
P4-InTel: Bridging the Gap between iCF Diagnosis and
Functionality

Lucas Castanheira
lbcastanheira@inf.ufrgs.br

Institute of Informatics

UFRGS

Alberto Schaeffer-Filho
alberto@inf.ufrgs.br

Institute of Informatics

UFRGS

Theophilus A. Benson
tab@cs.brown.edu

Brown University

ABSTRACT

Data plane programmability promotes a new kind of computing par-

adigm in which parts of an application’s execution can be offloaded

into the network. However, this in-network compute functionality

(iCF) adds an extra layer of management complexity for the trac-

ing and debugging of distributed applications. Specifically, current

programmable hardware does not provide powerful enough primi-

tives or abstractions to enable in-network tracing. Further, existing

distributed application debug solutions do not extend directly into

programmable data planes.

In this paper, we take a step back and revisit the fundamen-

tal problem by discussing open research questions and challenges

towards a comprehensive iCF telemetry and debugging solution

which bridges the gap between traditional and iCF-based debugging.

To this end, we introduce a system, P4-InTel, which (i) leverages

network telemetry to instrument PDPs into monitoring arbitrary

trace data, indicated directly on PDP source code using annotations,

and (ii) collects and encapsulates this data in a tracing abstraction.

This abstraction provides a global vision of an in-network compu-

tation’s life-cycle in a standard, readable format, which can either

be fed to automatic debugging tools, or used by programmers to

facilitate troubleshooting.

CCS CONCEPTS

·Networks→Programmable networks; In-network process-

ing; Network management; Network monitoring; Programming

interfaces.

KEYWORDS

In-Network Compute, Telemetry, Debugging

ACM Reference Format:

Lucas Castanheira, Alberto Schaeffer-Filho, and Theophilus A. Benson. 2019.

P4-InTel: Bridging the Gap between iCF Diagnosis and Functionality. In

1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms

(ENCP ’19), December 9, 2019, Orlando, FL, USA. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3359993.3366648

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ENCP ’19, December 9, 2019, Orlando, FL, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7000-4/19/12. . . $15.00
https://doi.org/10.1145/3359993.3366648

1 INTRODUCTION

Programmable data planes (PDPs) allow the execution of server

applications to cross into the network, offloading parts of the com-

putation to PDPs, i.e., in-network compute (iCF) [1]. In light of this

development, both industry and researchers have begun actively

investigating new designs for classic distributed applications in

order to improve performance, scalability, or reliability of these by

offloading functionality into the network. NetCache [7], for exam-

ple, is a system that caches key-value pairs on switches close to

server applications, potentially avoiding the long RTTs of a lookup

on a remote key-value storage server.

As these new-found approaches near deployment, practical con-

cerns arise about their run-time management, because distributed

applications can now cross into the data plane (i.e., iCFs). Specifi-

cally, embedding logic into PDPs has added another layer of com-

plexity for tracing and troubleshooting these applications. Current

programmable switches do not provide a rich enough abstraction

to support traditional tracing [4, 11, 14], and this lack of tracing

primitives forces programmers to create their own unique solu-

tions, creating very specific, non-reusable tracing tools to debug

their iCFs. More importantly, traces produced by these particular

solutions will likely not be interoperable with existing tracing diag-

nosis frameworks, e.g., Google’s Dapper[14]. Orthogonally, existing

tracing frameworks do not provide primitives for generating or

capturing tracing data from iCFs embedded in programmable data

planes.

In this paper, we aim to bridge the gap between traditional net-

work telemetry and distributed tracing frameworks. To this end,

we argue for the design of a new framework that tackles executions

which cross from the distributed application boundary into the net-

work by capturing trace data from PDPs and presenting them to the

application plane through a well-defined, flexible abstraction. We

introduce a system, P4-InTel, that (i) leverages network telemetry

to instrument PDPs into monitoring arbitrary, user-defined trace

data, and (ii) coordinates storage, collection and formatting of this

trace data internally, delivering only well-formed context data to

any application plane debug tool. We argue that our system will

not only simplify tracing of PDP programs, but also, given the

interoperability with emerging distributed systems frameworks,

we believe our work will simplify management and facilitate the

debugging process done by programmers.

The design of P4-InTel faces several unique challenges:

• First, there are PDP hardware constraints that prevent so-

phisticated and overly complex monitoring functions from

running in the switch itself. This has been partially addressed

by data plane telemetry research that aims to specify cus-

tomized monitoring code that can be integrated into the

21

ENCP ’19, December 9, 2019, Orlando, FL, USA Lucas Castanheira, Alberto Schaeffer-Filho, and Theophilus A. Benson

switch code in order to collect metrics of interest [3, 9, 12, 16].

Therein, the use of network telemetry has seen a significant

interest in the last few years because of how flexible this

telemetry becomes when dealing with PDPs. However, in-

trospecting on iCFs can require specific types of instrumen-

tation that go beyond general telemetry (e.g., establishing

causality, ordering of events, consistency between switches,

etc).

• Second, application interface issues often limit transpar-

ent instrumentation and monitoring of distributed systems.

Although existing efforts such as Baggage contexts [11] offer

means of decoupling system instrumentation from the tools

used, collecting application context from iCFs is, in essence,

different from doing so in traditional distributed applications

because language limitations restrict the set of variable and

tracing operations that can be performed on a packet.

• Finally, interoperability issues make it hard to seamlessly

integrate high-level application context data with low-level

information from network switches. Thus, means of present-

ing a unified execution context for iCFs are necessary, with

information collected from the data plane (e.g., P4) integrated

with application context to support a comprehensive tracing

and debugging mechanism.

Workflow: This paper is structured as follows: In Section 2 we

provide background information about iCFs, network telemetry,

and server tracing; In Section 3 we present the design and prototype

of P4-InTel; and, in Section 4, we show an initial evaluation of our

system. We conclude with a discussion of open topics (Section 5),

related works (Section 6), and final remarks (Section 7).

2 BACKGROUND

We outline below important background on programmable data

planes and distributed tracing.

2.1 Programmable Data Planes and iCFs

Until recently, the separation between the application plane (in

which computation occurs) and the network data plane (in which

communication happens) has been strict. With emerging PDPs,

however, parts of server computation can be offloaded to pro-

grammable switches (i.e., in-network compute function, or iCF)

thus blurring this separation. However, programmability in the

data plane hardware has to abide by strict restrictions to provide

line rate, e.g., the P4 [2] language does not allow loops in its pro-

grams. Furthermore, typical P4 programmable hardware1, when

compared to servers, has very limited memory and does not allow

computation to overuse the CPU. Instead, P4 switches implement

a once-through pipeline, where the stages and, additionally, their

hardware resources (ALUs, SRAM, tables, registers, etc) are shared

between the procedures defined in the P4 programs.

Takeaway: Programmable data planes and their language con-

structs place significant limitations on the set of functionalities that

can be supported and the hardware memory resource is signifi-

cantly limited.

1https://barefootnetworks.com/tofino/

2.2 Network Telemetry

Recent works in network telemetry offer more direct (and more

efficient) approaches to store and collect stateful data from a PDP,

without intervention from the control plane. In P4, telemetry has

been widely implemented in two paradigms: (i) using the local

storage of P4 switches or (ii) using in-band network Telemetry.

Essentially, the local storage approach writes all state information

to register arrays (implemented physically by using PDP switch

stateful ALUs) and later, collects the data through either custom

protocols [3, 16] or, if using the control plane, the switch’s API. The

alternative is using in-band Network Telemetry (INT) [9], where

packet headers carry and aggregate telemetry data as they traverse

the network and, once the packets arrive at their destination, these

telemetry headers are stripped and forwarded to an external server

to be processed.

Both approaches have their shortcomings and their advantages.

For example, INT demands more packet real estate in the form of

telemetry headers (something that is not acceptable to some appli-

cations which maximize the use of the MTU). Conversely, using

local storage for telemetry will impact the resources of a PDP appli-

cation by using more sALUs and SRAM, which is undesirable for

applications which already have a high demand for these resources.

Takeaway: Unfortunately, given the nature of P4, we cannot

shield programmers from these low-level details regarding packet

real estate versus sALU/SRAM usage. Either we implicitly pick one

and apply it universally, or provide developers with knobs to specify

preferences and explicitly tackle this trade-off.

2.3 Distributed Tracing and Debugging

Amongst common strategies for debugging distributed applications,

context propagation enables tracing execution flows by propagating

metadata along the flow of an execution, i.e., metadata is added unto

the RPC calls and continuously updated as the RPC propagates the

flow of control across different processes. Distributed tracing has

been shown to reliably ascertain causality between run-time events,

which is a foremost concern when introspecting and debugging

distributed systems. Consequently, numerous works [4, 8, 11, 14]

have been conceived which build upon context propagation, amidst

which distributed tracing ranks as the most prevalent.

One such abstraction that has been proposed to trace distributed

applications (outside the scope of PDPs) is the Baggage context [11].

Baggages are logs that follow the execution path of a distributed

application RPC calls. A host logs its actions into the baggage and

whenever the computation goes to other hosts, via RPCs, a baggage

containing data on previous actions is forwarded along within an

RPC. At the end of the computation, the baggage has a detailed

log of what was done. A Baggage context is general enough to

instrument many management tools for distributed applications

and has properties that make it safe for use in distributed systems.

Takeaway: Baggage provides a generalized abstraction for trac-

ing distributed applications but lacks primitives for reaching into

the data-plane. We argue that we can extend this abstraction to

create a solution that coordinates both application and data planes,

collecting arbitrary, user-defined trace data on the latter and expos-

ing this in a flexible manner to the former using baggage contexts.

22

ENCP ’19, December 9, 2019, Orlando, FL, USA Lucas Castanheira, Alberto Schaeffer-Filho, and Theophilus A. Benson

ACKNOWLEDGMENTS

Theophilus A. Benson would like to thank the NSF for award CNS-

1749785. Alberto Schaeffer-Filho would like to thank CNPq for

research grants 407899/2016-2 and 312091/2018-4. This study was

financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001, and also by

NSF CNS-1740911 and RNP/CTIC (P4Sec) grants.

REFERENCES
[1] T. A. Benson. In-network compute: Considered armed and dangerous. In Pro-

ceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’19, pages
216ś224, New York, NY, USA, 2019. ACM.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.

[3] L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho. Flowstalker: Comprehen-
sive traffic flow monitoring on the data plane using p4. In ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), pages 1ś6, May 2019.

[4] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The mystery machine:
End-to-end performance analysis of large-scale internet services. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages
217ś231, Broomfield, CO, Oct. 2014. USENIX Association.

[5] Cisco. Introduction to Cisco IOS NetFlow - a technical overview.
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod_white_paper0900aecd80406232.html.

[6] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos.
Uncovering bugs in p4 programs with assertion-based verification. In Proceedings
of the Symposium on SDN Research, SOSR ’18, pages 4:1ś4:7, New York, NY, USA,
2018. ACM.

[7] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica. Netcache:
Balancing key-value stores with fast in-network caching. In Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17, pages 121ś136, New
York, NY, USA, 2017. ACM.

[8] J. Kaldor, J. Mace, M. Bejda, E. Gao,W. Kuropatwa, J. O’Neill, K.W. Ong, B. Schaller,
P. Shan, B. Viscomi, V. Venkataraman, K. Veeraraghavan, and Y. J. Song. Canopy:
An end-to-end performance tracing and analysis system. In Proceedings of the

26th Symposium on Operating Systems Principles, SOSP ’17, pages 34ś50, New
York, NY, USA, 2017. ACM.

[9] C. Kim, A. Sivaraman, N. P. Katta, A. Bas, A. Dixit, and L. J. Wobker. In-band
network telemetry via programmable dataplanes. 2015.

[10] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary. Offloading real-time ddos
attack detection to programmable data planes. In 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pages 19ś27, April 2019.

[11] J. Mace and R. Fonseca. Universal context propagation for distributed system
instrumentation. In Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18, pages 8:1ś8:18, New York, NY, USA, 2018. ACM.

[12] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh, V. Jeyaku-
mar, and C. Kim. Language-directed hardware design for network performance
monitoring. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 85ś98, New York, NY, USA, 2017.
ACM.

[13] A. Santos da Silva, J. A.Wickboldt, L. Z. Granville, and A. Schaeffer-Filho. Atlantic:
A framework for anomaly traffic detection, classification, and mitigation in sdn.
In NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium,
pages 27ś35, April 2016.

[14] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google, Inc., 2010.

[15] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith. Turboflow: Information rich
flow record generation on commodity switches. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, pages 11:1ś11:16, New York, NY, USA, 2018.
ACM.

[16] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith. Scaling hardware
accelerated network monitoring to concurrent and dynamic queries with *flow.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 823ś835,
Boston, MA, July 2018. USENIX Association.

[17] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu. Debugging
p4 programs with vera. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, pages 518ś532, New York,
NY, USA, 2018. ACM.

[18] P. Zheng, T. Benson, and C. Hu. P4visor: Lightweight virtualization and com-
position primitives for building and testing modular programs. In Proceedings
of the 14th International Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, pages 98ś111, New York, NY, USA, 2018. ACM.

26

	Abstract
	1 Introduction
	2 Background
	2.1 Programmable Data Planes and iCFs
	2.2 Network Telemetry
	2.3 Distributed Tracing and Debugging

	3 P4-InTel
	3.1 P4-InTel Workflow
	3.2 System Design
	3.3 Strawman Prototype

	4 Experimental Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

