P4Visor: Lightweight Virtualization and Composition Primitives
for Building and Testing Modular Programs

Peng Zheng
Xi’an Jiaotong University and
Brown University
zeepean@gmail.com

ABSTRACT

Programmable data planes, PDPs, enable an unprecedented level of
flexibility and have emerged as a promising alternative to existing
data planes. Despite the rapid development and prototyping cycles
that PDPs promote, the existing PDP ecosystem lacks appropri-
ate abstractions and algorithms to support these rapid testing and
deployment life-cycles. In this paper, we propose P4Visor, a light-
weight virtualization abstraction that provides testing primitives as
a first-order citizen of the PDP ecosystem. P4Visor can efficiently
support multiple PDP programs through a combination of compiler
optimizations and program analysis-based algorithms. P4Visor’s al-
gorithm improves over state-of-the-art techniques by significantly
reducing the resource overheads associated with embedding numer-
ous versions of a PDP program into hardware. To demonstrate the
efficiency and viability of P4Visor, we implemented and evaluated
P4Visor on both a software switch and an FPGA-based hardware
switch using fourteen different PDP programs. Our results demon-
strate that P4Visor introduces minimal overheads (less than 1%)
and is one order of magnitude more efficient than existing PDPs
primitives for concurrently supporting multiple programs.

CCS CONCEPTS

» Networks — Programmable networks; « Software and its
engineering — Software testing and debugging;

KEYWORDS
Programmable Data Plane, Code Merge, Testing

ACM Reference Format:

Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor: Light-
weight Virtualization and Composition Primitives for Building and Testing
Modular Programs. In CONEXT ’18: International Conference on emerging Net-
working EXperiments and Technologies, December 4-7, 2018, Heraklion, Greece.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3281411.3281436

1 INTRODUCTION

Programmable data planes [10, 39, 41] (PDPs), e.g., Tofino [39], have
emerged as a promising alternative to traditional data planes. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4—7, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12...$15.00
https://doi.org/10.1145/3281411.3281436

Theophilus Benson
Brown University
theophilus_benson@brown.edu

98

Chengchen Hu
Xi’an Jiaotong University
huc@ieee.org

PDPs enable an unprecedented level of flexibility: they provide ab-
stractions and language frameworks that simplify the development
of stateful network functionality which operates at line rate. This
flexibility enables rapid development and prototyping of novel func-
tionality and use cases.

Despite these rapid development and prototyping cycles, the ex-
isting PDP ecosystem lacks appropriate primitives and algorithms to
support rapid testing and deployment. At a high level, many testing
paradigms [31, 52, 59], e.g., canary testing used in Google’s [20, 46]
networks, require running new versions of a program alongside
stable versions. Traffic is split across all versions and the output
is compared. Orthogonally, supporting agile development requires
composing and merging modular programs together.

The key challenges to enabling these techniques in today’s
PDP networks lie in efficiently supporting multiple PDP programs
and providing flexible operators for the broad range of poten-
tial paradigms. Hardware PDP devices include limited physical
resources which restrict the size of the PDP programs that can
be supported, and enabling multiple versions of a PDP programs
on a resource constraint device requires effective algorithms for
minimizing resource footprints. Additionally, PDP language ab-
stractions, e.g., P4, provide a limited set of primitives, e.g., P4 does
not support loops, and the language restrictions complicate the
process of developing general primitives to support a broad range
of scenarios. Specifically, in this paper, we focus on one of the most
popular and promising data plane programming languages — P4.!

In this paper, we present P4Visor, an abstraction layer and com-
position primitives, which addresses the above challenges to make
testing and development primitives first-order citizens of the PDP
ecosystem. The key insight behind P4Visor is that the different
versions of a P4 program will share significant code fragments (i.e.,
tables, parse graph states and action primitives) and thus we can
reduce the resource overheads by merging the P4 programs and
thus eliminating redundancy. In this way, an administrator can run
multiple P4 programs concurrently in the data plane.

P4Visor achieves this through a combination of program analy-
sis to identify potential program overlaps and compiler optimiza-
tions to merge the P4 programs and reduce resource footprints.
To flexibly support different testing paradigms, P4Visor includes
domain-specific comparator operators that provide building blocks
for composing new testing paradigms.

Today, the prevalent approach for supporting multiple P4 pro-
grams is to virtualize the data plane [22, 56], e.g., Hyper4 [22],
HyperV [56], and host different programs atop the virtualization
layer. Unfortunately, these approaches [22, 56] require significant

! The PDP Programs in the following sections refer to P4 programs unless otherwise
stated.

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

resources and are often slow or unscalable [22] because they pro-
vide Full-Virtualization which uses software to emulate hardware.
Rather than providing virtualization and modularity primitives,
at the software layer, we aim to provide these primitives at the
compilation layer which enables us to explore tradeoffs between
flexibility and efficiency. In particular, our design choices allow us
to trade off a modest amount of flexibility for a significant increase
in efficiency.

Logically, P4Visor operates between the PDP programs and the
PDP hardware providing resource management between differ-
ent PDP programs and merge capabilities to the PDP Programs.
It provides virtualization primitives required for supporting con-
current testing in production networks. P4Visor’s goals include
security isolation between the management functionality provided
by P4Visor’s interfaces and data plane functions running on the
PDPs devices; efficient resource utilization and management; and,
flexible support over arbitrary PDPs targets.

We make the following contributions:

e Virtualization Abstractions: We provide an abstraction for
seamlessly merging two programs to tackle the resource man-
agement and indirection challenges that arise from merging and
composing programs (Section 3).

e Composition Operators: We introduce several composition
operators for merging P4 programs to support a range of testing
paradigms (Section 3.2).

e Merge Algorithm: We present a first look at the code-merging
problem for P4 programs. We build a model to theoretically iden-
tify the key issues behind merging P4 programs and demonstrate
the hardness of the problem — it is NP-Complete. As a result, we
propose a heuristic to solve it effectively (Section 4 & Section 5).

e Prototype Implementation and Evaluation: We implement
a prototype of P4Visor’s framework and merging algorithms. Us-
ing this prototype, we demonstrate the flexibility and efficiency
of P4Visor by testing it across multiple P4 Programs (Section 6
& Section 7).

2 MOTIVATION

In this section, we describe several well-understood principles used
within production networks (e.g., Google and Facebook) to ensure
highly-available networks (Section 2.1), and present a new PDP
primitive for effectively supporting these principles in PDP devices
(Section 2.2 and Section 2.3).

2.1 Rapid Development in Large Networks

We briefly describe several techniques which large-scale network-
ing infrastructures employ to ensure that their networks remain
highly-available in the face of changes.

Canary Testing (A-B Testing [3, 52, 59]) Canary testing, well
documented by Google’s [20, 46, 59] and Facebook’s [52] network-
ing and infrastructure teams, requires running multiple versions of
a program alongside each other. Canarying (or A-B Testing) tests
new code by sending a subset of traffic through the code (e.g., 1% of
traffic) and, if nothing “bad” happens, slowly increases the subset
of traffic using the test code until all traffic is using the test code.

99

Peng Zheng, Theophilus Benson and Chengchen Hu

1000 e— T T T T T

100 | 1 | | e
P4Visor
HyperV
Hyper4

6 7

T
!

Resource Overhead (Number of tables)

1 2 3 4 5
Number of stages

Figure 1: Comparison of virtualization overheads.

Fault Tolerance (Data-Diversity [25, 31]) To improve secu-
rity and availability, certain networks run multiple instances of
their control plane, perturb the instances with some randomness,
and then compare the outputs from these versions. The system uses
the most popular output. This approach directly tackles bugs and
overcomes intruders. Facebook [25] runs four control planes and
compares the output between these control planes.

Modular Code Extensive work in the software engineering com-
munity [42] and recently validated by large software engineering
firms (e.g., Facebook [51, 52]) have demonstrated that the key to
successfully supporting rapid prototyping and deployment of com-
plex functionality is modularity (code-reuse). Yet, today program-
mers are forced to write monolithic P4 programs. Missing from
the ecosystem is a framework for effectively supporting multiple
modular PDP Programs — similar to processes — and composing
them together.

2.2 Novel PDP Primitives: Code Merge

Today, the most direct approach for supporting the aforementioned
testing techniques is to use virtualization, e.g., HyperV and Hyper4.
Unfortunately, HyperV and Hyper4 incur significant performance
and resource overheads. In Figure 1, we present the memory over-
heads of using these different virtualization techniques with an
emphasis on the number of tables used. The overheads grow lin-
early with the size of the program because both techniques declare
a fixed number of additional tables to emulate each of the P4 pro-
gram’s stages and primitive actions — their hypervisors have to
use these tables to record the runtime states for each program. For
example, to run a P4 program with two pipeline stages, HyperV and
Hyper4 have to declare at least 53 and 191 tables respectively which
limits the number of primitive actions supported to 9 and prevents
HyperV and Hyper4 from supporting Switch.P4 [14] which has 19
primitive actions.

Motivated by the inefficiencies of existing virtualization primi-
tives, in this paper we aim to answer the following question.

Is it possible to have a framework for supporting multiple versions
without incurring the overheads of full virtualization?

To answer this question, we investigate the design of a light-
weight virtualization based on a source code merging primitive.
The merge primitive takes as input N P4 programs and creates as
output one P4 program that combines all input P4 programs but
retains the functionality of each of the original P4 programs. As
an example shown in Figure 3, our new primitive takes, as input,

P4Visor: Lightweight Virtualization and Composition Primitives ...

P4Visor
. -0 5 8| Pavisor ->| Compiler |
- IF' EE Controller P
- H i omplle ime
Network b o E |Application Configuration
Administrator

PVM

Merged Pipeline

Figure 2: P4Visor workflow.

Runtime
Configuration

the abstract representations of two P4 programs (Production and
Testing P4 control programs in Figure 3) and combines them into
one (Figure 3 (a)). Central to providing this primitive is ensuring
that during the merge, P4-specific correctness constraints (e.g., ta-
ble dependencies) are maintained while efficiency is maximized
through resource reuse.

The merged P4 program should give each P4 program the illusion
of sole occupancy on the hardware. Our approach differs from
full virtualization in several ways: first, while full virtualization
provides virtualization through a special P4 program, we provide
virtualization through the P4 program compiler. Our approach
offers one key benefit: whereas full virtualization needs to allocate
resources to support any potential P4 program, we only need to
allocate resources to support the P4 programs being compiled. This
specialization minimizes the number of additional tables required
to support the combined program. Second, full virtualization does
not explicitly support modularity and composition of multiple P4
programs into one, whereas, we can directly support these use
cases.

2.3 P4Visor Workflow

Next, we present the workflow of P4Visor to illustrate P4Visor’s
components and how they work together. To support the envisioned
testing paradigms, the network operators must provide P4Visor
with (1) the different P4 programs to merge, (2) the type of testing
composition operators to implement (e.g., A-B testing or Differ-
ential testing) — the composition operator determines the policy
for splitting and comparing traffic, (3) the amount of traffic used
for testing, e.g., test X% of the traffic, and (4) the traffic sampling
granularity, e.g., all packets of a flow should be consistently tested,
test any packet of any flow, or just test flows within a specific sub-
net. Network administrators configure these settings using either a
simple command line or a configuration file. Given such a testing
specification, P4Visor installs code at edge switches to consistently
tag packets for testing and to remove the tags before the packets
exit the network. Tagging at the edge enables P4Visor to ensure
that the different switches consistently test the same packets and
that we can perform end-to-end tests across the whole network.
During the merge, P4Visor adds tables to compare the output from
the different program and generate packets to the controller when
these results differ. These packets allow operators to reason about
the implications of the new code. In Figure 2, we present P4Visor’s
workflow.

To support this workflow, P4Visor requires (1) a domain-specific
configuration language for configuring the testing paradigms (the
P4Visor interface), (2) a merge algorithm (discussed in Section 4 and

100

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

(&10D T60)—5:100)
kB:GO
Production control flow graph Testing control flow graph Resource-sharing table

'D 'IOO . start J

—~ A 100
\A:@.baaa. /l D f 'D“"" “°°
1 B0 «Ce0 c 60)
I N \ \BS‘O\X
SR
~ "C 60 \C 60
\B:GO\,
— .
Ve . —
\C:G(h ‘-B.SO ‘?69 A100- >D10a
\DHOB r N \ ~
— — "A-'IZ)(;- end L
\D:100 Uy -
(a) Merge B, C (b) Merge A (c) Merge D (d) Invalid merge A,D (e) Naive merge

Figure 3: Illustrates various approaches for merging of two
P4 programs: (a) demonstrates an intelligent merge with two
share tables; (b) and (c) are two possible merges with one
shared table; (d) is an invalid merge; and (e) demonstrates
a simple combination of two programs which doubles the
resources.

Section 5), (3) a framework for implementing the merge and sup-
porting the indirection required to support the merge (discussed in
Section 3), (4) techniques for enabling comparisons and techniques
for tagging/untagging the packets.

3 DESIGN OF P4VISOR

In this section, we provide an overview of P4Visor’s architecture
(Section 3.1), the currently supported composition operators (Sec-
tion 3.2 & 3.3), and P4Visor’s compiler design (Section 3.4).

3.1 Overview

In Figure 4, we present the architecture for P4Visor. At a high-level,
P4Visor is composed of four components: the P4Visor Compiler
(PVC), P4Visor Management agent (PVM), the P4Visor controller
Application (PVA), and P4Visor Interface (PVI).

P4Visor Interface (PVI): PVIruns on a server and provides the
management interface for the network administrator (or develop-
ers) to use to control the composition of different P4 programs. In
our current prototype, we implemented two operators: A-B Testing
and Differential Testing (described in Section 3.2). As part of future
work, we will explore other merge operators that are more amenable
to modularization (e.g., Parallel composition [38], Sequential com-
position [38]) and availability (e.g., Data-deduplication [31]).

P4Visor Compiler (PVC): PVC takes, as input the P4 programs,
from the PVI, and returns, as output, a merged P4 program. The
PVC analyzes the parse graphs, tables and control flows of the
input P4 programs and merges them. The key to the PVC is the P4
program-merge algorithm (Section 4 & Section 5), which identifies
the data plane resources within all input P4 programs that can be
“safely” merged while maintaining the semantics and dependencies
of each P4 program.

As a result of the merge process, P4Visor creates a new P4 pro-
gram, which is a normal P4 program that can be run through a
standard PDP compiler. Additionally, P4Visor creates a P4Visor-
specific file, called the P4VisorConfiguration, which provides a

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

- — G @
| P4Visor Interface (PVI) (A-B testing, Differential testing...) |<I_—‘
7 7 L
Network
Controller| Administrator

gy - Y -
’.’%{,’E)"’E) O A ||P4V|sorControIIer

Production.P4 Test‘iﬁ'g.P4 Application (PVA)
v

--| Apps

| Runtime
Configuration

[Pavisor Compiler (PVC)
i

_____ Programmable data planes _ _ _|

| P4VisorConfiguration I

J U

— — :l P4Visor Management agent (PVM) ||

.l MA (O} o c | \
e b’ “utES| Local control plane |

ARETN A~ ER |
e 5 9 5 |i— T —— —)

Merged.P4 52| Testing | [Mer

= ged |
L] - £5 i[Merged| | e 1ol Control L.[Compa- |,
[standard P'4 Compiler | 8 & [[Parsers| || | Flow rator i
| Pipeline configurations $----- NI Merged dataplane i

Figure 4: P4Visor overview.

mapping between the resources of each input P4 program and
the merged P4 programs. Recall, each P4 program uses unique
IDs to identify tables, and during the merge, these IDs may be
modified. The P4VisorConfiguration provides a mapping between
the original ID and the modified IDs: this file allows P4Visor to
transparently rewrite all calls between the control and data plane
that use these IDs. For example, when the controller sends a flow
entry installation message to the switch to add a new entry to a
resource-sharing table, PVM will modify the table IDs according
to the P4VisorConfiguration to ensure that the entry is installed
correctly.

P4Visor Management agent (PVM): PVM runs on the PDP
devices, i.e., programmable switch, intercepts messages between
the control plane (controllers) and the merged P4 Program and
uses the P4VisorConfiguration to determine how to appropriately
modify the messages. Essentially, the agent multiplexes and demul-
tiplexes messages between the different controllers and the merged
P4 program.

P4Visor controller Application (PVA): PVA runs on the con-
troller with a global view of the network, providing runtime control
over the testing operators. For example, in A-B Testing, the PVA
populates the testing traffic control tables (Section 3.3) for all the
edge switches, identifies testing traffic.

3.2 Composition Operators

To illustrate the flexibility of our merge algorithm, we use it to
implement two distinct testing composition operators.

A-B Testing Operator: This operator allows multiple programs
to run side by side in a production network with a subset of traffic
siphoned to the testing version, as shown in Figure 5 (a). To support,
our A-B Testing composition, P4Visor must securely and flexibly
manage traffic among multiple versions. To ensure security, i.e.,
production traffic will not be processed by the testing programs,
P4Visor adds/removes a special flag (TFlag) to packets at edge
switches when traffic enters and leaves the network.

Differential Testing Operator: The key difference between
the A-B Testing and Differential Testing operators is that: while
the A-B Testing operator is mutually exclusive, i.e., traffic either

101

Peng Zheng, Theophilus Benson and Chengchen Hu

goes to the production or the test P4 program, for the Differential
Testing operator, the test packets must be copied and send through
both programs, with outputs compared at the end of the pipeline.
The packet life-cycle is shown in Figure 5 (b).

3.3 Primitives for Composition Operators

To support these two operators, P4Visor must provide a flexible
primitive for controlling traffic and, specifically, for Differential
Testing, P4Visor must provide primitives for performing compar-
isons.

Flexible Control: To ensure flexibility, a traffic management
module, called Testing Traffic Control (TTC in Figure 5), is devel-
oped and inserted into the merged pipeline to identify a packet as
either “test” or “production” traffic and guide the packets along
the appropriate pipeline. As shown in Figure 5, the TTC module
is instantiated within the first table that all packets encounter and
affixes the TFlag header to the packet once the packet is identified
as the testing packet.

The TTC contains a set of stateful registers and flow tables, which
are configurable using the P4Visor Interface. Using the P4Visor
interface, network operators can configure the TTC to configure
how traffic is sampled for testing:

e Random sampling: Operators can specify which percentage
of traffic is randomly selected and piped through the testing
“pipeline” and which percentage of traffic goes through the
production “pipeline”, e.g., randomly sample 1% of the total
traffic for testing.

o Flow based sampling: Alternatively, operators can specify the
exact flows that should be sampled by specifying a flowspect,
e.g., traffic from subnet “10.10.10.0/24” should be sampled.

The Comparison Primitive: To enable comparisons, a special
table, called an output record table, is added at the end of each
program’s pipelines. This table’s fields are configurable through the
P4Visor interface. Specifically, we need to clone the packets and, in
turn, compare their outputs at each switch.

To clone packets, we leverage the recirculate primitive, which
recirculates a packet and allows the packet to be processed multiple
times by the switch. We recirculate once for each version we want
to test — during recirculation, we also recirculate the metadata
fields. At the end of the pipeline, the packet is processed by the
Comparator Module (the CM in Figure 5), which compares the
output of the different versions. The comparator reports to the
controller, via a message, when the compared packets and metadata
fields are different. 2

Using the P4Visor Interface, a network administrator can 1)
specify which outputs should be compared; 2) configure how to
process the differences detected by the Comparator. In general, the
Comparator can support two kinds of comparisons either on packet
header fields or on metadata fields.

To control the overheads associated with recirculating packets, the operators can
fine-tune the number of packets sampled to ensure the system provides acceptable
performance.

P4Visor: Lightweight Virtualization and Composition Primitives ...

T «= == Production packet
- - esting
Merged| | Testing Traffic Pipeline Merged - Testing packet
[Parser | | Contror 17) }, | "Frotuction ™} f Beparser |
\ Pipeline 1y
....... -
Merged pipeline
(a) A-B testing.
Recirculate
- — /i Testing N\;ooccceecoooiiecoooineooonny
Merged || Testing Traffic L__pig ne___! NOutput Record| | Comparator Merged
JESSSH==SS=SSd r 5 e - & o CLLF -1 E—
Parser || Control (TTC) \\‘ PIgGupton)I/! Table (ORT) | |Module (CM)|: | Deparser
Tt X Differential Testing specific module

Merged pipeline

(b) Differential testing.

Figure 5: Life-cycle of a packet in P4Visor (under our two
composition operators).

3.4 P4Visor Compiler

P4Visor merges PDP programs by merging their parse graphs and
their control flow graphs:

Merging Parse Graphs: A naive approach for merging the
parse graphs of two programs is to emulate the merge process
by resubmitting packets into the pipeline multiple times; once for
each of the states in both parge graphs (this is the approach taken by
Hyper4 [22]). Unfortunately, this incurs a significant performance
overhead — each time a packet is recirculated, throughput is cut
and packet processing latency is increased.

Instead, we merge the two parse graphs into one and use a tag
(i.e., TFlag) to disambiguate and break conflicts in the merged parse
graph. Figure 6 presents an example of two parse graphs being
merged. Recall, each parse graph is a finite state machine (FSM)

with each state representing the bit offsets of each header type.

In merging these parse graphs, we align the parse graphs’ FSMs
and merge identical states.® In Figure 6 (c), the merged states are
in orange with solid line. We observe that Ethernet and IPv4 are
both identical and thus can be merged. There is ambiguity about
when to parse the VLAN and the IPv6 headers, and we break this
ambiguity by introducing the TFlag state: packets with the TFlag,
i.e., test packets, should parse the IPv6 header type, whereas only
packets without the TFlag, i.e., non-test packets, should parse the
VLAN header type. Note: we need only insert one such state for
the TFlag, and this state can disambiguate all potential ambiguities
in all merged states.

Merging Control Flow Graphs: P4Visor analyzes the pipelines
of all P4 programs to be merged and identifies the tables to be
merged using the algorithms presented in Section 4. Given this
information, P4Visor merges the P4 programs by:

(1) rewriting the Table IDs - to avoid conflicting IDs 4,
(2) rewriting “GoTo” statements for all tables except the merged
tables to reflect the new Table IDs,

3Since we focus on merging different versions of the same program, and we anticipate
a high degree of overlap between the parse graphs of the different programs.
4While each program may have unique Table IDs, multiple programs may reuse the
same Table IDs which will create problems during compilations

102

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

\S,tarb ’ét.a.r{-
LY

Ethernet\ -_E_tt_'n?rngg
OXBOU/- WBWO 0x800 / \)‘Xaﬁdd
Pl 4——(VLAN + - |Pv4\~ -’}Pve e v

TN ox11 /77T -
(T (U Gt Uk

(a) Production parser (b) Testing parser (c) Merged parser

Figure 6: Merging two parse graphs.

(3) for merged tables, P4Visor does one of two things: if the
merged table leads to one table, then rewriting is obviously
just rewriting the existing “GoTo” to use the appropriate ID;
However, if a merged table leads to more than one table,
e.g., table “B” or “C” in Figure 3 (a), then P4Visor will add
multiple “GoTo” statements, one for each branch.

Recall the above example, Figure 3, in the production control
flow graph the next-hop for “C” is “D”, in the merged graph, table
“C” will retain “D” as its default next-hop table modulo rewriting
IDs to reflect D’s new ID; however, P4Visor will also add a “GoTo”
that matches on the TFlag for testing control program and uses “A”
as the next-hop for packets with the TFlag tag.

Preserving Traffic Isolation: Our framework must be able to
offer isolation whenever it is required. Wherein, we define isolation
as the following property: if two PDP Programs, Py, and P, are iso-
lated, then traffic for P; is never processed by resources exclusively
dedicated to P,. Additionally, table entries controlled by one are
never modified by the other. To enable isolation, we introduce an
ACL-Bit (attached to tables) that provides access control overflow
entries in the resource-sharing tables.

Observe that each table in the original P4 programs will map
to exactly one table in the merged P4 program, while each table
in the merged P4 program may correspond to one or more tables.
We label all tables in the merged P4 Program that correspond to
multiple tables in the original programs as resource-sharing tables.
In Figure 3 (a), nodes C and B are both resource-sharing tables. For
the resource-sharing tables, the P4Visor compiler will add the ACL-
Bit to the table entries to provide traffic isolation for P4 programs.
Combined with the TFlag which identify the packet as test packet,
this ACL-Bit provides traffic isolation by allowing packets to match
entries in the shared table only when packets match both the TFlag
and the ACL-Bit. While the TFlag and ACL-Bit ensure isolation
within resource-sharing tables, the TFlag alone ensures isolation
between non-resource-sharing tables.

In addition to isolating the packet processing, the ACL-Bit also
enables P4Visor to separate control over entries in the flow tables:
The control plane for a P4 program can only modify the entries
with the appropriate ACL-Bit value. Given this ACL-Bit, each P4
program can update the shared table correctly without side effects
to the other P4 programs.

4 MERGING P4 PROGRAMS

In this section, we provide an overview of PDP-based resource
constraints (Section 4.1), present the design of P4Visor’s source code
merge model (Section 4.2), and conclude by theoretically analyzing
the complexity and hardness of the problem (Section 4.3).

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

4.1 Background on P4 Compiler Constraints

In general, there are two kinds of constraints on a P4 program.
These constraints are either placed on the compiler by the language
(hardware target independent) or placed on the compiler by the
hardware architecture (target-dependent). An example of a target-
independent constraint is that there can be no loops in the control
flow graph; hence, it needs to be a DAG. This constraint is invariant
across all targets. However, the target-dependent constraints vary
dramatically from target to target and are especially hard to enforce
without intimate knowledge of the target hardware’s proprietary
details. For example, RMT [7] has 32 stages in its pipeline while
Intel’s FlexPipe [41] has 5 stages with different memory constraints
for each stage.

To tackle these two constraints, P4 compilers are split into two
components: a target-independent compiler (front-end compiler)
and a target-dependent compiler (back-end compiler).

Prior work [27] has identified table size, program control flow,
and hardware memory restrictions as the key issues faced by the
P4 compiler.

In this paper, we focus on the design of target-independent merge
optimizations. We aim to, first, provide a general optimization that
benefits all hardware-targets. Our target independent optimization
builds on the insight that merging different tables results in sig-
nificant savings across all hardware targets for multiple reasons:
merging tables reduces overheads associated with instantiating
tables and merging tables results in large tables which take advan-
tage of various hardware optimizations (we elaborate on this in
Section 7). As part of future work, we will explore target-dependent
optimizations.

4.2 Merging Optimization

Merging two P4 Programs is fundamentally equivalent to merging
two weighted DAGs into a single weighted DAG with the added
objective of minimizing space (i.e., the # of nodes). To the best of our
knowledge, no existing work has explored this problem: specifically,
merging two weighted DAGs into one while maximizing overlap.
The most closely related works [8, 43] provide suboptimal results,
we elaborate on them in Section 9. Next, we more formally describe
the problem.

We model a program’s control flow using a Table Dependency
Graph (TDG) [27] G = (T, E) where vertices T = {t1,t3,...,tp} °
and edges E = {(t;,t;) | t;,t; € T} map to the tables and the table
dependency, respectively. Each table t; € T has three attributes:

(1) the program id, ¢;.pid, reflects the P4 program in which the
table resides;

(2) table ID, #;.tid, reflects the table’s ID and helps to differenti-
ate tables; and,

(3) table size, t;.size, reflects the memory footprint of the table
(size is a function of width and number of entries defined).

Given G, we can compute the dependency matrix, D, of the graph
as: D[t;,tj] = 1 if there is a dependency path from t; to t; and
Dl[t;, tj] = 0 otherwise 6

Sn is the total number of tables in the pipeline.
5D[¢;, t;] = 0 because P4 programs are generally acyclic graphs.

103

Peng Zheng, Theophilus Benson and Chengchen Hu

For simplicity, we formalize the PDP-merge problem for two P4
programs, but the problem formulation and analysis generalizes to
cases with more than two P4 programs.

Objective: Our goal is to merge two programs — a production
version denoted as G, = (T, E;) with the dependency matrix D,
and a testing version Gs = (T, Es) with the dependency matrix Dg
into a single program G, = (Tpn, Em) with the dependency matrix
Dy, while minimizing the total resources required. In this paper,
we only focus on table memory resources. Restated, our object is
maximizing sharing resources:

[T |

max wij
i=1

(1)

where w; is the weighted contribution of reducing the resources in
Gm used by table t; € Tpy,.

We define the set of resource-sharing tables, Tp,s, as a subset
of tables in the merged TDG G, : these tables in T, are merged
from multiple tables in the original programs, which satisfy the
following constraints: equivalence, correctness, and loop-freedom.

For each table v; € Tj,s, w; captures both the memory type and
table size. Currently, the memory size is calculated as a function of
the number of entries and the width of each entry:

- width;

wi =¢; - len;

where len; and width; are the number of entries and width of an en-
try in table ¢; respectively. c; is a configurable weighted coefficient
that allows an administrator to guide our optimization algorithm
to merge tables that the administrator cares about. For example, if
an administrator only cares about the TCAM tables, she can set the
table weights of all non-TCAM types to 0. As a preprocessing step,
P4Visor sets w; = 0 for each table v; ¢ T;,s which shares no table
resources with other tables because these tables cannot be merged.

Note that when the weights for all tables T,s are equal, the
objective function (1) leads to a merged TDG that minimizes the
total number of tables.

Target-Independent Constraints: Two tables, t,, € T, and
ts; € Ts, can be merged if and only if three constraints are satisfied:

(i) Equivalence: The two tables are structurally equivalent (same
actions and match fields but they can vary in the number
of declared entries). Here the equivalent tables are assigned
the same id, that is ¢, .tid = f5; .tid.

(if) Correctness: the table dependencies of both tables are main-
tained — correctness is preserved.

{Dm[trptrj] = Dr[tri, trj]a Vtri»trj €Ty
Dmlts;, tsj] = Dg|ts;, tsj], Vits;, ts; € T

()

(iii) Loop-free: the resulting graph is loop free, that is, the depen-
dency matrix of G, satisfies Vt;,t; € Tpy,

Dmlti, tj] - Dmltj, ti] = 0 ®3)

Target-Dependent Constraints: While this work focuses on
target-independent constraints, here, we briefly sketch out how
target-dependent constraints can be introduced into our problem
formulation.

P4Visor: Lightweight Virtualization and Composition Primitives ...

Abstractly, we can introduce target-dependent constraints by
introducing hardware information. One constraint placed by hard-
ware is the number of physical stages. For example, RMT [7] has 32
stages, and thus RMT can only support P4 programs whose crucial
dependency path length is no more than 32. To overcome this limi-
tation, we can add a constraint that limits the merged TDG’s critical
path length to less than 32. This may force our algorithm to ex-
plore solutions that create merged programs that do not maximize
overlaps, but that ensure shorter critical dependency paths.

As part of future work, we will study the constraints of dominant
PDP hardware targets and incorporate them into our algorithm.

4.3 Complexity Analysis

Our TDG merging problem can be reduced to and from the Maxi-
mum Weighted Independent Set (MWIS) problem: a problem which
has been proven to be NP-Complete [18]. In this section, we pro-
vide a sketch of how to reduce our problem to and from the MWIS
problem.

We define a function v(m, i) which returns the table from TDG
Gm whose table ID is i, thus, v(m, i) = t,, and ty,,.tid = i. To do
this reduction, we define a merge candidate set, Ty, as the set of
all tables in G, and G; that satisfy the equivalence requirement
defined in constraint (i).

By definition of constraints (i) to (iii) in Section 4.2, all the tables
in production and testing programs follow the Lemma 4.1 (proved
in the appendix).

LEMMA 4.1. Vij,tj € Tips, v(s,j) and v(s,i) have
Dr[o(r, i), v(r, j)] - Ds[o(s,), v(s,)] = 0 4

Next, let us construct a new undirected graph G, = (Tj, Ep)
where the vertex set of the graph is T, and the edge set of the graph
is Ep. Given this definition, we define Vt;,t; € Tp,

1 Dr[o(r, i), v(r, j)] - Ds[v(s, j), v(s,)] = 1
or Dr[v(r, j), v(r,)] - Ds[v(s, i), v(s,)] = 1
0 Otherwise

Eplti, tj] = (©)]

Taken together, formulas (4) and (5) provide us with a way
to formally reason about the relationship between Ty,s and Gp.
Lemma 4.2 (proved in the appendix) provides this relationship.

LEMMA 4.2. The set of resource-sharing tables Tp,s is a subset of
vertices in graph Gp, no two of which are adjacent, that is, Vt;, tj €
Tins,

Eplti,tj] =0 (6)
Reducing PDP-Merge to MWIS: Lemma 4.2 restated shows
that analyzing graph G, to identify the set of tables T;s can be
reduced to the independent set problem in polynomial time of
O(|Tp|2), Essentially, in constructing G, we only keep the depen-
dencies in both D, and Dy that provide the forward and reverse
direction between two nodes. Take nodes A, D in Figure 3 as an
example, there is a dependency from node A to D in one program
as well as a dependency path from D to A in another program.
We keep these types of forward and reverse dependencies when
creating Gp and delete all others dependencies.

104

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

To satisfy our objective of maximizing the shared table resources,
we need to find the maximum weighted independent set in graph
Gp, known as MWIS problem, an NP-Complete problem [18].

Reducing MWIS to PDP-Merge: Next, we show how to reduce
a given MWIS problem to our merging problem. The key lies in
transforming a given weighted undirected graph G, = (T, Ep)
in the MWIS problem to two weighted DAGs, G, and Gg, to be
merged with the objective of maximizing the weights of the final
DAG. More specifically, we can construct the dependencies matrix
of two DAGs from Gy, as follows:

. [Eplijlifi>]

Drlijt = {0 Otherwise @)
o (Blidl if i<

Dsli.j) = {O Otherwise ®)

where i,j = 0,1,2, ..., |Tp| are the indices of the nodes in graph
Gp. We set Tpys as a feasible independent set of G,. Similarly, with
lemma 4.2, we know that T, is a feasible set of resource-sharing
tables when merging two constructed DAGs G, and Gg. Further, as
each node has a weight, solving the maximum weighted indepen-
dent set of G, is equal to the identification of the set of tables with
maximum shared resource when merging G, and G;.

Thus, the maximum weighted independent set (MWIS) problem,
an NP-Complete problem [18], can be reduced to our problem in
polynomial time O(lTp|2). That is to say, merging two weighted
DAGs into one weighted DAG with the objective of maximizing
weights is an NP-Complete problem.

5 EFFICIENCY

Next, we design a heuristic to efficiently solve the problem in real
time (Section 5.1) and discuss a systematic approach for configuring
resource sharing of entries within the merged tables (Section 5.2).

5.1 P4Visor Heuristic Merging

A naive approach for solving the “merge” problem is to perform
a brute-force search through all potential combinations in G, to
find the solution which provides the maximum overlap: the best-
known optimal algorithm for solving the maximum independent
set problem is Bron-Kerbosch. We implemented the extended Bron-
Kerbosch [24] and observed that it can only handle small graphs
and was unable to scale to large graphs (i.e., greater than 80 nodes):
In particular, given a 7-day time limit, we were unable to solve
the Bron-Kerbosch algorithm for graphs with over 80 nodes. Thus,
Bron-Kerbosch was unable to process the largest DAG in our dataset
(Switch.P4 which has over 120 tables). Motivated by the inadequa-
cies with Bron-Kerbosch, we designed a new heuristic to solve the
merge problem.

Heuristic Our heuristic is based on simulated annealing (SA)
which has proven effective in solving the MWIS problem [1].

In our heuristic, each state of the search space is defined as a
subset Vs,,;, of the vertex set of graph V), and every vertex in Vg, is
nonadjacent to the other vertices. Motivated by prior work [4, 40],
our heuristic generates neighboring states to explore using one of
the following two procedures:

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

;_ M P k-T,
.1 + T = +
el o kT,

“Ev e
QUL -D':A:’

Figure 7: Controlling Resource Sharing

(1) adding one vertex v; € Vp \ Vg, to Vg, and deleting all the
vertices,v; in V,,p, that are adjacent to v;.

(2) adding two nonadjacent vertices v;, vj; € Vp \ Vsyp to Vsyp
and deleting one vertex from Vg,,;, that is adjacent to both
v; and v;.

The energy function, or evaluation function, of our heuristic is de-
fined as the total weight, E(V) = 3., ey weight(v;), of the vertices
in current search state, V, where weight(v;) is the weight of each
vertex v; € Vg,p. A new state will be accepted if its energy, i.e.,
E(Vy41), is larger than the current state’s energy E(V},); otherwise

we accept the new state with probability of e~ F The temperature,
t is initially set to 100 initial and decreases linearly to 1 at each
iteration based on this equation t(n + 1) = #(n) * 0.99. We terminate
the search when the temperature decreases to 1.

A well known problem of simulated annealing-based heuristics is
that they can often get stuck in local optimas. To avoid this problem,
we run the simulated annealing process many times which increases
coverage over the search space and introduces more randomness.
The increased randomness and larger coverage over the search
space, enables our heuristic to avoid local optimas.

5.2 Controlling Resource Sharing

In general, merging the control flow graphs of two P4 programs
consists of two major steps. The first is to identify the tables to
be merged in both P4 programs, G, and Gs, that satisfy the “cor-
rectness” constraints. The second step is to merge the control flow
according to the identified tables.

In merging two tables, t,, and t; s the resulting table, t,, , can
vary in size, # of entries, ranging from max(ty, .size, ts; .size) (the
merged tables reuse 100% of their resources) to tr, .size + ts;.size
(the merged tables do not reuse any resources and the logical size
of the merged table is equivalent to the sum of the original tables).

At both extremes, P4Visor provides benefits. At the extreme
where no table entries are shared, i.e., ty, .size = t;,.size + ts; .size,
the merge provides benefits because it enables G, to fit within
smaller memory by reducing the overheads associated with in-
stantiating individual tables in hardware, e.g., in Xilinx’s Virtex-7
FPGAs [55] instantiating a TCAM table with 64 bits width X 256
bits depth consumes 2 RAM blocks but instantiating TCAM tables
with 4 times (128 bits width X 512 bits depth) or 16 times (256 bits
width X 1024 bits depth) more memory consumes only 3 or 5 RAM
blocks respectively. Thus, merging would save resources, even if the
merged table contains the same number of entries as the original
tables combined.

105

Peng Zheng, Theophilus Benson and Chengchen Hu

At the other extreme, where switch memory is reused, that is,
tm,-Size = max(ty,.size,ts; .size), then precious switch memory
is being saved by sharing resources across tables. This savings is
in addition to the savings of overheads described earlier. At this
extreme, the table resources are shared proportionally between the
different programs based on the fraction of traffic allocated to each
program.

To explore this trade-off, P4Visor exposes a parameter, k, to the
operator through the P4Visor Interface. This parameter allows the
operator to control the amount of sharing: k = 1 means no sharing
while a k = 0 means proportional sharing. Figure 7 demonstrates
the controlling resource sharing.

6 P4VISOR IMPLEMENTATION

We have implemented the P4Visor compiler in 3000+ lines of Python
code and 800+ lines of C++ code. The controller application, P4Visor
interface and P4Visor management agent are all developed with
Python in over 100+ LoCs. The P4Visor compiler takes as input
the high-level intermediate representations of P4 programs (i.e.,
HLIR) and merges them into one program. Merging the high-level
IR allows us to operate at a platform independent level while main-
taining the complete semantics of the P4 language. Currently, we
only support merging of P414 programs. As part of future work,
we will extend P4Visor to support P41 programs. P4Visor’s source
code is online in our Github repository [6].

6.1 Supporting Flexible Testing Operators

We now discuss, the implementation details of several interesting
components: specifically, the Differential Testing specific module.
In this discussion, we also, demonstrate the flexibility of the testing
operators provided by P4Visor.

Testing Traffic Control (TTC): In Figure 8, we present a code
excerpt from our implementation of the TTC component. Recall, the
key goal of the TTC is to provide flexible control over the sampling
and selection of traffic for testing. P4Visor provides both runtime
and compile-time control which allows the administrator to alter
sampling configuration program: at compile time the administrator
can configure more static aspects of the flow spec to match on and
at runtime, the administrator can specify the exact values to sample
on.

The control flow of TTC is implemented in table testing_traffic_
control (Lines #11-14), the TTC uses the set_testingbit variable
to determine if a packet should use the testing pipeline or the pro-
duction pipeline.

Run Time Configuration: The administrator can control the sam-
pling rate (by changing the registers (Line #1)) and the subnets to
be sampled (by modifying the entries in testing_traffic_identify
table (Line #8)). The sampling frequency is implemented as a special
action, sample_testing_pkt (in Lines #2-5), which uses two regis-
ters, cnt and Rate, to determine the sampling rate, e.g., sample one
packet in every R packets. 7 The subnet sampling is performed by
comparing the addresses in the packet against the entries in table
testing_traffic_identify (Line #8).

"Due to limited arithmetic operations supported by P4, the TTC can only support the
sample ratio of 1/R (R =1, 2, 3...).

P4Visor: Lightweight Virtualization and Composition Primitives ...

Compile Time Configuration: Additionally, the structure of table
testing_traffic_identify can be altered, through the PVI, to re-
configure the TTC and allow the TTC to match packets for sampling
based on other aspects of the FlowSpec beyond subnet.

registers cnt, Rate

action sample_testing_pkt() {
register_write(cnt, @, cnt+1);
modify_field(testing_meta.testingbit,cnt%Rate);

3

table testing_traffic_identify {
//fields are configurable using P4Visor Interface
reads {ipv4.dstAddr : lpm;}
actions {sample_testing_pkt;

© o N o s w N =

set_testingbit;}

10 }

11 table testing_traffic_control {

12 reads {testing_meta.testingbit : exact;}
13 actions {goto_test_pipe; goto_prod_pipe}
14 }

Figure 8: Code Excerpt from our TTC Implementation.

Comparator: In Figure 9, we present an puesdocode for the
Comparator Module. The Comparator is implemented using a set
of flow tables with compound actions.The output of each version
of the program are recorded in a set of metadata (i.e., meta_p)
and then compared by the Comparator (Line #2) to determine if
the versions are different. If a difference is detected, the action
diff_procedure is used to create a packet to send to the controller.
To overcome a limitation of our target platforms, we create a new
packet by multicasting the original packet and sending a version to
the controller (Line #6-9).

//compare the outputs
if(testing_meta.meta_p!=testing_meta.meta_t){
apply (diff_procedure);

//an example procedure configuration

action diff_procedure(testing_meta, mcast_group) {
update_fields(testing_tag, testing_meta);
set_output_mcg(mcast_group);

3

© o N R w N =

Figure 9: Pseudocode for Comparator.

6.2 Limitation of Existing PDP Targets

PDPs are expected to provide a rich set of packet processing features,
e.g., the action primitives defined in P4. However, current PDP
targets, e.g., software switch Bmv2 [13] or FPGA-based hardware
from Xilinx SDNet [54], can only support a limited set of P4’s
features. Several of the key P4 features required to enable P4Visor
include (1) stateful registers; (2) packet cloning, for creating multiple
copies of a packet to be processed by different programs; and (3)
in-switch packet generator, for generating and sending a packet
to the controller that summarizes differences between the two P4
programs.
e While packet cloning primitives are defined in the P4 specifi-
cation, the clone feature is not supported by the Bmv2 target.
We address this problem by attaching attributes of the packet
to the metadata and recirculating the packet and metadata
through the pipeline for processing by the alternative pro-
grams. Thus, by recirculating the packet, multiple versions of
a PDP Program can independently process the same packet.

106

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

e In-switch packet generator is not supported by either the
Bmv2 or FPGA targets (Xilinx SDNet). To send the outcome
of testing to the controller, P4Visor adds those fields to the
pre-configured TFlag, inserts the TFlag to a copy of the packet,
and then sends a copy of the packet out to the controller. &
Our hardware target is even less flexible than the Bmv2 due to
the limitation of the current development toolchain (SDNet).
Specifically, SDNet does not support stateful register which
impacts our design of the comparator and limits the set of
programs we can deploy. To support P4Visor on our FPGA-
based hardware target, we have implemented those primitives
in low-level hardware (i.e., the Testing Traffic Control module
is implemented with 1000+ lines of Verilog code). We believe
these hardware limitations will be addressed with the evolution
of the SDNet toolchain.

7 EVALUATION

7.1 Experiment Setup

We have evaluated P4Visor on both a software (Bmv2 [13]) and a
hardware (ONetSwitch [23]) programmable data plane.

Software PDP: On the Bmv2 target, we analyzed the following
programs: Reference Switch.P4 [14], L2 switch, Simple Router, NAT,
VLAN and Arp-Proxy, Flowletting [15], and Heavy Hitters [48]. The
Bmv?2 runs in mininet with a single switch, two hosts for testing,
and a third host for running the controller. Before testing, we install
flow entries into the tables so that the two end hosts can ping each
other.

Hardware PDP: On the ONetSwitch target, we were only able
to evaluate the following programs: L2 Switch, Simple Router, and
VLAN. We were limited in the set of programs evaluated because
ONetSwitch builds on Xilinx’s Zynq SoC [23] which only supports
a subset of P4’s language features (see Section 6.2). To test the
performance of the switch, we connect two PCs with 10G NIC to
the ONetSwitch45 switch, due to NIC limitations, the maximum
achievable throughput for our servers is 5Gbps. We used iPerf to
generate traffic between the hosts and similarly crafted rules to
force traffic through as many tables as possible.

7.2 Performance Benefits and Overheads

Here, we evaluate the overheads of P4Visor and analyze the practi-
cal benefits of source code merging as a lightweight virtualization
primitive.

7.2.1 Benefits of Resource Sharing. To understand and quan-
tify the benefits of resource sharing, we have compared P4Visor’s
merge algorithm against a Naive merge algorithm [44], which is a
greedy algorithm for MWIS problem. When solving the problem,
Naive merge selects a vertex of minimum degree, removes it and its
neighbors from the graph until no vertex available.

Our results show that merging introduces significant benefits
for three distinct reasons: First, instantiating a table into hardware
incurs some overheads. Thus by having two programs sharing a
table, we ameliorate the associated overheads and this translates

8Recall, the TFlag is removed at the edge switch and thus the endhosts never receive
the TFlag.

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

9 20 T T T T
=g P4Visor
2 5l Naive merge ||
N
=
=]
(o]
8w} .
>
(=]
(2]
2 .l i
o
g
4
: W []
o
Lut LUTRAM FF BRAM

Figure 10: Impact of program merging approaches on mem-
ory utilization.

into memory savings. For example, while multiple tables may use
the same actions, these actions need to be independently stored
for each table and by merging tables, we reduce the number of
instances of these actions. Second, as tables grow in size, several
of the resources increase in a sub-linear fashion due to hardware-
specific optimizations, e.g., the BRAM memory in Xilinx includes
optimizations that result in sub-linear growth. Third, when we
modify the parameter k which impacts the amount of sharing,
we reduce the total number of entries. This introduces yet more
savings.

To illustrate the first two points, we analyze a simple P4 program
(the router program [5]) consisting of two tables: a TCAM IPv4 rout-
ing table (32 bits width, 256 entries) and an exact match IPv6 routing
table (128 bits width, 256 entries); each table has two actions. For
this analysis, we set k = 1 which means both the P4Visor-merged
and the naive-merged programs will have the same number of en-
tries. We merge two router programs into one and then compile the
merged programs to the ONetSwitch45. In our analysis, we focus on
the four different kinds of memory resources of the Xilinx chipset:
LUT, LUTRAM, FF, and BRAM.? Figure 10 illustrates our first point
— our heuristic merging with P4Visor results in a 32% to 49% sav-
ings in resources compared with the naive merging algorithm. To
illustrate the second point, we analyze the amount of resources
required to support tables of varying sizes. We observe that while
most resources grow linearly with the size of the tables, the BRAM
grows sub-linearly (figure omitted due to space limitations).

Takeaway. Intelligently merging tables leads to tremendous
resource savings. We anticipate these savings to only grow as P4
programs become even more complex.

7.2.2 Performance Overheads. To evaluate the performance over-
heads of P4Visor, we randomly select two of the evaluated PDP
programs, i.e., L2switch, Router, VLAN, NAT, and Flowleting (only
the first three for hardware switch), merge them with P4Visor,
and compare the throughput/latency of running traffic through
the merged program against that of running traffic through the
unmodified programs — we compare the merged program against
the better performing of the two original PDP programs.

Our experiments, not shown due to space constriants, demon-
strate that P4Visor introduces minimal overheads. Specifically, the
TTC and the Comparator modules which add tags to packets and
perform comparisons introduce minimal overheads. In the software
switch, the throughput decreases by less than 1.5% and the delay

9The LUT, LUTRAM, and BRAM are mainly used to store Table structures — with
BRAM used to store large TCAM tables. The FF, is however, mainly used to store
timing and control signals.

107

Peng Zheng, Theophilus Benson and Chengchen Hu

o 100 !." oo Optimal
107 H = - P4Visor
4a—a Naive merge ||

0 B 10

o
oo Optimal
= - P4Visor
10' | 4~ Naive merge

10°

10°

Merge time (s)
Merge time (s)

wf ®

ol]
wi "
[R S 0 ARR-F-F a a a]

102

10% 10°

NZ N3 NA N NA A
AT NP a0 SNV
NI N Nj N N N Program size (# of nodes)

Merged programs

(a) Real P4 Programs (b) Synthetic P4 Programs.

Figure 11: Runtime of program merging approaches.

penalty is less than 3%. For the hardware switch, the overhead is
much smaller, both the throughput and delay overheads are less
than 1%.

Takeaway. P4Visor introduces several tables and actions to
support the different testing paradigms; however, these constructs
introduce minimal performance overheads to the network (less
than 1% in hardware) making them highly desirable for today’s
networks.

7.3 Analytical Evaluation of the Heuristic

To evaluate the efficiency and accuracy of our heuristic, we compare
our heuristic with the optimal solution (Bron-Kerbosch) and a naive
greedy merge [44]. Note: we were unable to evaluate the optimal
approach on programs with over 80 nodes because the optimal
algorithm failed to provide a solution. In these evaluations, we
focus on two kinds of P4 programs:

First, real P4 programs, is based on the reference Switch.P4 [14],
which contain 82 tables in the ingress pipeline and 41 nodes in the
egress pipeline. As Switch.P4 is built in a configurable fashion, we
create different versions by turning on or off specific functionality.
Specifically, we created the following four versions:

e Switch.P4-V1: by turning on the OpenFlow processing module.
It has 84 ingress nodes and 53 egress nodes.

e Switch.P4-V2: by turning off the Tunnel processing module. It
has 66 ingress nodes and 30 egress nodes.

o Switch.P4-V3: by turning off the ACL processing module (MAC,
IPv4, IPv6, RACL/PBR). It has 76 ingress nodes and 37 egress
nodes.

e Switch.P4-V4: by turning off the Multicast processing module.
It has 73 ingress nodes and 39 egress nodes.

Second, synthetic P4 programs, which enable us to systematically
evaluate the accuracy and efficiency of our heuristic at scale —
larger than the largest known P4 program (Switch.P4). We generate
synthetic programs ranging in size from 30 to 1000 tables with
randomly generated dependencies (edges) — we generate the edges
to ensure that the graph maintains a graph density of 0.4.

Efficiency To evaluate the efficiency of our heuristic, we mea-
sure the time it takes to merge two randomly selected P4 programs.
Figure 11(a) presents the runtimes for merging real P4 programs.
We observe that our heuristic and the naive algorithm consistently
take a similar amount of time (0.1 seconds) and both are consid-
erably faster than the optimal algorithm. Figure 11(b) presents the

P4Visor: Lightweight Virtualization and Composition Primitives ...

100 -
v B
1000] v »>--> 30 Nodes
80 N ¢ -4 50 Nodes ||
80.0 4 N oo 80 Nodes
\
> " > 60 \
& s00 Optimal H 8 \
5 P4Visor 3 1 -,
g Naive merge £ 40 AN |3
< 400l a N
N
\,
. X
200 i 20 Sel P e]
° -l
| —
0.0 LLLL . n " Al Al ol . :
30 40 50 60 70 80 1 0.9 0.8 0.7 0.6
Program size (# of nodes) Overlap ratio

(a) Synthetic programs. (b) Impact of overlap ratios.

Figure 12: Accuracy of program merging approaches.

runtimes for merging synthetic P4 programs: this figure highlights
the relationship between the runtime of the three approaches and
P4 programs size (in # of nodes): the optimal algorithm shows an
exponential growth, while both our heuristic and the greedy ap-
proach show a linear growth as a function of program size. With
the larger graphs, we observe that while our heuristic performs
slower than greedy;, it’s performance is still acceptable.

Accuracy Next, we analyze the accuracy of the different ap-
proaches to understand the cost of the performance improvements.
To evaluate the accuracy, we compare the solutions generated by
the different approaches against the optimal solution. Within the
real programs (not shown due to space constraints), we observed
that both the greedy approach and our heuristic achieved 100% ac-
curacy; however, for the synthetic programs (Shown in Figure 12(a))
we observed that the greedy approach achieved an average accu-
racy of 30% while our heuristic was able to achieve 100% in all
situations.

Upon further analysis, we observed that the accuracy of the
greedy heuristic is a function of the ratio of overlap between the
different programs. Recall, the real programs are all variants of
Switch.P4 thus we expect there to be significant overlaps. If the
overlap is extremely high, as it is common when minor changes
are made, then the greedy heuristic performs well; however if the
overlap is low, e.g., when significant changes are made, then accu-
racy drops. To illustrate this point, in Figure 12(b) we explore the
impact of overlap ratio on accuracy. From this figure, we observe
that for the greedy approach, the amount of overlap has a large
impact on its accuracy.

Takeaway. While our heuristic is slower than the greedy ap-
proach, our heuristic scales linearly and provides better accuracy
across a broader set of scenarios. In short, our heuristic is fast and
accurate.

7.4 Use Case: Testing P4 Programs

In section 6.1, we showed how to flexibly configure the fields to be
tested and actions to be performed using P4Visor interface. In this
section, we demonstrate the use of P4Visor to perform testing and
illustrate how these interfaces may be configured. Specifically, we
use P4Visor to perform Differential Testing to test the behaviors
of two versions of the P4 Router program. Unlike the previous
sections which focus on overheads and accuracy, here we explore
the operational interactions involved with using P4Visor.

108

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

Testing Setup: To use P4Visor, we (1) configured P4Visor to
record and compare the 32-bits next-hop metadata fields of the
programs. To handle the detected differences, (2) configured the
Comparator to send the packets along with the outputs from two
programs to the controller (the same as the configuration in Fig-
ure 9), and (3) fed the configuration files and the two P4 programs
into P4Visor’s interface to produce the merged program.

Testing results: We evaluated the merged program on the Bmv2
target. At runtime, we control the routing tables of the two pro-
grams with two different routing applications. We observed that
the P4Visor application can detect differences, via the P4Visor-
generated messages, within milliseconds once the control planes
install different routing entries for the same flow. With the help of
the outputs stored in the messages, an administrator can further
debug and analyze the behavior of the tested programs.

8 RELATED WORKS

The most closely related work [30] explore source code merging as a
method for providing virtualization. We explore a similar approach
but in the P4 domain and tackle a host of domain-specific issues.
Moreover, we prove the complexity of the merge problem. Below
we explore related works on SDN composition, DAG-Merging, and
other recent work on programmable data planes.

PDP: Many have explored virtualization [2, 26, 45], update [29,
35, 37], and state-management [50, 58] techniques for traditional
SDNs. Despite the growing emergence of PDP-based architectures
and solutions, to-date, there are few principled approaches for
supporting testing P4 Programs.

Most work focus on applications of PDPs [11, 16, 32, 36] or
developing interfaces and primitives to enrich existing PDPs envi-
ronment [7, 34, 47]. Our work falls in the latter class and argues
for a principled extension of PDPs to include interfaces, abstrac-
tions, and primitives to enable testing — in short, to support rapid

prototyping.

PDP Compiler: Several works [19, 27, 53, 54] have explored
challenges associated with compiling P4 programs to various hard-
ware targets, e.g. FPGA [53, 54] or RMT [19, 27]. Our work can
benefit from these approaches by using these approaches within
the back-end compiler — note: in this paper, we focus our emphasis
on front-end optimizations.

PDP Virtualization: ~While related work [22, 56, 57] proposed
a general virtualization primitive for P4, P4Visor provides lighter
weight virtualization primitive for testing based on code merging.

SDN Composition: Orthogonal work on composition and mod-
ularity in SDNs [9, 17, 21, 26, 38] focus on SDN rules and not on
P4 program’s source code. Concurrent work on composition [49]
aims to support orthogonal composition operators. In this work,
we present the first attempt to formalize the problem and present a
framework with supporting algorithms and abstractions to enable
composition within PDPs.

DAG-Merging: The problem of merging two DAGs has been
explored by several others [8, 28, 43]. At a high level, our work
differs in two ways: first, we investigate a different formulation

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

objective and second, we prove the complexity of the DAG merge
problem and provide a more efficient heuristic based on simulated
annealing. Below, we elaborate on these differences.

OpenBox [8] and SNF [28] merge processing graphs for network
functions (NFs) with the objective of minimizing the path length (re-
ducing packet processing latency in the merged processing graph).
Our goal differs from prior work because we aim to maximize the
number of merged nodes (minimizing the resources used by the
merged graph). A significant implication of this difference between
our objectives is that while our heuristic always reduces the size of
the merged graph, the algorithms presented by OpenBox and SNF
may increase the number of nodes in an attempt to minimize path
lengths.

Saha et al.[43] provide a sub-optimal heuristic for merging two
unweighted DAGs into one unweighted DAG with the objective of
minimizing the number of vertices in the final DAG. Our objective
varies: we want to simultaneously decrease the number of vertices
while maximizing the magnitude of overlap since the vertices in our
problem are weighted. Saha et al. show that merging DAGs is the
dual of finding the maximum length longest common subsequence
between pairs of topological sorted DAGs. Unfortunately, while this
problem can be solved in O(V?) time, the efficiency of the solution
is highly dependent on the topological sort of the DAG and can be
highly ineffective. Instead, we present an efficient greedy heuristic
based on simulated annealing.

9 DISCUSSION

Control Plane Overheads. In addition to the data plane over-
heads, P4Visor introduces overheads to the control plane. For ex-
ample, the P4Visor agents running on the controller and the switch
PDP devices, have to multiplex and demultiplex messages between
the controller to the local P4 programs. This translation introduces
processing overheads and also memory overheads because the
agents need to maintain a mapping and perform the translations.
Additionally, re-using the control channel between the controller
and switches to transfer packets summarizing the result of the tests
reduces the available bandwidth on the control channel. As part of
future work, we plan to explore approaches, e.g., SwitchVisor [12],
to effectively share and partition these control plane resources.

Target Dependent Optimizations As discussed in Section 4,
our current efforts focus on target-independent optimizations (i.e.,
front-end compiler), as part of future work we will extend our for-
mulation to tackle the back-end compiler by introducing constraints
and objectives specific to the hardware targets.

Seamless Reconfiguration While full virtualization provides
support for headless updates (reconfiguring the data plane without a
reboot), our approach requires a reboot after every reconfiguration.
As part of future work, we plan to tackle issues related to these
reboots by intelligently migrating state, e.g., with SwingState [34],
and reconfiguring paths, e.g., with zUpdates [33], during the reboot
to eliminate disruption.

Composition Operators This work has focused on supporting
testing-specific composition operators; however, as part of on-going
work we are exploring composition operators for enabling code

109

Peng Zheng, Theophilus Benson and Chengchen Hu

modularity, e.g., parallel and sequential composition. Supporting
these operators requires extending our current formulations to
account for operator specific constraints.

10 CONCLUSION

In this paper, we propose a lightweight virtualization primitive
for testing P4 programs through code merging. To support this
primitive, we present a framework, called P4Visor, which uses
compiler optimizations and program analysis to achieve efficient
source code merging. We evaluate the theoretical complexity of the
merging algorithm and present an efficient greedy heuristic. Our
work opens up space for implementing a wide range of composition
operators and frameworks for P4 programs.

ACKNOWLEDGMENTS

We thank our shepherd Eric Keller, and the anonymous CoNEXT
reviewers for their invaluable comments. This work is supported
in part by the National Key Research and Development Program of
China (2017YFB0801703), the National Science Foundation (through
grants CNS-1749785 and CNS-1819109), and the NSFC (61672425,
61702407).

A APPENDIX
A.1 Proof of Lemma 4.1

We can proof lemma 4.1 by contradiction. Let us assume that
3tj,tj € Ty so that

Dy[o(t, i), v(t, j)] - Ds[v(s, j), v(s,)] = 1
then we know D, [v(t, i), v(t, j)] = 1 and Dg[v(s, j), v(s,i)] = 1. As
i, j are the ids of the merged tables satisfying the table dependency
consistency, according to Rulel we have

Dm [U(m7 1)7 U(ma.])] = Dr [’U(t, l)’ U(t’j)] =1

Dm[v(m, j), v(m, i)] = Ds[o(s,), v(s,)] = 1
which means the merging of tables v(t, i), v(s, i) and the merging
of v(t, j), v(s, j) introduce a dependency loop to the merged graph
Dy,. By Rule2, Dy, is loop free. This is a contradiction. QED.

A.2 Proof of Lemma 4.2

We can proof lemma 4.2 by contradiction similar with the proof
of lemma 4.1. Assume that 3 t;,¢; € Ty, so that Ep[t;, tj] = 1,
then according to equation (5) we can get D,[v(t, i), v(t,j)] = 1
and Dg[v(s,), v(s, i)] = 1. This will lead to the same contradiction
shown in the proof of lemma 4.1. Hence, we have Vt;,t; € Ty,
Ep[ti, tj] = 0. QED.

REFERENCES

[1] Emile Aarts and Jan Korst. 1989. Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing. John
Wiley & Sons, Inc., New York, NY, USA.

Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru Parulkar,
Elio Salvadori, and Bill Snow. 2014. OpenVirteX: Make Your Virtual SDNs
Programmable. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking (HotSDN °14). ACM, New York, NY, USA, 25-30. https:
//doi.org/10.1145/2620728.2620741

Richard Alimi, Ye Wang, and Y. Richard Yang. 2008. Shadow Configuration As
a Network Management Primitive. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication (SSIGCOMM "08). ACM, New York, NY, USA,
111-122. https://doi.org/10.1145/1402958.1402972

[2

—_
S

P4Visor: Lightweight Virtualization and Composition Primitives ...

[9

=

[10]
[11]

[12]

[13

[14]

[15

[16

[17

[18

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26

Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. 2012. Fast
local search for the maximum independent set problem. Journal of Heuristics 18,
4 (01 Aug 2012), 525-547. https://doi.org/10.1007/s10732-012-9196-4

The Authors. 2018. The P4 Router Programs. https://github.com/Brown-NSG/
P4Visor/tree/master/FPGAtarget/p4program. (2018).

The Authors. 2018. The P4Visor Compiler for BMV2 target. https://github.com/
Brown-NSG/P4Visor. (2018).

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. SIGCOMM
Comput. Commun. Rev. 43, 4 (Aug. 2013), 99-110. https://doi.org/10.1145/2534169.
2486011

Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network Func-
tions. In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM,
New York, NY, USA, 511-524. https://doi.org/10.1145/2934872.2934875

Marco Canini, Daniele De Cicco, Petr Kuznetsov, Dan Levin, Stefan Schmid,
Stefano Vissicchio, et al. 2014. STN: A robust and distributed SDN control plane.
Open Networking Summit 490 (2014).

Inc. Cavium. 2018. XPliant Ethernet Switch Product Family. (2018). http://www.
cavium.com/XPliant-Ethernet- Switch-ProductFamily.html

Ed Doe Changhoon Kim, Parag Bhide. 2016. In-band Network Telemetry (INT).
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf. (2016).
Huan Chen and Theophilus Benson. 2017. Switch-visor: Towards Infrastructure-
level Virtualization of SDN Switches. In Proceedings of the 2Nd Workshop on
Cloud-Assisted Networking (CAN °17). ACM, New York, NY, USA, 25-30. https:
//doi.org/10.1145/3155921.3158431

P4 Language Consortium. 2017. P4 software switch (behavioral model) P4-bmv2.
(2017). https://github.com/p4lang/behavioral-model

P4 Language Consortium. 2017. The reference P4 program switch.p4. (2017).
https://github.com/p4lang/switch

P4 Language Consortium. 2017. The sample P4 programs. (2017). https://github.
com/p4lang/p4c-bm/tree/master/tests/p4_programs

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15). ACM,
New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/2774993.2774999
Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming
Language. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP °11). ACM, New York, NY, USA, 279-291. https:
//doi.org/10.1145/2034773.2034812

Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. 2013. Design
Principles for Packet Parsers. In Proceedings of the Ninth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS ’13). IEEE Press,
Piscataway, NJ, USA, 13-24. http://dl.acm.org/citation.cfm?id=2537857.2537860
Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles Net-
work Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference (SIG-
COMM ’16). ACM, New York, NY, USA, 58-72. https://doi.org/10.1145/2934872.
2934891

Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P. Donovan, Brandon
Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan
Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange. In Proceedings
of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY,
USA, 551-562. https://doi.org/10.1145/2619239.2626300

David Hancock and Jacobus van der Merwe. 2016. HyPer4: Using P4 to Virtu-
alize the Programmable Data Plane. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies (CONEXT ’16).
ACM, New York, NY, USA, 35-49. https://doi.org/10.1145/2999572.2999607
Chengchen Hu, Ji Yang, Hongbo Zhao, and Jiahua Lu. 2014. Design of All
Programable Innovation Platform for Software Defined Networking. In Pre-
sented as part of the Open Networking Summit 2014 (ONS 2014). USENIX, Santa
Clara, CA. https://www.usenix.org/conference/ons2014/technical-sessions/
presentation/hu-chengchen

Brijnesh J. Jain and Klaus Obermayer. 2011. Extending Bron Kerbosch for
Solving the Maximum Weight Clique Problem. CoRR abs/1101.1266 (2011).
arXiv:1101.1266 http://arxiv.org/abs/1101.1266

Mikel Jimenez and Henry Kwok. 2017. Building Express Backbone: Facebook’s
new long-haul network. https://code.facebook.com/posts/1782709872057497/
building-express-backbone-facebook-s-new-long-haul-network/. (2017).

Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor:
A Compositional Hypervisor for Software-defined Networks. In Proceedings of
the 12th USENIX Conference on Networked Systems Design and Implementation
(NSDI'15). USENIX Association, Berkeley, CA, USA, 87-101. http://dl.acm.org/

110

[27

[28

[29]

[30

[31

[32

@
&

[34

[35

[37

[38

[39

[40

[41

[42]

[43

[44

[46

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

citation.cfm?id=2789770.2789777

Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling
Packet Programs to Reconfigurable Switches. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation (NSDI'15). USENIX
Association, Berkeley, CA, USA, 103-115. http://dl.acm.org/citation.cfm?id=
2789770.2789778

Georgios P. Katsikas, Marcel Enguehard, Maciej Kuzniar, Gerald Q. Maguire Jr,
and Dejan Kosti¢. 2016. SNF: synthesizing high performance NFV service chains.
Peer§ Computer Science 2 (Nov. 2016), €98. https://doi.org/10.7717/peerj-cs.98
Naga Praveen Katta, Jennifer Rexford, and David Walker. 2013. Incremental
Consistent Updates. In Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (HotSDN ’13). ACM, New York, NY,
USA, 49-54. https://doi.org/10.1145/2491185.2491191

Eric Keller and Evan Green. 2008. Virtualizing the Data Plane Through Source
Code Merging. In Proceedings of the ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow (PRESTO ’08). ACM, New York, NY, USA, 9-14.
https://doi.org/10.1145/1397718.1397721

Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. 2009. Virtually
Eliminating Router Bugs. In Proceedings of the 5th International Conference on
Emerging Networking Experiments and Technologies (CONEXT ’09). ACM, New
York, NY, USA, 13-24. https://doi.org/10.1145/1658939.1658942

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
137-152. https://doi.org/10.1145/3132747.3132756

Honggiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and
David Maltz. 2013. zUpdate: Updating Data Center Networks with Zero Loss. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM °13).
ACM, New York, NY, USA, 411-422. https://doi.org/10.1145/2486001.2486005
Shouxi Luo, Hongfang Yu, and Laurent Vanbever. 2017. Swing State: Consis-
tent Updates for Stateful and Programmable Data Planes. In Proceedings of the
Symposium on SDN Research (SOSR °17). ACM, New York, NY, USA, 115-121.
https://doi.org/10.1145/3050220.3050233

Ratul Mahajan and Roger Wattenhofer. 2013. On Consistent Updates in Software
Defined Networks. In Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks (HotNets-XII). ACM, New York, NY, USA, Article 20, 7 pages. https:
//doi.org/10.1145/2535771.2535791

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 15-28.
https://doi.org/10.1145/3098822.3098824

Tal Mizrahi, Efi Saat, and Yoram Moses. 2015. Timed Consistent Network Up-
dates. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research (SOSR ’15). ACM, New York, NY, USA, Article 21, 14 pages.
https://doi.org/10.1145/2774993.2775001

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software Defined Networks. In 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 13). USENIX
Association, Lombard, IL, 1-13. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/monsanto

Barefoot Networks. 2016. Barefoot Whitepaper: The World’s Fastest and Most
Programmable Networks. (2016). https://barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/

Bruno Nogueira, Rian G. S. Pinheiro, and Anand Subramanian. 2018. A hybrid iter-
ated local search heuristic for the maximum weight independent set problem. Op-
timization Letters 12,3 (01 May 2018). https://doi.org/10.1007/s11590-017-1128-7
Recep Ozdag. 2012. Intel® Ethernet Switch FM6000 Series-Software Defined
Networking. (2012).

D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM 15, 12 (Dec. 1972), 1053-1058. https://doi.org/10.1145/
361598.361623

Dhrubajyoti Saha, Abhishek Samanta, and Smruti R Sarangi. 2009. Theoretical
framework for eliminating redundancy in workflows. In Services Computing, 2009.
SCC’09. IEEE International Conference on. IEEE, 41-48.

Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. 2003. A note on greedy
algorithms for the maximum weighted independent set problem. Discrete Applied
Mathematics 126, 2 (2003), 313 - 322. https://doi.org/10.1016/S0166-218X(02)
00205-6

Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. 2010. Can the Production Network Be the
Testbed?. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation (OSDI’10). USENIX Association, Berkeley, CA, USA, 365-378.
http://dl.acm.org/citation.cfm?id=1924943.1924969

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Holzle, Stephen

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). ACM, New York, NY, USA, 183-197. https://doi.org/10.1145/2785956.2787508
Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In
Proceedings of the 2016 ACM SIGCOMM Conference (SSIGCOMM ’16). ACM, New
York, NY, USA, 15-28. https://doi.org/10.1145/2934872.2934900

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New
York, NY, USA, 164-176. https://doi.org/10.1145/3050220.3063772

Hardik Soni, Thierry Turletti, and Walid Dabbous. 2018. P4Bricks: Enabling
multiprocessing using Linker-based network data plane architecture. (Feb. 2018).
https://hal.inria.fr/hal-01632431 working paper.

Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. 2014. A Network-state Management Service. SSIGCOMM Comput. Commun.
Rev. 44, 4 (Aug. 2014), 563-574. https://doi.org/10.1145/2740070.2626298
Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY. Wong, and Hongyi Zeng. 2016.
Robotron: Top-down Network Management at Facebook Scale. In Proceedings of
the 2016 ACM SIGCOMM Conference (SSIGCOMM ’16). ACM, New York, NY, USA,
426-439. https://doi.org/10.1145/2934872.2934874

Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Mar-
gulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri Perelman, and
Yee Jiun Song. 2016. Kraken: Leveraging Live Traffic Tests to Identify and Resolve
Resource Utilization Bottlenecks in Large Scale Web Services. In 12th USENIX

Peng Zheng, Theophilus Benson and Chengchen Hu

Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 635-651. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/veeraraghavan

Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate
Foster, and Hakim Weatherspoon. 2017. PAFPGA: A Rapid Prototyping Frame-
work for P4. In Proceedings of the Symposium on SDN Research (SOSR ’17). ACM,
New York, NY, USA, 122-135.

Xilinx. 2014. SDNet. (2014). http://www.xilinx.com/products/design-tools/
software-zone/sdnet.html

Xilinx. 2017. Ternary Content Addressable Memory (TCAM) Search IP for SDNet
SmartCORE IP Product Guide. (2017).

Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.
HyperV: A High Performance Hypervisor for Virtualization of the Programmable
Data Plane. In 2017 26th International Conference on Computer Communication
and Networks (ICCCN). 1-9. https://doi.org/10.1109/ICCCN.2017.8038396
Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.
MPVisor: A Modular Programmable Data Plane Hypervisor. In Proceedings of
the Symposium on SDN Research (SOSR °17). ACM, New York, NY, USA, 179-180.
https://doi.org/10.1145/3050220.3060600

Ying Zhang, Neda Beheshti, and Ravi Manghirmalani. 2014. NetRevert: Rollback
Recovery in SDN. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking (HotSDN ’14). ACM, New York, NY, USA, 231-232. https:
//doi.org/10.1145/2620728.2620779

Danyang Zhuo, Qiao Zhang, Xin Yang, and Vincent Liu. 2016. Canaries in the
Network. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks
(HotNets ’16). ACM, New York, NY, USA, 36-42. https://doi.org/10.1145/3005745.
3005767

	Abstract
	1 Introduction
	2 Motivation
	2.1 Rapid Development in Large Networks
	2.2 Novel PDP Primitives: Code Merge
	2.3 P4Visor Workflow

	3 Design of P4Visor
	3.1 Overview
	3.2 Composition Operators
	3.3 Primitives for Composition Operators
	3.4 P4Visor Compiler

	4 Merging P4 Programs
	4.1 Background on P4 Compiler Constraints
	4.2 Merging Optimization
	4.3 Complexity Analysis

	5 Efficiency
	5.1 P4Visor Heuristic Merging
	5.2 Controlling Resource Sharing

	6 P4Visor Implementation
	6.1 Supporting Flexible Testing Operators
	6.2 Limitation of Existing PDP Targets

	7 Evaluation
	7.1 Experiment Setup
	7.2 Performance Benefits and Overheads
	7.3 Analytical Evaluation of the Heuristic
	7.4 Use Case: Testing P4 Programs

	8 Related Works
	9 Discussion
	10 Conclusion
	Acknowledgments
	A appendix
	A.1 Proof of Lemma 4.1
	A.2 Proof of Lemma 4.2

	References

