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ABSTRACT

Data plane programmability promotes a new kind of computing par-
adigm in which parts of an application’s execution can be offloaded
into the network. However, this in-network compute functionality
(iCF) adds an extra layer of management complexity for the trac-
ing and debugging of distributed applications. Specifically, current
programmable hardware does not provide powerful enough primi-
tives or abstractions to enable in-network tracing. Further, existing
distributed application debug solutions do not extend directly into
programmable data planes.

In this paper, we take a step back and revisit the fundamen-
tal problem by discussing open research questions and challenges
towards a comprehensive iCF telemetry and debugging solution
which bridges the gap between traditional and iCF-based debugging.
To this end, we introduce a system, P4-InTel, which (i) leverages
network telemetry to instrument PDPs into monitoring arbitrary
trace data, indicated directly on PDP source code using annotations,
and (ii) collects and encapsulates this data in a tracing abstraction.
This abstraction provides a global vision of an in-network compu-
tation’s life-cycle in a standard, readable format, which can either
be fed to automatic debugging tools, or used by programmers to
facilitate troubleshooting.
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1 INTRODUCTION

Programmable data planes (PDPs) allow the execution of server
applications to cross into the network, offloading parts of the com-
putation to PDPs, i.e., in-network compute (iCF) [1]. In light of this
development, both industry and researchers have begun actively
investigating new designs for classic distributed applications in
order to improve performance, scalability, or reliability of these by
offloading functionality into the network. NetCache [7], for exam-
ple, is a system that caches key-value pairs on switches close to
server applications, potentially avoiding the long RTTs of a lookup
on a remote key-value storage server.

As these new-found approaches near deployment, practical con-
cerns arise about their run-time management, because distributed
applications can now cross into the data plane (i.e., iCFs). Specifi-
cally, embedding logic into PDPs has added another layer of com-
plexity for tracing and troubleshooting these applications. Current
programmable switches do not provide a rich enough abstraction
to support traditional tracing [4, 11, 14], and this lack of tracing
primitives forces programmers to create their own unique solu-
tions, creating very specific, non-reusable tracing tools to debug
their iCFs. More importantly, traces produced by these particular
solutions will likely not be interoperable with existing tracing diag-
nosis frameworks, e.g., Google’s Dapper[14]. Orthogonally, existing
tracing frameworks do not provide primitives for generating or
capturing tracing data from iCFs embedded in programmable data
planes.

In this paper, we aim to bridge the gap between traditional net-
work telemetry and distributed tracing frameworks. To this end,
we argue for the design of a new framework that tackles executions
which cross from the distributed application boundary into the net-
work by capturing trace data from PDPs and presenting them to the
application plane through a well-defined, flexible abstraction. We
introduce a system, P4-InTel, that (i) leverages network telemetry
to instrument PDPs into monitoring arbitrary, user-defined trace
data, and (ii) coordinates storage, collection and formatting of this
trace data internally, delivering only well-formed context data to
any application plane debug tool. We argue that our system will
not only simplify tracing of PDP programs, but also, given the
interoperability with emerging distributed systems frameworks,
we believe our work will simplify management and facilitate the
debugging process done by programmers.

The design of P4-InTel faces several unique challenges:

o First, there are PDP hardware constraints that prevent so-
phisticated and overly complex monitoring functions from
running in the switch itself. This has been partially addressed
by data plane telemetry research that aims to specify cus-
tomized monitoring code that can be integrated into the



ENCP ’19, December 9, 2019, Orlando, FL, USA

switch code in order to collect metrics of interest [3, 9, 12, 16].
Therein, the use of network telemetry has seen a significant
interest in the last few years because of how flexible this
telemetry becomes when dealing with PDPs. However, in-
trospecting on iCFs can require specific types of instrumen-
tation that go beyond general telemetry (e.g., establishing
causality, ordering of events, consistency between switches,
etc).

e Second, application interface issues often limit transpar-
ent instrumentation and monitoring of distributed systems.
Although existing efforts such as Baggage contexts [11] offer
means of decoupling system instrumentation from the tools
used, collecting application context from iCFs is, in essence,
different from doing so in traditional distributed applications
because language limitations restrict the set of variable and
tracing operations that can be performed on a packet.

o Finally, interoperability issues make it hard to seamlessly
integrate high-level application context data with low-level
information from network switches. Thus, means of present-
ing a unified execution context for iCFs are necessary, with
information collected from the data plane (e.g., P4) integrated
with application context to support a comprehensive tracing
and debugging mechanism.

Workflow: This paper is structured as follows: In Section 2 we
provide background information about iCFs, network telemetry,
and server tracing; In Section 3 we present the design and prototype
of P4-InTel; and, in Section 4, we show an initial evaluation of our
system. We conclude with a discussion of open topics (Section 5),
related works (Section 6), and final remarks (Section 7).

2 BACKGROUND

We outline below important background on programmable data
planes and distributed tracing.

2.1 Programmable Data Planes and iCFs

Until recently, the separation between the application plane (in
which computation occurs) and the network data plane (in which
communication happens) has been strict. With emerging PDPs,
however, parts of server computation can be offloaded to pro-
grammable switches (i.e., in-network compute function, or iCF)
thus blurring this separation. However, programmability in the
data plane hardware has to abide by strict restrictions to provide
line rate, e.g., the P4 [2] language does not allow loops in its pro-
grams. Furthermore, typical P4 programmable hardware!, when
compared to servers, has very limited memory and does not allow
computation to overuse the CPU. Instead, P4 switches implement
a once-through pipeline, where the stages and, additionally, their
hardware resources (ALUs, SRAM, tables, registers, etc) are shared
between the procedures defined in the P4 programs.

Takeaway: Programmable data planes and their language con-
structs place significant limitations on the set of functionalities that
can be supported and the hardware memory resource is signifi-
cantly limited.

!https://barefootnetworks.com/tofino/
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2.2 Network Telemetry

Recent works in network telemetry offer more direct (and more
efficient) approaches to store and collect stateful data from a PDP,
without intervention from the control plane. In P4, telemetry has
been widely implemented in two paradigms: (i) using the local
storage of P4 switches or (ii) using in-band network Telemetry.
Essentially, the local storage approach writes all state information
to register arrays (implemented physically by using PDP switch
stateful ALUs) and later, collects the data through either custom
protocols [3, 16] or, if using the control plane, the switch’s APL The
alternative is using in-band Network Telemetry (INT) [9], where
packet headers carry and aggregate telemetry data as they traverse
the network and, once the packets arrive at their destination, these
telemetry headers are stripped and forwarded to an external server
to be processed.

Both approaches have their shortcomings and their advantages.
For example, INT demands more packet real estate in the form of
telemetry headers (something that is not acceptable to some appli-
cations which maximize the use of the MTU). Conversely, using
local storage for telemetry will impact the resources of a PDP appli-
cation by using more sALUs and SRAM, which is undesirable for
applications which already have a high demand for these resources.

Takeaway: Unfortunately, given the nature of P4, we cannot
shield programmers from these low-level details regarding packet
real estate versus sSALU/SRAM usage. Either we implicitly pick one
and apply it universally, or provide developers with knobs to specify
preferences and explicitly tackle this trade-off.

2.3 Distributed Tracing and Debugging

Amongst common strategies for debugging distributed applications,
context propagation enables tracing execution flows by propagating
metadata along the flow of an execution, i.e., metadata is added unto
the RPC calls and continuously updated as the RPC propagates the
flow of control across different processes. Distributed tracing has
been shown to reliably ascertain causality between run-time events,
which is a foremost concern when introspecting and debugging
distributed systems. Consequently, numerous works [4, 8, 11, 14]
have been conceived which build upon context propagation, amidst
which distributed tracing ranks as the most prevalent.

One such abstraction that has been proposed to trace distributed
applications (outside the scope of PDPs) is the Baggage context [11].
Baggages are logs that follow the execution path of a distributed
application RPC calls. A host logs its actions into the baggage and
whenever the computation goes to other hosts, via RPCs, a baggage
containing data on previous actions is forwarded along within an
RPC. At the end of the computation, the baggage has a detailed
log of what was done. A Baggage context is general enough to
instrument many management tools for distributed applications
and has properties that make it safe for use in distributed systems.

Takeaway: Baggage provides a generalized abstraction for trac-
ing distributed applications but lacks primitives for reaching into
the data-plane. We argue that we can extend this abstraction to
create a solution that coordinates both application and data planes,
collecting arbitrary, user-defined trace data on the latter and expos-
ing this in a flexible manner to the former using baggage contexts.
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Table 1: Annotation Primitives

Annotation Description

@Store(VAR) Stores VAR locally at the switch

@Append(VAR) | Appends VAR to the Baggage Tag
3 P4-INTEL

We begin by discussing the workflow for P4-InTel (Section 3.1),
then discussing the design requirements for P4-InTel (Section 3.2),
and conclude with a straw-man approach for P4-InTel (Section 3.3).

3.1 P4-InTel Workflow

In Figure 1, we present a high-level workflow for P4-InTel. We
envision that, offline, application developers (step 1) will augment
and annotate iCF programs (written in P4) with the set of user-
defined variables to export and deploy these annotated iCFs into
the network (step 2) . We note that these variables comprise the set
of data that can be captured and exported into a baggage context.

Developer

Figure 1: P4-InTel Diagnosis Workflow. Red suitcases rep-
resent the baggage contexts, i.e., the RPC tracing logs. The
servers store the context within RPCs and propagate con-
text in-band within the RPC messages. The switches store
the contexts locally and propagate out-of-band, in separate
messages, to the external store.

At run-time, the tracing framework will include baggage tags
(or headers) into RPC packets (similar to what it does today) (step
3) and propagate to other servers (step 5) via RPCs and finally
store them in an external data store (step 6) once RPC-tracing is
completed. Additionally, as these RPC traces propagate throughout
the network, our data plane framework will capture the appropriate
data and store them locally on the switch (step 4) or if required
append them to packets. Periodically, P4-InTel will interact with
the data plane to export this data to a centralized entity (steps 7-8)
which will combine the data captured in the data-plane with the
data collected in the RPCs.

3.2 System Design

Challenge #1: Capturing Tracing Data Our approach is dis-
tinctly different from a traditional RPC-tracing workflow where
all tracing information is captured in-band within the RPC. Due
to PDP limitations, we are unable to extract arbitrary P4-program
data and embed them into the RPC packets. In particular, while the
language enables us to introspect on annotated program state, the
hardware limits the size of the information that can be embedded
into a packet (as discussed in Section 2).
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Solution: Out-of-Band Tracing. There are two clear approaches
to addressing this problem. First, to limit the set of annotated data
which a developer can introspect on. Second, to export data from
the program in an out-of-band manner. In this work, we choose the
latter approach because limiting the developer handicaps diagnosis
and management. However, this approach introduces additional
complexity because the tracing data is fundamentally fragmented
with some data stored locally in switch state and others captured
in RPC stored in an external data store. To tackle this problem, we
design techniques to coordinate orchestration of the data collected
in-band with the data collected out-of-band.

Additionally, to support critical contexts we also allow devel-
opers to leverage in-band tracing for a limited set of variables;
however, we note that this provides very limited contexts.

Challenge #2: Compiling P4-InTel Annotations Tradition-
ally, annotations for tracing are either automatically generated by
using language constructs (e.g., Java’s Aspect]) or are manually
hard-coded into the RPC framework (e.g., Google’s Dapper). With
iCFs, there is no common RPC language. In fact, iCFs are funda-
mentally different and given the diversity in functionality, we do
not anticipate a common layer for information exchange. How-
ever, many emerging verification and diagnosis systems for PDPs
leverage manual annotations. In this work, we piggyback on these
efforts and argue that in addition to creating verification-oriented
annotations, the developers should add annotations for tracing and
general diagnosis. Given these annotations, the key challenge is
to develop a compiler framework that effectively captures the an-
notated variables, creates baggage logs and appropriately exports
them to the external data store.

Solution: Domain-Specific Compiler and Language Annotations.
Our compiler is guided by our language annotations. Using these
annotations, the programmer can indicate if the data should be
stored and exposed using INT based telemetry (@Append annota-
tion) or Local Storage based telemetry (@Store annotation). These
are shown in Table 1. Using this information our compiler can
appropriately create P4 code for using local storage or leveraging
network telemetry to augment RPC packets.

(1) Local Storage based Telemetry: Recall that every iCF invoca-
tion stems from a packet inserted into the network, and, if
that packet is tagged, at every hop the PDP switches log trace
data about the packet and its actions. To collect this data,
the framework sends a collection packet (CP) to retrace the
steps of the iCF-invoking packet, collecting the data it left
along the way. To enable the framework’s collection packets
to accurately retrace the steps of iCF invoking packets, the
latter will always log, along with trace data, their egress port.
As such, the forwarding of CPs is done primarily by send-
ing it out the same port the original packet went. However,
because the original iCF invoking packet might not have
returned to its source (e.g., it was intended to be dropped
after invoking its iCF or forwarded to another host), we also
devised a fail-safe mechanism that, whenever the outbound
port of a packet leads to a host or the packet being dropped,
falls back to IP forwarding, being returned to the sender
through IP routes.
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(2) INT based Telemetry: Contrary to Local Storage, INT uses
network packets to carry telemetry data. When we annotate
a variable with an @Append, our PDP instrumentation will
append that variable to the current packet’s baggage tag. In
case the packet does not return to the sender (along with
the collected data on the baggage tag), a fail-safe similar to
the previous one also applies. Should the packet’s next hop
lead to a non-PDP switch, the baggage tag, along with the
collected data, is detached from the rest of the packet and
forwarded back to the original sender.

Challenge #3: Composing Tracing Data. Finally, during the
diagnosis phase, data captured in RPCs and stored within the data
plane must be composed together to provide a holistic end-to-end
picture of the distributed application’s execution across both the
server and the network. When a monitored RPC trace completes,
the tracing framework interacts with the network devices to collect
locally stored baggage information and compose it with the RPC-
stored information. The two challenges associated with composing
this information are: (1) ensuring that tracing data is interleaved in
the correct order, and (2) recreating the rich and complex Baggage
Definition Language (BDL) data types from the data collected in the
data-plane.

Solution: We argue that the switches and the general P4-InTel
framework index the stored data by PacketID. Note: the PacketID
will be stored in the RPCs as a part of a context. Thus, whenever an
application makes a call to retrieve baggage context, our system will
automatically merge the baggage context external in the servers
with the context resulting from the iCFs based on the PacketID.
This ensures that applications that try to resolve contexts will
always see the complete baggage across both the data plane and the
application plane. We note that by using a unique PacketID, the
RPC is able to execute across multiple processes and iCFs without
loss of general context.

3.3 Strawman Prototype

In Figure 2, we present the architecture for P4-InTel. P4-InTel ad-
dresses the three challenges discussed in Section 3.2 using the
following components. The P4-InTel-compiler is an extension of the
traditional P4-compiler and uses the annotations to determine local
storage and memory allocations. The Baggage Context Handler com-
poses and orchestrates data across the application and data planes.
And the Telemetry Interface exposes the switch-residing traces for
collection.

4 EXPERIMENTAL EVALUATION

In this section, we present early experimental evaluation of our
proof-of-concept prototype. Because we had no access to a P4 hard-
ware switch, experiments were performed using the BMv2 software
switch on an Ubuntu 16.04 virtual machine with 2 cores @ 3.2Ghz
and 2GB RAM. We should point out that the following evaluation
is somewhat artificial because of the lack of programmable hard-
ware. Our intention is to demonstrate the feasibility of P4-InTel
and present a preliminary evaluation in a simulation environment.

In Figure 3, we present the processing latency of collecting an
increasing number of 4-byte metrics through both @Store and
@Append. Firstly, we can see the PDP instrumentation has negligible
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Figure 3: BMv2 Processing Latency

impact on processing latency (as the uninstrumented version of the
switch is on par with the tests where the system was instrumented
and @Store was used). When @Append was used, we observed a
fixed increase in latency likely due to the procedure of creating the
new header.

As can be seen, our annotations have little impact in processing
latency. However, for the specific case of INT-based @Append an-
notations, there might be a networking overhead associated with
every added metric. As INT headers stack, they leave less space
for payloads, decreasing the throughput of applications. Figure 4
shows a scenario where 9 switches are placed in the path of a UDP



P4-InTel: Bridging the Gap between iCF Diagnosis and Functionality

Throughput (Mbps)

w
[N

AR T T T S S S A
Number of Switches @Appending Data to Packet
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flow. Switches from 1 to 9 are then incrementally reconfigured to
start appending 24 bytes of metrics each to the baggage tag of UDP
packets with 240 bytes of payload. Each hop increases the percent-
age of telemetry bytes when compared to the payload, decreasing
efficiency and, consequently, throughput of the flow. It is important
to note that the most critical element in this experiment is the BMv2
software switch, with the actual throughput of hardware switches
figuring on the Gigabits per second range, and not Megabits. We
only alert the reader to the apparent degradation that occurs when
using @Append to collect too many metrics over long distances.
Naturally, the @Store primitive is a better solution for these cases.

Memory-wise, the consumed SRAM in switches will be the prod-
uct of all @Stored variables and a predefined number of slots (i.e.,
maximum number of packet traces stored at a given time). Ap-
pended variables have no impact on SRAM. For the network over-
head of telemetry, both Appended and Stored variables cause an
impact directly proportional to their respective sizes. Their overall
network overhead has a complexity of O(Hops?), where Hops is the
number of switches visited by either collection packets (for Stored
variables) or tagged packets (for Appended variables). Collection
overhead of data happens at a different time than the storing of this
data for Stored variables, and concurrently, for Appended variables.
No additional tables were introduced by our prototype.

5 DISCUSSION

In this section, we provide a brief discussion of key open issues.
Tracing Non-Trivial Metrics. Some debugging applications
may require data that is difficult to calculate in PDPs. While ac-
quiring this data is beyond the scope of our work, we advocate
that it should be possible to modularly include code from exter-
nal solutions that acquire this non-trivial data. We suggest that a
compositional mechanism (such as [18]) can be used for non-trivial
metrics. An example would be to calculate the entropy of specific
flow features, a metric required by some anomaly detectors [10, 13].
Calculating entropy is a difficult undertaking for most PDP pro-
grammers. To facilitate the task, a programmer could acquire a
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specialized P4 module for the calculation of entropy and compose
it into his base application, annotating the resulting entropy value.

Resource Allocation. In our current framework, P4-InTel pro-
vides no resource management. However, as discussed earlier, switch
memory is a crucial resource and, if left unmanaged, developers can
create annotations and diagnosis requests that overwhelm switch
resources. As part of future work, we plan to explore specific re-
source allocation and isolation strategies to minimize the impact of
an iCF’s diagnosis and management efforts on other iCFs on the
same device.

6 RELATED WORK

Our work combines network telemetry with diagnosis and debug-
ging of P4 programs. The main research efforts related to these
aspects are discussed below.

Network Telemetry FlowStalker [3] is a monitoring system
for network telemetry implemented in P4 that runs directly on
the data plane. It first captures and stores specific meta-data about
flows of interest, which is subsequently collected by the control
plane. *Flow [16] efficiently collects features from packets and stores
them flexibly on a P4 switch using a dynamic allocation system.
Telemetry is used to evict records to the control plane. TurboFlow
[15] is a system much like NetFlow [5], except that it is optimized
for programmable data planes. TurboFlow is able to generate flow
records with rich metadata without sampling.

Our work also relies on telemetry, but our focus is on iCFs, which
implies that many of the concerns from the works above, such as
the necessity to aggregate high volumes of data directly on the
switch, are more relaxed. This allows us to have a very simple yet
effective telemetry system on switches. Further, while the works
above also have a fixed impact on hardware resources and network
resources, our annotations leave this trade-off for the programmer
to dose as he sees fit, i.e., allowing more leeway to his iCFs.

P4 Diagnosis Assert-P4 [6] uses annotations directly in P4
source code to annotate invariant conditions as runtime assertions.
It then translates P4 code to C and symbolically executes this code.
Bugs are discovered if at any point the code reaches an assertion
and the invariant is violated. Vera [17] also translates P4 code and
performs a symbolic execution of the program. However, Vera is
able to identify a range of bugs automatically without assertions.
Vera also translates P4 code to an optimized language made to sim-
plify the symbolic execution process, being able to run much faster
than Assert-P4.

While most works aimed at debugging P4 programs attempt to
debug and guarantee properties about switch code alone, our work
encompasses a more comprehensive view of the network, tracing
executions from and to servers and their distributed applications.

7 CONCLUSION

In this position paper, we outline a promising approach for iCF
telemetry and debugging, primarily aimed at harvesting iCF ex-
ecution contexts and merging this information with preexisting
RPC-tracing contexts. This work presents the first step in a rich line
of research on creating holistic end-to-end tracing for in-network
compute enhanced distributed applications.
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