Tardis: A Fault-Tolerant Design for Network Control Planes

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran ™
*Duke University, Brown University, °KAUST, TVrije Universiteit Amsterdam

ABSTRACT

Guaranteeing high availability of networks virtually hinges on the
ability to handle and recover from bugs and failures. Yet, despite
the advances in verification, testing, and debugging, production
networks remain susceptible to large-scale failures — often due to
deterministic bugs.

This paper explores the use of input transformations as a viable
method for recovering from such deterministic bugs. In particular,
we introduce an online system, Tardis, for overcoming deterministic
faults by using a blend of program analysis and runtime program
data to systematically determine the fault-triggering input events
and using domain-specific models to automatically generate trans-
formations of the fault-triggering inputs that are both safe and
semantically equivalent. We evaluated Tardis on several produc-
tion network control plane applications (CPAs), including six SDN
CPAs and several popular BGP CPAs using 71 realistic bugs. We
observe that Tardis improves recovery time by 7.44%, introduces a
25% CPU and 0.5% memory overhead, and recovers from 77.26% of
the injected realistic and representative bugs, more than twice that
of existing solutions.

CCS CONCEPTS

- Computer systems organization — Availability; - Networks
— Network reliability.

KEYWORDS

Software Defined Networks, control plane, failure recovery, trans-
formation

ACM Reference Format:

Zhenyu Zhou, Theophilus A. Benson, Marco Canini, and Balakrishnan
Chandrasekaran. 2021. Tardis: A Fault-Tolerant Design for Network Control
Planes. In The ACM SIGCOMM Symposium on SDN Research (SOSR) (SOSR
"21), October 11-12, 2021, Virtual Event, USA. https://doi.org/10.1145/3482898.
3483355

*Zhenyu Zhou is now at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR °21, October 11-12, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9084-2/21/09...$15.00
https://doi.org/10.1145/3482898.3483355

1 INTRODUCTION

Network reliability is critical, especially, for cloud providers who
face an ever-increasing demand for more “nines™ of availabil-
ity [32, 56]. Designing a highly available network is, however, a hard
problem: Network devices fail, misconfigurations happen, bugs are
endemic in implementations, and errors in specifications are un-
avoidable [17, 21, 29, 84]. Recent work [1, 25, 49, 89] show that
over 30% of the customer impacting failures for large scale
operational networks are due to software bugs in the network
control planes.

While there is a growing body of work on detecting and eliminat-
ing bugs in the data plane, e.g., configuration verification [18, 22, 23],
data plane state verification [41, 42] and fuzzing [24, 49, 77, 92],
only few such efforts focus on the control plane. Unlike the data
plane, which supports either a simple language that is amenable to
verification (i.e., P4) or a set of well-defined rules that can be eas-
ily modeled (i.e., OpenFlow rules or forwarding information base
(FIB) of router tables), the control plane is generally written in rela-
tively complex languages, e.g., Java or C, which are less amenable
to verification and modeling. In fact, efforts to apply modeling to
the control plane [10] have demonstrated limited scalability, and
attempts at control plane emulation provide only limited cover-
age across realistic settings [49, 73]. Today, the most promising
method for addressing control plane bugs is to perform fuzz testing
on production traffic—a concept popularized by Netflix’s Chaos-
Monkey [6, 75]. such testing techniques, however, still fall short
of detecting all bugs—some bugs remain invariably uncaught, and
network outages ensue [32, 56].

Motivated by the inability of existing techniques to eliminate
control plane application bugs, in this work, we explore the appli-
cability of online techniques to recover from these bugs. There are
two common approaches to online recovery: rewriting code (i.e., au-
tomated program repair [47, 61, 66]) and input transformations (i.e.,
failure oblivious computing [11, 67, 69]). The former, code rewriting,
is often limited to general and well-understood patterns, e.g., null-
pointer exceptions or off-by-one errors, and does not account for
the more important class of bugs demonstrated in Table 1, e.g., edge
cases or missing logic. The latter, input transformations, addresses
a broader set of bugs but requires significant domain knowledge
to ensure a principled recovery. Moreover, existing approaches to
transformations take either a random and ad-hoc approach [67] or
a manual approach [11].

In this paper, we propose Tardis,”> a system that both overcomes
the previously discussed limitations of input transformations and
generalizes to a wide range of network control plane applications

1A widely used unit for measuring reliability or availability of computer systems,
expressed as a ratio of uptime to the sum of uptime and downtime. Three nines, for
instance, refers to 0.999 or 99.9% availability.

2The name Tardis, based on the British TV show Doctor Who, refers to the system’s
ability to travel back in time and manipulate history to avert an impending doom—in
our case, the crash of a CPA.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

(CPAs), deployed in both centralized (e.g., SDNs) and distributed
(e.g., BGP) settings. Fundamentally, Tardis is a record and replay-
based system which (1) automatically identifies the set of input
events that trigger the bug using advances in program verification
(i-e., symbolic execution) and (2) uses a domain-specific model to
automatically search through the space of potential transforma-
tions on the input events to identify a candidate list of semanti-
cally equivalent and safe events to replay. We define semantically
equivalent and safe events as those events that preserve a set of
network-operator-specified network objectives as captured by net-
work invariant checkers.

Tardis’s design builds on the following insights. First, network
events represent changes in the network state, and different events
can be used to exercise the same state transitions. Thus, we can
recover from failures by exploring an alternate but equivalent event
provided that this alternate event results in the same network state.
Second, the rich body of work on network verification, i.e., invariant
checkers [42, 81], provide a well-understood method for analyz-
ing this network state and, more importantly, determining if any
two network states are equivalent. Thus, we can validate trans-
formations by employing network invariant checkers. Specifically,
given that we know the initial and final state, we can explore arbi-
trary transformations of a failure event (e.g., a link failure event) to
discover equivalent events which safely bring the network to the
intended state.

Tardis operates as a shim between the CPA, the state layer (which
maintains the network state), and the network (state changes of
which generate the events). Tardis consists of three key components:
first, a novel domain-specific search algorithm for generating ar-
bitrary transformations of the failure triggering event; second, a
network invariant checker [42, 81] for detecting semantically safe
transformations; and third, a symbolic execution framework for an-
alyzing code to determine the root cause of a fault. Tardis intercepts
and records events. Such an event recording technique is employed
by Google’s Orion [19], and it has been proved successful in prac-
tice. Tardis aims for recovering from two failure types: fail-stop
faults and invariant violations. The former is easy to detect, and
Tardis uses existing fault-detection techniques [42, 81] to detect
the latter. When a fault is detected, Tardis examines the source
code using symbolic execution and determines the events which
triggered the failure. Next, Tardis uses the fuzzer to generate a set
of equivalent events and then employs a domain-specific invariant
checker to prune the set of equivalent events to semantically safe
ones. Finally, Tardis rollbacks the control plane and re-executes the
control plane with the transformed event. The rollback and replay
continue until the control plane recovers. Thus, Tardis provides
a best-effort guarantee, which is limited by the space of available
transformations. Our evaluations show that both the traditional
and SDN network control planes permit a rich enough space of
events, which permit sufficient transformations, that allow Tardis
to provide high availability in the presence of deterministic bugs.

We mainly design Tardis for two use cases: (1) help cloud providers
such as Google Cloud and AWS, who employ SDN, to recover their
SDN apps; and (2) help network device manufacturers (especially,
switch vendors like Cisco) to recover the device’s apps such as
routing apps. To address the two use cases, we implement Tardis in

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran’

CPA1 CPA2
oo T T T T !
CPA CPA : State Layer (RIB)
1 2y !
DT R Ry] Control Plane
i CPA, || CPA, H
Seate Layer (BN Pl Data Plane !
i State Layer (RIB) |
: N
Control Plane : CPA, || CPA,
,,,,,,,,,,,,,, 1

State Layer (RIB)

Control Plane

Data Plane

Figure 1: Architecture of SDN (left) and TDN (right) network
control planes.

a popular SDN control plane with six SDN-CPAs and in two BGP-
CPAs for two traditional distributed control planes (i.e., Quagga and
GoBGP). We recreated and injected a total of 71 real faults across
both control planes. Our experiments demonstrate that Tardis can
recover from 87.19% SDN faults and 56.52% BGP faults.

We summarize our contributions as follows.

* We present Tardis, a system that can automatically transform
one or more input events to recover from run-time faults. Tardis
supports both centralized and distributed network control planes.

* We provide an in-depth analysis and taxonomy of bugs in
control planes and CPAs to complement anecdotal evidence from
large cloud providers and motivate systems like Tardis.

* We formulate a search heuristic for automatically generating
semantically equivalent network events. Our formulation also pro-
vides a principled lens for reasoning about the safety and liveness
of these transformations.

* We implement Tardis to work with both a popular SDN control
plane (Floodlight) and several BGP control planes (Quagga and
GoBGP). We recreated a total of 71 real faults and injected them
into control-plane applications. In our experiments, Tardis recovers
from 87% of the SDN faults and 57% of the BGP faults.

2 MOTIVATION AND RATIONALE

Below, we provide a brief background on network control plane
applications (§ 2.1), present a survey of bugs in these control planes
(§ 2.2), provide a motivating example and rationale for our approach
(§ 2.3), and describe the set of bugs addressed by Tardis (§ 2.4).

2.1 Network Control Planes

Generally a communication network include two planes: (i) the
data plane, which processes each packet and routes them according
to predefined rules, and (ii) the control plane, which consists of a set
of applications (e.g., load-balancing, firewall, or BGP peering) that
generates these predefined rules in response to network events (e.g.,
switch/link failures or path changes). Network control planes can
be broadly classified into two types (cf. Fig. 1): (i) a traditional, dis-
tributed control plane (e.g., BGP), and (ii) a more modern, logically
centralized control plane (e.g., Software-Defined Networks).

Tardis: A Fault-Tolerant Design for Network Control Planes

Table 1: A summary of CPA bugs.

| SDN | BGP
‘ ONOS ‘ CORD ‘ Faucet ‘ Quagga ‘ XORP
Bug Det. 94% 94% 96% 76% 90%
Types | Non-det. 6% 6% 4% 24% | 10%
Network 20% | 50%| 40% 38% | 38%
Triggers | Config 56% | 42%| 52% 25% | 23%
os 12% 8% 6% 38% | 40%
Crash Stop 10% 16% 32% 34% | 37%
Symptoms | Invar. Violation | 84% | 82% 66% 66% | 61%
Performance 6% 2% 2% 0% 2%
Missing Cases 0% 25% 16% 58% | 74%
Causes | Memory 40% 26% 9% 9% 9%
Concurrency 0% 13% 7% 7% 4%

Software Defined Network (SDN). In this mode, the control and
the data plane are on separate devices. The data plane consists of
forwarding elements (SDN switches), while the control plane runs
on separate x86 servers. The data plane generates and sends events
to the control plane, which uses them to build a global view of
the network; this state is stored in the network information base
(NIB). The control plane runs a set of control plane applications
(CPAs) that analyze, process, and react to the data-plane events by
inserting new rules into the data plane. In general, the control plane
is logically centralized, and it provides the CPAs with a global view
of the network, which allows them to make optimal decisions for
the events they receive.

Traditional Distributed Network (TDN).
work, each device contains both a control plane and a data plane. In
such a setting, the control plane is distributed across the network,
and each control plane hosts several CPAs (e.g., OSPF, BGP, or ISIS
processes). In addition to reacting to events from the data plane
(e.g., link failures), the CPAs for a traditional control plane also
react to messages from other CPAs (e.g., BGP update messages).
Given that each control plane only has local information, the CPAs
need to exchange messages to allow each CPA to build a global
view of the network with which it can determine how to react to
events. Each CPA maintains a view of the network in its routing
information base (RIB).

In a traditional net-

Summary. Regardless of the control plane type, networks exhibit
two traits. (1) They maintain state relevant for their operation in
a separate state layer (e.g., the RIB or NIB in Fig. 1)—we surveyed
47 SDN-CPAs and 6 TDN-CPAs and found that 64% of the SDN-
CPAs and 100% of the TDN-CPAs maintain state in an external state
layer. (2) They are event-driven—in addition to network events (i.e.,
from data plane or other CPAs), CPAs also react to events from the
operating system (e.g., timers) and events from the configuration
interface (e.g., command-line or configuration changes).

2.2 Control-plane Bugs

To understand the types of bugs that occur in practice, in Tab. 1, we
survey 150 bugs from three popular SDN control planes and their
CPAs (i.e., ONOS [7], Faucet [4], and CORD [63]) and summarize a

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Figure 2: Part of a simple Fat-tree with two flows (in pink
and purple) routed over link-disjoint paths. Certain events,
e.g., a link failure (in red), affect the status quo, i.e., end-to-
end connectivity between two hosts or the completion time of
the flow that uses the affected link.

prior survey [91] on two popular traditional control planes and their
CPAs (i.e., Quagga [34] and XORP [27]). Our survey and the prior
survey use manual analysis of the control plane’s code repository
issues to analyze and classify the bugs.

We analyze these bugs across four main dimensions. (1) Deter-
minism, whether the bug is deterministic and can be recreated
using a predefined set of steps. (2) Trigger, the type of event (net-
work, OS, or configuration) which triggered the bug—or the ‘bug
triggering event. (3) Impact/Symptom—the impact of the bug on
the control plane (e.g., crash-stop failure or performance issues
in the CPA) or network (e.g., the CPA configures the network in
violation of expected behavior). (4) RootCause—the programming
error which caused the bug; we limit ourselves to the top categories.

We observe the following across both control plane types. (1)
Most bugs are deterministic. (2) Moreover, bugs are often due to
missing logic, e.g., to handle corner cases. (3) Many bugs (~28%)
are due to hardware reboot and network events. These three obser-
vations concur with findings from recent publications (e.g., Dalton
et al. [14] and Bhardwaj et al. [8]). As illustrated by Google and
Microsoft [14, 49], deterministic bugs often severely affect their
network’s availability: Since most control planes employ some form
of state-machine replication, a deterministic bug will manifest in
each replica and cripple all of them.

2.3 Motivating Example

To understand the rationale behind transformations and reason
about their correctness, we explore the behavior of a well-known
CPA for load-balancing network traffic, namely Hedera [3]. Hedera
routes flows to maximize aggregate utilization of the network. It
improves flow completion times—an operator-specified objective —
by periodically re-routing large flows over less congested paths.
It also satisfies operator-specified invariants, e.g., if a path exists
between two hosts, Hedera must route the traffic between the hosts.
Hedera is a simplified version of the CPAs that Microsoft [31] and
Google [33] run on their networks.

In Fig. 2, we illustrate a Fat-tree topology; to keep it simple, we
do not show the hosts. The figure includes two traffic flows P (in
magenta) and Q (in purple) that flow over link-disjoint paths, but
which share a switch. Suppose that at time ¢ both the network
objective is satisfied and the invariant holds. Now, if at time ¢ + 1 an
event such as the link failure in Fig. 2 happens, Hedera will receive
an event capturing a state transition from a network graph with
the link to a graph without the link.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Given the multitude of options to route $, Hedera will pick
an option that again maximizes the aggregate bandwidth; the re-
routing of the flow over another path also satisfies the invariant.
A new network state is established, and this change highlights two
observations. First, there might be more than one way to configure
the data plane to satisfy both the objectives and invariants. Second,
the specific path (or data-plane configuration) does not matter to the
operator, as long as the high-level objective is satisfied.

The first observation that multiple options may exist to meet
the CPA’s end goals (i.e., satisfying of objectives and invariants)
motivates the use of transformations: In case of a CPA bug, we can
safely explore a different code path and output to avoid the bug
provided that it meets our end goals. To this end, upon isolating the
bug-triggering event, we transform the event and alter the behavior
of the application. When no such alternatives exist, recovery can
gracefully degrade to using more traditional approaches such as CPA
reboots.

The second observation that the specific option chosen or data-
plane configuration effected is irrelevant attests to the safety of
transformations. A transformation is deemed safe if the following
conditions hold.

(1) The new behavior it elicits still satisfies the invariants.

(2) The state transition it presents is equivalent to the original
event; the original event and its transformed counterpart are then
said to convey similar semantic intent.

Formal definition of transformations. Given the above, a
transformation of a set of input events E conveys the same se-
mantic intent as E, but through a different set of input events E.
The transformation of the event {Port P; (of Sw. S1) Down},
for instance, to {Port P; (of Sw. Si) Up, Port P; (of Sw.
S1) Down}, preserves the semantic meaning of the original input
sequence—that the port P; of S1 is offline. Even though the status
of the concerned port went up before going down, the final state
conveyed via both the input sequences is the same. In processing
the transformed sequence, the CPA exercises, however, a differ-
ent code path, which might help in averting the buggy behavior
observed when processing the original input.

2.4 Target Failure Modes and Scenarios

The CPA bugs described in Tab. 1 manifest via a fail-stop fault, an
invariant violation or performance problem. In this paper, we focus
on the first two broad classes of faults. First, fail-stop faults where
a control plane (e.g., a BGP process or an SDN controller) abruptly
terminates after processing a bug-triggering input; arbitrarily long
delays in responding to an input (i.e., gray failures) also belong
to this class. We identify such faults using timeouts or “heartbeat”
signals. Second, (network) invariant violations where the rules in-
stalled by the CPA result in the data plane deviating from “expected
behavior,” e.g., not dropping malicious packets or not load balancing
across parallel links. These deviations are a violation of one or more
invariants or objectives established by the operator and, as such,
can be detected, in real-time, using invariant checkers [37, 42].

Limitations. We do not handle configuration- or OS-triggered
failures, but rely instead on prior work on control plane configu-
ration verification [18, 22, 23] as well as data diversity [40, 51] for
detecting them.

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran’

3 BACKGROUND

In this section, we discuss prior work on checking for invariants
(§ 3.1) and provide an overview on symbolic execution (§ 3.2).

3.1 Checking Network Invariants

There is a rich literature on invariant checkers [37, 41, 42, 81], which
analyze network state (via RIB or NIB) to determine if the policy
implemented in the network adheres to operator-specified objec-
tives (e.g., loop-free or valid paths between all pairs of destinations).
They assume that network operators explicitly specify their objec-
tives. Given such a specification, the checkers analyze either the
RIB or the NIB to determine if the network is compliant with the
specification. Checkers for TDNs [37] operate at the router level
and inspect the RIB as well as router configurations to check for
invariant violations, while those for SDNs [41, 42, 81] analyze the
NIB of an SDN controller or the NIB created by aggregating RIBs
(as in the case of an IGP protocol).

Invariant checkers demonstrate that the operators-specified objec-
tives may be realized through multiple, distinct network states—these
distinct network states, satisfying a given objective, can be said to be
‘equivalent” to one another.

3.2 Symbolic Execution

Symbolic execution [44] is a method of analyzing a software pro-
gram with the objective of determining how inputs to the program
affect its execution (or control flow) along different (code) paths.
The term ‘symbolic’ refers to the use of symbolic values rather than
actual inputs in describing the program behavior—expressions, vari-
ables, and conditionals. The root of the execution tree begins at the
entry point of the symbolically executed code, and each branching
in the tree represents the two outcomes of a conditional branch
(e.g., if block). Each unique path on the execution tree, from the
root to a leaf, corresponds to a code path.

When a bug manifests in an application, its execution tree and
the sequence of inputs (until when the bug manifests) can be used
to determine the exact code path where the bug is encountered.
Recovery from the bug is feasible by driving execution along a
different path. Although more code paths trivially imply more op-
tions for recovery, an exhaustive enumeration of all paths is not
necessary to recover from a bug—thus effectively sidestepping the
scalability issues of symbolic analyses.

4 TARDIS

An effective way to address control-plane bugs is to rewrite, patch,
and redeploy the control plane. The process is, however, time-
consuming and requires a lot of manual work.

Instead, Tardis circumvents runtime bugs in a control plane ap-
plication (CPA) by transforming one or more bug-triggering inputs.
To achieve this goal, Tardis runs as a transparent shim (Fig. 3) be-
tween the CPAs and the underlying base control plane. This setup
allows Tardis to monitor the stream of inputs fed to a CPA, the
output the CPAs generate (in response to each of those inputs),
and the CPA’s internal state changes (due to processing the in-
puts). We note that the architectures of both TDN and SDN control
planes both facilitate the use of such a shim (cf. Fig. 3). As illus-
trated in the figure, the shim runs between the SDN controller

Tardis: A Fault-Tolerant Design for Network Control Planes

i i — i

i ‘ BGP ‘ ‘ OSPF ‘ 1| sonapp ‘ ’ SDNApp | |
re--- i

< S JShimi = == == == = = -0
P

|]
i i
! ‘ RIB ‘ } ‘ NIB i
i i !
1 i !

]

‘ Network ‘ ’ Network

Figure 3: Architecture of TDN (left) and SDN (right) control
planes, indicating where a shim can be added to monitor the
input, output, and state-changes of the CPAs.

core (the router platform) and the SDN-CPAs (TDN-CPAs); thus, it
monitors the events fed into the CPAs. These events are not raw
OpenFlow or BGP messages, but are rather the transformed mes-
sages.® To realize this input-transformation-based recovery, Tardis
is composed of three components (all of which reside in the shim
layer—workflow in Fig. 4): RCA-Engine (§5), which uses a fusion of
symbolic execution and runtime data to detect the bug-triggering
input; the Transformation-Generator (§6), which uses a domain-
inspired search heuristic to generate semantically equivalent and
safe candidate events to replace the bug-triggering events; and the
recovery-orchestrator, which maintains historical data for each
CPA and orchestrates rollback and recovery during recovery mode.

Recovery-Orchestrator. The recovery-orchestrator maintains
two types of runtime data: the list of input events and historical
versions of state-layer changes associated with the input. The list of
input events is stored in a queue within the Orchestrator, whereas
the historical versions are maintained by augmenting the existing
storage layer (i.e., NIB or RIB) to store historical versions. The
historical data maintained in the storage layer remains outside of
Tardis, and our system interacts with it using RPCs.

Tardis normally operates in a passive mode, intercepting and
maintaining a log of all events to and from the CPA and managing
associated state layer changes while incurring minimal overhead.
When a CPA bug is triggered, however, Tardis enters recovery mode
and intervenes to recover the CPA and ensure availability.

When the system enters into the recovery mode (refer workflow
in Fig. 4), it performs three key operations, namely @ identify the
bug-triggering event (or root cause of the failure) and roll back the
CPA’s state to before the bug-triggering event is processed (§5),
® transform the bug-triggering event into a set of one or more
semantically equivalent events (§6), and (© verify the safety and
liveness of these transformations before as well as after applying
them (§6.4). Tardis repeats the operations ® and (© until the CPA is
recovered from the fault. Once the CPA has recovered, and liveness
is confirmed, Tardis transitions back into the passive mode.

3Per Fig. 3, the shim runs in between the SDN controller and the SDN-CPA in case of a
global control plane. For a local control plane, the control plane application (e.g., BGP)
can run on a hypervisor (as in [39]) and the shim placed in between the hypervisor
and the application.

SOSR 21, October 11-12, 2021, Virtual Event, USA

. Analyze Input History .

__________ P

Identify Divergence-inducing Inputs
(Section 5)

__________ L.
X Rollback App State .

A fo e

Generate Transformations
(Section 6)

Empty Transformations

Verify Safety & Liveness
(Section 6.4)

Success

Figure 4: Workflow for recovery mode.

5 RCA-ENGINE (ROOT CAUSE ANALYSIS)

The first step in recovering from a failure or a bug is determin-
ing the root cause (bug-triggering events) of the fault. Existing
approaches [72, 73] either use blackbox techniques [72, 73] (e.g.,
delta debugging) or explore whitebox techniques (e.g., symbolic exe-
cution or model checking). However, the blackbox techniques often
take too long because they randomly explore different combinations
of events. In fact, our experiments with STS [72] (not included due
to space limitations) show that it will take more than 105 seconds
to localize the events compared with about 100 ms taken by the
approach we propose below. The whitebox techniques, on the other
hand, do not scale: We tried employing several symbolic execution
techniques [2, 50, 74], but they were unable to analyze the CPA
and all its dependent libraries for performing an exhaustive search
across all interactions to detect failures.

This work explores a fusion of both techniques. We use sym-
bolic execution to explore just enough of the CPA to understand
its structure. Then, we use runtime values from concrete failures to
determine the bug-triggering input events. Concretely, we lever-
age whitebox symbolic execution and limit its analysis to just the
CPA. This restricted symbolic execution allows us to understand
the different code paths within the CPA. It prevents us, however,
from determining where the failures lie or which events trigger
failures, both of which require more extensive analysis or modeling
of dependent libraries and the ecosystem. To mitigate this limita-
tion, we use runtime data (i.e., real-time variables in the state layer
and concrete events in the replay buffer), which provide sufficient
concrete information about a failure, to determine the exact code
paths that led to failures.

Our approach to identifying the root cause of fault rests on two
assumptions: (i) A CPA’s state is a function of the sequence of inputs
that the application has processed over time, and (ii) a CPA’s fault is
triggered by an input (event) executing over a specific state, referred
to as “buggy state” Our key contribution, under these assumptions,
is the observation that transforming the event that leads the CPA to

SOSR ’21, October 11-12, 2021, Virtual Event, USA

€x s ey N, € D RN
PR ; / P / PN

Figure 5: Change in code paths (solid black line) of a CPA
while processing inputs events leads to a fault (red circle).

Algorithm 1 Find a cause of the buggy behavior.

1: procedure FINDROOTCAUSE(p, E)

2 ¢ « getPathConditions(p)

3 while E # 0 do

4 (e, s) < pop(E) > Pick next candidate
5: if side_effect_free(e) then continue

6 p « getCodePath(e, s)

7 ¢ « getPathConditions(p)

8 if satisfy(c,¢) = false then return e

a buggy state, irrespective of whether that input induces the fault, is
a more effective solution.

Suppose that the CPA in Fig. 5 encounters a fault. Per this illus-
tration, e, encounters a specific state which leads to buggy behavior.
Observe that ey also encounters the same buggy state as e, but
does not encounter a fault; thus, a fault requires both a specific
application state and a specific class of input event(s). Since ey is
the last event, the SDN-CPA processed before transitioning into
the buggy state, we need to identify ey as the root cause. We claim
that altering the event(s) that creates the buggy state, i.e., ex, isa
more attractive solution than the event that triggers the fault, e,.
Stated differently, once the buggy state is reached, several other
inputs (besides e;) may induce a fault.

The first task once a CPA encounters a fault is to determine the
buggy path, i.e., the code path (p) along which the execution is
currently proceeding (path 3 in Fig. 5). Once we have p, then we
identify divergence-inducing inputs. While tracking state changes
is relatively straightforward (since Tardis acts as a shim between
the CPA and the state layer), obtaining insights into the execution
is a non-trivial challenge. To this end, we use symbolic analyses
of the CPA’s implementation to obtain insights such as available
code paths, the conditions that need to be satisfied along the paths,
and their relation to the state changes effected by the CPA. Using
this data, we determine p by scanning through the CPA’s path
conditions (obtained from the symbolic analyses) to determine the
path condition that both matches the input and satisfies the current
snapshot of the state.

Divergence-inducing Inputs. ~ Given a buggy path p and the asso-
ciated path conditions, we iterate through the history E of input
events of the CPA, in reverse chronological order, and mark a can-
didate input event e (and its associated state-variable changes s)
as a root cause (as in Algo. 1) if the following conditions on in-
puts hold. (1) It is non-side-effect-free, i.e., this event modifies one
or more of the CPA program’s state variables which are associ-
ated with the path conditions of p, and (2) before processing this
input, the execution of the SDN-CPA proceeded on a fault-free

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran’

code path. Tardis ignores side-effect-free events (line 5 in Algo. 1)
from consideration, since they do not modify the value of any
state variables (and, hence, cannot steer the execution). Essentially,
side_effect_free() checks to see if the event modifies any state
variables. If the event changes state variables, we determine the
code path (line 6 in Algo. 1) by using the global state’s versioning
feature to identify the state associated with the event and then de-
termining the paths matching the state variables. We, then, extract
the path conditions associated with the path (line 7 in Algo. 1).

Lastly, we use an SMT solver (line 8 in Algo. 1) to test if an input
event steers execution away from the faulty path. The solver checks
if the path conditions of the code path associated with an input
satisfy that of the buggy path; a failure to satisfy implies that this
input event steers execution away from the faulty path. Specifically,
the inputs to the solver are the path constraints from when the CPA
crashed and the state variables from the global state layer. As we
iterate backward through events, we extract the associated state
variables from the history within the global state and feed them
into the solver.

In Fig. 5, to avert the fault (after processing e;) we have to change
the outcome of the path conditions associated with this buggy path.
We mark ey as the root cause for the buggy behavior because it
leads to a different code path (compared to the buggy path of e;).
The algorithm ignores ey, since this input does not change the path.

6 TRANFORMATION-GENERATOR

Transformations build on the notion of an equivalent and a safe
class of inputs, where inputs in the same class both capture the same
network state (hence equivalence) and elicit the “same” behavior
from the CPA (hence safety), i.e., the output satisfies both operator
specified invariants and objectives (§2.3). Hedera’s same behavior,
for instance, in §2.3, for the two equivalent inputs translate to
achieving maximum aggregate bandwidth (objective) and ensuring
that flows between any pair of hosts are routed over one of the
available paths between the hosts (invariant). In this section, we
focus on generating equivalent events in terms of network state and
discuss safety in terms of behavior (in §6.4). In Fig. 6, we illustrate
the transformation generation and validation functions.

Recall that there are two classes of network inputs. One class
of inputs captures and expresses topology changes/modifications,
i.e., a change in the network topology graph (e.g., a {Port-up}
or {BGP Update} which captures the addition of a new link or
path, respectively). The other class provides local state updates, i.e.,
updates information about a node or link (e.g., {Switch stats}
or {Packet-In} which provide information about the number of
bytes or the arrival of a flow at a device, respectively).

Our goals in generating transformations are to effectively address
both classes of inputs. We achieve that objective using two types
of transformations.

6.1 Generating Topology Transformations

The first class transforms an event into another set of events that
capture a similar modification to the topology. We can validate these
topology transformations by modeling the network as a graph, G,
and verifying that both the original input sequence, E, and the
transformed sequence, E, have the same effect on the graph. Thus,

Tardis: A Fault-Tolerant Design for Network Control Planes

G +E = G + E, where “+” is an operator that applies the messages
to the network graph, e.g., applying a ‘Link down’ event to the
network graph removes the link from the graph.

Exploring every single transformation results in a state-space ex-
ploration that varies exponentially in the size of the input. Moreover,
many transformations are not semantically equivalent (i.e., they
violate the protocol hints or do not provide the same effect on the
network graph). Thus, we need an efficient search algorithm that
can systematically explore the space of potential transformations
to quickly identify semantically equivalent events. In essence, we
need a search algorithm that can deal with arbitrary control planes
and arbitrary event types (and their corresponding cost functions or
definitions of equivalence) while finding an optimal solution. Simu-
lated annealing fits these requirements; it provides a statistically
optimal solution for arbitrary systems with arbitrary cost functions.
Simulated annealing has been used quite successfully in many net-
working studies published in the last few years [3, 35, 54, 83].

In designing our simulated annealing-based heuristic, we assume
a graph G to represent the target network topology. Then, we
define a search space in which each state is a graph Gr4pns With
VG = VG, ans - For topology transformations, all states differ in the
set of links and nodes that are active. The following intuition guides
our exploration of the space: the network is hierarchical (i.e., ports
are part of switches, and switches are part of groups, e.g., pods), and
semantically equivalent transformations are hierarchically related.
For example, the transformation of {Port P; (of Sw. S;) Down},
to {Port P; (of Sw. S1) Up, Port P; (of Sw. S1) Down}
must be to the same switch (S1). A transformation to a different
switch (i.e., {Port P; (of Sw. S2) Up, Port P; (of Sw. S3)
Down}) will not be semantically equivalent.

Following the intuition from above, our heuristic generates
neighbors for the current state using the following procedures.

(1) Toggle an edge (u,v), where u,v € Vg and u # v.

(2) Take down all edges connected to a certain vertex u, i.e., let
(u,i) ¢ Eg, Vi € Vg.

(3) Bring up all edges connected to a certain vertex u, i.e., let
(u,i) € Eg, Vi€ V.

We also have similar procedures, as those listed above, at the
vertex level, where we either take down the vertex or its neighbors.

Similar to the classic simulated annealing framework, we have
the energy function (also called goal function) defined as the edit
distance between the current state (G) and the target network topol-
ogy (Go), i.e., E(G) = dist(G, Gg), where dist() indicates the edit
distance. A new state could be accepted in two ways, either when
E(G’) < E(G), where G’ is the new state and G is the current

. I (<4 o (<) L
state, or with the possibility e T ." The initial temperature
Tp is set to 1000 and the temperature of t™ iteration decays as
T(t) = ;—01. The algorithm terminates when the temperature drops
below 5.
The transformation is the sequence of procedures used to transi-

tion from the initial state, G, to the equivalent graph Grgns.

4This follows the Metropolis Principle, where T is the current temperature.

SOSR 21, October 11-12, 2021, Virtual Event, USA

‘ Network State

List of
potential
Transformation events |

Generator ‘ !

List of
i equivalent
events

Orriginal
| event(s)

Safety
Validator

Figure 6: Transformation generation & validation.

6.2 Generating Attribute Transformations

The second class transforms the attributes of an event, i.e., a ‘Link
down’ is transformed into another ‘Link down’ but with different at-
tributes. The protocol specification offers strong hints on attributes
that can be fuzzed, i.e., will not impact the intent. For example, the
buffer size of a Packet-In message, input to an SDN-CPA, does
not affect the intent. We could, hence, transform the message by
enlarging its buffer (via padding) and recovering from buffer-size
related bugs.

The fuzzer generates transformations for UPDATE messages; we
leverage domain knowledge for determining when two UPDATE
messages are deemed equivalent. This is generally based on the
intent of the update message: for example, in an SDN-CPA the
intent may be to express the number of bytes processed by a switch,
and as such, the transformation is equivalent if this information
is still present. Similarly, for a TDN-CPA, the intent may be to
express a relative ordering of paths, and any transformations are
valid as long as this relative ordering is maintained. The fuzzer, for
instance, utilizes four different types of fields in the TDN messages
to search for applicable transformations: (a) numeric values (e.g.,
MULTI_EXIT_DISC), (b) enumerated list (e.g., ORIGIN), (c) sequences
(e.g., AS_PATH), and (d) free-form text (e.g., COMMUNITY).

Our fuzzing search algorithm is motivated by manual fixes em-
ployed by operators to “hot patch” their CPAs. We apply a different
search algorithm for the different types discussed above. For nu-
meric values, the fuzzer explores random values, and for sequences,
it appends or deletes duplicates of a sequence item. In the case of
freeform text, the fuzzer uses a set of well-known or predefined
values specified by the network operator.’

6.3 Generality of Transformations

There is a clear distinction between SDNs and TDNs. While SDNs
support a richer set of events, TDNs express most of the key net-
work properties (both topology and local updates) in one event type
(i.e., UPDATE). For SDNs, we leverage topology-transformations and
attribute-transformations for the topology change and local update
events, respectively. Whereas, for TDNs, we leverage topology-
transformations and attribute-transformations for the UPDATE event.

>No global standards dictate how BGP COMMUNITY attributes must be interpreted.
Peering ASes rather mutually agree upon a set of acceptable values and interpretations.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

6.4 Transformation Safety

Transformations are inputs crafted for correcting buggy behavior.
It is only natural, hence, to question if such transformations may
themselves be unsafe. How can we check if transformations them-
selves introduce a fault? To answer this question, we identify two
safety properties and defining a notion of liveness based on them.
A transformation is deemed safe if it satisfies two properties.

#1: The CPA makes (forward) progress, i.e., it does not encounter
a bug when processing the transformed event(s).

P2: The transformed events themselves do not induce any buggy
behavior in the future.

While #; applies only to recovery (i.e., recovery mode), P2
is relevant only after emerging out from the recovery mode and
processing new inputs (i.e., passive mode). P2, similar to the liveness
property of concurrent systems, assures that the system is not stuck
in a loop—making progress, experiencing a fault, and attempting to
transform the already transformed input. We can readily identify
transformations that violate #;: If a CPA immediately faults after
a transformation, we detect the fault and mark the transformation
as the root cause. Satisfying P is, however, difficult: We need to
assess the impact of the transformations in the future. We tackle this
difficulty with a technique called opportunistic liveness tracking.

Opportunistic Liveness Tracking. The insight behind opportunis-
tic tracking is that CPAs are designed to work with “soft-state,”
which means that the information in each event has a bounded
horizon of relevance. In particular, if the information is not up-
dated or refreshed, the CPAs consider the related state invalid and
delete them. For example, information about the status of a link
(i-e., link-up for SDNs) or an AS (i.e., five hops aways for TDNSs) is
considered irrelevant if not updated and refreshed within a prede-
fined interval. Motivated by this, Tardis maintains metadata about
recovery (e.g., transformations and the bug-triggering event) and
tracks a CPA’s behavior after recovery until a predefined interval,
i.e., Tardis discards the metadata after processing N inputs follow-
ing the transformation. This threshold N defines an opportunistic
length of time within which we expect any buggy behavior, induced
by the transformation itself, to manifest. A fault within the bounded
horizon is attributed to the transformation. Suppose we assume a
transformation to be faulty. Now, for any buggy behavior observed
beyond the threshold, there is a possibility that we mark some
other input, and not the transformation itself, as the root cause.
Recovery might still be possible. In our empirical evaluations, we
observed that a choice of N = 16 suffices, i.e., any impact of the
transformation was typically observed within the next 16 inputs to
the CPA. In practice, we may, hence, choose a much higher value
to be safe, without running into any buffering constraints.

6.5 On Prior Transformation-based Recovery

While inspired by prior work [11] for leveraging transformations,
we advance that work along two key dimensions. First, we develop
a search heuristic to automatically generate transformations that
LegoSDN provides. Second, we introduce techniques to eliminate
unsafe and invalid transformations, thus ensuring correctness. A
transformation that turns a {Sw. S1 |} intoa {[Sw. S; 1%}, for

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran’

instance, is an unsafe transformation: It shuts down the whole net-
work. Tardis ignores this unsafe transformation since the difference
between the original and the transformed events are too large.

7 PROTOTYPE

Next, we describe our prototype implementations for both an SDN
control plane, with six SDN-CPAs, and two TDN control planes,
each with a BGP-based TDN-CPA.

7.1 SDN Prototype

We evaluate Tardis’s ability to correct buggy behavior of SDNs by
evaluating six different SODN-CPAs: Learning Switch, Firewall, For-
warding, Hedera, RouteFlow, and Load Balancer. We run both Tardis
and the SDN-CPAs on Floodlight. Learning Switch (‘LSwitch’) and
Forwarding (‘Fwding’) come bundled with the Floodlight controller.
Firewall enforces a preconfigured policy, allowing traffic only be-
tween certain end hosts in the network. Hedera implements the
flow-scheduling algorithm from [3]. Routeflow (‘RtFlow’), from
prior work [11], routes flows over the shortest path in the network,
and Load Balancer (‘LoadBal’) balances network traffic between
any two endpoints based on some simple heuristics. RtFlow and
LoadBal are proactive SDN-CPAs, while the rest are reactive.

Our prototype implementation of Tardis for SDN-CPAs runs on
top of the Floodlight controller. Since we did not make any changes
to the controller’s source code, the prototype may be ported to other
controllers with modest engineering efforts. We added a simple
state layer interface to the SDN-CPAs, providing GET and SET calls
to support querying and modifications of the state-variables asso-
ciated with the SDN-CPA. To the controller, the interface exposes
COMMIT and REVERT calls allowing the controller to either commit the
(control-plane) changes after an SDN-CPA successfully processes
an input, or revert the changes, in case of a fault.

We used the Java Path Finder (JPF) model checker [57] and

JDart [50] to symbolically execute the SDN-CPAs, and the Z3 SMT
solver [15] to implement the constraint-satisfaction checks required
for testing whether an input event induces buggy behavior. To
symbolically execute the SDN-CPAs, we set the entry point to the
event handlers and we make the input events and states symbolic.
In our experiment, we observed that, with symbolic execution, we
could explore all code paths accessible from the entry points within
a reasonable time (i.e., less than 3000 ms).
Checking Invariants. The invariant checker module builds on
that of prior work [81]. We modified the checker to flag violations
and convert each violation to a fail-stop fault. The modification
simplifies the recovery logic: whether it is a fail-stop fault or an
invariant violation, recovery follows the same sequence of steps
(refer to ‘recovery mode’ in §4).

7.2 'TDN Prototype

We evaluate Tardis with two different BGP implementations—Quagga
and GoBGP. In extending Tardis for the BGP use case, we exploit
three key insights. First, the current state-layer for TDNs is a data-
structure for storing data extracted from the UPDATE messages.
Second, we extend this data-structure to make it version-aware and
support similar COMMIT and REVERT semantics as the SDN storage
layer. Second, local equivalence and invariants are based on the

Tardis: A Fault-Tolerant Design for Network Control Planes

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Table 2: Details of faults, uncovered in prior work, injected into SDN-CPAs for evaluating Tardis.

Label ‘ Type ‘ Prior work ‘ Source of buggy behavior
SA,SB Memory STS [73] De-referencing a null pointer (or reference), or accessing an invalid
Sc | Management Errors (MME) | LegoSDN [11] memory location, e.g., indexing out of bounds of an array.
STS [73] Invalid or inconsistent switch configurations affected by a faulty

Sk Network Blackholes (NB) PathDump [79]

SF Copy-Paste Errors (CPE) CP-Miner [48]
ATPG [92]
MED [93]
LegoSDN [11]

SG Forwarding Errors (FE)

Sp, Sy | Non-deterministic (ND)

SDN-CPA.

Code copied by a developer from one location to another, without a
Provenance [85] | careful testing.

Same as that of Sg.

Transient faults, e.g., race conditions in multi-threaded SDN-CPAs.
Faults {Sa, SB, Sc,SE, SF, S} are deterministic.

relative ordering of paths. Thus we can check local invariants by
analyzing the paths stored in the state-layer; we perform this check
using C-BGP [68]. Third, CPAs in a TDN setting often run as dis-
tinct processes communicating through IPCs and RPCs; we design
our shim layer for intercepting such calls based on techniques from
prior work [39].

We use a bespoke symbolic execution tool to extract path con-
straints and reuse the Z3 SMT solver to implement the constraints-
satisfaction. We set the entry point as the UPDATE handler and make
the input events and states symbolic.

8 EVALUATION

Our evaluation of Tardis, is motivated by the following questions:
(i) How does Tardis perform against existing recovery techniques
(§8.2)? (ii) Does Tardis generalize across both control planes (§8.2
and §8.3)? (iii) How does Tardis operate with partial access to CPA
state (§8.4)? (iv) Where do the overheads of Tardis come from (§8.4)?
(v) What are the performance implications of Tardis’s search algo-
rithm for generating transformations (§8.4)?

8.1 Experiment Setup

SDN Setup. We emulated the data plane (a Fat-tree topology,
with k = 4) using Mininet [46]. We performed our experiments
on a Linux (Ubuntu 14.04 LTS) server with 12 processor cores and
16 GB of memory. Unless otherwise mentioned, we injected all
bugs in Tab. 2 in all event handlers across all SDN-CPAs and report
the statistics (median and standard deviation) gathered from ten
different trials.

TDN Setup (BGP): We injected the fail-stop bugs in Tab. 3 into
the UPDATE message handler of two widely used BGP implemen-
tations: GoBGP (v2.5.0) and Quagga (v1.2.3). We ran the modified
BGP implementations on an 8-core machine with 32 GB of RAM,
running Linux kernel 4.15.0. We replayed BGP traces from RIPE
NCC [70] archived on May 20, 2019 to a testbed consisting of one
BGP router—the GoBGP (v2.5.0) or Quagga (v1.2.3) implementation.
To use Tardis for recovering from BGP faults, we do not require
any coordination or support from other networks; our one-node
setting, hence, suffices for these experiments.

8.1.1 Fault Injection. Below, we describe what faults we inject, and
how and where we inject them.

Table 3: Prevalence of a few different bug categories among
the bugs actually observed in the Internet.

Category ‘ Prevalence ‘ Bug Labels (for Fig. 8)
39.13% | {Da, D, D¢, Dg, Dy}

8.70% | {Dg, Df, D}
8.70% | {Dp}

Malformed Message
Unknown Attribute
Disordered Messages

What? We use faults uncovered in prior work. ~ We inject real bugs
discovered in open source CPA artifacts by prior work (Tab. 2 for
SDNs and Tab. 3 for TDNs): Injecting real bugs from multiple CPA
artifacts enables us to understand the performance of Tardis across
broad and representative failures. For TDNs (i.e., BGP), we selected
the dominant categories of bugs (Tab. 3) among those observed on
the Internet; the prevalence values in the table reflect the frequency
of that bug type across 23 publicly documented BGP bugs over the
last 13 years in the Internet. Moreover, recent studies by Google
highlight that several of these bugs (e.g., NB type) have significantly
impacted network availability [25].

How? We inject bugs via monkey patching and binary rewrites. Our
fault injector monkey patches the source code with snippets of
buggy code based on bugs in open-source SDN-CPAs and descrip-
tion of bugs in TDN-CPAs. To induce the MME and CPE fault types,
the injector monkey patches the source code to throw exceptions
or perform an out-of-bounds memory access. The injector care-
fully removes code or drop outputs, generating invariant violations
(e.g., NB and FE fault types). We inject both deterministic and non-
deterministic faults; we used a random number generator to help
with the non-determinism required for the latter.

Where? We inject faults in all event-handlers. ~ We introduce bugs
in the most frequently traversed code paths of every event-handlers
of the SDN-CPAs. In the case of the TDN-CPAs we focus on the
UPDATE message handler as all reported bugs are in that handler’s
implementation. Thus, we comprehensively test Tardis’s ability to
avert faults, even those in well-tested and commonly used paths
encountered in invoking the SDN-CPAs.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Table 4: Success rate of fault recovery.

Label App. Reboot LegoSDN RSM Tardis

Sa 0% 33.3% 0% 82.4%
SB 0% 33.3% 0% 83.6%
Sc 0% 33.3% 0% 83.0%
Sp 100% 100.0% 100% 100.0%
SE 0% 33.3% 0% 84.3%
SF 0% 33.3% 0% 81.6%
Sc 0% 33.3% 0% 82.6%
Sy 100% 100.0% 100% 100.0%

Fail <& Normal =+
1
0.8
0.6

0.4 [o
0.2
op/‘
0 0.2 04 06 038 1
Utilization

Tardis =B+ Fallback =&

CDF

Figure 7: Tardis performs better than fast-failover meth-
ods (“Fallback”); variation in link utilizations observed after
Tardis performs recovery is similar to that observed in a fault-
free (“Normal”) scenario.

8.2 Evaluation of SDN Realization

8.2.1 Tardis vs Control Plane Recovery. We begin by highlighting
the need for Tardis. Our approach recovers from a wider range
of faults (Tab. 4) compared to all other online fault-tolerance tech-
niques, namely application reboot (e.g., [9]), replicated state-machine
or RSM (e.g., Ravana [36, 52]), and checkpoint-replay (e.g., LegoSDN
[11]). RSM and reboot fail to avert any deterministic fault (with
labels S4, SB.Sc,SE,SF, and Sg), since they repeat (without al-
tering) the input sequence on recovery. Besides, they also fail to
correct data-plane inconsistencies caused by the fault. LegoSDN
alters the input event sequence and, hence, can recover even from
deterministic faults. But that LegoSDN only alters the last input, has
implications for recovery: Of the 48 faults injected (8 bugs across
the 6 SDN-CPAs) LegoSDN fails to recover from 24 faults (Tab. 4).
We analyzed the 6 bugs (in Tab. 4) that Tardis could not recover
from, in all trials. We identified the key reason to be the lack of
alternative code paths—specifically, 2 of the 6 SDN-CPAs have
faults in a method containing only one code path. Such lack of path
diversity is suggestive of a simplistic, immature implementation.
In some cases, Tardis fails when the bugs lead to a byzantine fault;
such faults cannot, however, be detected using invariant checkers.

8.2.2 Tardis vs Data Plane Recovery. Networks today, typically,
handle hardware issues such as link failures by pre-installing back-
up or fall-back paths (e.g, [20, 30, 32, 58]). We, hence, return to our
motivating example (§2), and simulate fast-failover methods by in-
stalling fall-back paths, as required, after the link failure. Fig. 7 plots

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran’

Recovery Time Transformations

140 8
120 T
100

80

S EEr G

DA DB DC DD DE DF DG DH

o))
o

D
Count

Time (in ms)
n
o

N
o o

Bug

Figure 8: Times spent and counts of transformations used by
Tardis for recovering from real bugs in a GoBGP implementa-
tion. Although not shown, similar results hold for the Quagga
implementation.

the CDF of link utilizations after Hedera re-routes flows following
the link failure event (cf. Fig. 2). We emulated TCP flows between
non-overlapping pairs of hosts, selected uniformly at random, and
we configured flow sizes to follow a power-law distribution and sam-
pled inter-arrival times from a Poisson distribution. The fault-free
(“Normal”) scenario presents the baseline for comparison. Tardis
performs better than fast-failover methods (“Fallback”) and per-
forms well compared to the baseline—variation in link utilizations
is similar to that observed in the baseline (“Normal”). While fast-
failover techniques are better than the fail-open scenario (“Fail”),
they cannot always satisfy network objectives: Nearly 40% of the
links are underutilized (i.e., with less than 80% utilization) and a
few are virtually unused.

8.3 Evaluation of BGP Realization

We now demonstrate Tardis’s ability to handle run-time faults in
BGP (e.g., [12], [53], and [94]), for evaluating our approach for a
traditional, decentralized network (TDN) control plane.

Fig. 8 reports the median recovery times and counts of trans-
formations used by Tardis (across 10 trials) to recover from real
bugs in a GoBGP implementation. Per this figure, we recover from
three dominant BGP bug types, in both BGP implementations, with
sub-second recovery times. In most cases, exploring a few differ-
ent transformations seem to suffice for finding a good solution.
Tardis recovers quickly from real bugs, and the approach is much
preferable to encountering router crashes and resulting widespread
routing instabilities.

8.4 Implications of System Design

Below, we analyze some of the key design choices. We focus on the
results from the SDN use case which has worse performance than
the TDN.

State Layer. Access to the CPA’s state variables enables Tardis
to determine the root cause effectively. While most modern control
planes (e.g., [7, 64, 90]) force developers to externalize global state
variables in a database, as observed in §2.1, some developers only
externalize a subset of the CPA’s state. Next, we explore the impact
of partially externalizing state variables on Tardis’s recovery. Given

Tardis: A Fault-Tolerant Design for Network Control Planes

50%-state 75%-state EZ1 100%-state [=]
1000

800
600
400
200

§
o
]
#
o
]
#
o

T

AAAAARARANNNNN,

Pz
<

C

Recovery time (in ms)

o

Bug

Figure 9: Impact of the extent to which state variables are ex-
ternalized on the recovery time.

that the state variables are required for root-cause analysis (§5),
we expect Tardis’s accuracy to reduce as less state information is
made available to it; less accuracy, in turn, will increase its recovery
time, because Tardis will need to explore more events and trans-
formations. In Fig. 9, we observe that externalizing only 50% of
the state ensures that recovery time increases by no more than
20%. Surprisingly, we also observe that recovery can be faster for a
subset of the experiments, since less state implies less complexity.

Overheads. To quantify the overheads introduced, we divide the
time spent by Tardis in recovering from various faults by that of
reboots (and LegoSDN) to compute the recovery “slowdowns.”

Per Fig. 10 Tardis is, unsurprisingly, slower than reboots: The
latter only entails restarting the process, compared to the various
functionality (e.g., finding a root cause) implemented by the former.
Although reboot is faster, since it does not fix most errors (Tab. 4)
there will likely be an extended downtime—this is, in essence, sim-
ilar to what was experienced at Google and Facebook when the
systems kept rebooting, and they had several hours of downtime
because rebooting did not fix the problem.

Tardis is faster than LegoSDN, since the latter relies on check-
pointing, which incurs significant overhead. The recovery time
ratios for Forwarding and Hedera, however, show that Tardis is
slightly slower compared to LegoSDN: These two SDN-CPAs persist
comparatively more states resulting in Tardis requiring relatively
more cycles to analyze these states during recovery. Even in these
cases, the overheads introduced by Tardis are marginal and justified
given its efficiency in fault recovery.

Our experiments also show that Tardis uses approximately 25%
CPU of a single core and 0.5% memory—these resource utilizations
can be controlled, as required, by an administrator by scaling dif-
ferent modules out on multiple machines in a cluster.

We analyze the performance of the Transformation-Generator’s
search algorithm (§6) in Fig. 11. To this end, we investigate its run-
time across topologies of varying sizes—specifically a data center
(i.e., Fat-tree topology with vary k values). We also augment this
plot with the time spent in running the first n transformations
(where n is either 1, 10, or 50), since we could terminate the search
earlier, for limiting recovery time to some predefined budget. Our
experiment results show, unsurprisingly, that the total search time
increases with k. Our algorithm finds all transformations within
500 ms for a topology with k = 10, albeit it becomes prohibitively
expensive for the much larger topologies. We note, however, that

SOSR ’21, October 11-12, 2021, Virtual Event, USA

’g _ Tardis/Reboots EY Tardis/LegoSDN 21
1.2
° B
NN
REEREN
g
%04_...
el
: 1IN
g JN
2 N . o ~ﬂ

A 9 (8)

‘é\‘e’\“ ?‘“6\ \>\?’ 6 ’&\
SDN-CPA

Figure 10: Comparison of Tardis’s recovery time with that of
reboots and LegoSDN.

All =% First =+« First-10 —&- First-50 —»

50)

4ol X
w e
é 30 ‘Jl’
g 20 o g 7
= 10 e e g

o = ST i '} P L
0 20 40 60 80 100

Figure 11: Cost, in terms of time, of the simulated annealing-
based heuristic for finding transformations.

Tardis only required a small set of transformations. In practice, we
observed that Tardis requires fewer than 20 transformations—fewer
than 8 for the TDNss use cases. Furthermore, we do not need to wait
until all searches finish before beginning replay in practice. Our
algorithm can generate the first 10 events within a second even
for the largest topology in our evaluation. Our search algorithm is,
therefore, performant enough in practice to enable Tardis to recover
from actual bugs.

9 RELATED WORK

Verification & Troubleshooting. There exists significant work on
detecting and identifying bugs in SDNs [5, 10, 16, 37, 38, 42, 45, 51,
55, 59, 60, 71, 78, 82, 87]. Proving the absence of bugs is intractable,
and testing can reduce, not eliminate, bugs. Tardis stands to benefit
from a decrease in bugs: In the event of a (less-likely) fault, Tardis
will have more fault-free code paths to use in recovering from the
fault. Prior efforts also focused on localizing problems in SDNs [28,
72,73, 80, 86], but these are offline techniques and do not attempt
to recover from or circumvent a fault.

Automated Program Repair. An alternative and equally appealing
approach is to modify the source code of the program rather than
the inputs to the program. Existing work [47, 61, 66] on program
repair focuses on developing general techinques for repairing arbi-
trary programs which limits them to addressing common errors,
e.g., off-by-one or buffer overflows. However, as we show in § 2.2,
network control planes are often plagued by more complex prob-
lems (e.g., missing logic) which require extensive changes. Tardis

SOSR ’21, October 11-12, 2021, Virtual Event, USA

trades off generality for coverage: By narrowly focusing on input
transformations for network control plane applications, Tardis is
able to cover a broader range of important bugs.

Provenance-based recovery. Wu et al. [85] and Han et al. [26]
propose provenance-based solutions to suggest “fixes” for bugs. In
case of a run-time fault, however, the query to elicit fixes might
have little or no information to retrieve fixes, and, unlike Tardis,
recovery entails manual intervention.

Redundancy & Programming Models. ~ Prior work has also investi-
gated the use of redundancy, replication and programming models
to tackle faults [36, 39, 62, 65, 76]. Unfortunately these approaches
are explicitly designed to tackle non-deterministic bugs, whereas
Tardis handles both deterministic and non-deterministic bugs.

Execution steering. Crystalball [88] introduced the idea of execut-
ing a model checker in parallel with a running system and steering
the system’s execution to prevent inconsistencies. The authors con-
cede, however, that memory usage is a limiting factor. Further, a
Crystalball-compatible system must be implemented in Mace [43],
which might require significant engineering efforts. LegoSDN [11]
attempts to transform crash-inducing inputs to avoid a fault, but
it assumes that the last-processed input is the root cause, severely
limiting its applicability. Bouncer [13] filters out malicious inputs,
but mainly focuses on illegal memory writes.

10 LIMITATIONS

Recovery Limitations. Tardis is only able to recover if the code
contains sufficient path diversity and the transformations are able
to explore these paths. While we find this true for the TDNs, we
observed scenarios where SDN-CPAs did not contain sufficient di-
versity. This observation highlights the difference between mature
CPAs (i.e., TDNs) and non-mature (SDN-CPA). We anticipate that
Tardis will benefit as the implementations of SDN-CPAs mature
and improve.

Bug Type. Although, we focussed on bugs triggered by network
events, other major sources of bugs include configurations and
operating systems. We note, however, that existing work on veri-
fication addresses configuration bugs, and we plan to extend our
approach to operating systems.

Semantic Limitations. We are unable to recover from route
leaks and hijacks, which account for 18% of the reported BGP
issues, due to our inability to validate ownership of IP address
prefixes. We are presently only able to recover, therefore, from
failures caused by non-malicious inputs.

11 CONCLUSION

The demands for high availability of a network infrastructure em-
phasize the need for robust, fault-tolerant control-plane applica-
tions (CPAs) for managing these networks. Despite prior work on
testing, troubleshooting, programming models, and fault tolerance,
the scope of prior work misses a key requirement: support for re-
covering from bugs, especially of the deterministic type, at run time.
Tardis addresses this gap by introducing novel methods for effec-
tively localizing the bug triggering input events and automated
techniques for generating an alternative set of semantically equiv-
alent and safe input events. Tardis rolls back the CPA and uses

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran’

these alternative events for recovery. To demonstrate the effective-
ness of Tardis, we evaluated it using a combination of 71 realistic
failures injected into six SDN-CPAs and two TDN-CPAs. In our eval-
uations, Tardis recovered from more bugs than prior approaches.
Tardis performed better than widely used fast-failover methods for
SDN-CPAs, and for TDN-CPAs Tardis provided quick recovery (i.e.,
within 140 ms), avoiding least-preferred, expensive router crashes.

12 ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd, Ryan Beck-
ett, for their insightful comments. We also thank Ayush Bhardwaj
for helping us with designing our experiments. This work was
supported by NSF award CNS-1749785.

REFERENCES

[1] Anubhavnidhi Abhashkumar, Kausik Subramanian, Alexey Andreyev, Hyojeong
Kim, Nanda Kishore Salem, Jingyi Yang, Petr Lapukhov, Aditya Akella, and
Hongyi Zeng. 2021. Running BGP in Data Centers at Scale. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI "21).
Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hihnle, Peter H.
Schmitt, and Mattias Ulbrich (Eds.). 2016. Deductive Software Verification - The KeY
Book - From Theory to Practice. Lecture Notes in Computer Science, Vol. 10001.
[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. 2010.
Hedera: Dynamic Flow Scheduling for Data Center Networks. In Proceedings
of the 7th USENIX conference on Networked systems design and implementation
(NSDI ’10).

Josh Bailey and Stephen Stuart. 2016. Faucet: Deploying SDN in the Enterprise.
Queue (Oct. 2016).

[5] Thomas Ball, Nikolaj Bjerner, Aaron Gember, Shachar Itzhaky, Aleksandr Kar-
byshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. 2014. VeriCon:
Towards Verifying Controller Programs in Software-defined Networks. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14).

[6] Cory Bennett and Ariel Tseitlin. 2012. Chaos Monkey Released into the
Wild. https://web.archive.org/web/20120730195043/http://techblog.netflix.com/
2012/07/chaos-monkey-released-into-wild.html.

[7] PankajBerde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow,
and Guru Parulkar. 2014. ONOS: Towards an Open, Distributed SDN OS. In
Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14).

[8] Ayush Bhardwaj, Zhenyu Zhou, and Theophilus A Benson. 2021. A Compre-
hensive Study of Bugs in Software Defined Networks. In 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN °21).

[9] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. 2004. Microreboot — A Technique for Cheap Recovery. In Proceedings of the
6th Conference on Symposium on Opearting Systems Design & Implementation -
Volume 6 (OSDI "04).

[10] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kosti¢, and Jennifer Rexford.
2012. A NICE Way to Test Openflow Applications. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation (NSDI ’12).
Balakrishnan Chandrasekaran, Brendan Tschaen, and Theophilus Benson. 2016.
Isolating and Tolerating SDN Application Failures with LegoSDN. In Proceedings
of the 2nd ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR ’16).

[12] Cisco. 2019. Cisco Bug: CSCuz62898 - Crash in BGP due to Regular Expressions.
https://quickview.cloudapps.cisco.com/quickview/bug/CSCuz62898.

Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus Peinado.
2007. Bouncer: Securing Software by Blocking Bad Input. ACM SIGOPS Operating
Systems Review (2007).

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vah-
dat. 2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud
Network Virtualization. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’18).

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’ 08/ETAPS’08).

[2

=

[11

[13

(14

[15

Tardis: A Fault-Tolerant Design for Network Control Planes

[16]

[17]

[18

=
X0

[20

[21

[22

[23

[24

[25]

[27

[28]

[29]

[30]

(31

[32]

[33

[34

[35]

Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015.
SPHINX: Detecting Security Attacks in Software-Defined Networks. Proceedings
of the 22nd Annual Network and Distributed System Security Symposium (NDSS)
(2015).

Gary Eastwood. 2017. How A Typo Took Down Amazon’s Cloud.
https://web.archive.org/web/20180519161511/https://www.networkworld.
com/article/3179831/cloud-computing/how-a- typo-took-down-amazons-
cloud.html.

Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis Using
a Succinct Control Plane Representation. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI '16).

Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar
Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, Richard Alimi, Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal,
Karthik Nagaraj, Kondapa Naidu Bollineni, Amr Sabaa, Shidong Zhang, Min
Zhu, and Amin Vahdat. 2021. Orion: Google’s Software-Defined Networking
Control Plane. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI °21).

Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
2018. Local Fast Failover Routing With Low Stretch. SSIGCOMM Comput. Commun.
Rev. (April 2018).

FOX 46. 2018. American Airlines: PSA Computer Systems Stabilized After Glitch.
https://tinyurl.com/yb6r6yz6.

Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and Hongqiang Harry
Liu. 2017. Automatically Repairing Network Control Planes Using an Abstract
Representation. In Proceedings of the 26th Symposium on Operating Systems Prin-
ciples (SOSP °17).

Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast Control Plane Analysis Using an Abstract Representation. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’16).

Serge Gorbunov and Arnold Rosenbloom. 2010. Autofuzz: Automated Network
Protocol Fuzzing Framework. IJCSNS (2010).

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’16).

Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo
Seltzer. 2017. FRAPpuccino: Fault-detection through Runtime Analysis of Prove-
nance. In 9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
17).

Mark Handley, Orion Hodson, and Eddie Kohler. 2003. XORP: An Open Platform
for Network Research. SIGCOMM Comput. Commun. Rev. (Jan. 2003).

Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas Wundsam,
Hongyi Zeng, Sam Whitlock, Vimalkumar Jeyakumar, Nikhil Handigol, James
McCauley, Kyriakos Zarifis, and Peyman Kazemian. 2013. Leveraging SDN
Layering to Systematically Troubleshoot Networks. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN
13).

Bill Hethcock. 2016. Southwest Airlines Computer Outage Costs Could
Reach $82M. https://www.bizjournals.com/dallas/news/2016/08/11/southwest-
airlinescomputer-outage-costs-could.html.

Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.
2017. SWIFT: Predictive Fast Reroute. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SSIGCOMM °17).

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving High Utilization with Software-
Driven WAN. SIGCOMM Comput. Commun. Rev. (Aug. 2013).

Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill
Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,
Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat. 2018. B4 and After:
Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in
Google’s Software-defined WAN. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SSIGCOMM °18).

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Holzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a Globally-
Deployed Software Defined WAN. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’13).

P. Jakma and D. Lamparter. 2014. Introduction to the quagga routing suite. IEEE
Network (2014).

Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei Xu, and
Jennifer Rexford. 2016. Optimizing Bulk Transfers with Software-Defined Optical
WAN. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM °16).

[36

[37

[38

@
29,

[40

[41]

[42

=
&

[44

[45

[46

~
=

(48

[49

[50

v
ey

[52

[53

(54

[55

[57

[58

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. 2015. Ravana:
Controller Fault-tolerance in Software-defined Networking. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR
’15).

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’13).

Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI ’12).

Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. 2009. Virtually
Eliminating Router Bugs. In Proceedings of the 5th International Conference on
Emerging Networking Experiments and Technologies (CONEXT ’09).

Lorenzo Keller, Prasang Upadhyaya, and George Candea. 2008. ConfErr: A
Tool for Assessing Resilience to Human Configuration Errors. In 2008 IEEE
International Conference on Dependable Systems and Networks With FTCS and
DCC (DSN).

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).
Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13).

Charles E. Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M.
Vahdat. 2007. Mace: Language Support for Building Distributed Systems. In
Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI "07).

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
(July 1976).

Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano, and Dejan Kostic.
2012. A SOFT Way for OpenFlow Switch Interoperability Testing. In Proceedings
of the 8th International Conference on Emerging Networking Experiments and
Technologies (CONEXT ’12).

Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets-IX).

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12).

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in Operating System Code. In 6th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 04).
Honggiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno Lopes,
Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet: Faithfully
Emulating Large Production Networks. 599-613. https://doi.org/10.1145/3132747.
3132759

Kasper Luckow, Marko Dimjagevi¢, Dimitra Giannakopoulou, Falk Howar, Malte
Isberner, Temesghen Kahsai, Zvonimir Rakamari¢, and Vishwanath Raman. 2016.
JDart: A Dynamic Symbolic Analysis Framework. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.

Kshiteej Mahajan, Rishabh Poddar, Mohan Dhawan, and Vijay Mann. 2016. Jury:
Validating Controller Actions in Software-Defined Networks. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
André Mantas and Fernando M. V. Ramos. 2016. Consistent and Fault-Tolerant
SDN with Unmodified Switches. CoRR abs/1602.04211 (2016). http://arxiv.org/
abs/1602.04211

Robert McMillan. 2010. Cisco Patches Bug that Crashed 1% of Inter-
net. https://www.computerworld.com/article/2515200/cisco-patches-bug-that-
crashed-1--of-internet.html.

Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani, and Deng Liu. 2014.
vCacheShare: Automated Server Flash Cache Space Management in a Virtualiza-
tion Environment. In 2014 USENIX Annual Technical Conference (USENIX ATC
14).

Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Martin
Vechev. 2015. SDNRacer: Detecting Concurrency Violations in Software-defined
Networks. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (SOSR ’15).

Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch. 2017. Thinking About Avail-
ability in Large Service Infrastructures. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (HotOS ’17).

NASA. 2007. Java Path Finder. http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/
start.

Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, and Chen-Nee Chuah.
2007. Fast Local Rerouting for Handling Transient Link Failures. IEEE/ACM
Trans. Netw. (April 2007).

SOSR ’21, October 11-12, 2021, Virtual Event, USA

(59

[60

[61

(62

[64

[65

(66

(67

[68

[69

[70

[71

[72

[73

[74

(75

[76

[77

[78

[79

[80

(81

]

]

]

)

]

]

]

]

]

]

]

]

Tim Nelson, Andrew D Ferguson, and Shriram Krishnamurthi. 2015. Static
Differential Program Analysis for Software-Defined Networks. In International
Symposium on Formal Methods.

Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krish-
namurthi. 2014. Tierless Programming and Reasoning for Software-defined
Networks. In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’14).

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program Repair via Semantic Analysis. In Proceedings of the
2013 International Conference on Software Engineering.

Jan Henry Nystrém. 2009. Analysing Fault Tolerance for Erlang Applications. Ph.D.
Dissertation. Acta Universitatis Upsaliensis.
opencord.org. 2019. About - Open Cord.
accessed on November 4, 2019.
OpenDaylight Project. 2013.
opendaylight.org.

Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott
Shenker. 2017. SCL: Simplifying Distributed SDN Control Planes. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’17).

Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, et al. 2009. Automatically Patching Errors in Deployed Software. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating systems principles
(SOSP *09).

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. 2005.
Rx: Treating Bugs As Allergies—a Safe Method to Survive Software Failures. In
Proceedings of the Twentieth ACM Symposium on Operating Systems Principles
(SOSP *05).

B. Quoitin and S. Uhlig. 2005. Modeling the routing of an autonomous system
with C-BGP. IEEE Network (2005).

Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and
William S. Beebee, Jr. 2004. Enhancing Server Availability and Security Through
Failure-oblivious Computing. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (OSDI "04).

RIPE NCC. 2019. RIS Raw Data. https://www.ripe.net/analyse/internet-
measurements/routing-information- service-ris/ris-raw-data.

Leonid Ryzhyk, Nikolaj Bjerner, Marco Canini, Jean-Baptiste Jeannin, Cole
Schlesinger, Douglas B. Terry, and George Varghese. 2017. Correct by Con-
struction Networks Using Stepwise Refinement. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’17).

Colin Scott, Aurojit Panda, Vjekoslav Brajkovic, George Necula, Arvind Krishna-
murthy, and Scott Shenker. 2016. Minimizing Faulty Executions of Distributed
Systems. In Proceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation (NSDI ’16).

Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or,
Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock, H.B.
Acharya, Kyriakos Zarifis, and Scott Shenker. 2014. Troubleshooting Blackbox
SDN Control Software with Minimal Causal Sequences. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
'14).

Koushik Sen and Gul Agha. 2006. CUTE and JCUTE: Concolic Unit Testing
and Explicit Path Model-Checking Tools. In Proceedings of the 18th International
Conference on Computer Aided Verification (CAV 06).

Nick Shelly, Brendan Tschaen, Klaus-Tycho Forster, Michael Chang, Theophilus
Benson, and Laurent Vanbever. 2015. Destroying Networks for Fun (and Profit).
In Proceedings of the 14th ACM Workshop on Hot Topics in Networks (HotNets-XIV).
Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung,
Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang.
2014. Rosemary: A Robust, Secure, and High-performance Network Operating
System. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14).

Apoorv Shukla, S. Jawad Saidi, Stefan Schmid, Marco Canini, Thomas Zinner,
and Anja Feldmann. 2020. Toward Consistent SDNs: A Case for Network State
Fuzzing. IEEE Transactions on Network and Service Management (2020).

Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SSIGCOMM
'16).

Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Simplifying Dat-
acenter Network Debugging with PathDump. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16).

Praveen Tammana, Chandra Nagarajan, Pavan Mamillapalli, Ramana Kompella,
and Myungjin Lee. 2018. Fault Localization in Large-Scale Network Policy
Deployment. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS).

Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Banerjee, Jeongkeun Lee,
and Joon-Myung Kang. 2016. SFC-Checker: Checking the Correct Forwarding
Behavior of Service Function Chaining. In 2016 IEEE Conference on Network

https://opencord.org/about/, last

The OpenDaylight Platform. https://www.

Zhenyu Zhou*, Theophilus A. Benson®, Marco Canini®, Balakrishnan Chandrasekaran’

[82

(83]

(84

(86

(87

[88

%
20,

[90

[91

[92

[94

Function Virtualization and Software Defined Networks (NFV-SDN).

Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.
2013. Maple: Simplifying SDN Programming Using Algorithmic Policies. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’13).

Da Wei, Lei Xu, Xin Jin, Yiran Li, and Wei Xu. 2016. A 12-rack, 180-server Data-
center Network (DCN) Using Multiwavelength Optical Switching and Full Stack
Optimization. In 2016 Optical Fiber Communications Conference and Exhibition
(OFC).

Elizabeth Weise. 2017. Massive Amazon Cloud Service Outage Disrupts Sites.
https://tinyurl.com/y8z6erf].

Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2015. Automated Network Repair with Meta Provenance. In Proceedings of the
14th ACM Workshop on Hot Topics in Networks (HotNets-XIV).

Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann. 2011.
OFRewind: Enabling Record and Replay Troubleshooting for Networks. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC ’11).

Lei Xu, Jeff Huang, Sungmin Hong, Jialong Zhang, and Guofei Gu. 2017. Attacking
the Brain: Races in the SDN Control Plane. In USENIX Security Symposium.
Maysam Yabandeh, Nikola KneZevi¢, Dejan Kosti¢, and Viktor Kuncak. 2009.
Crystalball: Predicting and Preventing Inconsistencies in Deployed Distributed
Systems. In 6th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI "09).

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma,
Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius,
Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2017. Taking
the Edge off with Espresso: Scale, Reliability and Programmability for Global
Internet Peering. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17).

Soheil Hassas Yeganeh and Yashar Ganjali. 2016. Beehive: Simple Distributed
Programming in Software-Defined Networks. In Proceedings of the 2nd ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’16).
Zuoning Yin, Matthew Caesar, and Yuanyuan Zhou. 2010. Towards Understand-
ing Bugs in Open Source Router Software. SIGCOMM Comput. Commun. Rev.
(June 2010).

Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Au-
tomatic Test Packet Generation. In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies (CONEXT ’12).

Q. Zhi and W. Xu. 2016. MED: The Monitor-Emulator-Debugger for Software-
Defined Networks. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications.

Earl Zmijewski. 2009. Oracle Dyn: Longer is not Always Better. https://dyn.com/
blog/longer-is-not-better/.

	Abstract
	1 Introduction
	2 Motivation and Rationale
	2.1 Network Control Planes
	2.2 Control-plane Bugs
	2.3 Motivating Example
	2.4 Target Failure Modes and Scenarios

	3 Background
	3.1 Checking Network Invariants
	3.2 Symbolic Execution

	4 Tardis
	5 RCA-Engine (Root Cause Analysis)
	6 Tranformation-Generator
	6.1 Generating Topology Transformations
	6.2 Generating Attribute Transformations
	6.3 Generality of Transformations
	6.4 Transformation Safety
	6.5 On Prior Transformation-based Recovery

	7 Prototype
	7.1 SDN Prototype
	7.2 TDN Prototype

	8 Evaluation
	8.1 Experiment Setup
	8.2 Evaluation of SDN Realization
	8.3 Evaluation of BGP Realization
	8.4 Implications of System Design

	9 Related Work
	10 Limitations
	11 Conclusion
	12 Acknowledgements
	References

