu.

be set for all models being served in ScaleServe. Per model means

it can be configured per model being served by ScaleServe.

3 CASE STUDY: RESNET152

We deployed ScaleServe on a server featuring 8 AMD MI50 GPUs,

AMD EPYC 7302 16-Core Processor, 512 GB RAM, Ubuntu 18.04

LTS with kernel 5.4.0, and Intel 10G X550T network card. To demon-

strate the performance and scalability of ScaleServe, we performed

a design space exploration on the configuration knobs exposed by

ScaleServe. Figure 2 shows the server performance with variety of

configurations; scaling resources such as GPU or worker threads, as

well as scaling batch size for ResNet152 which is being used widely

in variety of computer vision tasks including object classification

and detection. In this experiment, we fixed thread pool size to 50,

req./resp. queues’ size to 256 which means the inference front-end

no further accepts requests as long as there are 256 requests in the

server to be processed, for batch polling policy, we randomly pick

a number from an interval (example [1, 5] msec) and poll the req.

queue for a new batch, batching policy fixed to relaxed/dynamic to

simulate the real-world scenario.

REFERENCES
[1] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,

and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System.
In USENIX Symposium on Networked Systems Design and Implementation (NSDI).

[2] Vijay Janapa Reddi and et al. 2020. Mlperf inference benchmark. In ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).

[3] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.
INFaaS: AutomatedModel-less Inference Serving. In 2021 USENIX Annual Technical
Conference (USENIX ATC).


	Abstract
	1 Introduction
	2 ScaleServe Multi-GPU Inference Server
	2.1 Design and Components
	2.2 Request/response life-cycle in ScaleServe 
	2.3 Real-time statistics provided by ScaleServe 
	2.4 Configuration knobs in ScaleServe 

	3 Case Study: Resnet152
	References

