
P4Visor: Lightweight Virtualization and Composition Primitives
for Building and Testing Modular Programs

Peng Zheng
Xi’an Jiaotong University and

Brown University
zeepean@gmail.com

Theophilus Benson
Brown University

theophilus_benson@brown.edu

Chengchen Hu
Xi’an Jiaotong University

huc@ieee.org

ABSTRACT

Programmable data planes, PDPs, enable an unprecedented level of

flexibility and have emerged as a promising alternative to existing

data planes. Despite the rapid development and prototyping cycles

that PDPs promote, the existing PDP ecosystem lacks appropri-

ate abstractions and algorithms to support these rapid testing and

deployment life-cycles. In this paper, we propose P4Visor, a light-

weight virtualization abstraction that provides testing primitives as

a first-order citizen of the PDP ecosystem. P4Visor can efficiently

support multiple PDP programs through a combination of compiler

optimizations and program analysis-based algorithms. P4Visor’s al-

gorithm improves over state-of-the-art techniques by significantly

reducing the resource overheads associated with embedding numer-

ous versions of a PDP program into hardware. To demonstrate the

efficiency and viability of P4Visor, we implemented and evaluated

P4Visor on both a software switch and an FPGA-based hardware

switch using fourteen different PDP programs. Our results demon-

strate that P4Visor introduces minimal overheads (less than 1%)

and is one order of magnitude more efficient than existing PDPs

primitives for concurrently supporting multiple programs.

CCS CONCEPTS

· Networks → Programmable networks; · Software and its

engineering → Software testing and debugging;

KEYWORDS

Programmable Data Plane, Code Merge, Testing

ACM Reference Format:

Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor: Light-

weight Virtualization and Composition Primitives for Building and Testing

Modular Programs. In CoNEXT ’18: International Conference on emerging Net-

working EXperiments and Technologies, December 4ś7, 2018, Heraklion, Greece.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3281411.3281436

1 INTRODUCTION

Programmable data planes [10, 39, 41] (PDPs), e.g., Tofino [39], have

emerged as a promising alternative to traditional data planes. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00
https://doi.org/10.1145/3281411.3281436

PDPs enable an unprecedented level of flexibility: they provide ab-

stractions and language frameworks that simplify the development

of stateful network functionality which operates at line rate. This

flexibility enables rapid development and prototyping of novel func-

tionality and use cases.

Despite these rapid development and prototyping cycles, the ex-

isting PDP ecosystem lacks appropriate primitives and algorithms to

support rapid testing and deployment. At a high level, many testing

paradigms [31, 52, 59], e.g., canary testing used in Google’s [20, 46]

networks, require running new versions of a program alongside

stable versions. Traffic is split across all versions and the output

is compared. Orthogonally, supporting agile development requires

composing and merging modular programs together.

The key challenges to enabling these techniques in today’s

PDP networks lie in efficiently supporting multiple PDP programs

and providing flexible operators for the broad range of poten-

tial paradigms. Hardware PDP devices include limited physical

resources which restrict the size of the PDP programs that can

be supported, and enabling multiple versions of a PDP programs

on a resource constraint device requires effective algorithms for

minimizing resource footprints. Additionally, PDP language ab-

stractions, e.g., P4, provide a limited set of primitives, e.g., P4 does

not support loops, and the language restrictions complicate the

process of developing general primitives to support a broad range

of scenarios. Specifically, in this paper, we focus on one of the most

popular and promising data plane programming languages ś P4.1

In this paper, we present P4Visor, an abstraction layer and com-

position primitives, which addresses the above challenges to make

testing and development primitives first-order citizens of the PDP

ecosystem. The key insight behind P4Visor is that the different

versions of a P4 program will share significant code fragments (i.e.,

tables, parse graph states and action primitives) and thus we can

reduce the resource overheads by merging the P4 programs and

thus eliminating redundancy. In this way, an administrator can run

multiple P4 programs concurrently in the data plane.

P4Visor achieves this through a combination of program analy-

sis to identify potential program overlaps and compiler optimiza-

tions to merge the P4 programs and reduce resource footprints.

To flexibly support different testing paradigms, P4Visor includes

domain-specific comparator operators that provide building blocks

for composing new testing paradigms.

Today, the prevalent approach for supporting multiple P4 pro-

grams is to virtualize the data plane [22, 56], e.g., Hyper4 [22],

HyperV [56], and host different programs atop the virtualization

layer. Unfortunately, these approaches [22, 56] require significant

1 The PDP Programs in the following sections refer to P4 programs unless otherwise
stated.

98

CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

4.1 Background on P4 Compiler Constraints

In general, there are two kinds of constraints on a P4 program.

These constraints are either placed on the compiler by the language

(hardware target independent) or placed on the compiler by the

hardware architecture (target-dependent). An example of a target-

independent constraint is that there can be no loops in the control

flow graph; hence, it needs to be a DAG. This constraint is invariant

across all targets. However, the target-dependent constraints vary

dramatically from target to target and are especially hard to enforce

without intimate knowledge of the target hardware’s proprietary

details. For example, RMT [7] has 32 stages in its pipeline while

Intel’s FlexPipe [41] has 5 stages with different memory constraints

for each stage.

To tackle these two constraints, P4 compilers are split into two

components: a target-independent compiler (front-end compiler)

and a target-dependent compiler (back-end compiler).

Prior work [27] has identified table size, program control flow,

and hardware memory restrictions as the key issues faced by the

P4 compiler.

In this paper, we focus on the design of target-independentmerge

optimizations. We aim to, first, provide a general optimization that

benefits all hardware-targets. Our target independent optimization

builds on the insight that merging different tables results in sig-

nificant savings across all hardware targets for multiple reasons:

merging tables reduces overheads associated with instantiating

tables and merging tables results in large tables which take advan-

tage of various hardware optimizations (we elaborate on this in

Section 7). As part of future work, we will explore target-dependent

optimizations.

4.2 Merging Optimization

Merging two P4 Programs is fundamentally equivalent to merging

two weighted DAGs into a single weighted DAG with the added

objective of minimizing space (i.e., the # of nodes). To the best of our

knowledge, no existing work has explored this problem: specifically,

merging two weighted DAGs into one while maximizing overlap.

The most closely related works [8, 43] provide suboptimal results,

we elaborate on them in Section 9. Next, we more formally describe

the problem.

We model a program’s control flow using a Table Dependency

Graph (TDG) [27] G = (T ,E) where vertices T = {t1, t2, ..., tn }
5

and edges E = {(ti , tj) | ti , tj ∈ T } map to the tables and the table

dependency, respectively. Each table ti ∈ T has three attributes:

(1) the program id, ti .pid , reflects the P4 program in which the

table resides;

(2) table ID, ti .tid , reflects the table’s ID and helps to differenti-

ate tables; and,

(3) table size, ti .size , reflects the memory footprint of the table

(size is a function of width and number of entries defined).

Given G, we can compute the dependency matrix, D, of the graph

as: D[ti , tj] = 1 if there is a dependency path from ti to tj and

D[ti , tj] = 0 otherwise 6.

5n is the total number of tables in the pipeline.
6D[ti , ti] = 0 because P4 programs are generally acyclic graphs.

For simplicity, we formalize the PDP-merge problem for two P4

programs, but the problem formulation and analysis generalizes to

cases with more than two P4 programs.

Objective: Our goal is to merge two programs ś a production

version denoted as Gr = (Tr ,Er) with the dependency matrix Dr

and a testing versionGs = (Ts ,Es) with the dependency matrix Ds

into a single program Gm = (Tm ,Em) with the dependency matrix

Dm , while minimizing the total resources required. In this paper,

we only focus on table memory resources. Restated, our object is

maximizing sharing resources:

max

|Tm |∑

i=1

wi (1)

wherewi is the weighted contribution of reducing the resources in

Gm used by table ti ∈ Tm .

We define the set of resource-sharing tables, Tms , as a subset

of tables in the merged TDG Gm : these tables in Tms are merged

from multiple tables in the original programs, which satisfy the

following constraints: equivalence, correctness, and loop-freedom.

For each table vi ∈ Tms ,wi captures both the memory type and

table size. Currently, the memory size is calculated as a function of

the number of entries and the width of each entry:

wi = ci · leni · widthi

where leni andwidthi are the number of entries and width of an en-

try in table ti respectively. ci is a configurable weighted coefficient

that allows an administrator to guide our optimization algorithm

to merge tables that the administrator cares about. For example, if

an administrator only cares about the TCAM tables, she can set the

table weights of all non-TCAM types to 0. As a preprocessing step,

P4Visor setswi = 0 for each table vi < Tms which shares no table

resources with other tables because these tables cannot be merged.

Note that when the weights for all tables Tms are equal, the

objective function (1) leads to a merged TDG that minimizes the

total number of tables.

Target-Independent Constraints: Two tables, tri ∈ Tr and

tsj ∈ Ts , can be merged if and only if three constraints are satisfied:

(i) Equivalence: The two tables are structurally equivalent (same

actions and match fields but they can vary in the number

of declared entries). Here the equivalent tables are assigned

the same id, that is tri .tid = tsj .tid .

(ii) Correctness: the table dependencies of both tables are main-

tained ś correctness is preserved.
{
Dm [tri , tr j] = Dr [tri , tr j], ∀tri , tr j ∈ Tr

Dm [tsi , tsj] = Ds [tsi , tsj], ∀tsi , tsj ∈ Ts
(2)

(iii) Loop-free: the resulting graph is loop free, that is, the depen-

dency matrix of Gm satisfies ∀ti , tj ∈ Tm ,

Dm [ti , tj] · Dm [tj , ti] = 0 (3)

Target-Dependent Constraints: While this work focuses on

target-independent constraints, here, we briefly sketch out how

target-dependent constraints can be introduced into our problem

formulation.

103

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

Abstractly, we can introduce target-dependent constraints by

introducing hardware information. One constraint placed by hard-

ware is the number of physical stages. For example, RMT [7] has 32

stages, and thus RMT can only support P4 programs whose crucial

dependency path length is no more than 32. To overcome this limi-

tation, we can add a constraint that limits the merged TDG’s critical

path length to less than 32. This may force our algorithm to ex-

plore solutions that create merged programs that do not maximize

overlaps, but that ensure shorter critical dependency paths.

As part of future work, we will study the constraints of dominant

PDP hardware targets and incorporate them into our algorithm.

4.3 Complexity Analysis

Our TDG merging problem can be reduced to and from the Maxi-

mumWeighted Independent Set (MWIS) problem: a problem which

has been proven to be NP-Complete [18]. In this section, we pro-

vide a sketch of how to reduce our problem to and from the MWIS

problem.

We define a function v(m, i) which returns the table from TDG

Gm whose table ID is i , thus, v(m, i) = tmi and tmi .tid = i . To do

this reduction, we define a merge candidate set, Tp , as the set of

all tables in Gr and Gs that satisfy the equivalence requirement

defined in constraint (i).

By definition of constraints (i) to (iii) in Section 4.2, all the tables

in production and testing programs follow the Lemma 4.1 (proved

in the appendix).

Lemma 4.1. ∀ti , tj ∈ Tms , v(s,j) and v(s,i) have

Dr [v(r , i),v(r , j)] · Ds [v(s, j),v(s, i)] = 0 (4)

Next, let us construct a new undirected graph Gp = (Tp ,Ep)

where the vertex set of the graph isTp and the edge set of the graph

is Ep . Given this definition, we define ∀ti , tj ∈ Tp ,

Ep [ti , tj] =





1 Dr [v(r , i),v(r , j)] · Ds [v(s, j),v(s, i)] = 1

or Dr [v(r , j),v(r , i)] · Ds [v(s, i),v(s, j)] = 1

0 Otherwise

(5)

Taken together, formulas (4) and (5) provide us with a way

to formally reason about the relationship between Tms and Gp .

Lemma 4.2 (proved in the appendix) provides this relationship.

Lemma 4.2. The set of resource-sharing tables Tms is a subset of

vertices in graph Gp , no two of which are adjacent, that is, ∀ti , tj ∈

Tms ,

Ep [ti , tj] = 0 (6)

Reducing PDP-Merge to MWIS: Lemma 4.2 restated shows

that analyzing graph Gp to identify the set of tables Tms can be

reduced to the independent set problem in polynomial time of

O(|Tp |
2). Essentially, in constructing Gp , we only keep the depen-

dencies in both Dr and Ds that provide the forward and reverse

direction between two nodes. Take nodes A, D in Figure 3 as an

example, there is a dependency from node A to D in one program

as well as a dependency path from D to A in another program.

We keep these types of forward and reverse dependencies when

creating Gp and delete all others dependencies.

To satisfy our objective of maximizing the shared table resources,

we need to find the maximum weighted independent set in graph

Gp , known as MWIS problem, an NP-Complete problem [18].

ReducingMWIS to PDP-Merge: Next, we show how to reduce

a given MWIS problem to our merging problem. The key lies in

transforming a given weighted undirected graph Gp = (Tp ,Ep)

in the MWIS problem to two weighted DAGs, Gr and Gs , to be

merged with the objective of maximizing the weights of the final

DAG. More specifically, we can construct the dependencies matrix

of two DAGs from Gp as follows:

Dr [i, j] =

{
Ep [i, j] i f i > j

0 Otherwise
(7)

Ds [i, j] =

{
Ep [i, j] i f i < j

0 Otherwise
(8)

where i, j = 0, 1, 2, ..., |Tp | are the indices of the nodes in graph

Gp . We set Tms as a feasible independent set of Gp . Similarly, with

lemma 4.2, we know that Tms is a feasible set of resource-sharing

tables when merging two constructed DAGsGr andGs . Further, as

each node has a weight, solving the maximum weighted indepen-

dent set of Gp is equal to the identification of the set of tables with

maximum shared resource when merging Gr and Gs .

Thus, the maximum weighted independent set (MWIS) problem,

an NP-Complete problem [18], can be reduced to our problem in

polynomial time O(|Tp |
2). That is to say, merging two weighted

DAGs into one weighted DAG with the objective of maximizing

weights is an NP-Complete problem.

5 EFFICIENCY

Next, we design a heuristic to efficiently solve the problem in real

time (Section 5.1) and discuss a systematic approach for configuring

resource sharing of entries within the merged tables (Section 5.2).

5.1 P4Visor Heuristic Merging

A naive approach for solving the łmergež problem is to perform

a brute-force search through all potential combinations in Gm to

find the solution which provides the maximum overlap: the best-

known optimal algorithm for solving the maximum independent

set problem is Bron-Kerbosch. We implemented the extended Bron-

Kerbosch [24] and observed that it can only handle small graphs

and was unable to scale to large graphs (i.e., greater than 80 nodes):

In particular, given a 7-day time limit, we were unable to solve

the Bron-Kerbosch algorithm for graphs with over 80 nodes. Thus,

Bron-Kerboschwas unable to process the largest DAG in our dataset

(Switch.P4 which has over 120 tables). Motivated by the inadequa-

cies with Bron-Kerbosch, we designed a new heuristic to solve the

merge problem.

Heuristic Our heuristic is based on simulated annealing (SA)

which has proven effective in solving the MWIS problem [1].

In our heuristic, each state of the search space is defined as a

subsetVsub of the vertex set of graphVp and every vertex inVsub is

nonadjacent to the other vertices. Motivated by prior work [4, 40],

our heuristic generates neighboring states to explore using one of

the following two procedures:

104

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

Compile Time Configuration: Additionally, the structure of table

testing_traffic_identify can be altered, through the PVI, to re-

configure the TTC and allow the TTC tomatch packets for sampling

based on other aspects of the FlowSpec beyond subnet.

1 registers cnt , Rate

2 action sample_testing_pkt () {

3 register_write(cnt , 0, cnt +1);

4 modify_field(testing_meta.testingbit ,cnt%Rate);

5 }

6 table testing_traffic_identify {

7 // fields are configurable using P4Visor Interface

8 reads {ipv4.dstAddr : lpm;}

9 actions {sample_testing_pkt; set_testingbit ;}

10 }

11 table testing_traffic_control {

12 reads {testing_meta.testingbit : exact ;}

13 actions {goto_test_pipe; goto_prod_pipe}

14 }

Figure 8: Code Excerpt from our TTC Implementation.

Comparator: In Figure 9, we present an puesdocode for the

Comparator Module. The Comparator is implemented using a set

of flow tables with compound actions.The output of each version

of the program are recorded in a set of metadata (i.e., meta_p)

and then compared by the Comparator (Line #2) to determine if

the versions are different. If a difference is detected, the action

diff_procedure is used to create a packet to send to the controller.

To overcome a limitation of our target platforms, we create a new

packet by multicasting the original packet and sending a version to

the controller (Line #6-9).

1 // compare the outputs

2 if(testing_meta.meta_p != testing_meta.meta_t){

3 apply(diff_procedure);

4 }

5 //an example procedure configuration

6 action diff_procedure(testing_meta , mcast_group) {

7 update_fields(testing_tag , testing_meta);

8 set_output_mcg(mcast_group);

9 }

Figure 9: Pseudocode for Comparator.

6.2 Limitation of Existing PDP Targets

PDPs are expected to provide a rich set of packet processing features,

e.g., the action primitives defined in P4. However, current PDP

targets, e.g., software switch Bmv2 [13] or FPGA-based hardware

from Xilinx SDNet [54], can only support a limited set of P4’s

features. Several of the key P4 features required to enable P4Visor

include (1) stateful registers; (2) packet cloning, for creatingmultiple

copies of a packet to be processed by different programs; and (3)

in-switch packet generator, for generating and sending a packet

to the controller that summarizes differences between the two P4

programs.

• While packet cloning primitives are defined in the P4 specifi-

cation, the clone feature is not supported by the Bmv2 target.

We address this problem by attaching attributes of the packet

to the metadata and recirculating the packet and metadata

through the pipeline for processing by the alternative pro-

grams. Thus, by recirculating the packet, multiple versions of

a PDP Program can independently process the same packet.

• In-switch packet generator is not supported by either the

Bmv2 or FPGA targets (Xilinx SDNet). To send the outcome

of testing to the controller, P4Visor adds those fields to the

pre-configured TFlag, inserts the TFlag to a copy of the packet,

and then sends a copy of the packet out to the controller. 8

• Our hardware target is even less flexible than the Bmv2 due to

the limitation of the current development toolchain (SDNet).

Specifically, SDNet does not support stateful register which

impacts our design of the comparator and limits the set of

programs we can deploy. To support P4Visor on our FPGA-

based hardware target, we have implemented those primitives

in low-level hardware (i.e., the Testing Traffic Control module

is implemented with 1000+ lines of Verilog code). We believe

these hardware limitations will be addressedwith the evolution

of the SDNet toolchain.

7 EVALUATION

7.1 Experiment Setup

We have evaluated P4Visor on both a software (Bmv2 [13]) and a

hardware (ONetSwitch [23]) programmable data plane.

Software PDP: On the Bmv2 target, we analyzed the following

programs: Reference Switch.P4 [14], L2 switch, Simple Router, NAT,

VLAN and Arp-Proxy, Flowletting [15], and Heavy Hitters [48]. The

Bmv2 runs in mininet with a single switch, two hosts for testing,

and a third host for running the controller. Before testing, we install

flow entries into the tables so that the two end hosts can ping each

other.

Hardware PDP: On the ONetSwitch target, we were only able

to evaluate the following programs: L2 Switch, Simple Router, and

VLAN. We were limited in the set of programs evaluated because

ONetSwitch builds on Xilinx’s Zynq SoC [23] which only supports

a subset of P4’s language features (see Section 6.2). To test the

performance of the switch, we connect two PCs with 10G NIC to

the ONetSwitch45 switch, due to NIC limitations, the maximum

achievable throughput for our servers is 5Gbps. We used iPerf to

generate traffic between the hosts and similarly crafted rules to

force traffic through as many tables as possible.

7.2 Performance Benefits and Overheads

Here, we evaluate the overheads of P4Visor and analyze the practi-

cal benefits of source code merging as a lightweight virtualization

primitive.

7.2.1 Benefits of Resource Sharing. To understand and quan-

tify the benefits of resource sharing, we have compared P4Visor’s

merge algorithm against a Naive merge algorithm [44], which is a

greedy algorithm for MWIS problem. When solving the problem,

Naive merge selects a vertex of minimum degree, removes it and its

neighbors from the graph until no vertex available.

Our results show that merging introduces significant benefits

for three distinct reasons: First, instantiating a table into hardware

incurs some overheads. Thus by having two programs sharing a

table, we ameliorate the associated overheads and this translates

8Recall, the TFlag is removed at the edge switch and thus the endhosts never receive
the TFlag.

106

CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

objective and second, we prove the complexity of the DAG merge

problem and provide a more efficient heuristic based on simulated

annealing. Below, we elaborate on these differences.

OpenBox [8] and SNF [28] merge processing graphs for network

functions (NFs) with the objective of minimizing the path length (re-

ducing packet processing latency in the merged processing graph).

Our goal differs from prior work because we aim to maximize the

number of merged nodes (minimizing the resources used by the

merged graph). A significant implication of this difference between

our objectives is that while our heuristic always reduces the size of

the merged graph, the algorithms presented by OpenBox and SNF

may increase the number of nodes in an attempt to minimize path

lengths.

Saha et al.[43] provide a sub-optimal heuristic for merging two

unweighted DAGs into one unweighted DAG with the objective of

minimizing the number of vertices in the final DAG. Our objective

varies: we want to simultaneously decrease the number of vertices

while maximizing the magnitude of overlap since the vertices in our

problem are weighted. Saha et al. show that merging DAGs is the

dual of finding the maximum length longest common subsequence

between pairs of topological sorted DAGs. Unfortunately, while this

problem can be solved in O(V 2) time, the efficiency of the solution

is highly dependent on the topological sort of the DAG and can be

highly ineffective. Instead, we present an efficient greedy heuristic

based on simulated annealing.

9 DISCUSSION

Control Plane Overheads. In addition to the data plane over-

heads, P4Visor introduces overheads to the control plane. For ex-

ample, the P4Visor agents running on the controller and the switch

PDP devices, have to multiplex and demultiplex messages between

the controller to the local P4 programs. This translation introduces

processing overheads and also memory overheads because the

agents need to maintain a mapping and perform the translations.

Additionally, re-using the control channel between the controller

and switches to transfer packets summarizing the result of the tests

reduces the available bandwidth on the control channel. As part of

future work, we plan to explore approaches, e.g., SwitchVisor [12],

to effectively share and partition these control plane resources.

Target Dependent Optimizations As discussed in Section 4,

our current efforts focus on target-independent optimizations (i.e.,

front-end compiler), as part of future work we will extend our for-

mulation to tackle the back-end compiler by introducing constraints

and objectives specific to the hardware targets.

Seamless Reconfiguration While full virtualization provides

support for headless updates (reconfiguring the data planewithout a

reboot), our approach requires a reboot after every reconfiguration.

As part of future work, we plan to tackle issues related to these

reboots by intelligently migrating state, e.g., with SwingState [34],

and reconfiguring paths, e.g., with zUpdates [33], during the reboot

to eliminate disruption.

Composition Operators This work has focused on supporting

testing-specific composition operators; however, as part of on-going

work we are exploring composition operators for enabling code

modularity, e.g., parallel and sequential composition. Supporting

these operators requires extending our current formulations to

account for operator specific constraints.

10 CONCLUSION

In this paper, we propose a lightweight virtualization primitive

for testing P4 programs through code merging. To support this

primitive, we present a framework, called P4Visor, which uses

compiler optimizations and program analysis to achieve efficient

source code merging. We evaluate the theoretical complexity of the

merging algorithm and present an efficient greedy heuristic. Our

work opens up space for implementing a wide range of composition

operators and frameworks for P4 programs.

ACKNOWLEDGMENTS

We thank our shepherd Eric Keller, and the anonymous CoNEXT

reviewers for their invaluable comments. This work is supported

in part by the National Key Research and Development Program of

China (2017YFB0801703), the National Science Foundation (through

grants CNS-1749785 and CNS-1819109), and the NSFC (61672425,

61702407).

A APPENDIX

A.1 Proof of Lemma 4.1

We can proof lemma 4.1 by contradiction. Let us assume that

∃ ti , tj ∈ Tm so that

Dr [v(t , i),v(t , j)] · Ds [v(s, j),v(s, i)] = 1

then we know Dr [v(t , i),v(t , j)] = 1 and Ds [v(s, j),v(s, i)] = 1. As

i, j are the ids of the merged tables satisfying the table dependency

consistency, according to Rule1 we have

Dm [v(m, i),v(m, j)] = Dr [v(t , i),v(t , j)] = 1

Dm [v(m, j),v(m, i)] = Ds [v(s, j),v(s, i)] = 1

which means the merging of tables v(t , i),v(s, i) and the merging

of v(t , j),v(s, j) introduce a dependency loop to the merged graph

Dm . By Rule2, Dm is loop free. This is a contradiction. QED.

A.2 Proof of Lemma 4.2

We can proof lemma 4.2 by contradiction similar with the proof

of lemma 4.1. Assume that ∃ ti , tj ∈ Tm so that Ep [ti , tj] = 1,

then according to equation (5) we can get Dr [v(t , i),v(t , j)] = 1

and Ds [v(s, j),v(s, i)] = 1. This will lead to the same contradiction

shown in the proof of lemma 4.1. Hence, we have ∀ti , tj ∈ Tm ,

Ep [ti , tj] = 0. QED.

REFERENCES
[1] Emile Aarts and Jan Korst. 1989. Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing. John
Wiley & Sons, Inc., New York, NY, USA.

[2] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru Parulkar,
Elio Salvadori, and Bill Snow. 2014. OpenVirteX: Make Your Virtual SDNs
Programmable. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking (HotSDN ’14). ACM, New York, NY, USA, 25ś30. https:
//doi.org/10.1145/2620728.2620741

[3] Richard Alimi, Ye Wang, and Y. Richard Yang. 2008. Shadow Configuration As
a Network Management Primitive. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication (SIGCOMM ’08). ACM, New York, NY, USA,
111ś122. https://doi.org/10.1145/1402958.1402972

109

P4Visor: Lightweight Virtualization and Composition Primitives ... CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece

[4] Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. 2012. Fast
local search for the maximum independent set problem. Journal of Heuristics 18,
4 (01 Aug 2012), 525ś547. https://doi.org/10.1007/s10732-012-9196-4

[5] The Authors. 2018. The P4 Router Programs. https://github.com/Brown-NSG/
P4Visor/tree/master/FPGAtarget/p4program. (2018).

[6] The Authors. 2018. The P4Visor Compiler for BMV2 target. https://github.com/
Brown-NSG/P4Visor. (2018).

[7] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. SIGCOMM
Comput. Commun. Rev. 43, 4 (Aug. 2013), 99ś110. https://doi.org/10.1145/2534169.
2486011

[8] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network Func-
tions. In Proceedings of the 2016 ACM SIGCOMMConference (SIGCOMM ’16). ACM,
New York, NY, USA, 511ś524. https://doi.org/10.1145/2934872.2934875

[9] Marco Canini, Daniele De Cicco, Petr Kuznetsov, Dan Levin, Stefan Schmid,
Stefano Vissicchio, et al. 2014. STN: A robust and distributed SDN control plane.
Open Networking Summit 490 (2014).

[10] Inc. Cavium. 2018. XPliant Ethernet Switch Product Family. (2018). http://www.
cavium.com/XPliant-Ethernet-Switch-ProductFamily.html

[11] Ed Doe Changhoon Kim, Parag Bhide. 2016. In-band Network Telemetry (INT).
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf. (2016).

[12] Huan Chen and Theophilus Benson. 2017. Switch-visor: Towards Infrastructure-
level Virtualization of SDN Switches. In Proceedings of the 2Nd Workshop on
Cloud-Assisted Networking (CAN ’17). ACM, New York, NY, USA, 25ś30. https:
//doi.org/10.1145/3155921.3158431

[13] P4 Language Consortium. 2017. P4 software switch (behavioral model) P4-bmv2.
(2017). https://github.com/p4lang/behavioral-model

[14] P4 Language Consortium. 2017. The reference P4 program switch.p4. (2017).
https://github.com/p4lang/switch

[15] P4 Language Consortium. 2017. The sample P4 programs. (2017). https://github.
com/p4lang/p4c-bm/tree/master/tests/p4_programs

[16] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15). ACM,
New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/2774993.2774999

[17] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming
Language. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’11). ACM, New York, NY, USA, 279ś291. https:
//doi.org/10.1145/2034773.2034812

[18] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

[19] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. 2013. Design
Principles for Packet Parsers. In Proceedings of the Ninth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS ’13). IEEE Press,
Piscataway, NJ, USA, 13ś24. http://dl.acm.org/citation.cfm?id=2537857.2537860

[20] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn fromGoogles Net-
work Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference (SIG-
COMM ’16). ACM, New York, NY, USA, 58ś72. https://doi.org/10.1145/2934872.
2934891

[21] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P. Donovan, Brandon
Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan
Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange. In Proceedings
of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY,
USA, 551ś562. https://doi.org/10.1145/2619239.2626300

[22] David Hancock and Jacobus van der Merwe. 2016. HyPer4: Using P4 to Virtu-
alize the Programmable Data Plane. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies (CoNEXT ’16).
ACM, New York, NY, USA, 35ś49. https://doi.org/10.1145/2999572.2999607

[23] Chengchen Hu, Ji Yang, Hongbo Zhao, and Jiahua Lu. 2014. Design of All
Programable Innovation Platform for Software Defined Networking. In Pre-
sented as part of the Open Networking Summit 2014 (ONS 2014). USENIX, Santa
Clara, CA. https://www.usenix.org/conference/ons2014/technical-sessions/
presentation/hu-chengchen

[24] Brijnesh J. Jain and Klaus Obermayer. 2011. Extending Bron Kerbosch for
Solving the Maximum Weight Clique Problem. CoRR abs/1101.1266 (2011).
arXiv:1101.1266 http://arxiv.org/abs/1101.1266

[25] Mikel Jimenez and Henry Kwok. 2017. Building Express Backbone: Facebook’s
new long-haul network. https://code.facebook.com/posts/1782709872057497/
building-express-backbone-facebook-s-new-long-haul-network/. (2017).

[26] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor:
A Compositional Hypervisor for Software-defined Networks. In Proceedings of
the 12th USENIX Conference on Networked Systems Design and Implementation
(NSDI’15). USENIX Association, Berkeley, CA, USA, 87ś101. http://dl.acm.org/

citation.cfm?id=2789770.2789777
[27] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling

Packet Programs to Reconfigurable Switches. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation (NSDI’15). USENIX
Association, Berkeley, CA, USA, 103ś115. http://dl.acm.org/citation.cfm?id=
2789770.2789778

[28] Georgios P. Katsikas, Marcel Enguehard, Maciej Kuźniar, Gerald Q. Maguire Jr,
and Dejan Kostić. 2016. SNF: synthesizing high performance NFV service chains.
PeerJ Computer Science 2 (Nov. 2016), e98. https://doi.org/10.7717/peerj-cs.98

[29] Naga Praveen Katta, Jennifer Rexford, and David Walker. 2013. Incremental
Consistent Updates. In Proceedings of the Second ACM SIGCOMMWorkshop on
Hot Topics in Software Defined Networking (HotSDN ’13). ACM, New York, NY,
USA, 49ś54. https://doi.org/10.1145/2491185.2491191

[30] Eric Keller and Evan Green. 2008. Virtualizing the Data Plane Through Source
Code Merging. In Proceedings of the ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow (PRESTO ’08). ACM, New York, NY, USA, 9ś14.
https://doi.org/10.1145/1397718.1397721

[31] Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. 2009. Virtually
Eliminating Router Bugs. In Proceedings of the 5th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’09). ACM, New
York, NY, USA, 13ś24. https://doi.org/10.1145/1658939.1658942

[32] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
137ś152. https://doi.org/10.1145/3132747.3132756

[33] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and
David Maltz. 2013. zUpdate: Updating Data Center Networks with Zero Loss. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13).
ACM, New York, NY, USA, 411ś422. https://doi.org/10.1145/2486001.2486005

[34] Shouxi Luo, Hongfang Yu, and Laurent Vanbever. 2017. Swing State: Consis-
tent Updates for Stateful and Programmable Data Planes. In Proceedings of the
Symposium on SDN Research (SOSR ’17). ACM, New York, NY, USA, 115ś121.
https://doi.org/10.1145/3050220.3050233

[35] Ratul Mahajan and Roger Wattenhofer. 2013. On Consistent Updates in Software
Defined Networks. In Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks (HotNets-XII). ACM, New York, NY, USA, Article 20, 7 pages. https:
//doi.org/10.1145/2535771.2535791

[36] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 15ś28.
https://doi.org/10.1145/3098822.3098824

[37] Tal Mizrahi, Efi Saat, and Yoram Moses. 2015. Timed Consistent Network Up-
dates. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research (SOSR ’15). ACM, New York, NY, USA, Article 21, 14 pages.
https://doi.org/10.1145/2774993.2775001

[38] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software Defined Networks. In 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 13). USENIX
Association, Lombard, IL, 1ś13. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/monsanto

[39] Barefoot Networks. 2016. Barefoot Whitepaper: The World’s Fastest and Most
Programmable Networks. (2016). https://barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/

[40] Bruno Nogueira, Rian G. S. Pinheiro, and Anand Subramanian. 2018. A hybrid iter-
ated local search heuristic for the maximumweight independent set problem. Op-
timization Letters 12, 3 (01 May 2018). https://doi.org/10.1007/s11590-017-1128-7

[41] Recep Ozdag. 2012. Intel® Ethernet Switch FM6000 Series-Software Defined
Networking. (2012).

[42] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM 15, 12 (Dec. 1972), 1053ś1058. https://doi.org/10.1145/
361598.361623

[43] Dhrubajyoti Saha, Abhishek Samanta, and Smruti R Sarangi. 2009. Theoretical
framework for eliminating redundancy in workflows. In Services Computing, 2009.
SCC’09. IEEE International Conference on. IEEE, 41ś48.

[44] Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. 2003. A note on greedy
algorithms for the maximum weighted independent set problem. Discrete Applied
Mathematics 126, 2 (2003), 313 ś 322. https://doi.org/10.1016/S0166-218X(02)
00205-6

[45] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. 2010. Can the Production Network Be the
Testbed?. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation (OSDI’10). USENIX Association, Berkeley, CA, USA, 365ś378.
http://dl.acm.org/citation.cfm?id=1924943.1924969

[46] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, JimWanderer, Urs Hölzle, Stephen

110

CoNEXT ’18, December 4ś7, 2018, Heraklion, Greece Peng Zheng, Theophilus Benson and Chengchen Hu

Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). ACM, New York, NY, USA, 183ś197. https://doi.org/10.1145/2785956.2787508

[47] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New
York, NY, USA, 15ś28. https://doi.org/10.1145/2934872.2934900

[48] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New
York, NY, USA, 164ś176. https://doi.org/10.1145/3050220.3063772

[49] Hardik Soni, Thierry Turletti, and Walid Dabbous. 2018. P4Bricks: Enabling
multiprocessing using Linker-based network data plane architecture. (Feb. 2018).
https://hal.inria.fr/hal-01632431 working paper.

[50] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. 2014. ANetwork-stateManagement Service. SIGCOMMComput. Commun.
Rev. 44, 4 (Aug. 2014), 563ś574. https://doi.org/10.1145/2740070.2626298

[51] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and Hongyi Zeng. 2016.
Robotron: Top-down Network Management at Facebook Scale. In Proceedings of
the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,
426ś439. https://doi.org/10.1145/2934872.2934874

[52] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Mar-
gulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri Perelman, and
Yee Jiun Song. 2016. Kraken: Leveraging Live Traffic Tests to Identify and Resolve
Resource Utilization Bottlenecks in Large Scale Web Services. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 635ś651. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/veeraraghavan

[53] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate
Foster, and Hakim Weatherspoon. 2017. P4FPGA: A Rapid Prototyping Frame-
work for P4. In Proceedings of the Symposium on SDN Research (SOSR ’17). ACM,
New York, NY, USA, 122ś135.

[54] Xilinx. 2014. SDNet. (2014). http://www.xilinx.com/products/design-tools/
software-zone/sdnet.html

[55] Xilinx. 2017. Ternary Content Addressable Memory (TCAM) Search IP for SDNet
SmartCORE IP Product Guide. (2017).

[56] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.
HyperV: A High Performance Hypervisor for Virtualization of the Programmable
Data Plane. In 2017 26th International Conference on Computer Communication
and Networks (ICCCN). 1ś9. https://doi.org/10.1109/ICCCN.2017.8038396

[57] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.
MPVisor: A Modular Programmable Data Plane Hypervisor. In Proceedings of
the Symposium on SDN Research (SOSR ’17). ACM, New York, NY, USA, 179ś180.
https://doi.org/10.1145/3050220.3060600

[58] Ying Zhang, Neda Beheshti, and Ravi Manghirmalani. 2014. NetRevert: Rollback
Recovery in SDN. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking (HotSDN ’14). ACM, New York, NY, USA, 231ś232. https:
//doi.org/10.1145/2620728.2620779

[59] Danyang Zhuo, Qiao Zhang, Xin Yang, and Vincent Liu. 2016. Canaries in the
Network. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks
(HotNets ’16). ACM, New York, NY, USA, 36ś42. https://doi.org/10.1145/3005745.
3005767

111

	Abstract
	1 Introduction
	2 Motivation
	2.1 Rapid Development in Large Networks
	2.2 Novel PDP Primitives: Code Merge
	2.3 P4Visor Workflow

	3 Design of P4Visor
	3.1 Overview
	3.2 Composition Operators
	3.3 Primitives for Composition Operators
	3.4 P4Visor Compiler

	4 Merging P4 Programs
	4.1 Background on P4 Compiler Constraints
	4.2 Merging Optimization
	4.3 Complexity Analysis

	5 Efficiency
	5.1 P4Visor Heuristic Merging
	5.2 Controlling Resource Sharing

	6 P4Visor Implementation
	6.1 Supporting Flexible Testing Operators
	6.2 Limitation of Existing PDP Targets

	7 Evaluation
	7.1 Experiment Setup
	7.2 Performance Benefits and Overheads
	7.3 Analytical Evaluation of the Heuristic
	7.4 Use Case: Testing P4 Programs

	8 Related Works
	9 Discussion
	10 Conclusion
	Acknowledgments
	A appendix
	A.1 Proof of Lemma 4.1
	A.2 Proof of Lemma 4.2

	References

