
Tardis: A Fault-Tolerant Design for Network Control Planes

Zhenyu Zhou⋆, Theophilus A. Benson‡, Marco Canini◦, Balakrishnan Chandrasekaran†∗
⋆Duke University, ‡Brown University, ◦KAUST, †Vrije Universiteit Amsterdam

ABSTRACT

Guaranteeing high availability of networks virtually hinges on the

ability to handle and recover from bugs and failures. Yet, despite

the advances in verification, testing, and debugging, production

networks remain susceptible to large-scale failures Ð often due to

deterministic bugs.

This paper explores the use of input transformations as a viable

method for recovering from such deterministic bugs. In particular,

we introduce an online system, Tardis, for overcoming deterministic

faults by using a blend of program analysis and runtime program

data to systematically determine the fault-triggering input events

and using domain-specific models to automatically generate trans-

formations of the fault-triggering inputs that are both safe and

semantically equivalent. We evaluated Tardis on several produc-

tion network control plane applications (CPAs), including six SDN

CPAs and several popular BGP CPAs using 71 realistic bugs. We

observe that Tardis improves recovery time by 7.44%, introduces a

25% CPU and 0.5% memory overhead, and recovers from 77.26% of

the injected realistic and representative bugs, more than twice that

of existing solutions.

CCS CONCEPTS

·Computer systems organization→Availability; ·Networks

→ Network reliability.

KEYWORDS

Software Defined Networks, control plane, failure recovery, trans-

formation

ACM Reference Format:

Zhenyu Zhou, Theophilus A. Benson, Marco Canini, and Balakrishnan

Chandrasekaran. 2021. Tardis: A Fault-Tolerant Design for Network Control

Planes. In The ACM SIGCOMM Symposium on SDN Research (SOSR) (SOSR

’21), October 11ś12, 2021, Virtual Event, USA. https://doi.org/10.1145/3482898.

3483355

∗Zhenyu Zhou is now at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR ’21, October 11ś12, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9084-2/21/09. . . $15.00
https://doi.org/10.1145/3482898.3483355

1 INTRODUCTION

Network reliability is critical, especially, for cloud providers who

face an ever-increasing demand for more łnines”1 of availabil-

ity [32, 56]. Designing a highly available network is, however, a hard

problem: Network devices fail, misconfigurations happen, bugs are

endemic in implementations, and errors in specifications are un-

avoidable [17, 21, 29, 84]. Recent work [1, 25, 49, 89] show that

over 30% of the customer impacting failures for large scale

operational networks are due to software bugs in the network

control planes.

While there is a growing body of work on detecting and eliminat-

ing bugs in the data plane, e.g., configuration verification [18, 22, 23],

data plane state verification [41, 42] and fuzzing [24, 49, 77, 92],

only few such efforts focus on the control plane. Unlike the data

plane, which supports either a simple language that is amenable to

verification (i.e., P4) or a set of well-defined rules that can be eas-

ily modeled (i.e., OpenFlow rules or forwarding information base

(FIB) of router tables), the control plane is generally written in rela-

tively complex languages, e.g., Java or C, which are less amenable

to verification and modeling. In fact, efforts to apply modeling to

the control plane [10] have demonstrated limited scalability, and

attempts at control plane emulation provide only limited cover-

age across realistic settings [49, 73]. Today, the most promising

method for addressing control plane bugs is to perform fuzz testing

on production trafficÐa concept popularized by Netflix’s Chaos-

Monkey [6, 75]. such testing techniques, however, still fall short

of detecting all bugsÐsome bugs remain invariably uncaught, and

network outages ensue [32, 56].

Motivated by the inability of existing techniques to eliminate

control plane application bugs, in this work, we explore the appli-

cability of online techniques to recover from these bugs. There are

two common approaches to online recovery: rewriting code (i.e., au-

tomated program repair [47, 61, 66]) and input transformations (i.e.,

failure oblivious computing [11, 67, 69]). The former, code rewriting,

is often limited to general and well-understood patterns, e.g., null-

pointer exceptions or off-by-one errors, and does not account for

the more important class of bugs demonstrated in Table 1, e.g., edge

cases or missing logic. The latter, input transformations, addresses

a broader set of bugs but requires significant domain knowledge

to ensure a principled recovery. Moreover, existing approaches to

transformations take either a random and ad-hoc approach [67] or

a manual approach [11].

In this paper, we propose Tardis,2 a system that both overcomes

the previously discussed limitations of input transformations and

generalizes to a wide range of network control plane applications

1A widely used unit for measuring reliability or availability of computer systems,
expressed as a ratio of uptime to the sum of uptime and downtime. Three nines, for
instance, refers to 0.999 or 99.9% availability.
2The name Tardis, based on the British TV show Doctor Who, refers to the system’s
ability to travel back in time and manipulate history to avert an impending doomÐin
our case, the crash of a CPA.

Tardis: A Fault-Tolerant Design for Network Control Planes SOSR ’21, October 11ś12, 2021, Virtual Event, USA

Table 1: A summary of CPA bugs.

SDN BGP

ONOS CORD Faucet Quagga XORP

Bug Det. 94% 94% 96% 76% 90%

Types Non-det. 6% 6% 4% 24% 10%

Network 20% 50% 40% 38% 38%

Triggers Config 56% 42% 52% 25% 23%

OS 12% 8% 6% 38% 40%

Crash Stop 10% 16% 32% 34% 37%

Symptoms Invar. Violation 84% 82% 66% 66% 61%

Performance 6% 2% 2% 0% 2%

Missing Cases 0% 25% 16% 58% 74%

Causes Memory 40% 26% 9% 9% 9%

Concurrency 0% 13% 7% 7% 4%

Software Defined Network (SDN). In this mode, the control and

the data plane are on separate devices. The data plane consists of

forwarding elements (SDN switches), while the control plane runs

on separate x86 servers. The data plane generates and sends events

to the control plane, which uses them to build a global view of

the network; this state is stored in the network information base

(NIB). The control plane runs a set of control plane applications

(CPAs) that analyze, process, and react to the data-plane events by

inserting new rules into the data plane. In general, the control plane

is logically centralized, and it provides the CPAs with a global view

of the network, which allows them to make optimal decisions for

the events they receive.

Traditional Distributed Network (TDN). In a traditional net-

work, each device contains both a control plane and a data plane. In

such a setting, the control plane is distributed across the network,

and each control plane hosts several CPAs (e.g., OSPF, BGP, or ISIS

processes). In addition to reacting to events from the data plane

(e.g., link failures), the CPAs for a traditional control plane also

react to messages from other CPAs (e.g., BGP update messages).

Given that each control plane only has local information, the CPAs

need to exchange messages to allow each CPA to build a global

view of the network with which it can determine how to react to

events. Each CPA maintains a view of the network in its routing

information base (RIB).

Summary. Regardless of the control plane type, networks exhibit

two traits. (1) They maintain state relevant for their operation in

a separate state layer (e.g., the RIB or NIB in Fig. 1)Ðwe surveyed

47 SDN-CPAs and 6 TDN-CPAs and found that 64% of the SDN-

CPAs and 100% of the TDN-CPAs maintain state in an external state

layer. (2) They are event-drivenÐin addition to network events (i.e.,

from data plane or other CPAs), CPAs also react to events from the

operating system (e.g., timers) and events from the configuration

interface (e.g., command-line or configuration changes).

2.2 Control-plane Bugs

To understand the types of bugs that occur in practice, in Tab. 1, we

survey 150 bugs from three popular SDN control planes and their

CPAs (i.e., ONOS [7], Faucet [4], and CORD [63]) and summarize a

Figure 2: Part of a simple Fat-tree with two flows (in pink

and purple) routed over link-disjoint paths. Certain events,

e.g., a link failure (in red), affect the status quo, i.e., end-to-

end connectivity between two hosts or the completion time of

the flow that uses the affected link.

prior survey [91] on two popular traditional control planes and their

CPAs (i.e., Quagga [34] and XORP [27]). Our survey and the prior

survey use manual analysis of the control plane’s code repository

issues to analyze and classify the bugs.

We analyze these bugs across four main dimensions. (1) Deter-

minism, whether the bug is deterministic and can be recreated

using a predefined set of steps. (2) Trigger, the type of event (net-

work, OS, or configuration) which triggered the bugÐor the ‘bug

triggering event.’ (3) Impact/SymptomÐthe impact of the bug on

the control plane (e.g., crash-stop failure or performance issues

in the CPA) or network (e.g., the CPA configures the network in

violation of expected behavior). (4) RootCauseÐthe programming

error which caused the bug; we limit ourselves to the top categories.

We observe the following across both control plane types. (1)

Most bugs are deterministic. (2) Moreover, bugs are often due to

missing logic, e.g., to handle corner cases. (3) Many bugs (∼28%)

are due to hardware reboot and network events. These three obser-

vations concur with findings from recent publications (e.g., Dalton

et al. [14] and Bhardwaj et al. [8]). As illustrated by Google and

Microsoft [14, 49], deterministic bugs often severely affect their

network’s availability: Since most control planes employ some form

of state-machine replication, a deterministic bug will manifest in

each replica and cripple all of them.

2.3 Motivating Example

To understand the rationale behind transformations and reason

about their correctness, we explore the behavior of a well-known

CPA for load-balancing network traffic, namely Hedera [3]. Hedera

routes flows to maximize aggregate utilization of the network. It

improves flow completion timesÐan operator-specified objective Ð

by periodically re-routing large flows over less congested paths.

It also satisfies operator-specified invariants, e.g., if a path exists

between two hosts, Hederamust route the traffic between the hosts.

Hedera is a simplified version of the CPAs that Microsoft [31] and

Google [33] run on their networks.

In Fig. 2, we illustrate a Fat-tree topology; to keep it simple, we

do not show the hosts. The figure includes two traffic flows P (in

magenta) and Q (in purple) that flow over link-disjoint paths, but

which share a switch. Suppose that at time t both the network

objective is satisfied and the invariant holds. Now, if at time t +1 an

event such as the link failure in Fig. 2 happens, Hedera will receive

an event capturing a state transition from a network graph with

the link to a graph without the link.

SOSR ’21, October 11ś12, 2021, Virtual Event, USA Zhenyu Zhou⋆ , Theophilus A. Benson‡ , Marco Canini◦ , Balakrishnan Chandrasekaran†

Given the multitude of options to route P, Hedera will pick

an option that again maximizes the aggregate bandwidth; the re-

routing of the flow over another path also satisfies the invariant.

A new network state is established, and this change highlights two

observations. First, there might be more than one way to configure

the data plane to satisfy both the objectives and invariants. Second,

the specific path (or data-plane configuration) does not matter to the

operator, as long as the high-level objective is satisfied.

The first observation that multiple options may exist to meet

the CPA’s end goals (i.e., satisfying of objectives and invariants)

motivates the use of transformations: In case of a CPA bug, we can

safely explore a different code path and output to avoid the bug

provided that it meets our end goals. To this end, upon isolating the

bug-triggering event, we transform the event and alter the behavior

of the application. When no such alternatives exist, recovery can

gracefully degrade to using more traditional approaches such as CPA

reboots.

The second observation that the specific option chosen or data-

plane configuration effected is irrelevant attests to the safety of

transformations. A transformation is deemed safe if the following

conditions hold.

(1) The new behavior it elicits still satisfies the invariants.

(2) The state transition it presents is equivalent to the original

event; the original event and its transformed counterpart are then

said to convey similar semantic intent.

Formal definition of transformations. Given the above, a

transformation of a set of input events E conveys the same se-

mantic intent as E, but through a different set of input events Ẽ.

The transformation of the event {Port P1 (of Sw. S1) Down},

for instance, to {Port P1 (of Sw. S1) Up, Port P1 (of Sw.

S1) Down}, preserves the semantic meaning of the original input

sequenceÐthat the port P1 of S1 is offline. Even though the status

of the concerned port went up before going down, the final state

conveyed via both the input sequences is the same. In processing

the transformed sequence, the CPA exercises, however, a differ-

ent code path, which might help in averting the buggy behavior

observed when processing the original input.

2.4 Target Failure Modes and Scenarios

The CPA bugs described in Tab. 1 manifest via a fail-stop fault, an

invariant violation or performance problem. In this paper, we focus

on the first two broad classes of faults. First, fail-stop faults where

a control plane (e.g., a BGP process or an SDN controller) abruptly

terminates after processing a bug-triggering input; arbitrarily long

delays in responding to an input (i.e., gray failures) also belong

to this class. We identify such faults using timeouts or łheartbeat”

signals. Second, (network) invariant violations where the rules in-

stalled by the CPA result in the data plane deviating from łexpected

behavior,” e.g., not dropping malicious packets or not load balancing

across parallel links. These deviations are a violation of one or more

invariants or objectives established by the operator and, as such,

can be detected, in real-time, using invariant checkers [37, 42].

Limitations. We do not handle configuration- or OS-triggered

failures, but rely instead on prior work on control plane configu-

ration verification [18, 22, 23] as well as data diversity [40, 51] for

detecting them.

3 BACKGROUND

In this section, we discuss prior work on checking for invariants

(ğ 3.1) and provide an overview on symbolic execution (ğ 3.2).

3.1 Checking Network Invariants

There is a rich literature on invariant checkers [37, 41, 42, 81], which

analyze network state (via RIB or NIB) to determine if the policy

implemented in the network adheres to operator-specified objec-

tives (e.g., loop-free or valid paths between all pairs of destinations).

They assume that network operators explicitly specify their objec-

tives. Given such a specification, the checkers analyze either the

RIB or the NIB to determine if the network is compliant with the

specification. Checkers for TDNs [37] operate at the router level

and inspect the RIB as well as router configurations to check for

invariant violations, while those for SDNs [41, 42, 81] analyze the

NIB of an SDN controller or the NIB created by aggregating RIBs

(as in the case of an IGP protocol).

Invariant checkers demonstrate that the operators-specified objec-

tives may be realized throughmultiple, distinct network statesÐthese

distinct network states, satisfying a given objective, can be said to be

łequivalentž to one another.

3.2 Symbolic Execution

Symbolic execution [44] is a method of analyzing a software pro-

gram with the objective of determining how inputs to the program

affect its execution (or control flow) along different (code) paths.

The term ‘symbolic’ refers to the use of symbolic values rather than

actual inputs in describing the program behaviorÐexpressions, vari-

ables, and conditionals. The root of the execution tree begins at the

entry point of the symbolically executed code, and each branching

in the tree represents the two outcomes of a conditional branch

(e.g., if block). Each unique path on the execution tree, from the

root to a leaf, corresponds to a code path.

When a bug manifests in an application, its execution tree and

the sequence of inputs (until when the bug manifests) can be used

to determine the exact code path where the bug is encountered.

Recovery from the bug is feasible by driving execution along a

different path. Although more code paths trivially imply more op-

tions for recovery, an exhaustive enumeration of all paths is not

necessary to recover from a bugÐthus effectively sidestepping the

scalability issues of symbolic analyses.

4 TARDIS

An effective way to address control-plane bugs is to rewrite, patch,

and redeploy the control plane. The process is, however, time-

consuming and requires a lot of manual work.

Instead, Tardis circumvents runtime bugs in a control plane ap-

plication (CPA) by transforming one or more bug-triggering inputs.

To achieve this goal, Tardis runs as a transparent shim (Fig. 3) be-

tween the CPAs and the underlying base control plane. This setup

allows Tardis to monitor the stream of inputs fed to a CPA, the

output the CPAs generate (in response to each of those inputs),

and the CPA’s internal state changes (due to processing the in-

puts). We note that the architectures of both TDN and SDN control

planes both facilitate the use of such a shim (cf. Fig. 3). As illus-

trated in the figure, the shim runs between the SDN controller

SOSR ’21, October 11ś12, 2021, Virtual Event, USA Zhenyu Zhou⋆ , Theophilus A. Benson‡ , Marco Canini◦ , Balakrishnan Chandrasekaran†

6.4 Transformation Safety

Transformations are inputs crafted for correcting buggy behavior.

It is only natural, hence, to question if such transformations may

themselves be unsafe. How can we check if transformations them-

selves introduce a fault? To answer this question, we identify two

safety properties and defining a notion of liveness based on them.

A transformation is deemed safe if it satisfies two properties.

P1: The CPAmakes (forward) progress, i.e., it does not encounter

a bug when processing the transformed event(s).

P2: The transformed events themselves do not induce any buggy

behavior in the future.

While P1 applies only to recovery (i.e., recovery mode), P2

is relevant only after emerging out from the recovery mode and

processing new inputs (i.e., passivemode).P2, similar to the liveness

property of concurrent systems, assures that the system is not stuck

in a loopÐmaking progress, experiencing a fault, and attempting to

transform the already transformed input. We can readily identify

transformations that violate P1: If a CPA immediately faults after

a transformation, we detect the fault and mark the transformation

as the root cause. Satisfying P2 is, however, difficult: We need to

assess the impact of the transformations in the future.We tackle this

difficulty with a technique called opportunistic liveness tracking.

Opportunistic Liveness Tracking. The insight behind opportunis-

tic tracking is that CPAs are designed to work with łsoft-state,”

which means that the information in each event has a bounded

horizon of relevance. In particular, if the information is not up-

dated or refreshed, the CPAs consider the related state invalid and

delete them. For example, information about the status of a link

(i.e., link-up for SDNs) or an AS (i.e., five hops aways for TDNs) is

considered irrelevant if not updated and refreshed within a prede-

fined interval. Motivated by this, Tardis maintains metadata about

recovery (e.g., transformations and the bug-triggering event) and

tracks a CPA’s behavior after recovery until a predefined interval,

i.e., Tardis discards the metadata after processing N inputs follow-

ing the transformation. This threshold N defines an opportunistic

length of time within which we expect any buggy behavior, induced

by the transformation itself, to manifest. A fault within the bounded

horizon is attributed to the transformation. Suppose we assume a

transformation to be faulty. Now, for any buggy behavior observed

beyond the threshold, there is a possibility that we mark some

other input, and not the transformation itself, as the root cause.

Recovery might still be possible. In our empirical evaluations, we

observed that a choice of N = 16 suffices, i.e., any impact of the

transformation was typically observed within the next 16 inputs to

the CPA. In practice, we may, hence, choose a much higher value

to be safe, without running into any buffering constraints.

6.5 On Prior Transformation-based Recovery

While inspired by prior work [11] for leveraging transformations,

we advance that work along two key dimensions. First, we develop

a search heuristic to automatically generate transformations that

LegoSDN provides. Second, we introduce techniques to eliminate

unsafe and invalid transformations, thus ensuring correctness. A

transformation that turns a {Sw. S1 ↓} into a {[Sw. Si ↓]*}, for

instance, is an unsafe transformation: It shuts down the whole net-

work. Tardis ignores this unsafe transformation since the difference

between the original and the transformed events are too large.

7 PROTOTYPE

Next, we describe our prototype implementations for both an SDN

control plane, with six SDN-CPAs, and two TDN control planes,

each with a BGP-based TDN-CPA.

7.1 SDN Prototype

We evaluate Tardis’s ability to correct buggy behavior of SDNs by

evaluating six different SDN-CPAs: Learning Switch, Firewall, For-

warding, Hedera, RouteFlow, and Load Balancer. We run both Tardis

and the SDN-CPAs on Floodlight. Learning Switch (‘LSwitch’) and

Forwarding (‘Fwding’) come bundled with the Floodlight controller.

Firewall enforces a preconfigured policy, allowing traffic only be-

tween certain end hosts in the network. Hedera implements the

flow-scheduling algorithm from [3]. Routeflow (‘RtFlow’), from

prior work [11], routes flows over the shortest path in the network,

and Load Balancer (‘LoadBal’) balances network traffic between

any two endpoints based on some simple heuristics. RtFlow and

LoadBal are proactive SDN-CPAs, while the rest are reactive.

Our prototype implementation of Tardis for SDN-CPAs runs on

top of the Floodlight controller. Since we did not make any changes

to the controller’s source code, the prototype may be ported to other

controllers with modest engineering efforts. We added a simple

state layer interface to the SDN-CPAs, providing GET and SET calls

to support querying and modifications of the state-variables asso-

ciated with the SDN-CPA. To the controller, the interface exposes

COMMIT and REVERT calls allowing the controller to either commit the

(control-plane) changes after an SDN-CPA successfully processes

an input, or revert the changes, in case of a fault.

We used the Java Path Finder (JPF) model checker [57] and

JDart [50] to symbolically execute the SDN-CPAs, and the Z3 SMT

solver [15] to implement the constraint-satisfaction checks required

for testing whether an input event induces buggy behavior. To

symbolically execute the SDN-CPAs, we set the entry point to the

event handlers and we make the input events and states symbolic.

In our experiment, we observed that, with symbolic execution, we

could explore all code paths accessible from the entry points within

a reasonable time (i.e., less than 3000 ms).

Checking Invariants. The invariant checker module builds on

that of prior work [81]. We modified the checker to flag violations

and convert each violation to a fail-stop fault. The modification

simplifies the recovery logic: whether it is a fail-stop fault or an

invariant violation, recovery follows the same sequence of steps

(refer to ‘recovery mode’ in ğ4).

7.2 TDN Prototype

Weevaluate Tardiswith two different BGP implementationsÐQuagga

and GoBGP. In extending Tardis for the BGP use case, we exploit

three key insights. First, the current state-layer for TDNs is a data-

structure for storing data extracted from the UPDATE messages.

Second, we extend this data-structure to make it version-aware and

support similar COMMIT and REVERT semantics as the SDN storage

layer. Second, local equivalence and invariants are based on the

Tardis: A Fault-Tolerant Design for Network Control Planes SOSR ’21, October 11ś12, 2021, Virtual Event, USA

Table 2: Details of faults, uncovered in prior work, injected into SDN-CPAs for evaluating Tardis.

Label Type Prior work Source of buggy behavior

SA, SB Memory

Management Errors (MME)
STS [73] De-referencing a null pointer (or reference), or accessing an invalid

memory location, e.g., indexing out of bounds of an array.SC LegoSDN [11]

SE Network Blackholes (NB)
STS [73] Invalid or inconsistent switch configurations affected by a faulty

SDN-CPA.PathDump [79]

SF Copy-Paste Errors (CPE)
CP-Miner [48] Code copied by a developer from one location to another, without a

careful testing.Provenance [85]

SG Forwarding Errors (FE) ATPG [92] Same as that of SE .

SD , SH Non-deterministic (ND)
MED [93] Transient faults, e.g., race conditions in multi-threaded SDN-CPAs.

Faults {SA, SB , SC , SE , SF , SG } are deterministic.LegoSDN [11]

relative ordering of paths. Thus we can check local invariants by

analyzing the paths stored in the state-layer; we perform this check

using C-BGP [68]. Third, CPAs in a TDN setting often run as dis-

tinct processes communicating through IPCs and RPCs; we design

our shim layer for intercepting such calls based on techniques from

prior work [39].

We use a bespoke symbolic execution tool to extract path con-

straints and reuse the Z3 SMT solver to implement the constraints-

satisfaction. We set the entry point as the UPDATE handler and make

the input events and states symbolic.

8 EVALUATION

Our evaluation of Tardis, is motivated by the following questions:

(i) How does Tardis perform against existing recovery techniques

(ğ8.2)? (ii) Does Tardis generalize across both control planes (ğ8.2

and ğ8.3)? (iii) How does Tardis operate with partial access to CPA

state (ğ8.4)? (iv)Where do the overheads of Tardis come from (ğ8.4)?

(v) What are the performance implications of Tardis’s search algo-

rithm for generating transformations (ğ8.4)?

8.1 Experiment Setup

SDN Setup. We emulated the data plane (a Fat-tree topology,

with k = 4) using Mininet [46]. We performed our experiments

on a Linux (Ubuntu 14.04 LTS) server with 12 processor cores and

16 GB of memory. Unless otherwise mentioned, we injected all

bugs in Tab. 2 in all event handlers across all SDN-CPAs and report

the statistics (median and standard deviation) gathered from ten

different trials.

TDN Setup (BGP): We injected the fail-stop bugs in Tab. 3 into

the UPDATE message handler of two widely used BGP implemen-

tations: GoBGP (v2.5.0) and Quagga (v1.2.3). We ran the modified

BGP implementations on an 8-core machine with 32 GB of RAM,

running Linux kernel 4.15.0. We replayed BGP traces from RIPE

NCC [70] archived on May 20, 2019 to a testbed consisting of one

BGP routerÐthe GoBGP (v2.5.0) or Quagga (v1.2.3) implementation.

To use Tardis for recovering from BGP faults, we do not require

any coordination or support from other networks; our one-node

setting, hence, suffices for these experiments.

8.1.1 Fault Injection. Below, we describewhat faults we inject, and

how and where we inject them.

Table 3: Prevalence of a few different bug categories among

the bugs actually observed in the Internet.

Category Prevalence Bug Labels (for Fig. 8)

Malformed Message 39.13% {DA,DB ,DC ,DG ,DH }

Unknown Attribute 8.70% {DE ,DF ,DH }

Disordered Messages 8.70% {DD }

What? We use faults uncovered in prior work. We inject real bugs

discovered in open source CPA artifacts by prior work (Tab. 2 for

SDNs and Tab. 3 for TDNs): Injecting real bugs from multiple CPA

artifacts enables us to understand the performance of Tardis across

broad and representative failures. For TDNs (i.e., BGP), we selected

the dominant categories of bugs (Tab. 3) among those observed on

the Internet; the prevalence values in the table reflect the frequency

of that bug type across 23 publicly documented BGP bugs over the

last 13 years in the Internet. Moreover, recent studies by Google

highlight that several of these bugs (e.g., NB type) have significantly

impacted network availability [25].

How?We inject bugs viamonkey patching and binary rewrites. Our

fault injector monkey patches the source code with snippets of

buggy code based on bugs in open-source SDN-CPAs and descrip-

tion of bugs in TDN-CPAs. To induce the MME and CPE fault types,

the injector monkey patches the source code to throw exceptions

or perform an out-of-bounds memory access. The injector care-

fully removes code or drop outputs, generating invariant violations

(e.g., NB and FE fault types). We inject both deterministic and non-

deterministic faults; we used a random number generator to help

with the non-determinism required for the latter.

Where? We inject faults in all event-handlers. We introduce bugs

in the most frequently traversed code paths of every event-handlers

of the SDN-CPAs. In the case of the TDN-CPAs we focus on the

UPDATE message handler as all reported bugs are in that handler’s

implementation. Thus, we comprehensively test Tardis’s ability to

avert faults, even those in well-tested and commonly used paths

encountered in invoking the SDN-CPAs.

SOSR ’21, October 11ś12, 2021, Virtual Event, USA Zhenyu Zhou⋆ , Theophilus A. Benson‡ , Marco Canini◦ , Balakrishnan Chandrasekaran†

trades off generality for coverage: By narrowly focusing on input

transformations for network control plane applications, Tardis is

able to cover a broader range of important bugs.

Provenance-based recovery. Wu et al. [85] and Han et al. [26]

propose provenance-based solutions to suggest łfixes” for bugs. In

case of a run-time fault, however, the query to elicit fixes might

have little or no information to retrieve fixes, and, unlike Tardis,

recovery entails manual intervention.

Redundancy & Programming Models. Prior work has also investi-

gated the use of redundancy, replication and programming models

to tackle faults [36, 39, 62, 65, 76]. Unfortunately these approaches

are explicitly designed to tackle non-deterministic bugs, whereas

Tardis handles both deterministic and non-deterministic bugs.

Execution steering. Crystalball [88] introduced the idea of execut-

ing a model checker in parallel with a running system and steering

the system’s execution to prevent inconsistencies. The authors con-

cede, however, that memory usage is a limiting factor. Further, a

Crystalball-compatible system must be implemented in Mace [43],

which might require significant engineering efforts. LegoSDN [11]

attempts to transform crash-inducing inputs to avoid a fault, but

it assumes that the last-processed input is the root cause, severely

limiting its applicability. Bouncer [13] filters out malicious inputs,

but mainly focuses on illegal memory writes.

10 LIMITATIONS

Recovery Limitations. Tardis is only able to recover if the code

contains sufficient path diversity and the transformations are able

to explore these paths. While we find this true for the TDNs, we

observed scenarios where SDN-CPAs did not contain sufficient di-

versity. This observation highlights the difference between mature

CPAs (i.e., TDNs) and non-mature (SDN-CPA). We anticipate that

Tardis will benefit as the implementations of SDN-CPAs mature

and improve.

Bug Type. Although, we focussed on bugs triggered by network

events, other major sources of bugs include configurations and

operating systems. We note, however, that existing work on veri-

fication addresses configuration bugs, and we plan to extend our

approach to operating systems.

Semantic Limitations. We are unable to recover from route

leaks and hijacks, which account for 18% of the reported BGP

issues, due to our inability to validate ownership of IP address

prefixes. We are presently only able to recover, therefore, from

failures caused by non-malicious inputs.

11 CONCLUSION

The demands for high availability of a network infrastructure em-

phasize the need for robust, fault-tolerant control-plane applica-

tions (CPAs) for managing these networks. Despite prior work on

testing, troubleshooting, programming models, and fault tolerance,

the scope of prior work misses a key requirement: support for re-

covering from bugs, especially of the deterministic type, at run time.

Tardis addresses this gap by introducing novel methods for effec-

tively localizing the bug triggering input events and automated

techniques for generating an alternative set of semantically equiv-

alent and safe input events. Tardis rolls back the CPA and uses

these alternative events for recovery. To demonstrate the effective-

ness of Tardis, we evaluated it using a combination of 71 realistic

failures injected into six SDN-CPAs and two TDN-CPAs. In our eval-

uations, Tardis recovered from more bugs than prior approaches.

Tardis performed better than widely used fast-failover methods for

SDN-CPAs, and for TDN-CPAs Tardis provided quick recovery (i.e.,

within 140 ms), avoiding least-preferred, expensive router crashes.

12 ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd, Ryan Beck-

ett, for their insightful comments. We also thank Ayush Bhardwaj

for helping us with designing our experiments. This work was

supported by NSF award CNS-1749785.

REFERENCES
[1] Anubhavnidhi Abhashkumar, Kausik Subramanian, Alexey Andreyev, Hyojeong

Kim, Nanda Kishore Salem, Jingyi Yang, Petr Lapukhov, Aditya Akella, and
Hongyi Zeng. 2021. Running BGP in Data Centers at Scale. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’21).

[2] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, andMattias Ulbrich (Eds.). 2016. Deductive Software Verification - The KeY
Book - From Theory to Practice. Lecture Notes in Computer Science, Vol. 10001.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. 2010.
Hedera: Dynamic Flow Scheduling for Data Center Networks. In Proceedings
of the 7th USENIX conference on Networked systems design and implementation
(NSDI ’10).

[4] Josh Bailey and Stephen Stuart. 2016. Faucet: Deploying SDN in the Enterprise.
Queue (Oct. 2016).

[5] Thomas Ball, Nikolaj Bjùrner, Aaron Gember, Shachar Itzhaky, Aleksandr Kar-
byshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. 2014. VeriCon:
Towards Verifying Controller Programs in Software-defined Networks. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14).

[6] Cory Bennett and Ariel Tseitlin. 2012. Chaos Monkey Released into the
Wild. https://web.archive.org/web/20120730195043/http://techblog.netflix.com/
2012/07/chaos-monkey-released-into-wild.html.

[7] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow,
and Guru Parulkar. 2014. ONOS: Towards an Open, Distributed SDN OS. In
Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14).

[8] Ayush Bhardwaj, Zhenyu Zhou, and Theophilus A Benson. 2021. A Compre-
hensive Study of Bugs in Software Defined Networks. In 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN ’21).

[9] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. 2004. Microreboot Ð A Technique for Cheap Recovery. In Proceedings of the
6th Conference on Symposium on Opearting Systems Design & Implementation -
Volume 6 (OSDI ’04).

[10] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rexford.
2012. A NICE Way to Test Openflow Applications. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation (NSDI ’12).

[11] Balakrishnan Chandrasekaran, Brendan Tschaen, and Theophilus Benson. 2016.
Isolating and Tolerating SDN Application Failures with LegoSDN. In Proceedings
of the 2nd ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR ’16).

[12] Cisco. 2019. Cisco Bug: CSCuz62898 - Crash in BGP due to Regular Expressions.
https://quickview.cloudapps.cisco.com/quickview/bug/CSCuz62898.

[13] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus Peinado.
2007. Bouncer: Securing Software by Blocking Bad Input. ACM SIGOPS Operating
Systems Review (2007).

[14] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vah-
dat. 2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud
Network Virtualization. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’18).

[15] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08).

Tardis: A Fault-Tolerant Design for Network Control Planes SOSR ’21, October 11ś12, 2021, Virtual Event, USA

[16] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015.
SPHINX: Detecting Security Attacks in Software-Defined Networks. Proceedings
of the 22nd Annual Network and Distributed System Security Symposium (NDSS)
(2015).

[17] Gary Eastwood. 2017. How A Typo Took Down Amazon’s Cloud.
https://web.archive.org/web/20180519161511/https://www.networkworld.
com/article/3179831/cloud-computing/how-a-typo-took-down-amazons-
cloud.html.

[18] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis Using
a Succinct Control Plane Representation. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16).

[19] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar
Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, Richard Alimi, Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal,
Karthik Nagaraj, Kondapa Naidu Bollineni, Amr Sabaa, Shidong Zhang, Min
Zhu, and Amin Vahdat. 2021. Orion: Google’s Software-Defined Networking
Control Plane. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’21).

[20] Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
2018. Local Fast Failover RoutingWith Low Stretch. SIGCOMMComput. Commun.
Rev. (April 2018).

[21] FOX 46. 2018. American Airlines: PSA Computer Systems Stabilized After Glitch.
https://tinyurl.com/yb6r6yz6.

[22] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and Hongqiang Harry
Liu. 2017. Automatically Repairing Network Control Planes Using an Abstract
Representation. In Proceedings of the 26th Symposium on Operating Systems Prin-
ciples (SOSP ’17).

[23] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast Control Plane Analysis Using an Abstract Representation. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’16).

[24] Serge Gorbunov and Arnold Rosenbloom. 2010. Autofuzz: Automated Network
Protocol Fuzzing Framework. IJCSNS (2010).

[25] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’16).

[26] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo
Seltzer. 2017. FRAPpuccino: Fault-detection through Runtime Analysis of Prove-
nance. In 9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
’17).

[27] Mark Handley, Orion Hodson, and Eddie Kohler. 2003. XORP: An Open Platform
for Network Research. SIGCOMM Comput. Commun. Rev. (Jan. 2003).

[28] Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas Wundsam,
Hongyi Zeng, Sam Whitlock, Vimalkumar Jeyakumar, Nikhil Handigol, James
McCauley, Kyriakos Zarifis, and Peyman Kazemian. 2013. Leveraging SDN
Layering to Systematically Troubleshoot Networks. In Proceedings of the Second
ACM SIGCOMMWorkshop on Hot Topics in Software Defined Networking (HotSDN
’13).

[29] Bill Hethcock. 2016. Southwest Airlines Computer Outage Costs Could
Reach $82M. https://www.bizjournals.com/dallas/news/2016/08/11/southwest-
airlinescomputer-outage-costs-could.html.

[30] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.
2017. SWIFT: Predictive Fast Reroute. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17).

[31] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and RogerWattenhofer. 2013. Achieving High Utilization with Software-
Driven WAN. SIGCOMM Comput. Commun. Rev. (Aug. 2013).

[32] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill
Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,
Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat. 2018. B4 and After:
Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in
Google’s Software-defined WAN. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’18).

[33] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a Globally-
Deployed Software Defined WAN. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’13).

[34] P. Jakma and D. Lamparter. 2014. Introduction to the quagga routing suite. IEEE
Network (2014).

[35] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei Xu, and
Jennifer Rexford. 2016. Optimizing Bulk Transfers with Software-Defined Optical
WAN. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’16).

[36] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. 2015. Ravana:
Controller Fault-tolerance in Software-defined Networking. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR
’15).

[37] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’13).

[38] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI ’12).

[39] Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. 2009. Virtually
Eliminating Router Bugs. In Proceedings of the 5th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’09).

[40] Lorenzo Keller, Prasang Upadhyaya, and George Candea. 2008. ConfErr: A
Tool for Assessing Resilience to Human Configuration Errors. In 2008 IEEE
International Conference on Dependable Systems and Networks With FTCS and
DCC (DSN).

[41] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).

[42] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13).

[43] Charles E. Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M.
Vahdat. 2007. Mace: Language Support for Building Distributed Systems. In
Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’07).

[44] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
(July 1976).

[45] Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano, and Dejan Kostic.
2012. A SOFT Way for OpenFlow Switch Interoperability Testing. In Proceedings
of the 8th International Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’12).

[46] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In Proceedings of the 9th ACM
SIGCOMMWorkshop on Hot Topics in Networks (HotNets-IX).

[47] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12).

[48] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in Operating System Code. In 6th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 04).

[49] Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno Lopes,
Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet: Faithfully
Emulating Large Production Networks. 599ś613. https://doi.org/10.1145/3132747.
3132759

[50] Kasper Luckow, Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar, Malte
Isberner, Temesghen Kahsai, Zvonimir Rakamarić, and Vishwanath Raman. 2016.
JDart: A Dynamic Symbolic Analysis Framework. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.

[51] Kshiteej Mahajan, Rishabh Poddar, Mohan Dhawan, and Vijay Mann. 2016. Jury:
Validating Controller Actions in Software-Defined Networks. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[52] André Mantas and Fernando M. V. Ramos. 2016. Consistent and Fault-Tolerant
SDN with Unmodified Switches. CoRR abs/1602.04211 (2016). http://arxiv.org/
abs/1602.04211

[53] Robert McMillan. 2010. Cisco Patches Bug that Crashed 1% of Inter-
net. https://www.computerworld.com/article/2515200/cisco-patches-bug-that-
crashed-1--of-internet.html.

[54] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani, and Deng Liu. 2014.
vCacheShare: Automated Server Flash Cache Space Management in a Virtualiza-
tion Environment. In 2014 USENIX Annual Technical Conference (USENIX ATC
’14).

[55] Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Martin
Vechev. 2015. SDNRacer: Detecting Concurrency Violations in Software-defined
Networks. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (SOSR ’15).

[56] Jeffrey C. Mogul, Rebecca Isaacs, and Brent Welch. 2017. Thinking About Avail-
ability in Large Service Infrastructures. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (HotOS ’17).

[57] NASA. 2007. Java Path Finder. http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/
start.

[58] Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, and Chen-Nee Chuah.
2007. Fast Local Rerouting for Handling Transient Link Failures. IEEE/ACM
Trans. Netw. (April 2007).

SOSR ’21, October 11ś12, 2021, Virtual Event, USA Zhenyu Zhou⋆ , Theophilus A. Benson‡ , Marco Canini◦ , Balakrishnan Chandrasekaran†

[59] Tim Nelson, Andrew D Ferguson, and Shriram Krishnamurthi. 2015. Static
Differential Program Analysis for Software-Defined Networks. In International
Symposium on Formal Methods.

[60] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krish-
namurthi. 2014. Tierless Programming and Reasoning for Software-defined
Networks. In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’14).

[61] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program Repair via Semantic Analysis. In Proceedings of the
2013 International Conference on Software Engineering.

[62] Jan Henry Nyström. 2009. Analysing Fault Tolerance for Erlang Applications. Ph.D.
Dissertation. Acta Universitatis Upsaliensis.

[63] opencord.org. 2019. About - Open Cord. https://opencord.org/about/, last
accessed on November 4, 2019.

[64] OpenDaylight Project. 2013. The OpenDaylight Platform. https://www.
opendaylight.org.

[65] Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott
Shenker. 2017. SCL: Simplifying Distributed SDN Control Planes. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’17).

[66] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, et al. 2009. Automatically Patching Errors in Deployed Software. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating systems principles
(SOSP ’09).

[67] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. 2005.
Rx: Treating Bugs As AllergiesÐa Safe Method to Survive Software Failures. In
Proceedings of the Twentieth ACM Symposium on Operating Systems Principles
(SOSP ’05).

[68] B. Quoitin and S. Uhlig. 2005. Modeling the routing of an autonomous system
with C-BGP. IEEE Network (2005).

[69] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and
William S. Beebee, Jr. 2004. Enhancing Server Availability and Security Through
Failure-oblivious Computing. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (OSDI ’04).

[70] RIPE NCC. 2019. RIS Raw Data. https://www.ripe.net/analyse/internet-
measurements/routing-information-service-ris/ris-raw-data.

[71] Leonid Ryzhyk, Nikolaj Bjùrner, Marco Canini, Jean-Baptiste Jeannin, Cole
Schlesinger, Douglas B. Terry, and George Varghese. 2017. Correct by Con-
struction Networks Using Stepwise Refinement. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’17).

[72] Colin Scott, Aurojit Panda, Vjekoslav Brajkovic, George Necula, Arvind Krishna-
murthy, and Scott Shenker. 2016. Minimizing Faulty Executions of Distributed
Systems. In Proceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation (NSDI ’16).

[73] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or,
Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock, H.B.
Acharya, Kyriakos Zarifis, and Scott Shenker. 2014. Troubleshooting Blackbox
SDN Control Software with Minimal Causal Sequences. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’14).

[74] Koushik Sen and Gul Agha. 2006. CUTE and JCUTE: Concolic Unit Testing
and Explicit Path Model-Checking Tools. In Proceedings of the 18th International
Conference on Computer Aided Verification (CAV’06).

[75] Nick Shelly, Brendan Tschaen, Klaus-Tycho Förster, Michael Chang, Theophilus
Benson, and Laurent Vanbever. 2015. Destroying Networks for Fun (and Profit).
In Proceedings of the 14th ACMWorkshop on Hot Topics in Networks (HotNets-XIV).

[76] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung,
Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang.
2014. Rosemary: A Robust, Secure, and High-performance Network Operating
System. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14).

[77] Apoorv Shukla, S. Jawad Saidi, Stefan Schmid, Marco Canini, Thomas Zinner,
and Anja Feldmann. 2020. Toward Consistent SDNs: A Case for Network State
Fuzzing. IEEE Transactions on Network and Service Management (2020).

[78] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’16).

[79] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Simplifying Dat-
acenter Network Debugging with PathDump. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16).

[80] Praveen Tammana, Chandra Nagarajan, Pavan Mamillapalli, Ramana Kompella,
and Myungjin Lee. 2018. Fault Localization in Large-Scale Network Policy
Deployment. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS).

[81] Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Banerjee, Jeongkeun Lee,
and Joon-Myung Kang. 2016. SFC-Checker: Checking the Correct Forwarding
Behavior of Service Function Chaining. In 2016 IEEE Conference on Network

Function Virtualization and Software Defined Networks (NFV-SDN).
[82] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.

2013. Maple: Simplifying SDN Programming Using Algorithmic Policies. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’13).

[83] Da Wei, Lei Xu, Xin Jin, Yiran Li, and Wei Xu. 2016. A 12-rack, 180-server Data-
center Network (DCN) Using Multiwavelength Optical Switching and Full Stack
Optimization. In 2016 Optical Fiber Communications Conference and Exhibition
(OFC).

[84] Elizabeth Weise. 2017. Massive Amazon Cloud Service Outage Disrupts Sites.
https://tinyurl.com/y8z6erfj.

[85] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2015. Automated Network Repair with Meta Provenance. In Proceedings of the
14th ACM Workshop on Hot Topics in Networks (HotNets-XIV).

[86] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann. 2011.
OFRewind: Enabling Record and Replay Troubleshooting for Networks. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC ’11).

[87] Lei Xu, JeffHuang, SungminHong, Jialong Zhang, and Guofei Gu. 2017. Attacking
the Brain: Races in the SDN Control Plane. In USENIX Security Symposium.

[88] Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and Viktor Kuncak. 2009.
Crystalball: Predicting and Preventing Inconsistencies in Deployed Distributed
Systems. In 6th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI ’09).

[89] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma,
Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius,
Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2017. Taking
the Edge off with Espresso: Scale, Reliability and Programmability for Global
Internet Peering. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17).

[90] Soheil Hassas Yeganeh and Yashar Ganjali. 2016. Beehive: Simple Distributed
Programming in Software-Defined Networks. In Proceedings of the 2nd ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’16).

[91] Zuoning Yin, Matthew Caesar, and Yuanyuan Zhou. 2010. Towards Understand-
ing Bugs in Open Source Router Software. SIGCOMM Comput. Commun. Rev.
(June 2010).

[92] Hongyi Zeng, Peyman Kazemian, George Varghese, and NickMcKeown. 2012. Au-
tomatic Test Packet Generation. In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies (CoNEXT ’12).

[93] Q. Zhi and W. Xu. 2016. MED: The Monitor-Emulator-Debugger for Software-
Defined Networks. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications.

[94] Earl Zmijewski. 2009. Oracle Dyn: Longer is not Always Better. https://dyn.com/
blog/longer-is-not-better/.

	Abstract
	1 Introduction
	2 Motivation and Rationale
	2.1 Network Control Planes
	2.2 Control-plane Bugs
	2.3 Motivating Example
	2.4 Target Failure Modes and Scenarios

	3 Background
	3.1 Checking Network Invariants
	3.2 Symbolic Execution

	4 Tardis
	5 RCA-Engine (Root Cause Analysis)
	6 Tranformation-Generator
	6.1 Generating Topology Transformations
	6.2 Generating Attribute Transformations
	6.3 Generality of Transformations
	6.4 Transformation Safety
	6.5 On Prior Transformation-based Recovery

	7 Prototype
	7.1 SDN Prototype
	7.2 TDN Prototype

	8 Evaluation
	8.1 Experiment Setup
	8.2 Evaluation of SDN Realization
	8.3 Evaluation of BGP Realization
	8.4 Implications of System Design

	9 Related Work
	10 Limitations
	11 Conclusion
	12 Acknowledgements
	References

